
RESEARCH ARTICLE Open Access

Assessing aberrant muscle activity patterns
via the analysis of surface EMG data
collected during a functional evaluation
Fatemeh Noushin Golabchi1, Stefano Sapienza1, Giacomo Severini1,2, Phil Reaston3, Frank Tomecek4,

Danilo Demarchi5, MaryRose Reaston3 and Paolo Bonato1*

Abstract

Background: Surface electromyographic (EMG) recordings collected during the performance of functional evaluations

allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment

is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to

accurate results only when the assessment is carried out by an EMG expert.

Methods: A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG

recordings collected during the performance of functional evaluations in 62 subjects (22 to 61 years old) were used to

develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using

an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study

(i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar

hardware removal) to assess the clinical suitability of the proposed technique.

Results: The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained

using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a

Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The

root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal

scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95%

confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert.

When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity

patterns associated with persistent back pain following instrumented lumbar fusion.

Conclusions: The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of

aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is

suitable to derive clinically-relevant information from EMG data collected during functional evaluations.
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Background

Nearly 50% of people living in Western countries ex-

perience a musculoskeletal disorder at some point in

time during their adult life and the majority of these

individuals report related long-term problems [1–3].

Musculoskeletal disorders are typically associated

with acute and chronic pain [4, 5]. Low back pain and

neck-shoulder pain are among the most common

complaints associated with musculoskeletal disorders

[6–10]. These conditions are often accompanied by

motor dysfunction, i.e. aberrant patterns of muscle activity

that lead to non-physiological postures and trajectories of

movements as well as non-physiological loads on joints

and ligaments [11–14]. The development of clinical inter-

vention plans often relies on observations gathered during

the performance of functional evaluations consisting

of batteries of motor tasks that mimic activities of

daily living (e.g. walking, lifting a box). During these

evaluations, clinicians collect biomechanical and elec-

tromyographic (EMG) data to assess the severity of

motor dysfunction [11–14].

Gathering biomechanical data allows clinicians to

identify range of motion limitations, the inability of

subjects to produce the desired force output, and aber-

rant movement patterns [15, 16]. In turn, EMG record-

ings allow clinicians to detect the root causes of

non-physiological postures and movement trajectories

such as abnormal readings at rest, muscle hyperactivity,

muscle spasms, patterns of compensatory activity of

synergistic and/or antagonistic muscles, lack of inhibition

of muscle activity, and other aberrant muscle activation

patterns [17–23]. Whereas the use of biomechanical mea-

sures based on a quantitative analysis of the data is rela-

tively common [15, 16], the analysis of EMG data is

typically carried out via visual inspection of the EMG re-

cordings and the use of ordinal scales to rate the severity

of abnormally high levels of muscle activity, the pres-

ence/absence and severity of muscle spasms, and the

observation of non-physiological patterns of recruit-

ment and de-recruitment of the muscles’ motor units

as reflected by the amplitude modulation of the surface

EMG recordings [24].

The observations gathered by EMG experts vary in

complexity according to the task performed by the

subject. When subjects are observed in static condi-

tions (e.g. while sitting on a chair or standing still),

EMG experts would first assess if the general level of

EMG activity is physiological or if it reflects a non-

physiological behavior (e.g. muscle hyperactivity) [25,

26]. This observation could be translated into a quanti-

tative measure because the level of EMG activity is as-

sociated with the amplitude of the EMG recordings

(e.g. the root-mean-square value of the EMG data). A

second observation of significant relevance in the

analysis of EMG recordings performed in static condi-

tions is the presence/absence and severity of muscle

spasms [27, 28]. Muscle spasms are unexpected bursts

of muscle activity associated with the recruitment of

individual motor units, a pool of motor units that are

recruited quasi-periodically in a synchronized manner,

or the sustained activity of a pool of motor units [27,

28]. Quantitative measures to capture these behaviors

rely on EMG data features associated with the charac-

teristics of the recruitment of motor units during

muscle spasms, including data features derived in the

time and frequency domains [27, 28].

More complex observations are gathered via visual

inspection of the surface EMG data collected in dy-

namic conditions. EMG experts assess the characteris-

tics of the recruitment and de-recruitment of the

muscles’ motor units as reflected by the amplitude

modulation of the EMG recordings [29, 30]. They de-

termine the rate of increase and decrease in force pro-

duction in relation to characteristics of the task

performed by the subject such as the range of motion

spanned during the task. They identify instances

marked by the lack of inhibition of muscle activity (e.g.

as in the flexion-relaxation phenomenon [31–33]) that

have been associated with musculoskeletal disorders

and related pain.

This study aimed to test the hypothesis that clinical

scores generated by an EMG expert via visual inspec-

tion of the surface EMG recordings collected during a

functional evaluation can be accurately estimated via

automated analysis of the EMG data using ad hoc algo-

rithms. This is relevant because the analysis of EMG re-

cordings via their visual inspection is time-consuming,

a factor that significantly hinders the use of EMG re-

cordings in the clinic. To address this problem, algo-

rithms were developed using an existing database of

surface EMG recordings collected during functional

evaluations performed using an approach referred to as

the Electrodiagnostic Functional Assessment (EFA)

[34–36]. The complexity of the algorithms varied ac-

cording to the complexity of the clinical observations

performed via visual inspection of the EMG recordings.

The algorithms ranged in complexity from a simple model

relying on a single EMG data feature to a set of EMG data

features as input to a regression implementation of a Ran-

dom Forest [37] (i.e. a collection of decision trees).

