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Abstract 

Background: Genotype imputation is a key element of the implementation of genomic selection within the New 

Zealand sheep industry, but many factors can influence imputation accuracy. Our objective was to provide practical 

directions on the implementation of imputation strategies in a multi-breed sheep population genotyped with three 

single nucleotide polymorphism (SNP) panels: 5K, 50K and HD (600K SNPs).

Results: Imputation from 5K to HD was slightly better (0.6 %) than imputation from 5K to 50K. Two-step imputation 

from 5K to 50K and then from 50K to HD outperformed direct imputation from 5K to HD. A slight loss in imputa-

tion accuracy was observed when a large fixed reference population was used compared to a smaller within-breed 

reference (including all 50K genotypes on animals from different breeds excluding those in the validation set i.e. 

to be imputed), but only for a few animals across all imputation scenarios from 5K to 50K. However, a major gain in 

imputation accuracy for a large proportion of animals (purebred and crossbred), justified the use of a fixed and large 

reference dataset for all situations. This study also investigated the loss in imputation accuracy specifically for SNPs 

located at the ends of each chromosome, and showed that only chromosome 26 had an overall imputation (5K to 

50K) accuracy for 100 SNPs at each end higher than 60 % (r2). Most of the chromosomes displayed reduced imputa-

tion accuracy at least at one of their ends. Prediction of imputation accuracy based on the relatedness of low-density 

genotypes to those of the reference dataset, before imputation (without running an imputation software) was also 

investigated. FIMPUTE V2.2 outperformed BEAGLE 3.3.2 across all imputation scenarios.

Conclusions: Imputation accuracy in sheep breeds can be improved by following a set of recommendations on SNP 

panels, software, strategies of imputation (one- or two-step imputation), and choice of the animals to be genotyped 

using both high- and low-density SNP panels. We present a method that predicts imputation accuracy for individual 

animals at the low-density level, before running imputation, which can be used to restrict genomic prediction only to 

the animals that can be imputed with sufficient accuracy.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Imputation refers to a statistical approach that is able 

to infer single nucleotide polymorphism (SNP) geno-

types, which are not obtained from a low-density panel, 

by using information from a group of animals that are 

genotyped with higher density panels [1–3]. Widespread 

implementation of genomic selection [4] in dairy cattle 

quickly followed the development of the Illumina SNP50 

Genotyping beadchip [5]. �e technology was subse-

quently launched for sheep [6] and beef cattle [7] as ref-

erence datasets of genotyped animals with a suitable size 

became available, as well as SNP panels (http://support.

illumina.com/array/array_kits/). �e next advancement 

in the technology was the use of lower density pan-

els, which are available at a lower cost compared to the 

higher density panels required for genomic selection, and 
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can be imputed to higher densities with high accuracy 

in cattle [1, 8–10]. Imputation is also a key strategy for 

the implementation of genomic selection within the New 

Zealand sheep industries [6].

Several studies have investigated accuracy of genotype 

imputation and its impact on the accuracy of genomic 

selection in dairy and beef cattle through the adoption 

of high-density SNP panels, and more recently, whole-

sequence data [1, 11–17]. Several panels that vary in the 

number of SNPs they include are currently available on 

the market and the number of genotyped individuals is 

rapidly growing in livestock sectors due to the reduc-

tion in costs and the development of new genotyping 

tools [9]. Although the imputation efficiency of each SNP 

panel is well documented [1, 18, 19], few articles evalu-

ated imputation accuracy across different panels using 

both crossbred and purebred populations [20, 21] and, 

more specifically, strategies for the prediction of imputa-

tion accuracy are scarce.

Imputation is a robust tool to minimize costs of 

genotyping, but many factors can influence imputa-

tion accuracy, which provide opportunities for further 

improvements and optimal implementation of this tech-

nology. For some animal populations, missing SNPs can-

not be inferred with high accuracy and this depends on 

the structure of the reference population (i.e. the group 

of animals genotyped with high-density SNPs) and the 

marker density of both reference and imputed popula-

tions. Gains in imputation accuracy are closely associ-

ated with the level of relationship between the animals to 

be imputed and the reference population, the number of 

animals in the reference population, the position of the 

SNPs on the chromosome, the density of the SNP panel 

used for the reference population, and the breed compo-

sition [1, 9, 13, 22].

Imputation of rare alleles is a particularly difficult task 

that is directly associated with minor allele frequencies 

(MAF); it can influence accuracy of genomic selection 

because of the potential influence of such alleles on the 

genetic expression of the trait under study [9, 23]. For 

example, for a chromosomal region that contains SNPs 

with a low MAF, association methods can generate spuri-

ous results due to genotyping errors [24]. Variants with 

a MAF lower than 0.05 could be under selection or in a 

related process that removes them from the population. 

According to Sargolzaei et  al. [9], such variants with 

a low MAF tend to be recent mutations and are more 

likely to be identified after detecting long haplotypes. �e 

same study [9] reported gains in imputation accuracy by 

using information on relatives, which can also optimize 

the imputation of rare alleles compared with other algo-

rithms. Different measures of accuracy have been imple-

mented, which depend on the methods used to compare 

the original and imputed genotypes, and the output 

generated from each software/method [12, 15]. Calus 

et al. [13] evaluated different measures of correctness of 

genotype imputation in the context of genomic predic-

tion and suggested that correlation between imputed and 

true genotypes is the most useful and unbiased measure 

of imputation accuracy and is suitable for comparisons 

across loci regardless of the MAF of SNPs [13]. �e same 

authors suggested that individual specific imputation 

accuracies should be computed from genotypes that are 

centered and scaled. We did not apply this approach in 

our investigation but plan to evaluate it in future studies.

Hayes et  al. [14] evaluated the accuracy of genotype 

imputation from low-density to 50K panels in sheep 

breeds by comparing fastPHASE [25] and BEAGLE [26] 

software programs. Recently, a new approach for efficient 

genotype imputation was reported by Sargolzaei et al. [9] 

and is implemented in the newest version of the FIM-

PUTE software. Ventura et al. [1] assessed the impact of 

the reference population on accuracy of imputation from 

6K and 50K SNP chips in purebred and crossbred beef 

cattle. �ese authors showed that IMPUTE2 and FIM-

PUTE imputed almost all the individuals more accurately 

than BEAGLE by testing several scenarios and that they 

were also very efficient in terms of run time.

�e objective of our study was to provide practical 

directions on the implementation of imputation strat-

egies in a multi-breed sheep population that was geno-

typed with three SNP panels: 5K, 50K and HD (600K 

SNPs), and to compare these strategies with the cur-

rent implementation of imputation that is carried out in 

practice for genomic selection in the New Zealand sheep 

industry. We evaluated: (1) composition of the reference 

population; (2) SNP density; (3) imputation of rare vari-

ants; (4) imputation software; (5) measures of imputation 

accuracy; and (6) prediction of imputation accuracy.

Methods
Population imputation was implemented using BEA-

GLE 3.3.2 [26] and FIMPUTE 2.2 software [9] and sev-

eral scenarios were generated by alternating the animals 

that were included in the reference population and in the 

set of animals to be imputed. �e reference population 

consisted of animals that were genotyped with the Illu-

mina OvineSNP50 Genotyping BeadChip (53,903 SNPs) 

(http://www.illumina.com/products/ovinesnp50_dna_

analysis_kit.html) and/or the Ovine Infinium® HD SNP 

BeadChip (603,350 SNPs). Only autosomal SNPs were 

included in this study.

