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Polycrystalline graphites are widely used in the metallurgical, nuclear and aerospace industries. Graphites 

are particulated composites manufactured with a mixture of coke with pitch, and changes in relative proportions 

of these materials cause modifications in their mechanical properties. Uniaxial tension tests must be avoided 

for mechanical characterization in this kind of brittle material, due to difficulties in making the relatively long 

specimens and premature damages caused during testing set-up. On other types of tests, e.g. bending tests, the 

specimens are submitted to combined stress states (normal and transverse shear stresses). The Iosipescu shear test, 

is performed in a beam with two 90° opposite notches machined at the mid-length of the specimens, by applying 

two forces couples, so that a pure and uniform shear stress state is generated at the cross section between the 

two notches. When a material is isotropic and brittle, a failure at 45° in relation to the beam long axis can take 

place, i.e., the tensile normal stress acts parallel to the lateral surface of the notches, controls the failure and the 

result of the shear test is numerically equivalent to the tensile strength. This work has evaluated a graphite of the 

type used in rocket nozzles by the Iosipescu test and the resulted stress, ∼11 MPa, was found to be equal to the 

tensile strength. Thus, the tensile strength can be evaluated just by a single and simple experiment, thus avoiding 

complicated machining of specimen and testing set-up.

Keywords: polycrystalline graphites, mechanical properties, tensile strength, shear strength, weibull 

modulus

1. Introduction

Synthetic graphites are widely used in many engineering ap-

plications, such as those in the metallurgical, nuclear and aerospace 

industries, and as electrodes for ion-lithium batheries1. They are 

manufactured using a blend of coke and pitch in different proportions. 

Graphites can be classified according to the raw material as coarse, 

medium or fine grain, and depending on their processing technique 

as extruded or molded grades2. This will lead to microstructures 

characterized as being anisotropic in the case of extruded grades 

and isotropic in the case of molded grades. During processing, heat 

treatment temperature lead to changes in mechanical and thermal 

properties. If the constituent phases, coke and binder coke have dif-

ferent properties, and the properties of the graphite are different from 

properties of the constituents, then graphites can be recognized as a 

particulated composites. Due to their excellent thermo-mechanical 

properties and low density (<2 g.cm-3) graphites are suitable for use 

as high temperature components.

Mechanical properties, such as tensile strength, flexural strength, 

shear strength, among others, are commonly used to characterize 

materials which will give their mechanical finger-printing. These 

test methods are acceptable for determining design allowables, for 

comparative purposes and also for quality control. The test data 

depends on the test method, specimen design, fabrication method, 

and microstructure3. Among all the mechanical tests that are used to 

characterize materials the uniaxial tension test should be avoided, 

particularly for brittle materials, which is the case of graphites, due 

to difficulties in making the relatively long specimens (they are prone 

to fail during machining) and possible damages caused during testing 

set-up. In some other types of tests, e.g. bending tests, the specimens 

are submitted to combined stress states, i.e. simultaneous normal and 

transverse shear stresses, and the results for strength and modulus 

can be misleaded. Although there are many test methods to measure 

shear properties of materials, still none of them are ideal for introduc-

ing real pure shear stresses in the specimens. This difficulty must be 

overcome by materials scientists involved in the development and 

characterization of materials.

The most uniform and pure shear-stress state can be achieved in a 

material by applying torsional loading to a thin-walled tube specimen. 

However, this kind of specimen is usually expensive to be produced 

and the testing procedure is not straightforward, because buckling 

failure along ±45° can take place. In the early sixties, N. Iosipescu, 

from Romania, developed a simple test to determine shear strength 

and shear modulus for metals, but the first published work in English 

language appeared only in the late sixties4,5. Since then, the new in-

plane shear test procedure was known as Iosipescu shear testing and 

the use of the new testing methodology was soon applied to isotropic 

and anisotropic materials, when the first reports appeared in the early 

seventies. A lot of research has been accumulated in this specific test-

ing procedure because it is simple to perform, requires small and eas-
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ily fabricated specimens, and enables very accurate and reproducible 

results for shear modulus and shear strength6,7. Since then, Iosipescu 

shear test has became very popular for the determination of shear 

strength and shear modulus for a broad range of materials8.