The algorithms were then applied to EMG data col-

lected to evaluate a subject with persistent back pain

after instrumented lumbar fusion who underwent hard-

ware removal [38]. Hardware removal in subjects who

have undergone instrumented lumbar fusion and ex-

perience back pain is a controversial elective treatment

[38–40]. Subjects with recurrent back pain after instru-

mented lumbar fusion are evaluated by clinical exam,

Golabchi et al. BMC Musculoskeletal Disorders           (2019) 20:13 Page 2 of 15



palpation of the lumbar spine, radiographic tests - in-

cluding lumbar x-rays with flexion/extension views -,

post-operative MRI, myelogram CT scan, bone scans,

and diagnostic injections consisting of lumbar hardware

blocks, selective root blocks, and sacroiliac joint injec-

tions. Unfortunately, these diagnostic techniques have

been shown to be poor predictors of the outcomes of

lumbar hardware removal [38–40]. Very few retrospect-

ive studies have been carried out to evaluate the out-

comes of lumbar hardware removal in subjects

reporting back pain despite an apparent solid fusion

and in absence of any obvious pain generator (e.g. per-

sistent neurologic impingement or adjacent level de-

generation) [38–41]. Hence, there is a pressing need for

identifying reliable predictors of lumbar hardware re-

moval outcomes [42].

Methods

The data analysis algorithms presented in this manu-

script were developed by relying on a database of sur-

face EMG recordings previously collected during

functional evaluations performed using an approach

referred to as the Electrodiagnostic Functional Assess-

ment (EFA) [34–36]. This section provides a descrip-

tion of the protocols utilized to collect the EMG data

and describes the algorithms developed in the study. It

also presents the application of the algorithms to a clin-

ical case of lumbar hardware removal in a subject who

had previously undergone instrumented lumbar fusion

and reported post-operative back pain.

Surface EMG data

The data had been previously gathered using two

EFA-based protocols consisting of a battery of static

and dynamic tests designed to assess individuals with

cervical pain and back pain, respectively. The dataset

included recordings from 62 subjects of age ranging be-

tween 22 and 61 years. Fifty-six of these individuals

were males. Forty-six of the subjects were evaluated

using both protocols. The remaining 16 subjects were

evaluated using only one protocol.

For the first protocol, surface EMG recordings were

gathered bilaterally from the following muscles of the

neck, shoulders, arms, and the thoracic section of the

back: scalene, upper trapezius (two channels were re-

corded using electrodes positioned on the descending

muscle fibers below the occipital bone and on the

transverse muscle fibers near the acromion, respect-

ively), middle trapezius, longissimus thoracis, middle

deltoid, biceps brachii, and triceps. Surface EMG re-

cordings were collected during two static tests, namely

1) while subjects sat still for about 20 s (a condition

herein referred to as rest sitting) and 2) while they

stood without moving for about 20 s (a condition

herein referred to as rest standing). Surface EMG re-

cordings were also collected during three dynamic tests:

1) flexion/extension, rotation, and lateral movement of

the head (herein referred to as head movements), 2)

shoulder shrug and overhead reaching with both arms

(herein referred to as shoulder and arm movements),

and 3) a lifting functional capacity evaluation (FCE) (i.e.

pulling a bar attached to a load-cell with the bar posi-

tioned at waist level and the knees fully extended) first

with pronation of the forearms and then with supin-

ation of the forearms (this condition is herein referred

to as FCE lifting with extended knees).

For the second protocol, surface EMG data was gath-

ered bilaterally from the following muscles of the lower

back and legs: paraspinal at L2, latissimus dorsi, gluteus

maximus, biceps femoris, rectus femoris, tibialis anter-

ior, and gastrocnemius (medial head). Surface EMG re-

cordings were collected during the same static tests as

per the protocol summarized above (i.e. rest sitting and

rest standing) and during three dynamic tests: 1)

flexion/extension, rotation, and lateral movement of the

trunk (herein referred to as trunk movements), 2) taking

two steps, kneeling, and standing up (herein referred to

as walking and kneeling), and 3) a lifting functional

capacity evaluation (i.e. pulling a bar attached to a

load-cell with the bar positioned at knee height, the

knees in a flexed position, and the arms fully extended)

first with pronation of the forearms and then with su-

pination of the forearms (this condition is herein re-

ferred to as FCE lifting with flexed knees).

Disposable adhesive silver/silver-chloride electrodes

were utilized to collect the EMG data. The electrodes

were circular in shape (approximately 5mm in diameter)

and had a layer of conductive gel to achieve low

skin-electrode impedance. The Surface Electromyography

for Non-Invasive Assessment of Muscles (SENIAM) rec-

ommendations [43] were followed to position the elec-

trodes on the muscle belly of the selected muscles. The

distance between the centers of electrode pairs was ap-

proximately 15mm. Before attaching the electrodes to the

skin, the skin was carefully cleaned using alcohol wipes

and shaved when necessary. The electrodes were con-

nected to wireless Bluetooth units (Shimmer Research,

Dublin Ireland) that transmitted the EMG data to a base

station connected to a computer. The wireless units were

equipped with a DC-coupled unit (ADS1292R by Texas

Instruments, Dallas TX) that provided the analog

front-end as well as the analog-to-digital conversion. The

data was sampled at 1024Hz. The data was available prior

to initiation of the study as part of a database meant to be

used to develop algorithms to facilitate the analysis of data

collected during functional evaluations. The database also

contained data collected using a load-cell (LSB302 by

Futek, Irvine CA) that relied on the above-mentioned
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wireless Bluetooth units and base station to simultan-

eously collect EMG and force data when required by the

EFA-based protocol (Emerge Diagnostics, Carlsbad CA).

An EMG expert had previously annotated the surface

EMG recordings performed during the above-described

EFA-based protocols [34–36] using criteria commonly used

in a clinical context to capture the level of muscle activity

(including its laterality), the presence/absence and severity

of muscle spasms, and the muscles’ motor unit recruitment

characteristics associated with the EMG amplitude modu-

lation. Clinical scores were generated via visual inspection

of the EMG data using an ordinal scale from 0 to 10 de-

signed to capture the magnitude of each phenomenon of

interest (e.g., an activity level score equal to 0 was associ-

ated with recordings marked by very low amplitude of the

EMG data, whereas an activity level score equal to 10 was

associated with recordings marked by very large ampitude

of the EMG data). Surface EMG recordings gathered dur-

ing the static tests were associated with clinical scores for

activity level and spasm severity. Surface EMG recordings

gathered during the dynamic tests were associated with

clinical scores for activity level and amplitude modulation.

From the clinical scores for activity level, the EMG expert

also derived laterality of activity scores by computing the

absolute value of the difference between the scores for the

right and the left side of the body for each muscle.