Data

A dataset including 2409 animals that were genotyped 

with the Ovine Infinium® HD and 17,176 animals that 

http://www.illumina.com/products/ovinesnp50_dna_analysis_kit.html
http://www.illumina.com/products/ovinesnp50_dna_analysis_kit.html
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were genotyped with the Illumina OvineSNP50 were 

used to evaluate imputation accuracy. Before describ-

ing the imputation scenarios that were used to evaluate 

issues such as relatedness, multi- versus one-breed refer-

ence population and SNP density, we present the multi-

breed populations according to the density of the SNP 

panel used to genotype animals and to the proportion 

of the main breed that composes the population. Ani-

mals in this dataset were primarily sires from breeders’ 

flocks along with a group of animals of both sexes from 

research flocks. Average breed composition as deduced 

from pedigree information is described here for the two 

groups of animals that were genotyped with the 50K and 

HD panels:

1. 50K animals: 37  % Romney (30  % purebred Rom-

ney), 19 % Coopworth (8 % purebred), 4 % Texel (1 % 

purebred), 6 % Perendale (5 % purebred), 5 % Primera 

(composite of terminal sire breeds http://www.focus-

genetics.com/sheep/sheep-breeding-programme/

primera/) and other breeds with less than 3 % each.

2. HD animals: 33 % Romney (30 % purebred Romney), 

10  % Coopworth (7  % purebred), 12  % Texel (1  % 

purebred), 9 % Perendale (6 % purebred), 11 % Prim-

era (8 % purebred) and for the remaining animals, the 

breed was not identified (this set of individuals was 

not incorporated in any of our imputation scenarios). 

�e distribution of the animals per breed/group is 

in Fig.  1a. �is information was used to guide the 

choice of the most suitable imputation scenario since 

it is mainly influenced by factors such as number of 

breeds/groups available for investigation and num-

ber of individuals genotyped at each density. Animals 

that were genotyped with the HD panel but with an 

unknown breed composition were excluded from our 

investigation since they were not connected with the 

groups of animals analyzed, as determined by cluster 

analysis. �e distribution of the genotyped animals 

for each panel density (50K or HD) according to birth 

year is in Fig. 1b.

Genotype conversion and quality control

Animals were genotyped with the Illumina OvineSNP50 

and the Ovine Infinium® HD panels. Genotypes were 

coded as 0, 1, or 2 for AA, AB and BB genotypes, A and B 

being the two alleles of an SNP. Quality controls included 

removal of SNPs that (1) did not have defined positions 

on the ovine genome, (2) had a minor allele frequency 

(MAF) lower than 0.0005, (3) had a call rate lower than 

95 % or (4) deviated from Hardy–Weinberg equilibrium 

(threshold p value: 1 × 10−5). Finally, 48,241 and 568,569 

autosomal SNPs (from the original 50K and HD panels, 

respectively) were retained for the analyses. In addition, 

genotyped animals were excluded if their average geno-

type call rate was lower than 95 %.

Design of the low-density SNP panel

Two low-density SNP panels (5K and 50K) were simu-

lated to test imputation by deleting part of the SNPs from 

the 50K and HD panels, i.e.:

1. only SNPs that were shared between the Illumina 

Ovine 5K SNP chip (http://www.illumina.com/docu-

ments/products/datasheets/) that is used commer-

cially for genomic selection in New Zealand sheep 

[27] and the 50K original panel were retained, which 

resulted in 5095 SNPs (5K)

2. only SNPs that were shared between the Illumina 

OvineSNP50 and the Ovine Infinium® HD panels 

were retained, which resulted in 41,708 SNPs (50K).

Genomic relationships between animals from di�erent 

breeds were determined by clustering

Relatedness is one of the key factors that affect the suc-

cess of any imputation process. �e genomic relation-

ship matrix (G matrix) was calculated as follows and 

used for clustering analysis to verify the genetic con-

nectivity (based on SNPs) among individuals from dif-

ferent breeds. In order to verify the connection of the 

genotyped animals among different breeds/groups and to 

better define the imputation scenarios, 100 animals from 

each breed or group were randomly selected to derive 

the G matrix and a cluster analysis was implemented by 

using the multidimensional scaling (MDS) approach, 

which is part of the package ggplot2 in R language. �e G 

matrix was calculated as:

 where pi is the allele frequency of the i-th SNP and X is 

the incidence matrix for SNPs.

Imputation scenarios

�irty-one imputation scenarios were considered and 

animals in the reference population were selected based 

on the following criteria: density of the SNP panel (50K 

or HD), birth year (older animals), breed composition 

(multi- versus one-breed) and level of genomic relation-

ship with imputed animals, as described in Tables  1, 2 

and 3. For most of the 31 scenarios, the set of animals 

with imputed genotypes was composed of younger ani-

mals, which had their HD or 50K genotypes masked back 

to 50K or 5K genotypes, respectively.

�e ten scenarios that are listed in Table  1 were 

designed to investigate different SNP densities and 

imputation of purebred Romney animals using alternate 

G =

XX
′

2
∑

pi(1 − pi)
[28],

http://www.focusgenetics.com/sheep/sheep-breeding-programme/primera/
http://www.focusgenetics.com/sheep/sheep-breeding-programme/primera/
http://www.focusgenetics.com/sheep/sheep-breeding-programme/primera/
http://www.illumina.com/documents/products/datasheets/
http://www.illumina.com/documents/products/datasheets/
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reference sets. �ese scenarios consisted in the imputa-

tion of the 116 youngest Romney animals using the old-

est 500 Romney animals as reference population (except 

for the 2STEP Scenario, which included 17,000 animals 

that were genotyped with the 50K panel and constituted 

the reference set during the first step of imputation from 

5K to 50K).

One-step versus two-step with a larger intermediate 

density reference set

In Scenario 1B_5KHD_2STEP, imputation from 5K to 

HD was done by using a two-step approach: from 5K to 

50K and then from 50K to HD. �is scenario allowed 

us to determine if a larger dataset that included animals 

genotyped with the 50K panel would improve haplotype 

reconstruction and hence imputation accuracy.

Relatedness, and impact of the size and breed composition 

of the reference population

In Scenarios 3, 3B and 4, 31 animals were excluded 

from the reference population because their relation-

ship with at least one animal from the group of animals 

with imputed genotypes resulted in a relationship coef-

ficient (based on the G matrix) that was higher than 0.45 

(defined after parentage testing). In Scenarios 5, 5B and 

6, randomly selected animals from another related breed 

(Perendale) were added to the reference population.

�e scenarios that are listed in Table  2 evaluated the 

efficiency of imputation from 5K to 50K for Romney, 

composite, Primera terminal composite group (http://

www.focusgenetics.com/sheep/sheep-breeding-pro-

gramme/primera) and Coopworth animals (genotypes 

were obtained with the 50K Illumina panel and not with 
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Fig. 1 Distribution of animals genotyped with 50K and HD. According to a main breed composition and b birth year
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a subset from the HD panel). Combining 50K genotypes 

and subsets of genotypes obtained with the HD panel 

resulted in a larger number of animals available for the 

analyses.