In the Iosipescu specimen a pure transverse shear stress state 

occurs in the cross section between the two 45° opposite notches 

machined at the mid-length of the specimen (points a and c in Fig-

ure 1). By applying two forces couples that generate two opposite 

bending moments, a pure shear stress state is generated between 

two notches of the beam, as shown by the external force, shear-force 

and bending-moment diagrams of Figure 1. According to the Mohr 

circle diagram corresponding to this resulting stress state that acts in 

the specimen, the principal normal stresses act parallel to the lateral 

surface of the notches (i.e at 45° with respect to the longitudinal 

direction of the specimen, x). If the failure occurs perpendicular to 

this direction, which is caused by a principal normal tensile stress 

its value can be used to evaluate tensile strength. This behavior is 

typical for brittle materials in which the deformations as well as the 

distortions are particularly small, up to the failure load, and eventual 

geometric changes during the tests are negligible. Finite-element 

analysis of the test configuration has been object by several authors 

to investigate the influence of stress distributions and for validation 

of the Iosipescu test6,9.

Cracks and pores are common features that are found in graphite 

microstructure. These defects are, in fact, undesirable structural pa-

rameters that significantly reduces the mechanical properties of the 

material, mainly the tensile strength. Since they can not be avoided, 

these microstructural features and the inherent brittleness of graphites 

gives rise to an appreciable scatter in the results of strength properties. 

Weibull distribution statistics is currently a well established statisti-

cal tool to evaluate the significant variability of the mechanical test 

results which takes place in brittle materials and will be applied to 

the data collected from the Iosipescu shear test.

2. Experimental

2.1. Material

The graphite used in the work was provided by SGL Carbon Ltd 

- USA, trade name HLM 85. It is extruded in ∼20 cm cylinder blocks. 

The apparent density of HLM graphite is 1.73 g.cm-3. All the sample 

specimens were taken parallel to extrusion direction.

Optical microscopy was carried out in a Leica DM RxP opti-

cal microscope. The amount of porosity was analysed by mercury 

intrusion porosimetry in a Autoscan-33 Quantachrome Porosimeter. 

Surface of the fractured specimens were analysed by an Oxford Leo 

435 Vpi scanning electron microscope. The HLM 85 graphite is 

suitable for use at high temperature applications and it is extensively 

used as rocket nozzle throat inserts.

2.2 Tensile test

Tensile tests were performed on HLM graphite, with the applied 

load parallel to extrusion direction, following procedure described 

in the ASTM C 749 Standard by using the Instron universal testing 

machine10. Dimensions of the tensile coupon are shown in Figure 2 

and the cross head speed was set at 0.5 mm/min. Longitudinal and 

transverse strains were measured by using 90° rosette FCA-I-23 

strain gages from Tokyo Sokki Kenkyujo Co. Ltd, attached at center 

of the specimen, Equation 1, using the experiemental values of the 

transverse and the longitudinal strains (e), as following:

n
e

e
= - transverse

longitudinal
 (1)

2.3. The Iosipescu test set-up

The Iosipescu shear specimens were machined and the test was 

performed according to ASTM D 5379M standard, using an Instron 

430111. As for the tensile coupons, the Iosipescu shear specimens 

were machined parallel to the extrusion direction (x) of the graphite 

cylinders, as seen in Figure 3. Thirty two identical specimens were 

tested to failure. The cross head speed was 0.5 mm/min. The average 

shear stress, in the region where the shear force V = P is maximum, 

is defined by the Equation 212:
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Figure 1. Loading configuration showing the free-body, the external force 

diagram, the shear-force diagram, and the bending moment diagrams along 

the longitudinal axis of the specimen.
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Standard. Units in milimeters.

a SG1 (–45°)

SG2 (+45°)c

y

x

Extrusion

direction

Figure 3. Strain gages position at the middle section of the sample. (specimen 

length = 75 mm, distance between the notches = 12 mm).
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where:  P = applied load; d = distance between roots of notches (seg-

ment from a to c in Figure1); and t = specimen thickness.