Figure 1 shows an example of the EMG recordings

selected from the dataset utilized in the study. The re-

cordings shown in the figure were collected from the

paraspinal muscles at L2 during the rest sitting test

(Figs. 1a and b) and the FCE lifting with flexed knees test

(Figs.1c and d). Figures 1a and c show data collected from

a subject with very low level of muscle activity (activity

level = 0) during the rest sitting test and high level of EMG

activity and amplitude modulation (activity level = 10 and

amplitude modulation = 10) during the FCE lifting with

flexed knees test. Figures 1b and d show data collected

from a subject displaying an elevated level of muscle activ-

ity (activity level = 5) during the rest sitting test and a

modest level of activity and minimum amplitude modula-

tion (activity level = 3 and amplitude modulation = 2)

during the FCE lifting with flexed knees test.

A low level of muscle activity is expected in physio-

logical conditions during the rest sitting test. In con-

trast, an elevated level of muscle activity is often

observed in subjects with back pain. An elevated level

of activity of the back muscles has been associated with

postural changes that are common acutely in individ-

uals who suffered a back injury and chronically in those

who experience chronic back pain [26]. The recordings

carried out during the static tests were also rated for

spasm severity. In individuals with back pain, muscle

spasms are believed to be triggered by the activity of

nociceptive receptors responding to strain and soft tis-

sue damage [17]. They can be observed in the EMG re-

cordings as short bursts of activity or as sustained

activity associated with large action potentials due to

the synchronization of motor units [28]. The evaluation

of the severity of muscle spasms in the latter case re-

quires close inspection of the EMG recordings to iden-

tify the presence of action potentials at quasi-regular

time intervals. Using these criteria, the EMG expert

rated the recordings in Figs. 1a and b for spasm severity

as 0 and 5, respectively. A high level of EMG activity

and prominent amplitude modulation is expected when

healthy subjects perform a functional capacity evalu-

ation. The latter is expected because of the pattern of

motor unit recruitment and de-recruitment that marks

each burst of EMG activity associated with changes in

the force generated by the muscle/s of interest. In

Fig. 1 Examples of the surface EMG (sEMG) recordings utilized in the study to develop data analysis techniques suitable to generate estimates of

the clinical scores for activity level and spasm severity for the static tests and for activity level and amplitude modulation for the dynamic tests. The

recordings were collected from the paraspinal muscles at L2. Panels a and b show EMG data collected during the rest sitting test. Panels c and d

show the EMG data collected during the FCE lifting with flexed knees test
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contrast, a modest level of activity and minimum amp-

litude modulation is expected in individuals with back

pain who display avoidance patterns [12].

Data analysis algorithms

Algorithms were developed using the Matlab (The Math-

Works, Natick MA) programming environment. Esti-

mates of the clinical scores were derived via the analysis of

surface EMG data by filtering the raw EMG recordings,

computing the EMG envelope, and extracting data fea-

tures from the filtered EMG data and from the EMG en-

velope. Filtering the raw EMG data was achieved using an

8th order elliptic band-pass filter with cut-off frequencies

equal to 20 and 400Hz. This choice of cut-off frequencies

allowed us to significantly attenuate low-frequency com-

ponents associated with motion artifacts as well as

high-frequency components associated with the instru-

mentation noise. The EMG envelope was derived by

low-pass filtering the full-wave rectified raw EMG data

with a 7th order elliptic filter with cut-off frequency equal

to 10Hz. We empirically determined the optimality of this

cut-off frequency as suitable to preserve “high-frequency”

amplitude modulation components relevant for an accur-

ate estimation of clinical scores (e.g. spasm severity

scores). Then different data features were derived to esti-

mate each clinical score. Estimates of the activity level

scores for the static tests were derived using the

root-mean-square (RMS) value of the EMG envelope. This

data feature appeared to be suitable to address the prob-

lem at hand because we observed that the EMG expert

generated the activity level scores based on visual inspec-

tion of the EMG data amplitude. Estimates of the spasm

severity scores for the static tests were derived using three

data features: the RMS value of the filtered EMG data and

the EMG data energy between 50 and 100Hz and be-

tween 100 and 200Hz. The energy of the EMG data in

each of the above-mentioned bandwidths was estimated

by deriving the periodogram of the EMG time series

(using 1 s rectangular windows with 50% overlap) and in-

tegrating the EMG frequency components in the band-

width of interest. These data features were selected

because the EMG expert generated the spasm severity

scores by considering both the amplitude of the EMG data

and its frequency content. The latter was done in an at-

tempt to identify when a prevalent number of type II fi-

bers vs type I fibers were recruited. The frequency

bandwidths utilized to derive the above-mentioned pa-

rameters were determined empirically. Finally, estimates

of the clinical scores for the dynamic tests were derived

using the following EMG data features: the RMS value of

the EMG envelope, the range spanned by the filtered

EMG data (i.e. the peak-to-peak amplitude of the time

series), the RMS value of the EMG envelope during the

time intervals when the muscle was silent or minimally

active, the duration of time during which the muscle was

active, the RMS values derived for the three main bursts

of EMG activity, the average RMS value of the dominant

frequency components of the EMG data, and the variance

of the EMG envelope during the three main bursts of ac-

tivity. The bursts of EMG activity were identified by using

a 1 s sliding (by steps of 0.25 s) rectangular window, esti-

mating the RMS value of the EMG envelope within each

1 s time interval, and selecting non-overlapping time in-

tervals associated with the three largest RMS values. The

average RMS value of the dominant components of the

EMG data was derived by detecting the intervals during

which the EMG envelope exceeded 1.5 times the RMS

value of the EMG envelope during the entire test. These

data features were selected because we observed that the

EMG expert generated the clinical scores by considering

the amplitude of the EMG data and characteristics of its

modulation that appeared to be well captured by the

above-mentioned parameters.