For Scenarios 7_5K50K to 11_5K50K, within-breed 

imputation of 510 Romney animals was performed by 

enlarging the reference set (n = 466, 933, 1860, 2862 and 

4862, respectively), i.e. by sorting the animals according 

Table 1 Imputation scenarios with HD genotypes using di�erent groups of purebred and crossbred animals

a Imputation scenarios were from 5K to 50K (50K was a subset of the HD panel), 5K to HD and 50K to HD

b 2-Step imputation: from 5K to 50K using all genotyped animals as reference population (N = 17,000) and from 50K imputed to HD using 500 animals as the 

reference population

c The oldest animals in each scenario were used as reference population

d The youngest animals in each scenario were imputed

Scenarioa Number 
of reference 
animalsb

Number 
of imputed 
animals

Description of reference animals Density 
of reference 
panelc

Imputed 
group 
breedd

Density of panel 
of imputed 
animals

1_5K50K 500 116 Romney 50K Romney 5K

1B_5KHD_1STEP 500 116 Romney HD Romney 5K

1B_5KHD_2STEP 17,000 + 500 116 Romney HD Romney 5K

2_50KHD 500 116 Romney HD Romney 50K

3_5K50K 469 116 Romney-31 animals related with the imputed group 50K Romney 5K

3B_5KHD 469 116 Romney-31 animals related with the imputed group HD Romney 5K

4_50KHD 469 116 Romney-31 animals related with the imputed group HD Romney 50K

5_5K50K 500 (R) + 100 (P) 116 Romney + Perendale 50K Romney 5K

5B_5KHD 500 (R) + 100 (P) 116 Romney + Perendale HD Romney 5K

6_50KHD 500 (R) + 100 (P) 116 Romney + Perendale HD Romney 50K

Table 2 Imputation scenarios with 50K genotypes using di�erent groups of purebred and crossbred animals

a Imputation scenarios were from 5K to 50K (original 50K panel)

b The oldest animals in each scenario were used as the reference population

c The youngest animals in each scenario were imputed

Scenarioa Number of reference animalsb Number 
of imputed 
animals

Description of reference animals Imputed 
group 
breedc

7_5K50K 466 500 Romney Romney

8_5K50K 933 500 Romney Romney

9_5K50K 1860 500 Romney Romney

10_5K50K 2860 500 Romney Romney

11_5K50K 4862 500 Romney Romney

12_5K50K 933 200 Romney Composite

13_5K50K 1000 (R) + 893 (C) 200 Romney + Coopworth Composite

14_5K50K 1000 (R) + 893 (C) + 500 (P) + 500 (T) 200 Romney + Coopworth + Perendale + Texel Composite

15_5K50K 710 500 Primera Romney

16_5K50K 710 (P) + 933 (R) 500 Primera + Romney Scenario 8 Romney

17_5K50K 710 (P) + 1860 (R) 500 Primera + Romney Scenario 9 Romney

18_5K50K 350 200 Primera Primera

19_5K50K 506 200 Primera Primera

20_5K50K 350 (P) + 77 (S,PD) 200 Primera + Suffolk + Poll Dorset Primera

21_5K50K 506 (P) + 77 (S,PD) 200 Primera + Suffolk + Poll Dorset Primera

22_5K50K 470 300 Coopworth Coopworth

23_5K50K 951 300 Coopworth Coopworth

24_5K50K 951 (C) + 933 (R) 300 Coopworth + Romney Coopworth
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to birth year and then by selecting them randomly within 

year groups.

For Scenarios 15_5K50K to 17_5K50K, the Primera 

set was first used as reference population (N =  710) to 

impute Romney animals (N = 500, Scenario 15_5K50K). 

Scenarios 16_5K50K and 17_5K50K were performed 

to check the effect of including Romney animals (same 

group of animals as in Scenarios 8_5K50K and 9_5K50K) 

to compose a multi-breed reference population. Sce-

narios 18_5K50K to 21_5K50K were used to evaluate the 

imputation of Primera animals (N = 200) by enlarging the 

reference population (N = 350 and 506) and combining 

animals from breeds that were used to create the Prim-

era terminal composite group (Suffolk and Poll Dorset, 

N =  77). �e last three scenarios in Table  2 (Scenarios 

22_5K50K, 23_5K50K and 24_5K50K) aimed at investi-

gating the imputation of Coopworth animals (N =  300) 

after doubling the size of the reference population (from 

470 to 951, Scenarios 22_5K50K and 23_5K50K, respec-

tively) and the impact of adding Romney animals in the 

reference population (Scenario 24_5K50K, N = 934).

Imputation of composite animals by expanding related 

breeds in the reference population

Scenarios 12_5K50K, 13_5K50K and 14_5K50K were 

used to evaluate imputation of composite animals by 

(1) using only Romney animals in the reference popula-

tion (Scenario 12_5K50K), (2) adding Coopworth ani-

mals (Scenario 13_5K50K), and (3) including Perendale 

and Texel animals in the reference population (Scenario 

14_5K50K). In New Zealand, much of the genetic back-

ground of commercial ewes used as dual-purpose sheep 

as studied here, originates from the Romney breed and 

both the Coopworth and Perendale breeds have a Rom-

ney origin. Texel is a breed that has recently been used 

in composite dual-purpose meat sheep to increase lean 

yield [6, 27].

Within-group imputation or use of a �xed reference 

population that includes animals from all breeds with HD 

genotypes

Table  3 describes Scenarios 25_5K50K to 31_5K50K 

that aimed at assessing imputation accuracy of Rom-

ney (25_5K50K and 26_5K50K), Coopworth (28_5K50K 

and 29_5K50K), Perendale (30_5K50K) and composite 

(31_5K50K) animals; two different reference populations 

were used for each scenario: (1) a fixed reference popula-

tion that included a large group of animals from all breeds 

(N  =  15,443) and (2) a within-breed reference popula-

tion. Romney and Coopworth imputed animals were also 

divided into two subgroups each, according to breed pro-

portion: 100 % Romney or < 65 % (Scenarios 25_5K50K 

and 26_5K50K, respectively) and 100 % or < 70 % Coop-

worth (Scenarios 28_5K50K and 29_5K50K, respectively.

Imputation of rare alleles and accuracy of imputation 

for SNPs located at the ends of chromosomes

Scenario 27_5K50K was specifically designed to inves-

tigate within-breed imputation of Romney animals for 

rare alleles and to verify regions with reduced imputa-

tion accuracy using the squared Pearson correlation coef-

ficient as a measure of accuracy. �is scenario had the 

largest number of imputed animals and was deemed best 

to test imputation accuracy of rare variants.

Prediction of imputation accuracy before imputing missing 

genotypes

Based on SNP data, the relatedness among animals 

from the imputed and reference populations was inves-

tigated for each scenario, as the genomic relationship 

Table 3 Imputation scenarios from 5K to 50K (50K original) using two types of reference population

a Fixed reference population that included 15,443 animals from all breeds with genotyped animals

b Within-breed/group reference population: some groups contained a small number of genotyped animals

c 1000 animals de�ned as the imputed set to optimize the calculation of the r2 imputation accuracy per SNP

d Two types of reference population were used: (1) a �xed reference population that included a large number of animals from all breeds and (2) a within-group 

reference population

Scenario Number of reference 
animals

Number of imputed 
animals

Description of reference ani-
malsd

Imputed group breedb

25_5K50K 15,443a and 4564b 218 All breeds/Romney Romney 100 %

26_5K50K 15,443a and 4326b 142 All breeds/Romney Romney < 65 %

27_5K50K 4256 1000c Romney Romney

28_5K50K 15,443a and 2324b 250 All breeds/Coopworth Coopworth 100 %

29_5K50K 15,443a and 2279b 250 All breeds/Coopworth Coopworth < 70 %

30_5K50K 15,443a and 640b 250 All breeds/Perendale Perendale > 95 %

31_5K50K 15,443a and 138b 172 All breeds/Composites Composites > 50 % < 95 %
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average value (extracted from the G matrix) between 

each imputed animal and the 10 most related individu-

als from the reference population. �e minimum and 

maximum top 10 relationships (upper and lower value 

for each group of the 10 most related animals) for each 

scenario were also calculated to compare the estimated 

accuracies of imputation. Another measure of related-

ness was also investigated to predict imputation accu-

racy before running the imputation process: Mendelian 

inconsistency (MI), which is the average number of Men-

delian inconsistencies between an imputed animal and 

the top 10 related individuals from the reference group, 

where MI reflects the number of opposing homozygotes 

between two individuals. Two individuals that have high 

MI values after genotype comparison are likely to share 

fewer haplotypes than individuals that have a low MI 

value.