The sketch of the strain-gage position in the Iosipescu specimen 

is show in Figure 3. During testing a pure shear loading is gener-

ated in the zero bending moment section of the beam and the shear 

stress has its maximum value at the cross section ac. To prevent 

non-perpendicularity of fixture-sample contacts to the Iosipescu rig, 

all specimens were machined with 13 mm thickness, following sug-

gestion of Pierron6. Strain-gages of the type 90° rosette FCA-I-23, 

from Tokyo Sokki Kenkyujo Co. Ltd were properly attached to in 

the samples, as shown in Figure 3.

2.4. Weibull modulus

The Weibull modulus from the Iosipescu shear results was 

calculated. The determination of Weibull modulus (m) considers 

the assumption of a constant volume for all samples tested, and the 

results is a straight line equation, when plotting experimental failure 

stress values (σ) as a function of cumulative probability of failure 

(P), according to Equation 313 :

lnln (1/1 – P) = m.ln σ – m.ln σ
o 

(3)

where σ
o
 is the intrinsic strength of the material, which corresponds 

to a stress level associated with a probability of failure of about 73% 

(or a survival probability of 37%).

The Weibull modulus (m) corresponds to the inclination of a 

straight line which is obtained by plotting lnln (1/(1 – P) as function 

of ln σ. When the failure stresses (σ
i
) are ranked from the highest 

to the lowest results, the probability of failure from an intermediate 

position (P
i
), corresponding to the i-th observation, is given by P

i 
= i/

N + 1, where N is the number of samples. The Weibull modulus (m) 

is obtained by linear regression. The Weibull modulus is a parameter 

that can indicates the level and how homogeneous is the distribution 

of the failure stresses (σ
i
) in a material. Ductile materials, in which 

the defects are reduced and homogeneously distributed, present a high 

Weibull modulus (e.g. m = 100, for an annealed SAE 1020 steel), 

whereas for brittle materials m is low (e.g. m ≅ 5, for carbon fibers). 

So, the lower is the scatter in the failure stresses, the higher is the 

Weibull modulus of a material.

3. Results and Discussion

The Figure 4 shows a typical optical micrography of a polished 

surface of the HLM graphite. HLM graphite is formed by a binder 

phase and elongated needled-coke grains. As a consequence HLM 

graphite is anisotropic in nature. A broad range of pores and micro-

cracks can be found in the microstructure and they are represented 

by the dark areas in Figure 4. The reflection interference colors in 

graphites shows that the binder phase contains regions of common 

basal plane orientation and they exhibits a broad variation in size 

and shape. This is the case for HLM 85 graphite. A typical size of 

these anisotropic components is ∼125 µm, which is in the range of 

1-500 µm as described by Forest and Marsh14. In fact, the initial 

medium grain size for this graphite from manufacturer’s data sheet 

is 0.8382 mm.

Mercury intrusion porosimetry shows that a 12% open pore vol-

ume is present in the HLM graphite. The IUPAC boundary for mes-

opores and macropores is at pore radius ∼25 µm. The pore distribution 

size is broad, ranging from 1-2 to 250 µm, as shown in Figure 4.

As any other ceramic-like material, the mechanical properties for 

graphites are mainly influenced by raw materials (grain size and dis-

tribution, porosity, viscosity, etc), processing conditions and preferred 

orientation of crystallites. Figure 5 shows plots of the tensile stress 

as a function of strain for the tensile coupons in the direction paral-

lel to extrusion (x, which corresponds to the sample long axis). The 

stress-strain curves are non-linear, and they show that elastic modulus 

decrease with an increase in stress. The average for tensile strength 

(with the corresponded standard deviation) was 10.9 ± 2.1 MPa, and 

deformation up to failure was 0.2 ± 0.05%.