Estimates of the activity level scores for the static

tests were derived by using the RMS value of the EMG

envelope as a “proxy” of the clinical scores. This choice

was motivated by the observation that the activity level

scores and the corresponding RMS values of the EMG

envelope appeared to be highly correlated. This choice

was made based on a qualitative observation of the data

and later confirmed by our quantitative analyses (see

the Results section). Activity laterality scores were esti-

mated by taking the absolute value of the difference be-

tween the activity level scores derived from the EMG

recordings for the right and the left side of the body for

a given muscle. The spasm severity scores were

estimated by using a linear regression model relying on

the above-mentioned EMG data features as independ-

ent variables. Finally, a linear regression model as well

as a regression implementation of a Random Forest

with the above-listed EMG data features as input vari-

ables were used to estimate the activity level scores and

the amplitude modulation scores for the dynamic tests.

A linear and a non-linear model for the analysis of the

EMG data collected during the dynamic tests were im-

plemented and compared because preliminary inspec-

tion of the EMG data features suggested that the

output variables (i.e. the clinical scores) and the input

variables were non-linearly related. The estimates of

the activity level scores were also used to derive esti-

mates of the activity laterality scores as described

above for the static tests. Separate models were devel-

oped for the EMG data collected during each test.

The derivation of the linear regression coefficients for

the static tests took into consideration the unbalance

across classes corresponding to the different values of

the clinical scores. This is a standard technique utilized

in machine learning to avoid fitting well the data
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pertaining to classes with a large number of samples

and fitting poorly the data pertaining to classes with a

small number of samples [44]. Accordingly, because the

instances of spasm severity scores equal to 0 were sig-

nificantly larger than the instances for other score

values, we randomly down-sampled to 10% of the total

sample size the class associated with clinical scores

equal to 0. We did so 10 times and hence derived 10

datasets to fit the model (i.e. 10 training sets). Also, be-

cause a relatively small number of instances with spasm

severity scores greater than 5 was available, first, a

model was developed using the instances with scores

ranging from 0 to 5. Then, the model was applied to all

the data. This process was repeated 10 times, for each

of the datasets derived as mentioned above. Finally, the

coefficient values of the model obtained for each of the

10 datasets were averaged. This approach was also used

to derive linear regression models for the dynamic tests.

The score distribution across classes for the dynamic tests

was different than the score distribution for the static

tests. The procedure was modified accordingly by

down-sampling the class with the largest number of in-

stances. The importance of each independent variable to

generate the clinical score estimates was assessed based

on the magnitude of the model’s standardized coefficients.

The Random Forest [37] models were derived using

bootstrap aggregation (i.e. bagging [45]) of 100 regres-

sion trees with a minimum leaf size of 10. This method

is very robust even when dealing with unbalanced clas-

ses. Hence, it was not necessary to rebalance the clas-

ses. A 10-fold cross-validation was used to derive the

clinical score estimates. The importance of the input

variables (i.e. the EMG data features) was assessed by

measuring the increase in prediction error when the

values of the input variables were permuted across the

out-of-bag observations. This is a well-established

method to assess the relevance of the input variables of

a Random Forest [46].

The accuracy of the estimates derived using the

above-described methods was assessed by deriving the

root-mean-square error (RMSE) for each model. In

addition, a linear regression between the clinical scores

generated by the EMG expert and those estimated by

the above-described EMG-based algorithms was com-

puted for each clinical score. Regression coefficients as

well as 95% confidence intervals were computed for

each linear regression.

Clinical case study

A subject with persistent back pain after instrumented

lumbar fusion was evaluated using an EFA-based proto-

col prior to and after lumbar hardware removal. Before

the lumbar hardware removal surgery, the subject re-

ported low back pain with a severity level of 5 out of 10

on a visual-analog scale. The pain radiated to the left

leg and was of higher intensity when stepping down

with the left leg. Numbness and tingling were reported

around the lumbar incision. The pain was clinically

managed with medications. Inspection of the lumbar

hardware during the surgery made apparent that one of

the screws had migrated in the spinal canal and was

likely to be responsible for the symptoms reported by the

subject. The lumbar hardware removal led to a significant

decrease in back pain, a decrease in pain medications, and

an improvement in the subject’s functional ability.

The study was approved by the Western Institutional

Review Board. The subject was evaluated using a modi-

fied version of the above-described protocol for the as-

sessment of subjects with back pain. The battery of

tests used to assess this subject included the following:

1) a series of rest sitting and a rest standing tests at the

beginning of the evaluation; 2) a trunk flexion/extension

movement test, which consisted of bending forward,

returning to the upright position, bending backward,

and returning to the upright position; 3) a trunk lateral

movement test, which consisted of bending laterally

first to the right and then to the left; 4) a walking and

kneeling test; 5) an additional set of rest standing tests;

5) a series of FCE lifting with flexed knees tests; and 6)

a final set of rest standing and rest sitting tests. During

the evaluation, surface EMG data was collected bilat-

erally from the following muscles: paraspinals at L2 and

L5, latissimus dorsi, gluteus maximus, biceps femoris,

and rectus femoris. In addition, triaxial accelerometer

recordings were gathered using wireless sensor units

positioned at L1 and S1 to derive range of motion data.

Also, a load-cell was used during the FCE tests.

Results

The results of the analyses carried out using the

above-described techniques are presented in the follow-

ing, first for the surface EMG data collected during the

performance of the static tests and then for the data

collected during the performance of the dynamic tests.

The datasets utilized in this part of the study were part

of the above-mentioned database of EMG recordings

collected from 62 subjects. In addition, this section of

the manuscript summarizes the results obtained by

using the algorithms to surface EMG recordings col-

lected as part of the above-described clinical case study.

Analysis of the EMG data collected during the static tests

Figure 2 shows a box plot representation of the results

obtained using the above-described algorithms for the

analysis of data collected during the performance of

static tests. The plots show aggregate results for the rest

sitting and the rest standing tests. For each class (i.e.

for each clinical score value), the plots display the
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median value of the EMG-based estimates (red hori-

zonal line), a box spanning the interquartile range of

the distribution of the clinical score estimates, and

whiskers that span the range from the minimum to the

maximum estimated clinical score values. It is worth

noticing that outliers (defined as values exceeding the

first and third quartile more than 1.5 times the inter-

quartile range) are not shown in Fig. 2. However, out-

liers were not removed when assessing the accuracy of

the EMG-based estimates (i.e. when estimating the

RMSE values as well as the regression coefficients and

corresponding 95% confidence intervals). It is also

worth noticing that when the number of instances in

a class is small, the interquartile range and the range

between the minimum and the maximum estimated

clinical score values might be undistinguishable.