Comparison of imputation software packages

We compared two software packages: BEAGLE and FIM-

PUTE. We do acknowledge that changes to BEAGLE 

software are now available (Version 4) and that this new 

version should be evaluated in future studies, along with 

any other available updates of these software packages, 

to determine if there are advantages for the New Zealand 

sheep industry. BEAGLE exploits linkage disequilibrium 

between SNPs and implements a population imputa-

tion method that assumes that all animals are unrelated. 

�is software uses a hidden Markov model (HMM) and a 

localized haplotype clustering method to infer genotypes 

as described by Browning et  al. [26]. All analyses using 

BEAGLE were carried out by setting default parameters. 

�e FIMPUTE software uses a deterministic approach 

that combines family and population imputation meth-

ods. �e population imputation method is based on 

the assumption that all individuals have some degree of 

relationship and share haplotypes that may differ in fre-

quency and length depending on the relationships. FIM-

PUTE is a two-step procedure, i.e. first it searches for 

long haplotypes by applying a family imputation method, 

and second, it identifies short segments (two SNPs) by 

applying a population imputation method that analyzes 

overlapping sliding windows. BEAGLE analyses that were 

not complete within 1 week of computing time or failed 

at least twice during the process (the cause of failure 

could not be determined) were excluded and are not pre-

sented in this paper (13 occurrences).

Determination of imputation accuracy

Imputation accuracy (per individual and per SNP) was 

determined with two different measurements: (1) allelic 

squared Pearson correlation coefficient (r2) as an appro-

priate approach to minimize the dependency on allele 

frequency and (2) concordance rate: proportion of cor-

rectly called SNP genotypes versus all called SNPs. Both 

values were determined by comparing imputed and true 

genotypes. Since imputation accuracy of specific SNPs 

was useful for Scenario 27_5K50K, which investigated 

imputation of rare variants, r2 per SNP was calculated.

Run-time comparison (overall computing time)

FIMPUTE analyzes a set of chromosomes simultane-

ously by implementing parallel computing. For each 

software package, the total length of running time 

(overall computing time) was measured for all scenarios 

but comparison of values between BEAGLE 3.3.2 and 

FIMPUTE was not possible. Due to the long computa-

tion time required with BEAGLE, these analyses were 

carried out using the Condor server located at the Uni-

versity of Wisconsin (Linux server (fedora core 16) with 

dual Intel Xeon X5690@3.47  GHz CPUs). FIMPUTE 

analyses were performed on a local server, located at the 

Invermay Agricultural Centre, Agresearch (Linux server 

(CentOS 6.5) with 48 AMD Opteron 6176SE @2.3 GHz 

CPUs). Ten parallel jobs were implemented for BEA-

GLE and FIMPUTE, for comparison among scenarios 

(within software).

Results
In this paper, tables are used to report the concordance 

rate (CR) and r2 measures of imputation accuracy, and 

figures show the variation in imputation efficiency for 

all animals genotyped with the low-density panel in each 

scenario. All figures provide imputation accuracy per ani-

mal in terms of CR. Tables 4, 5, 6, and 7 and Figs. 2, 3, 4, 

5, 6 and 7 report the results for Scenarios 1–31 that are 

defined in Tables 1, 2 and 3.       

First, we assessed imputation accuracy using two popu-

lation imputation methods (BEAGLE and FIMPUTE) 

applied to HD genotypes of purebred Romney animals.

One- versus two-step imputation

�e two-step imputation scenario (Scenario 

1B_5KHD_2STEP) that imputed animals first from 5K to 

50K and then, from 50K imputed to HD, was compared 

to the one-step imputation scenario from 5K to HD (Sce-

nario 1B_5KHD_1STEP), which showed that the two-

step procedure increased imputation accuracy by 5.67 % 

(CR) and 8.87 % (r2). Based on Fig. 2d, animals for which 

imputation accuracy (CR) was lower than 95.1  % using 

the one-step approach, inference of missing genotypes 

was more efficient with the two-step procedure.

Imputation from a medium-density panel (50K) to HD 

(Scenarios 2_50KHD, 4_50KHD and 6_50KHD) resulted 

in the highest imputation accuracies i.e. higher than 

97.25 % (CR) (see Table 4).
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Imputation from 5K to both 50K and HD panels using one 

or more breeds in the reference population and impact 

of relatedness on imputation accuracy

Table 4 shows the accuracy of genotype imputation from 

5K to 50K and HD, and from 5K to 50K. All SNP panels 

represented a subset of the HD panel. �e highest CR 

(87.19  %) and r2 (78.98  %) values (Table  4) for imputa-

tion from 5K to 50K were obtained when Romney and 

Perendale animals were combined in the reference pop-

ulation (Scenario 5_5K50K; Table  1). �e difference in 

Table 4 Accuracy of genotype imputation and computing time for BEAGLE and FIMPUTE algorithms

a CR_F = concordance rate using the FIMPUTE software

b r2_F = Squared Pearson correlation using the FIMPUTE software

c CR_B = concordance rate using the BEAGLE software

d r2_B = Squared Pearson correlation using the BEAGLE software

e Mean Top10, Min Top10 and Max Top10 = mean, min and max relationship among the 10 most related animals between the reference and imputed sets

Scenario CR_Fa r2_Fb Run 
Time_F 
m:s

CR_Bc r2_Bd Run 
Time_ B 
h:m:s

Mean 
Top10e

Min Top10e Max 
Top10e

1_5K50K 86.98 78.75 00:57 83.80 73.80 02:16:25 0.115 0.034 0.234

1B_5KHD_1STEP 87.61 80.73 06:51 84.10 74.00 23:12:35 0.115 0.034 0.234

1B_5KHD_2STEP 93.28 89.6 – NA NA NA 0.115 0.034 0.234

2_50KHD 97.56 96.2 07:42 96.98 95.42 21:55:35 0.115 0.034 0.234

3_5K50K 84.35 74.15 00:53 82.12 70.94 03:15:10 0.090 0.033 0.179

3B_5KHD 85.3 76.85 06:43 82.23 71.12 27:17:35 0.090 0.033 0.179

4_50KHD 97.25 95.71 07:11 96.63 94.91 12:33:02 0.090 0.033 0.179

5_5K50K 87.19 78.98 01:08 83.58 73.37 03:18:52 0.097 0.037 0.252

5B_5KHD 87.68 80.81 08:45 83.99 76.00 25:16:22 0.097 0.037 0.252

6_50KHD 98.06 97.01 09:14 Failed Failed Failed 0.097 0.037 0.252

Table 5 Accuracy of genotype imputation from 5K to 50K and computing time when using the FIMPUTE software

a CR_F = concordance rate when using the FIMPUTE software

b r2_F = Squared Pearson correlation when using the FIMPUTE software

c Mean Top10, Min Top10 and Max Top10 = mean, min and max relationship among the 10 most related animals between the reference and imputed sets