Data for Young’s modulus were calculated from the slope of the 

initial part of the stress-strain curve, which was taken up to ∼2 MPa, 

resulting in 11.5 ± 0.9 GPa. Longitudinal strain was 0.0962 ± 0.05 

and transverse strain was –0.018 ± 0.006 resulting in a Poisson’s ratio 

of 0.187. These data confirms figures for tensile strength and elastic 

modulus found in literature and manufacturer’s data, which are in 

the range 8-12 MPa15. Tensile coupons failed sharply at the value of 

maximum stress, in two pieces within the gage length region.

Typical shear stress-strain curves are given in Figures 6 and 7. 

The curves are reasonably quadratic. Figure 8 shows a curve for 

shear stress, calculated from Equation 2, as a function of strain for 

the Iosipescu shear testing. As for tensile stress-strain curve, the 

shear stress-strain curve is also non-linear, and the stress grows 

monotonically up to maximum when an abrupt decrease in strength 

related to brittle failure occurs. The measured shear stress up to 

failure of the HLM graphite, calculated from Equation 2, was 

11.7 ± 1.7 MPa. At the peak stress the average deflection of the speci-

250 m

Figure 4. Optical microscopy of the HLM graphite. Dark areas represent 

pores.
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testing for the HLM 85 happened in a 45° inclination in relation to 

the applied forces.

Early work carried out by Taylor16 on mechanical properties of 

reactor graphites found a shear strength in the range of 22-33 MPa, 

measured by the double shear apparatus. The tensile strength reported 

in the same work was in the range of 10.7-14.0 MPa, giving a tensile 

strength/shear strength ratio of ∼0.5. It is obvious that an incongru-

ence exists on results for shear strength found by Taylor and in the 

present work. Also, the failure mode does not correspond to a pure 

shear failure mode (which, in such situation, should de parallel to 

the line between the notches, ac, in Figure 3).

To explain the results and behavior found in this work during 

Iosipescu shear test it is necessary the help of mechanics of materials. 

A general Mohr circle diagram, as shown in Figure 10, represents all 

the possible normal (σ) and shear (τ) stresses, along any direction, 

for a typical bi-dimensional (2-D) stress state in a point of a material. 

Thus, we can apply this concept in the notch region of the Iosipescu 

shear speciment. From the concepts of materials mechanics, in the 

planes associated with the points Q and P in the Mohr circle, where 

the normal stresses assume their maximum (σ
1
) and minimum (σ

2
) 

values, respectively, the shear stresses are zero. These planes are the 

principal planes and the normal stresses at them are the principal 

stresses, defined as σ
1
 and σ

2
 at the points P and Q, respectively17.0
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Figure 6. Typical shear stress-strain for SG1 strain gage (–45°) for the 

Iosipescu coupon.
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Figure 7. Typical shear stress-strain for SG2 strain gage (+45°) for the 

Iosipescu coupon.
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Figure 8. Plot of the curve of Iosipescu shear stress as a function of strain. 

Sample long axis (x) is parallel to extrusion.

men was 0.75 ± 0.09 mm, which corresponds to a strain to failure of 

0.38 ± 0.04%. Shear modulus calculated in the elastic region of the 

shear stress-strain curve resulted in a value of 3.02 ± 0.6 GPa.

The Iosipescu test procedure states that pure shear stress should 

occurs in the ac section (Figure 1) leading to a failure in between notch 

tips and shear strength can be calculated by Equation 2. However, 

as could be seen in Figure 9, the failure mode after Iosipescu shear 

Figure 10. Mohr circle for general bi-dimensional stress state15.
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Figure 9. Fracture specimen of HLM graphite showing the characteristic 

failure mode at 45° in relation to the applied stress.
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Due to the fact that in the circle of Mohr presented in Figure 10, 

the magnitudes of the principal normal stresses are identical to the 

maximum shear stresses (in particular, σ
1
 = τ

max
 and σ

2
 = –τ

max
) and, in 

addition, the principal directions 1 and 2 are coincident to orientations 

of the strain gauges 1 and 2, in Figure 3 (SG1 and SG2), respectively. 