Hence, the whiskers might be not clearly displayed in

the box plot representation. This is the case for a few

classes in Fig. 2.

Figure 2a shows the surface EMG-based estimates of the

clinical scores for activity level. The estimates were derived

using the RMS value of the EMG envelope as a proxy for

the activity level scores. Although the plot shows aggregate

results across testing conditions, separate models were de-

rived for the rest sitting and the rest standing tests. The re-

gression coefficients and corresponding 95% confidence

intervals derived from the data collected during the rest sit-

ting and the rest standing tests were equal to 0.89 ± 0.04

(regression coefficient ± 95% confidence interval value) and

1.19 ± 0.04, respectively. The small 95% confidence interval

values associated with the regression coefficients for both

the rest sitting and the rest standing scores are indicative of

a good correlation between the EMG-based estimates and

the clinical scores generated by the EMG expert.

Figure 2b shows the surface EMG-based estimates

of the clinical scores for spasm severity. The esti-

mates were derived using a linear regression model

with the following three independent variables as in-

put: the RMS value of the filtered raw EMG data

and the EMG data energy between 50 and 100 Hz

and between 100 and 200 Hz. Figure 2b shows ag-

gregate results for the rest sitting and the rest

standing tests. Regression coefficients and associated

95% confidence intervals were derived separately for

the rest sitting (0.63 ± 0.02) and the rest standing

(0.71 ± 0.02) tests. Both models used the above-men-

tioned independent variables as input variables. The

standardized coefficients and corresponding 95%

confidence intervals for the rest sitting test were

0.02 ± 0.07, 0.58 ± 0.05, and − 0.03 ± 0.06. The stan-

dardized coefficients and corresponding 95% confi-

dence intervals for the rest standing test were 0.08

± 0.11, 0.42 ± 0.07, and 0.14 ± 0.06. The values of the

standardized coefficients suggest that the EMG data

energy between 50 and 100 Hz is the most relevant

independent variable to estimate the spasm severity

scores.

Table 1 provides a summary of the above-discussed

results. The table shows the RMSE values as well as the

regression coefficients and associated 95% confidence

interval values for the EMG-based estimates of the clin-

ical scores for activity level and for spasm severity de-

rived for the static tests. The table shows also the

results for the laterality of activity scores. The RMSE

values range from 0.37 (for the estimation of the spasm

severity scores for the rest sitting test) to 0.98 (for the

estimation of the laterality of activity scores for the rest

standing test). The regression coefficient values range

Fig. 2 Box plots of the surface EMG (sEMG)-based estimates vs. the clinical scores generated by the EMG expert for the static tests. Panel a - Estimates

of the activity level scores. Panel b - Estimates of the spasm severity scores
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from 0.63 to 1.19 and the associated 95% confidence in-

tervals range from 0.02 to 0.06. These results indicate

that the proposed methods allow one to achieve accur-

ate estimates of the clinical scores for activity level,

spasm severity and laterality of activity scores.

Analysis of the EMG data collected during the dynamic

tests

Figure 3 shows an example of the surface EMG-based

estimates of the clinical scores for the dynamic tests.

Specifically, the figure shows the estimated amplitude

modulation scores using a linear regression model (Fig.

3a) and using a Random Forest-based algorithm (Fig.

3b) vs. the scores generated by the EMG expert for the

FCE lifting with flexed knees test. The box plot repre-

sentation of the surface EMG-based score estimates

shows that the Random Forest-based algorithm gener-

ated more accurate estimates than the linear regression

model. This qualitative observation is confirmed by the

estimation errors associated with these two different

approaches to achieve the clinical score estimates. In

fact, the RMSE of the surface EMG-based estimates

shown in Fig. 3a (for the linear regression model) was 2.09

whereas the RMSE of the estimates shown in Fig. 3b (for

the Random Forest-based model) was 1.74.

Tables 2 and 3 show a summary of the RMSE values

as well as the regression coefficients and associated

95% confidence interval values for all the dynamic tests.

Table 2 shows the values for the surface EMG-based es-

timates derived using linear regression models. Table 3

shows the values for the surface EMG-based estimates

derived using Random Forest-based models. The tables

show the RMSE values as well as the regression coeffi-

cients and associated 95% confidence interval values for

all the test conditions for activity level, amplitude

modulation, and laterality of activity. The RMSE values

obtained using the Random Forest-based models were

on average smaller than those obtained using the linear

regression models with improvements approaching 50%

for the FCE lifting with extended knees test. The regres-

sion coefficients and 95% confidence intervals values

show a similar trend. The regression coefficients ob-

tained using the linear regression models ranged from

0.84 to 1.72 with 95% confidence interval values ran-

ging from 0.01 to 0.18. The regression coefficients ob-

tained using the Random Forest-based models ranged

from 0.88 to 1.04 with 95% confidence interval values

ranging from 0.02 to 0.08. Overall, these results indi-

cate that Random Forest-based models are more suit-

able than linear regression models to estimate activity

level, amplitude modulation, and laterality of activity

scores. Analysis of the relevance of the EMG data fea-

tures used as input to the Random Forest-based models

showed similar results for the activity level and ampli-

tude modulation scores. In both cases, the most rele-

vant input variables to estimate the clinical scores were

the RMS values derived for the three main bursts of

Table 1 RMSE, regression coefficients (RC) and associated 95%

confidence intervals (CI) of the surface EMG-based estimates of

the clinical scores for the static tests

Activity
Level

Spasm
Severity

Laterality of
Activity

RMSE RC ± CI RMSE RC ± CI RMSE RC ± CI

rest sitting 0.72 0.89 ± 0.04 0.37 0.63 ± 0.02 0.75 0.88 ± 0.05

rest
standing

0.86 1.19 ± 0.04 0.43 0.71 ± 0.02 0.98 0.84 ± 0.06

Fig. 3 Box plots of the surface EMG (sEMG)-based estimates of the amplitude modulation scores vs. the corresponding clinical scores for the FCE lifting

with flexed knees test. Panel a - Estimates obtained using a linear regression model. Panel b - Estimates obtained using a Random Forest-based algorithm
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EMG activity, and the variance of the EMG envelope

computed for the largest burst of muscle activity.