Scenario CR_Fa r2_Fb Run time_F m:s Mean Top10c Min Top10c Max 
Top10c

7_5K50K 74.82 57.79 01:15 0.058 0.011 0.178

8_5K50K 77.10 61.64 02:14 0.076 0.036 0.210

9_5K50K 84.42 74.05 03:33 0.135 0.054 0.310

10_5K50K 87.55 79.29 05:47 0.152 0.052 0.394

11_5K50K 91.06 85.38 09:08 0.177 0.054 0.398

12_5K50K 60.93 35.25 02:04 0.085 0.055 0.168

13_5K50K 66.69 44.25 03:32 0.095 0.056 0.338

14_5K50K 72.12 52.44 05:47 0.123 0.056 0.349

15_5K50K 51.82 17.89 01:28 0.004 0.003 0.006

16_5K50K 75.18 58.25 03:07 0.117 0.052 0.259

17_5K50K 84.07 73.41 05:04 0.153 0.058 0.335

18_5K50K 92.21 86.78 00:44 0.140 0.091 0.183

19_5K50K 95.10 91.90 01:01 0.042 0.001 0.270

20_5K50K 92.8 87.77 00:55 0.045 0.001 0.187

21_5K50K 95.32 92.26 01:11 0.066 0.002 0.270

22_5K50K 77.53 62.36 01:07 0.070 0.022 0.211

23_5K50K 88.46 80.92 02:05 0.167 0.023 0.370

24_5K50K 87.99 80.14 03:34 0.204 0.055 0.417
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overall average imputation accuracy between Scenarios 

1_5K50K and 5_5K50K was very small (0.21 and 0.23 % 

for CR and r2, respectively). Figure 2b shows that a small 

improvement in imputation accuracy for imputation to 

50K and HD was observed for some animals for which 

CR accuracy was lower than 70  % (imputation to 50K) 

in Scenario 1_5K50K and imputation of genotypes was 

improved by adding Perendale animals in the training 

dataset.

On average, CR accuracy and r2 decreased by 2.63 and 

4.60  %, respectively, when 31 Romney animals, which 

were highly related with the animals that had imputed 

genotypes, were removed from the training dataset (com-

parison of Scenarios 1_5K50K and 3_5K50K). As also 

shown by Fig. 2a, the removal of these 31 animals caused 

a decrease in imputation accuracy for imputation from 

low-density to 50K for several animals in all ranges of 

accuracy, except for the seven animals that showed the 

lowest imputation efficiencies (CR < 70 %). For this set of 

animals, average MI values were higher than 3000, which 
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Fig. 2 Imputation accuracy assessed by alternative approaches. a Imputation from 5K to 50K (Scenarios 1_5K50K and 3_5K50K) and from 50K to 

HD (Scenarios 2_50KHD and 4_50KHD) using the FIMPUTE software for purebred Romney animals (The suffix “KEY” refers to the 31 animals that are 

highly related with the group of imputed animals). b Imputation from 5K to 50K (Scenarios 1_5K50K and 5_5K50K) and from 50K to HD (Scenarios 

2_50KHD and 6_50KHD) using the FIMPUTE software for purebred Romney animals after including Perendale animals in the reference set. c Imputa-

tion from 5K to 50K using the FIMPUTE software for purebred Romney animals after using the Primera group as reference set (Scenario 15_5K50K) 

and inclusion of Romney animals in the reference set (Scenarios 16_5K50K and 17_5K50K). Scenario 9 was included in this plot for comparison with 

within-breed imputation. d Imputation from 5 K to HD using the FIMPUTE software for purebred Romney animals by one- or two-step imputation 

(Scenarios 1B_5KHD_1STEP and 1B_5KHD_2STEP). The x-axis represents the number of imputed individuals sorted from the highest to the lowest 

accuracy value

Table 7 Rare allele imputation accuracy (r2) for  di�erent 

ranges of MAF

a Allelic imputation accuracy (r2) for Scenario 27_5K50K where 1000 Romney 

animals were imputed using a within-breed reference set that included 4256 

animals

MAF Number of SNPs r2a

0 < MAF = 0.0001 35 0

0.0001 < MAF = 0.001 96 6.6

0.001 < MAF = 0.01 625 38.9

0.01 < MAF = 0.05 2360 57.8
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indicates a low level of relationship compared to the ani-

mals in the reference population. Imputation from 50K 

to HD (Scenario 4_50KHD) was not affected by remov-

ing the key related animals from the reference popula-

tion. Imputation from 5K to HD (3B_5KHD) was also 

performed in this study and imputation accuracies (CR 

using FIMPUTE) were on average slightly higher (0.95 %) 

than for imputation from 5K to 50K (3_5K50K). Impu-

tation accuracy from 5K to HD ranged from 82.23 to 

87.68 % (CR) and from 71.12 to 80.81 % (r2) for Scenarios 

1B_5KHD, 3B_5KHD and 5B_5KHD (see Table 4).

Size of the reference set

�e first five scenarios (Scenarios 7_5K50K to 11_5K50K) 

were used to evaluate the within-breed accuracy of impu-

tation for 510 Romney animals by enlarging the reference 

population from 466 to almost 5000 animals. CR (and r2) 

accuracies ranged from 74.82  % (57.79  %) for Scenario 

7_5K50K to 91.06  % (85.38  %) for Scenario 11_5K50K, 

respectively. �e highest accuracy was reached when 

4862 animals (the largest set of Romney animals) 

were included in the reference population (Scenario 

11_5K50K). Figure  3 shows imputation accuracy (CR) 

per animal for the same set of results presented above. A 

large average gain in accuracy (16.24 %) was obtained by 

increasing the reference population by tenfold.

Imputation of composite animals, multi- versus one-breed 

reference population and use of a single reference 

population for all imputed animals

�e overall average imputation accuracy of composite ani-

mals using different reference populations that consisted 

of Romney animals and additional individuals from other 

groups (Coopworth, Perendale and Texel) ranged from 

60.93 to 72.12 % (CR) and from 35.25 to 52.44 % (r2) (Sce-

narios 12_5K50K to 14_5K50K). As shown in Fig. 4c, gains 

in imputation accuracy per animal were obtained by adding 

animals from different breeds to the reference population.

Accuracies of imputation of Romney animals using a ref-

erence population that comprised animals from another 

breed (Primera) were close to those of imputation by 

chance (i.e. replacing a missing genotype by the allele of 

higher frequency), also defined as random imputation 

(CR  =  51.82  % and r2  =  17.89  % (Scenarios 15_5K50K 

to 17_5K50K). Addition of Romney animals to the refer-

ence population (Scenarios 16_5K50K and 17_5K50K) 

increased imputation accuracy to values that were similar 

to those obtained for within-breed imputation (Scenario 

9_5K50K; Fig.  2c). Overall, average gains in accuracy of 

2.89 % in CR and 5.12 % in r2 were observed by enlarging 

the reference Primera population (Scenarios 18_5K50K 

and 19_5K50K) with animals related to those that were at 

the origin of this group (Suffolk and Poll Dorset) (0.22 % 

in CR and 0.36 % in r2). Only 6 % of the animals from the 

imputed set showed little overall gain in accuracy (2.3 %) 

by including animals from the two additional breeds 

(Fig. 4a). A slight decrease (0.47 % in CR and 0.78 % in r2) 

in imputation accuracy was observed when Romney ani-

mals were included in the scenario for which Coopworth 

individuals were used in both the reference and imputed 

sets (Scenarios 23_5K50K to 24_5K50K). A near two-fold 

reduction in reference population size decreased imputa-

tion accuracy more than the addition of a second breed in 

the reference population, which resulted in a very slight 

decrease in accuracy (Fig.  4b). With FIMPUTE soft-

ware and across all scenarios (see Table  5), the shortest 
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Fig. 3 Imputation from 5K to 50K using the FIMPUTE software for purebred Romney animals. Scenarios 7_5K50K to 11_5K50K. The x-axis represents 

the number of imputed individuals sorted from the highest to the lowest accuracy value
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and longest computing times were observed for Scenario 

18_5K50K (44 s) and Scenario 9_5K50K (5 min and 47 s), 

respectively.