The shear stress-strain plots indicate that tensile stresses are normal 

to the upper left hand side V-notch, corresponding to the SG1 strain-

gage deformation. On the other hand, compressive stresses are normal 

do the lower right hand side V-notch face, corresponding to the SG2 

strain-gage deformation. In the Mohr circle, the stresses σ
1
 and σ

2
 

can be obtained by the Equations 4 and 5, as following:

s
s s

s s t1
2 2

2

1

2
4=

+
+ - +x y

x y xy( )  (4)

s
s s

s s t2
2 2

2

1

2
4=

+
- - +x y

x y xy( )  (5)

where σ
1
 and σ

2
 are mathematically the maximum and minimum 

principal normal stresses.

The maximum shear stress in a point can be expressed by Equa-

tion 6, as following :

t s s ts x y xymax ( )= ± - +
1

2
42 2  (6)

Subtracting Equation 4 from Equation 5, Equation 7 is ob-

tained:

s s s s t1 2
2 24- = ± - +( )x y xy  (7)

As a result Equation 8 can be obtained as following :

t s ssmax ( )= -
1

2
1 2  (8)

The Mohr circle of Figure 10 refers to a general 2-D stress state. 

However, in the region between the notches (ac, in Figure 3), in 

particular, there is pure shear along the directions x and y, and so 

σ
x
 = σ

y
 = 0 (as shown in the Mohr circle of Figure 11, at point A), it 

is clear from Equations 4 and 6 that:

σ
1
 = τ

max
 (9)

During Iosipescu shear testing, depending on the direction which 

is considered, components of normal and shear stress are present in the 

region (ac) between notches. The principal normal stresses are located 

at ±45° relatively to the longitudinal direction (x) of the specimens 

and they act parallel (or perpendicular) to the specimen notch lateral 

surfaces, according to Figures 3 and 9. In addition, along the direc-

tions x and y there is pure shear, according to Figure 1, and a failure 

occurring perpendicular to the direction –45° (≡ SG1), as shown in 

Figure 9 will take place with the same stress value obtained from 

Equation 2, due to the fact that σ
1
 = τ

max
, according to Equation 9.

As stated earlier, for a ductile material, the failure mode for the 

Iosipescu specimen in pure shear would correspond to a fracture at 

the cross section, and the tensile strength would be higher than the 

shear strength. The Morh circle construction in Figure 11 shows that 

the shear force applied to the specimen coupon leads to a state of 

pure shear (τ
xy

 = τ
yx

) in the cross section. So, if the material is ductile, 

the failure plane would be in the plane of maximum shear. However, 

since graphite is a brittle and porous material and its tensile strength 

is low, the failure will occur perpendicular to the direction 1 (≡ SG1) 

where the tensile stresses are maximum. The fracture surface is at 

an angle of 45° with the cross-sectional plane of the specimen, as 

shown schematically in Figure 11. So, the brittle failure mode of the 

specimen at 45° (Figure 9) to the ac section (Figure 1), indicates pure 

tension failure occurring and the result from Equation 2 is in fact 

the longitudinal tensile strength of the material. Thus, if the failure 

is perpendicular to the principal normal stresses the value of shear 

strength, determined by Iosipescu shear, as in Equation 2, would be 

approximately the tensile strength determined from standard static 

tensile tests. Working with a particular polymer composite materials 

made of epoxy resins and glass microspheres, D´Almeida18 found a 

similar fracture pattern for the failure mode tested by Iosipescu ap-

paratus, and the equivalence between values for Iosipescu shear stress 

at failure and tensile strength of the tested material. Brittle failure 

mode under shear testing was also observed for this material.