The improved accuracy of the EMG-based estimates

obtained using Random Forest-based models over those

obtained using linear regression models is apparent

when one examines plots of the estimation errors as a

function of the clinical scores generated by the EMG

expert. An example of such plots is shown in Fig. 4.

The plots in Fig. 4 allow one to compare the results ob-

tained with the above-mentioned approaches when esti-

mating the amplitude modulation scores for the FCE

lifting with extended knees test. The plot on the left side

(panel a) shows a clear trend in the bias affecting the

EMG-based estimates. This is likely to be the case be-

cause the linear regression model fails to account for

the non-linearity of the relationship between the input

variables and the amplitude modulation scores. Such

relationship is instead properly captured by the model

based on a regression implementation of a Random

Forest. In fact, the results show a modest trend in esti-

mation bias and a relatively constant variance of the

EMG-based estimates across clinical scores (panel b).

Similar plots were obtained for all the EMG-based esti-

mates for all the dynamic tests. Inspection of the plots

showed similar differences as those shown in Fig. 4 be-

tween the estimates derived using a linear regression

model and the estimates derived using a Random Forest-

based algorithm. These observations indicate that

Random Forest-based algorithms are more suitable

than linear regression models to estimate clinical scores

for recordings collected during dynamic tests.

Clinical application of the algorithms

The algorithms developed in the study were applied to

a dataset collected from a subject with persistent back

pain after instrumented lumbar fusion who underwent

hardware removal. The subject underwent functional

evaluations prior to and after lumbar hardware removal

using the protocol and equipment described in the

Methods section.

Figure 5 shows an example of the surface EMG and

load-cell data collected during the study. The panels of

Fig. 5 show the EMG recordings from the left para-

spinal muscle at L2 and the load-cell data collected

during the performance of the FCE lifting with flexed

knees test prior to (panels a and c) and after (panel b

and d) the hardware removal surgery. The activity level

and the amplitude modulation scores prior to the hard-

ware removal surgery were 2 and 0, respectively. The

corresponding clinical scores after the hardware removal

surgery were 4 and 3, respectively. These clinical scores

captured an increase in the EMG level of activity and its

amplitude modulation. In fact, the RMS value of the

bursts of EMG activity after the hardware removal surgery

was approximately 40% larger than those detected before

the surgery. The load-cell data also showed a marked in-

crease in force output following the lumbar hardware re-

moval surgery. In fact, the load-cell output barely reached

100 lbs before the surgery whereas it approached 150 lbs

after the surgery. It is worth noticing that the improve-

ments in the patterns of muscle activity shown in Fig. 5

were observed at the level of the lumbar fusion.

Table 2 RMSE values, regression coefficients (RC) and

associated 95% confidence intervals (CI) of the surface EMG-

based estimates of the clinical scores for the dynamic tests

derived using a linear regression model

Activity
Level

Amplitude
Modulation

Laterality of
Activity

RMSE RC ± CI RMSE RC ± CI RMSE RC ± CI

head
movements

1.13 1.31 ± 0.02 1.05 1.28 ± 0.03 1.43 1.21 ± 0.01

shoulder
and arm
movements

1.96 1.06 ± 0.01 2.16 1.21 ± 0.01 1.76 1.02 ± 0.05

FCE lifting
with
extended
knees

1.97 1.01 ± 0.13 2.31 1.17 ± 0.01 1.88 0.75 ± 0.08

trunk
movements

1.20 1.19 ± 0.18 1.43 1.37 ± 0.02 1.41 1.07 ± 0.08

walking and
kneeling

1.87 1.04 ± 0.02 2.00 1.32 ± 0.04 1.72 0.86 ± 0.06

FCE lifting
with flexed
knees

1.85 1.03 ± 0.02 2.09 1.72 ± 0.04 1.85 0.84 ± 0.08

Table 3 RMSE, regression coefficients (RC) and associated 95%

confidence intervals (CI) of the surface EMG-based estimates of

the clinical scores for the dynamic tests derived using a

regression implementation of a Random Forest

Activity
Level

Amplitude
Modulation

Laterality of
Activity

RMSE RC ± CI RMSE RC ± CI RMSE RC ± CI

head
movements

1.07 0.98 ± 0.04 1.04 1.01 ± 0.07 1.46 0.88 ± 0.08

shoulder
and arm
movements

1.13 1.00 ± 0.03 1.45 1.00 ± 0.03 1.41 0.93 ± 0.05

FCE lifting
with
extended
knees

1.12 0.98 ± 0.02 1.22 0.98 ± 0.02 1.37 0.93 ± 0.06

trunk
movements

1.17 1.00 ± 0.04 1.30 1.04 ± 0.05 1.34 0.98 ± 0.05

walking and
kneeling

1.25 1.01 ± 0.03 1.64 1.01 ± 0.05 1.36 0.96 ± 0.06

FCE lifting
with flexed
knees

1.36 1.00 ± 0.03 1.74 1.00 ± 0.04 1.52 1.01 ± 0.06
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Additional observations of interest were gathered

during the other tests performed as part of the

EFA-based protocol that was used to clinically assess

the subject. During the rest standing test at the begin-

ning of the battery of tests, the analysis of the data

identified a large level of activity in the right biceps

femoris that decreased after the lumbar hardware re-

moval surgery. Spasms were observed in the record-

ings from the left biceps femoris before surgery that

were not present after surgery and compensatory activ-

ity in the left rectus femoris that was not present after

surgery. The analysis of the surface EMG data col-

lected during the trunk flexion/extension movement

tests showed an improvement in the amplitude modu-

lation of the data collected from the paraspinal mus-

cles at L2 and at L5, and the gluteus maximus. The

data collected during the trunk lateral movement tests

showed improvements in the patterns of activity of the

right and left latissimus dorsi muscles, the paraspinal

muscles at L2 and at L5, and the biceps femoris. The

data collected during the walking and kneeling tests

showed bilateral improvements post-surgery in the

patterns of activity of the paraspinal muscles at L2 and

at L5. Improvements post-surgery were also observed

bilaterally in the activity of the paraspinal muscles at

L2 and at L5 during the rest standing tests that

Fig. 4 Errors associated with the EMG-based estimates of clinical scores derived using a linear regression model (panel a) and using a regression