Overall, average gains in accuracy of 8.52 % in CR and 

14.03 % in r2 were obtained for all scenarios that compared 

a within-group reference population versus a fixed and 

large reference population that comprised animals from all 

groups (Table 6, Scenarios 25_5K50K to 31_5K50K).

�e highest gain (25.11 % in CR and 40.6 % in r2) was 

obtained for Scenario 31_5K50K for which the reference 

population of 138 animals (within-group reference set) 

that was used to impute composite animals was replaced 

by a larger set consisting of 15,443 animals (see Table 6, 

fixed reference population for all scenarios). Figure  5 

shows imputation accuracies per animal for imputation 

from 5K to 50K with a reference population composed 

of animals from the same group as those to be imputed 

(within-breed imputation): they are sorted from the high-

est to the lowest CR accuracy.

Imputation of Romney animals with different breed 

proportions (<100  % and <65  %), Coopworth (<70  %), 

and of composite animals, benefited from using a unique 

large reference population that included animals from all 

breeds/groups. Imputation of animals 100 % Coopworth 

and Perendale did not benefit substantially by including 

animals from all breeds/groups in the reference popula-

tion compared to a within-breed reference population, 

with only a slight change in imputation accuracy observed 

for a few animals (see Fig. 5, Scenarios 28 and 30).

Comparison of BEAGLE and FIMPUTE

Accuracies of imputation and corresponding comput-

ing times for FIMPUTE and BEAGLE are provided in 

Table  4. FIMPUTE outperformed BEAGLE across all 
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Fig. 4 Imputation accuracy combining different breeds. a Imputation from 5K to 50K (Scenarios 18_5K50K to 21_5K50K) using the FIMPUTE 

software for purebred Primera animals after enlarging the reference set within group or adding animals from other breeds. b Imputation from 5K to 

50K (Scenarios 22_5K50K to 24_5K50K) using the FIMPUTE software for Coopworth animals after enlarging the reference set within group or adding 

Romney animals. c Imputation of composite animals using alternate sets of reference population from 5K to 50K using the FIMPUTE software (Sce-

narios 12_5K50K to 14_5K50K). The x-axis represents the number of imputed individuals sorted from the highest to the lowest accuracy value
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scenarios. Overall, average decreases in accuracy of 

3.06  % (CR) and 4.59  % (r2) for imputation from 5K to 

50K and of 3.42 % (CR) and (r2) for imputation from 5K 

to HD were found with BEAGLE compared to FIMPUTE. 

Computation time was shortest in Scenario 1_5K50K for 

both software packages: 57  s with FIMPUTE and over 

2 h with BEAGLE. Twenty GB of RAM (random-access 

memory) were allocated for both algorithms. For some 

analyses that failed using BEAGLE, the RAM threshold 

had to be increased to 100  GB for the computation of 

scenarios that investigated imputation to HD genotypes. 

Scenarios that used BEAGLE and were not completed 

within 5  days or failed twice are not presented in this 

paper and the cause of these failures was not determined. 

Imputation with BEAGLE in all Scenarios from 7_5K50K 

to 31_5K50K (results are only presented for FIMPUTE 
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Fig. 5 Imputation accuracy using large fixed or within-group reference populations. Imputation from 5K to 50K (Scenarios 25–31) using the FIM-

PUTE software under different scenarios and two types of reference population: (i) fixed reference population containing a large number of animals 

from all breeds and (ii) within-group reference population. The x-axis represents the number of imputed individuals sorted from the highest to the 

lowest accuracy value. a Scenario 25, b Scenario 26, c Scenario 28, d Scenario 29, e Scenario 30, f Scenario 31
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in Tables 5, 6 and 7) was not feasible and is not reported 

here.

Table  5 shows the accuracy of genotype imputation 

from 5K to 50K that was reached with FIMPUTE for Sce-

narios 7_5K50K to 24_5K50K.

Predicting imputation accuracy before imputation 

and relatedness

Figure  6 shows imputation accuracy per animal across 

two scenarios measured by concordance rate (CR) 

according to the average number of Mendelian inconsist-

encies (MI) observed with 5K (Fig. 6a) and 50K (Fig. 6b) 

panels: a similar trend is observed in both plots.

�e highest imputation accuracy (98.7  % in CR) was 

obtained for an individual for which the average MI 

between itself and the top 10 most related animals in 

the reference population was equal to 176.9 when the 5K 

panel was used and 1208.7 when the 50K panel was used. 

�e lowest imputation accuracy was found for an animal 

for which MI was equal to 504.2 and 3297.9 when the 5K 

and 50K panels were used, respectively.

Tables  4, 5 and 6 also show the top 10 relationships 

between animals from the imputed and reference popula-

tions. �e mean, minimum and maximum average top 10 

values across all scenarios were equal to 0.129, 0.041 and 

0.296, respectively. Scenario 15_5K50K (imputation of 

Romney animals using the Primera group as the reference 

population) resulted in the lowest values of relatedness 

[0.004 (mean), 0.003 (min) and 0.006 (max)]. Imputa-

tion of Coopworth animals using all the other animals as 

the reference population resulted in the highest average 

relatedness value (0.283) and in one of the highest impu-

tation accuracies (CR = 96.24 %). After carefully examin-

ing the classes of relationship among the individuals in the 

reference population and imputed set (results not shown), 

we found that, in most cases, the most highly related 

animal was a half-sib, with genetic relatedness dropping 

quickly, where the relationship for the 10th animal in the 

top 10 most related set was close to 0.03 (Min Top10 stats 

in Tables 4 and 5). �is indicates that in the scenarios that 

were designed for this study, the number of highly related 

animals (for example, family members that are shared 

between imputed and reference sets) was quite small. 

�is is confirmed by the comparison of Scenario 1_5K50K 

(Table 5) with Scenario 3_5K50K, for which the reference 

population was enlarged by the addition of 31 animals 

that were highly related with animals in the imputed set; 

in this case the Max Top10 statistics did not exceed 0.234.

Imputation of chromosome tails and rare alleles

Figure 7a shows imputation accuracies (r2) per SNP for the 

26 autosomal sheep chromosomes for the animals described 

in Scenario 27_5K50K, in which 1000 animals were used as 

the imputed set. In general, imputation accuracies for the 

SNPs that were located at each end of each chromosome 

were lower than for those in other chromosomal regions. 

Figure 7b shows that 14 out of the 26 autosomes had at least 

one of their extremities covered by 100 SNPs with an aver-

age imputation accuracy lower than 40 % (r2).