All failure models for graphites recognize the key role of pores 

during initiation of fracture when graphite is stressed10,20,21. Pores in 

graphites are mainly in the coke particles or as crack-like porosity 

which is embedded in binder material. The cracks tend to lie either 

in regions of well-orientated binder phase material or along the 

interfaces between the filler particles and the binder. Similarly to 

other particulate composites, graphite fracture mechanisms and crack 

development can mainly take part in the matrix or breaking through 

the particle themselves, or even splitting the interfaces between binder 

and particles22. It is not easy to determine at each stress level one 

specific mechanism is more likely to occur than the other. Moreover, 
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Figure 11. Representation of the failure mode of the HLM grafite associated 
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shear stresses can also lead to deformation of pores during testing. In 

any case fractured graphites surfaces exhibit a coarse microstructure, 

as it can be seen in shear failure region of Figure 12.

According to Tucker21, crack development occurs by various 

means. It starts from pre-existing defects and can propagates by means 

of crystallite cleavage linking with another pores and other cracks, 

and by splitting the interfaces between binder and particles or by 

breaking through the particles themselves, region A seen in Figure 12. 

As a result subcritical defects form randomly throughout the mate-

rial, increasing in size and density as the load is applied until failure 

occurs. Shear stresses can also induce sliding of basal planes within 

well-oriented structures developing fracture cleavage of crystallites. 

Cleavage is more likely to occur in pore-free regions.

Unlike metals and plastics, graphites exhibit the presence of a 

large number of inhomogeneities, such as cracks and voids, due to 

their manufactured process. These features causes an appreciable 

scatter in the maximum failure strength values which is a consequence 

of the probability to find the critical defect. This critical defect is 

the one that is the most favourable to crack propagation, and causes 

failure, as a function of its position in relation to load direction. 

Defects in materials are randomly distributed and it is necessary to 

use statistical tools to cope with the variability in properties of these 

class of materials.

The Weibull distribuition is one of the most used statistical tools 

for materials that exhibit brittle failure and a probabilistic distribution 

of defects. Moreover, because it provides a probabilistic description 

the theory behind the Weibull distribution recognises the inherent 

variability in graphite strength due to the complexites of its micro-

structure. The Weibull plot for HLM graphite calculated from shear 

data is shown in Figure 13. A sample batch over twenty five gives a 

consistent Weibull modulus value22. The Weibull modulus “m” found 

for maximum shear stress from 32 tested HLM graphite samples was 

∼8,5. This value is in between those of glass fibers (m =10) and carbon 

fibers (m = 5), which are also brittle materials23.

By testing over a hundred samples of HLM graphite having 

various cross-sections from different batches under flexure loading, 

Muller24 found a similar value for the Weibull modulus (m = 9) which 

is a very close to the result that was found in this work. It is worth to 

mention that the present work used several samples from the same 

graphite block, whereas in Muller’s work the samples were taken from 

regular block production of a certain size, over a time of one year.

4. Conclusion

This work reported an easy shear test used for graphites. The 

calculated shear strength of HLM graphite was 11.7 MPa. The 

graphite failure mode showed a 45° crack in between the notch sec-

tion. Graphite is nearly macroscopically isotropic and exhibit low 

strain to failure. Mohr’s circle for the Iosipescu shear coupon shows 

that principal normal stresses (σ
1
 = τ

max
) are laid perpendicular to 

the fracture surface and, as a consequence, act parallel to the lateral 

surface of the notches. This situation is caused by a pure normal 

stress tensile state, and the shear failure test could be used to evaluate 

the tensile strength of a brittle material. In resume, Iosipescu shear 

testing is a useful tool to estimate, with a good accuracy, the tensile 

strength of graphites. Shear fracture surface is coarse and rather jag-

ged because the crack propagation has to penetrate into the coarse 

structure of graphite. Weibull modulus for HLM graphite taken from 

maximum shear strength values is m = 8.5, which is typical for com-

mon ceramic materials.
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