implementation of a Random Forest-based model (panel b). The plots show data for the amplitude modulation scores derived from EMG recordings

collected during the FCE lifting with extended knees test

Fig. 5 Surface EMG (sEMG) recordings from the left paraspinal muscle at L2 and load-cell data collected during the performance of the FCE lifting

with flexed knees test. Panels a and c show data collected before the hardware removal surgery. Panels b and d show data collected after the

surgery. The EMG recording before the lumbar hardware removal surgery shows a lower level of activity and a more modest amplitude modulation

compared to the data collected after surgery. It is worth noticing that Panels a and b show three bursts of EMG activity associated with the lifting task

and a fourth burst of activity associated with returning to the upright position
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followed the walking and kneeling tests and in the activity

of the biceps femoris and rectus femoris during the rest

standing tests that followed the FCE lifting with flexed

knees tests. No differences were observed during the rest

sitting tests at the end of the battery of tests.

These observations are clinically relevant. The re-

sults of the above-summarized analyses indicate that

the subject displayed patterns of muscle activity

post-surgery that were closer than the ones observed

before surgery to the physiological patterns of activity.

These EMG-based observations were associated with

improvements in range of motion, force output and in

the general status of the individual (e.g. self-report of

pain severity). Most importantly, close inspection of

the hardware during the surgery showed that one of

the screws had migrated in the spinal canal and was

likely causing the symptoms reported by the subject.

These results should be looked upon as a preliminary

example of potential application of the procedures de-

veloped in the study. The validity of the proposed ap-

proach will have to be confirmed in future clinical

studies. Nonetheless, the results herein reported suggest

that our approach could be utilized in clinical assessments

where other techniques have failed to capture the impact

of soft tissue damage causing back pain.

Discussion

The results presented in this manuscript show that the

clinical scores that EMG experts generate via visual in-

spection of the surface EMG recordings collected dur-

ing the performance of functional evaluations can be

accurately estimated by means of linear and non-linear

algorithms that use EMG data features as inputs. The

results show that clinical scores for activity level and

spasm severity for static tests can be accurately esti-

mated using linear algorithms. The use of such algo-

rithms leads to RMSE values smaller than 1 point of

the 10-point ordinal scale used by the EMG expert to

generate the clinical scores. Clinical scores for activity

level and amplitude modulation associated with dy-

namic tests can be accurately estimated using Random

Forest-based algorithms. The estimates generated using

such algorithms are marked by a RMSE smaller than 2

points of the 10-point ordinal scale used to generate

the clinical scores.

Accurate estimates of the activity level scores associ-

ated with the static tests were obtained by using the

RMS value of the EMG envelope as a proxy for the

clinical score. Using such a simple approach was pos-

sible because the activity level scores and the RMS

values of the associated EMG envelope time series

showed a clear linear relationship as measured by the

linear regression coefficient and 95% confidence inter-

val values shown in Table 1. Accurate estimates of the

spasm severity scores for the static tests were achieved

by using three EMG-based data features as input to a

linear regression model: the RMS value of the filtered

raw EMG data and the EMG data energy between 50

and 100 Hz and between 100 and 200 Hz. The accuracy

of the EMG-based estimates was shown by the low

RMSE values and the small regression coefficients and

associated 95% confidence intervals associated with the

estimates. The model’s standardized coefficients

showed the EMG data energy between 50 and 100 Hz

to be the most relevant independent variable to esti-

mate the clinical scores. This observation suggests that

spasms have a greater impact on the frequency content

of the EMG data in the 50–100 Hz bandwidth than on

other frequency components of the EMG data. In

addition, one would anticipate that the 50–100 Hz

bandwidth would be generally marked by a higher

signal-to-noise ratio than other portions of the fre-

quency content of the EMG data. This is because noise

components are expected to be quasi-uniformly distrib-

uted across the entire frequency range, whereas the ma-

jority of the EMG frequency components are expected

to be in the 50–100 Hz range.

The clinical scores associated with the EMG recordings

collected during dynamic tests (i.e. the activity level and

the amplitude modulation scores) were estimated by using

linear regression models as well as non-linear models

based on a regression implementation of Random Forests

[37] (i.e. ensembles of regression trees). A set of

EMG-based features was used as input to these models:

the RMS value of the EMG envelope, the range spanned

by the filtered raw EMG data, the RMS value of the EMG

envelope for the time intervals when the muscle was silent

or minimally active, the duration of time during which the

muscle was active, the RMS values derived for the three

main bursts of EMG activity, the average RMS value of

the dominant components of the EMG data, and the vari-

ance of the EMG envelope during the three main bursts

of activity. The non-linear models were found to be more

suitable than the linear ones to estimate the activity level

and the amplitude modulation scores for data collected

during the dynamic tests. This was anticipated because

preliminary inspection of the relationship between the in-

dividual input variables and the clinical scores showed a

non-linear characteristic. Analysis of the relevance of the

EMG data features used to generate the clinical scores

using the Random Forest-based models showed that the

RMS values derived for the three main bursts of EMG ac-

tivity, and the variance of the EMG envelope during the

largest burst of muscle activity were the most relevant in-

put variables to estimate the clinical scores. This was not

unexpected because EMG experts generate the clinical

scores for the dynamic tests by primarily observing the

characteristics of the EMG amplitude modulation that
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marks the main bursts of muscle activity associated with

the performance of the task of interest.