Chromosome 4 shows the best marker coverage at the 

proximal end (average r2  =  80.40  %) whereas the low-

est imputation accuracy was found for the 100 SNPs 
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Fig. 6 Imputation accuracy and its relation with the connectivity between each imputed animal and the reference set. Average numbers of 

Mendelian inconsistencies (AVTOP10_5K and AVTOP10_50K) between each animal in the imputed set and all animals from the reference set were 

calculated and are presented for each imputed animal as the average of 10 pairs of animals (one from the reference set and one from the imputed 

set) with the lowest Mendelian inconsistency. Imputation from 5K to 50K (Scenario 1_5K50K) and 5K to HD (Scenario 1B_5KHD_1STEP) using the 

FIMPUTE software for purebred Romney animals is also compared with the value defined above. a AVTOP10_5K calculated using the 5K panel 

before imputation. b AVTOP10_50K calculated using the 50K panel. The x-axis represents the average number of Mendelian inconsistencies and the 

y-axis the imputation accuracy per animal measured by concordance rate (CR)
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imputation accuracy defined as the average r2 value for the 100 markers
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located at the telomeric end of chromosome 1 (average 

r2 = 29.89 %).

Imputation accuracies of rare alleles as measured by 

r2 and grouped into four categories according to the 

MAF of each imputed SNP allele (0 < MAF < 0.05) are in 

Table  7. �irty-five SNPs were reported in the first cat-

egory (0 < MAF < 0.0001) and their r2 was equal to 0. �e 

overall average imputation accuracies (r2) for the MAF 

groups (0.0001 < MAF < 0.001; 0.001 < MAF < 0.01; and 

0.01 < MAF = 0.05) were equal to 6.6, 38.9 and 57.8 %, 

respectively.

Genetic relationships among breeds based on MDS cluster

 Figure  8 illustrates the genetic relationships (based on 

genomic distances estimated from SNPs) between ani-

mals of each group or breed. Primera and Texel groups 

showed reduced connectivity with other breeds (Rom-

ney, Coopworth, composites and Perendale). �is plot 

was used to determine the most relevant imputation sce-

narios and for the description of population structure.

Discussion
We used a 50K SNP subset that was extracted from the 

HD panel to compare the imputation accuracy from 5K 

to 50K, 5K to HD using a one- or two-step procedure, 

and from 50K to HD. Animals genotyped with the HD 

panel were not re-genotyped with the 50K panel, but the 

50K panel was derived as a subset of the HD genotypes. 

�e large number of animals (17,176) that were geno-

typed with the Illumina OvineSNP50 (50K) panel allowed 

us to investigate the use of alternate reference popula-

tions, i.e. that comprised samples of animals of various 

sizes and breed composition, the impact of removing ani-

mals that were closely related to the reference population 

and also to identify the chromosomal regions that are not 

imputed efficiently in Romney animals, for which a large 

imputed set (N = 1000) was used to reduce the bias in r2 

imputation results.

Impact of reference population on the imputation 

of purebred and crossbred animals

Imputation accuracies that were obtained in our study 

were on average higher than those reported by Hayes 

et  al. [14] for Australian sheep. �ese authors investi-

gated different breeds and smaller populations. Imputa-

tion accuracy depends on several factors, including the 

number of immediate ancestors in the reference popula-

tion, size of reference population and density of the SNP 

panel used for both imputed and reference sets [13]. Sce-

narios 7 to 11 in our study resulted in a substantial gain 

in accuracy by enlarging the reference population used 

for the within-group imputation of Romney animals 

Fig. 8 MDS Cluster plot illustrating the genetic relationship (based on the genomic distances obtained by SNPs) between animals of each group or 

breed used to describe the genetic structure of different groups/breeds and to better define the imputation scenarios
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which agrees with the findings of [13]. Ventura et al. [1] 

investigated the accuracy of imputation from 5K to 50K 

in a multi-breed beef cattle population and reported 

higher CR accuracies when closely-related individuals 

to the imputed group along with a representation of the 

breed composition of the imputed group were included 

in the reference population. �ese authors also showed 

that adding another purebred population in the reference 

population did not improve the within-breed imputation 

for imputation from low- to medium-density panels. Sar-

golzaei et  al. [9] reported that imputation from denser 

panels (i.e. from 50K to HD) depended less on the size 

of the reference population than that from sparser pan-

els (i.e. from 5K to 50K). �e existence of strong rela-

tionships between animals in the reference and imputed 

sets, helps to better detect long haplotypes that are used 

to infer missing SNPs. Hayes et al. [14] cited problems of 

pedigree structure and small family sizes in sheep breeds, 

which affect the imputation process if a population impu-

tation method is not applied. McRae et al. [29] reported 

that, in sheep, the linkage disequilibrium between SNPs 

that are separated by less than 10 cM is lower than that 

for SNPs separated by similar distances in the dairy cat-

tle population, thus reducing the power of the population 

imputation method which depends on linkage disequilib-

rium. �e number of haplotypes shared between breeds 

is small and a large reference population is required to 

capture haplotype diversity for different sheep breeds [1]. 

Imputation accuracies were higher for almost all the sce-

narios for which a fixed and large reference population 

was used and this was consistent with the above stud-

ies. Across all scenarios (FIMPUTE was the only soft-

ware used) for imputation from 5K to 50K, a slight loss in 

accuracy when using the fixed and large reference popu-

lation was observed only for a few animals. In addition, 

a large gain in accuracy for a large proportion of animals 

(purebred and crossbred) in the imputed set, justifies the 

use of a fixed and large reference population for all situa-

tions. �is may be associated with the complexity of the 

breed composition of each animal considered in some 

cases as purebred.

�e top 10 measures of relatedness demonstrated that 

accuracy of imputation was strongly associated with the 

level of relationships between animals in the imputed and 

reference sets and that it increased as the average top 10 

relationships increased. �e relationship between impu-

tation accuracy and top relationships was also demon-

strated by Bolormaa et al. [22].

Imputation from 5K to both 50K (HD subset) and HD panels

Imputation from 5K to HD was slightly better (0.6  %) 

than imputation from 5K to 50K. �is result is not con-

sistent with previous studies in other species. A study 

on Hereford cattle by Picolli et  al. [8] showed that 

imputation accuracies were higher for imputation from 

5K to 50K (CR  =  94.60  %) than for imputation to HD 

(CR  =  89.80  %). �is implies that longer chromosome 

segments need to be inferred if the targeted SNP den-

sity for imputation is the HD panel, when the number of 

SNPs in the low-density panel is fixed (5K). �e fact that 

there are more misplaced SNPs in the medium-density 

panel (50K), compared to the HD panel may cause more 

problems when imputing to 50K from the same low-

density panel. Further studies with other datasets are 

necessary to check this issue. Imputation of animals that 

are highly-related to individuals in the reference popu-

lation can benefit from the identification of long haplo-

type blocks and thus could lead to smaller differences 

in imputation accuracies for imputation to 50K and HD 

panels from the same low-density panel. �e difference 

in overall imputation accuracy between imputations to 

these two panels is reduced from less than 1 to 0.2 % if 

animals with lower CR than 80 % are not considered in 

the statistics (animals that are weakly related to those in 

the reference population). Further investigations on this 

topic are also necessary. Individuals for which the 5K 

SNPs were imputed to 50K with an imputation accuracy 

lower than 70 % (Fig. 2a, b) had an overall average gain 

in CR accuracy of 21.32  % after imputation from 50K 

to HD panel. According to Sargolzaei et al. [9], closely-

related animals share long haplotypes that usually occur 

at a low frequency in the population, while less related 

individuals may share short haplotypes that occur at 

higher frequencies in the population. Based on these 

results, it is likely that these short haplotypes were cap-

tured by increasing both panel densities (i.e. imputation 

from 50K to HD compared to 5 to 50K) and the effect 

was largest for the animals for which imputation accura-

cies were lowest in the imputation using the low-density 

panels.