It is interesting to notice that simpler models were

found to be satisfactory to estimate clinical scores for

static tests compared to dynamic tests. This could be

due in part to the fact that a simpler relationship exists

between EMG characteristics and force output during

static tests compared to dynamic tests. In fact, during

static tests (i.e. isometric muscle contractions), the

amplitude of the EMG data is linearly related to the

force generated by relevant muscles. Such relationship

is more complex during dynamic contractions when

additional factors - such as the relative displacement of

the surface electrodes with respect to the active muscle

fibers - affect the amplitude of the surface EMG data.

Furthermore, the analysis of EMG recordings collected

during dynamic tests requires consideration of the rela-

tionship between the EMG data and the characteristics

of the task (e.g. the requirements related to the bio-

mechanics of movement). Hence, it is not surprising

that a larger set of EMG-based data features and more

complex models (including non-linear models) are

needed to accurately estimate clinical scores for dy-

namic tests than those needed to estimate clinical

scores for static tests.

The use of algorithms to automatically generate clin-

ical scores from the EMG data is an interesting alterna-

tive to the generation of clinical scores based on visual

inspection of the recordings. A first important reason

to choose an EMG data feature-based approach is the

fact that functional evaluations require the collection of

a significant amount of EMG data during the perform-

ance of several motor tasks. Hence, visual inspection of

the data requires a substantial amount of time. A sec-

ond reason to choose an EMG data feature-based ap-

proach is the fact that the generation of clinical scores

via visual inspection of the EMG recordings, although

guided by well-established criteria, can be accurately

performed only by EMG experts. The EMG-based ap-

proach presented in this manuscript is an objective and

accurate alternative to the generation of clinical scores

via visual inspection of the EMG recordings. In

addition, it is worth noticing that EMG-based estimates

can be more easily characterized - in terms of their reli-

ability and validity - than clinical scores generated by

EMG experts. In fact, the latter are a function of the

level of expertise of the individual performing the as-

sessment, whereas the former are generated automatic-

ally based on the EMG recordings.

It is worth emphasizing that the method developed in

this study is conceptually independent on the specific

approach chosen to normalize the EMG data. The

normalization of the EMG data has been the subject of

numerous studies. In studies with focus on healthy

individuals, it is appropriate and relatively easy to

normalize the EMG data by the amplitude of the re-

cordings performed during a maximum voluntary con-

traction. However, in studies with focus on individuals

with motor impairments and individuals who experi-

ence pain, alternative ways to normalize the EMG data

have been proposed because these individuals are not

capable of performing a reliable maximum voluntary

contraction [47–49]. The methodology herein proposed

can be applied to the analysis of EMG data irrespective

of the adopted normalization technique as long as the

models’ parameters are adjusted accordingly.

Our method complement approaches developed in

previous studies with focus on specific EMG data fea-

tures in the time and the frequency domain [50, 51].

For instance, a significant body of work has been de-

voted to estimating localized muscle fatigue using trad-

itional spectral analysis techniques for isometric

contractions [52–54] and time-frequency analysis tech-

niques for dynamic contractions [53, 55–59]. Contrary

to previously proposed techniques that have been fo-

cused on capturing specific characteristics of the EMG

recordings, the algorithms developed in this study are

suitable to capture all the complex aspects of the EMG

recordings that are captured via visual inspection of

the EMG data by EMG experts. In contrast, other

techniques (e.g. the analysis of the frequency content

of the EMG data) can capture data features that are

not easily identifiable via visual inspection of the data

in the time domain.

Furthermore, whereas the algorithms herein presented

generate accurate scores that quantify different aspects of

the surface EMG recordings, such scores should be inter-

preted by EMG experts in the context of the evaluation

protocol utilized in the study. For instance, spasms have

been observed in healthy subjects when lifting large

weights [60] and hence a spasm severity score greater than

zero could be expected in these experimental conditions

even in absence of a specific pathology.

The clinical relevance of the proposed technique was

highlighted by the clinical case study presented in the

manuscript. An individual with persistent back pain after

instrumented lumbar fusion who underwent hardware re-

moval was assessed using an EFA-based protocol. The

EMG recordings collected during the evaluation were ana-

lyzed using the algorithms developed in the study. The al-

gorithms were found to be sensitive to changes in the

EMG data and the clinical status of the individual pre- vs

post-surgery. Diagnostic methods that are currently used

in the clinic have been shown to very often fail in predict-

ing the outcomes of lumbar hardware removal. The re-

sults reported in this manuscript show that the proposed

approach has significant potential for clinical application.

The method should be further assessed in candidates for
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lumbar hardware removal in absence of any obvious pain

generator. This is important because the proposed EMG

analysis-based technique appears to have potential for im-

proving the ability of clinicians to predict the outcomes of

lumbar hardware removal.

Whereas the EMG recordings used in the study were

collected during the performance of specific tasks (i.e.

tests that are part of EFA-based protocols), the concep-

tual development of the algorithms herein proposed is

applicable to recordings gathered during the perform-

ance of activities of daily living. Furthermore, the tech-

nology used to collect the data utilized in the study

consists of a set of wearable wireless units that could

be used to monitor individuals in the home and com-

munity setting. Collecting data outside of the clinic (i.e.

in real-life conditions) is of great interest in rehabilita-

tion medicine [61, 62]. Future studies should be focused

on evaluating the use of the algorithms herein pre-

sented to analyze data collected in unconstrained con-

ditions outside of the clinic.

Conclusions

The results of this study demonstrate that clinical scores

that capture the level of muscle activity, the presence/ab-

sence and severity of spasms, and the characteristics of

the EMG amplitude modulation can be estimated using

linear and non-linear algorithms relying on EMG data fea-

tures as their inputs. The complexity of these algorithms

varies with the complexity of the clinical observations.

The clinical case study presented in this manuscript sug-

gests that the proposed algorithms have potential for aug-

menting the ability of clinicians to predict the outcomes

of lumbar hardware removal in individuals who report

persistent back pain after instrumented lumbar fusion

despite an apparent solid fusion and in the absence of

any obvious pain generator. The approach utilized in

the study to design EMG-based algorithms is applicable

to data collected under unconstrained conditions and

hence is potentially suitable to perform clinical evalua-

tions using wearable sensor technology in the home

and community settings.
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