Imputation from low- and medium-density panels to the 

HD panel

�e two-step imputation from 5K to HD (5K to 50K and 

then from 50K to HD) outperformed the one-step impu-

tation from 5K to HD (+5.67 % in CR). A comparison of 

one- and two-step imputation approaches in Canadian 

dairy breeds (Ayrshire, Guernsey and Holstein) reported 

by Larmer et al. [10], also showed that the two-step pro-

cedure resulted in higher accuracies. A similar study on 

Braford and Hereford beef cattle in Brazil [8] reported a 

gain in CR of 8.06 % with a two-step imputation proce-

dure. �ese authors suggested that the gain in accuracy 

can be attributed to the larger number of SNPs present 

in the low-density (50K) panel used in the second step of 

imputation.
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Imputation of rare variants

Imputation of rare variants was recently investigated 

on human data [30, 31]. Kreiner-Møller et  al. [32] pro-

posed a new approach to improve imputation accuracy 

of rare alleles that was based on a two-step imputation 

procedure, i.e. (step 1) genotyping many additional indi-

viduals only for the rare variants to constitute a specific 

reference population for the rare segments and (step 2) 

imputation to the highest density panel as usual. Using 

data on a purebred dairy cattle population, Sargolzaei 

et  al. [9] showed the importance of having information 

on closely-related animals for the efficiency of the impu-

tation of rare variants and reported gains in accuracy 

relative to the increase in reference population size and 

panel density [9]. �ese authors showed that rare variants 

tend to be recent events and are directly associated with 

longer haplotypes. �ey reported imputation accuracies 

for rare variants using various sizes of reference popu-

lations and found that they were higher than 80 % for a 

reference population size similar to that described in this 

study (N > 4000). �is pronounced disparity in imputa-

tion accuracies between our study (58 %) and the study of 

Sargolzaei et al. [9] in dairy cattle (at least 80 %) is mainly 

due to differences between the structure of dairy and 

sheep populations. Population structure will also directly 

affect the number of closely-related animals that will 

positively influence the imputation of rare variants. �e 

imputation accuracies (r2) of 0 (N =  35) for SNPs with 

MAF lower than 0.0001 that were obtained in our study 

are likely due to genotyping errors or the absence of vari-

ation for this specific set of SNPs, which directly impacts 

the correlation calculation.

Software comparison

We chose the version 3.3.2 of BEAGLE for our study 

because it is implemented in practice for genomic selec-

tion in New Zealand sheep at the industry level [20]. 

Computation run-time and efficiency of BEAGLE and 

FIMPUTE software packages have been reported by sev-

eral authors in other species [1, 8, 9]. Our results cor-

roborate the findings from those authors and show that 

FIMPUTE V2.2 outperformed BEAGLE 3.3.2 across all 

imputation scenarios. Since FIMPUTE is able to paral-

lelize chromosomes on multi-core systems [9], it will 

become an important tool for imputation of thousands of 

animals genotyped with a variety of panel densities.

r2 and concordance rate measures of imputation accuracy

Concordance rates as a measure of imputation accu-

racy have been reported by several authors, including for 

imputation in sheep [14]. Sargolzaei et al. [9] used allelic r2 

(squared correlation between imputed and true genotypes) 

as a measure of imputation accuracy that minimizes the 

dependency of SNP allele frequencies. �e r2 calculation 

can be carried out on a SNP or animal basis. Unlike the 

calculation on an animal basis that uses the large number 

of SNP genotypes per animal for the calculation of r2, the 

calculation of r2 per SNP requires a large number of ani-

mals to compose the imputed set, in order to obtain an 

unbiased estimate of the correlation. For this reason, Sce-

nario 27_5K50K was considered the most appropriate (for 

which the imputed set included 1000 animals) to estimate 

r2 accuracy per SNP. Our study used three different meas-

ures of imputation accuracy depending on the scenarios: 

concordance rate (plots reporting imputation accuracy per 

individual in Figs. 2, 3, 4, 5 and 6, reported as an average 

value in Tables 4, 5 and 6) and r2, both per animal (Tables 4, 

5 and 6), and per SNP (Scenario 27_5K50K), used to inves-

tigate regions that were imputed less accurately.

Prediction of imputation accuracy before imputation

Imputation accuracy can be determined only after mask-

ing chromosome segments from the individual’s geno-

type and by comparing the true and masked genotypes 

to the imputed genotype. According to Calus et al. [13], 

imputation accuracy depends mainly on the ability of 

identifying the correct haplotype for a specific SNP and 

on the number of genotyped immediate ancestors. In this 

paper, we report a novel and efficient approach to iden-

tify, prior to imputation, the animals for which regions 

in the genome are less likely to be inferred efficiently. 

Imputation from 5K to 50K and HD SNP panels was 

investigated and we found that there was a clear trend 

relating the resulting imputation accuracy with the num-

ber of MI at the 5K genotype level (before imputing). 

�e same trend was observed using the 50K genotypes 

(original and not masked genotypes). MI values (aver-

age value between an imputed animal and the top 10 

related individuals from the reference group) higher than 

400 (measured at the 5K level) or 3000 (at the 50K level) 

were obtained for individuals for which imputation accu-

racy was lower than 80 %. Further analyses are necessary 

on other populations with a different structure to better 

evaluate this method. If the imputation process is evalu-

ated for denser or sparser panels, a similar investigation 

with different SNP densities is required.

Imputation e�ciency per chromosome region in Romney 

animals

According to Picolli et  al. [8], in beef cattle, imputation 

accuracy is associated with chromosome length. �ey 

reported that CR accuracies were highest for bovine chro-

mosome 1 and lowest for chromosome 28, which is con-

sistent with our results. However, little is known on the 
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imputation accuracy of proximal and telomeric regions 

for each chromosome in sheep. We showed that only 

ovine chromosome 26 had an overall imputation accuracy 

over 100 SNPs at each end higher than 60  % (r2). Most 

of the ovine chromosomes had problems at least at one 

of the ends. If a trait is affected by a locus located in one 

of these regions, association studies will be impacted or 

biased if the genotypes investigated are imputed. Incorpo-

ration of additional SNPs located in these regions in the 

low-density panel may improve imputation accuracy.

Conclusions
In this study, we identified several critical factors that 

influence imputation accuracy and that need to be taken 

into account for the implementation of genomic selection 

in industry breeding programs for New Zealand dual-

purpose sheep breeds. �ese factors include the SNP pan-

els and software used, both of which should be carefully 

evaluated when new technologies are presented. Strate-

gies of imputation (one- or two-step) and the choice of the 

animals to be genotyped using both high- and low-density 

panels are important since we highlighted the influence 

of the presence of closely-related animals in the reference 

population as well as the improved imputation accuracy 

reached when a subset of more closely-related animals is 

added to the reference population compared to a larger 

reference population that includes all the animals. Incor-

poration of additional SNPs in the lowest density panel 

(5K) increases imputation accuracy furthermore. Since it 

is not possible to have a high imputation accuracy for all 

the animals, we present a method that allows imputation 

accuracy to be predicted based on the low-density geno-

types, which can then be used to restrict genomic predic-

tion only to animals that can be imputed with sufficient 

accuracy. Imputation of rare alleles is a difficult task that 

needs to be better investigated in future studies, especially 

for regions under selection pressure and for scenarios for 

which the size of the reference set is limited.
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