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Assessing agreement 
between different polygenic risk 
scores in the UK Biobank
Lei Clifton 1*, Jennifer A. Collister1, Xiaonan Liu1, Thomas J. Littlejohns1 & 
David J. Hunter1,2

Polygenic risk scores (PRS) are proposed for use in clinical and research settings for risk stratification. 
However, there are limited investigations on how different PRS diverge from each other in risk 
prediction of individuals. We compared two recently published PRS for each of three conditions, 
breast cancer, hypertension and dementia, to assess the stability of using these algorithms for risk 
prediction in a single large population. We used imputed genotyping data from the UK Biobank 
prospective cohort, limited to the White British subset. We found that: (1) 20% or more of SNPs in 
the first PRS were not represented in the more recent PRS for all three diseases, by the same SNP or 
a surrogate with  R2 > 0.8 by linkage disequilibrium (LD). (2) Although the difference in the area under 
the receiver operating characteristic curve (AUC) obtained using the two PRS is hardly appreciable for 
all three diseases, there were large differences in individual risk prediction between the two PRS. For 
instance, for each disease, of those classified in the top 5% of risk by the first PRS, over 60% were not 
so classified by the second PRS. We found substantial discordance between different PRS for the same 
disease, indicating that individuals could receive different medical advice depending on which PRS is 
used to assess their genetic susceptibility. It is desirable to resolve this uncertainty before using PRS 
for risk stratification in clinical settings.

Genome-wide association studies (GWAS) have revealed that the inherited genetic component of most traits not 
due to variations in a single gene is highly polygenic. Dozens or thousands of single nucleotide polymorphisms 
(SNPs) can be combined to produce a polygenic risk score (PRS) representing an individual’s genetic propensity 
for a given trait or disease.

There is much enthusiasm for the use of PRS to inform individuals about their risk of future health conditions, 
either as stand-alone information, or combined with non-genetic data in integrated risk  scores1,2. PRS have been 
proposed in a wide variety of settings such as the prioritisation of people for disease screening, informing the 
prescription of preventive medicines, and even in embryo  selection3. Variants in single genes associated with 
diseases are already utilised in a clinical setting, however, recent large-scale studies have found that PRS could 
potentially identify a greater proportion of at risk  individuals4.

Early in the development of PRS,  researchers5,6 quantified the degree to which a PRS with a limited number 
of SNPs would misclassify people, when compared with future PRS with many additional variants. At the time 
it was thought that once dozens, or even hundreds of SNPs were included, diminishing returns would set in 
and the PRS would be relatively stable. This perception appeared to be supported by the fact that in many large 
multi-study consortia, additional SNPs now being identified have very small odds ratios (OR; as low as 1.02 per 
allele or less) and the area under the receiver operating characteristic curve (AUC) of newer versions of the PRS 
are only minimally higher than that of previous versions.

Recent discussion on the use of PRS in the clinic has largely focused on the reporting standards for the deri-
vation and archiving of  PRS7,8, the health economic value of PRS, the potential contribution of PRS to health 
disparities given the limited databases available for non-European ancestry  populations9, how to use PRS for 
patient  benefit10,11, and the means of communicating PRS to patients or members of the public.

However, in addition to the implementation of PRS in practice, it is important to consider the methodological 
choices made when deriving different PRS. During the construction of PRS, there are multiple design options 
for deciding the number of SNPs to include and for assigning an appropriate weight to each SNP. Consequently, 
multiple sets of SNPs exist, resulting in multiple PRS for the same trait. For example, the 313-SNP PRS for breast 
 cancer12 was developed using hard-thresholding stepwise forward regression, whereas the 118 k-SNP  PRS13 was 
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selected by the penalised regression "lassosum" and the highest pseudo-R2. However, these PRS are typically 
compared at a population level using metrics such as the AUC or OR, and limited attention has been paid to how 
they differ from each other for risk prediction of individuals. Therefore, it is important to understand how the 
use of different PRS affect an individual’s classification of risk for future disease, as this has important implica-
tions for the use of PRS in wider practice.

Materials and methods
Study populations. We used the data from the UK Biobank (UKB), a large-scale population-based pro-
spective cohort study of approximately 500,000 individuals aged 40–69 years at recruitment across the United 
Kingdom between March 2006 and October 2010. The full details of the genotyping and imputation are described 
 elsewhere14,15.

Our study populations for each of the three disease outcomes are defined as follows:

• The breast cancer eligible population was women who had not had breast cancer, carcinoma in situ or mas-
tectomy prior to baseline.

• For the hypertension eligible population, we excluded individuals with missing or implausible systolic blood 
pressure (SBP) measurements (< 70 or > 270 mmHg) at baseline, and those with Major Adverse Cardiovas-
cular Events (MACE) prior to baseline.

• The dementia eligible population was restricted to individuals without a diagnosis of dementia prior to 
baseline.

We further restricted to genetically White British individuals (UKB Data Field 22006), and excluded individu-
als who were related (3rd degree or higher), sex discordant, or outliers for genotype missingness or heterozygosity 
based on UK Biobank-derived sample quality control data (UKB Data Field 22020). This yields the final size N 
of each study population.

Disease ascertainment in UKB during the follow-up period utilised linkage to death registry, cancer registry, 
and Hospital Episode Statistics (HES). Hypertension is defined as SBP >= 140 at baseline; the International Clas-
sification of Diseases (ICD) codes for breast cancer and dementia can be found in Supplementary Tables 14–16.

Selection of PRS. For each of the three disease outcomes, we selected a pair of recently published PRS to 
compare, typically published within two years of each other. The earlier PRS is denoted as PRS-A, while the more 
recent one is PRS-B.

When choosing PRS we identified scores that were derived using the same trait definition in primarily 
White European populations, to be appropriate for use in the UK Biobank, and that had been derived in large 
consortia for their respective disease. Where possible, we selected scores listed in the Polygenic Score Catalog 
(PGS Catalog), an online database that collects and curates PRS from across the literature and makes metadata 
available in a standardised way.

Table 1 summarises the characteristics of the chosen PRS for each trait, including the construction method. 
Supplementary Table 1 contains further information about each PRS, including source of weights (i.e. derivation 
dataset), population characteristics, and validation dataset.

• For breast cancer, PRS-A (313 SNPs, PGS ID: PGS000004)12 has been widely validated and is included in 
the current implementation of the BOADICEA breast cancer risk  model16,17. For PRS-B, we used a score 
(118,388 SNPs, PGS ID: PGS000511)13 which was largely developed from the same Breast Cancer Association 
Consortium (BCAC) GWAS data as PRS-A18.

• For hypertension, PRS-A for SBP (267 SNPs, not in PGS Catalog)19 was selected from the literature (further 
details later in this Section). The effect sizes of PRS-B for SBP (884 SNPs, PGS ID: PGS000812)20 are derived 

Table 1.  PRS chosen for each condition. The Source column lists the paper in which each PRS was derived, 
along with the PGS ID (Polygenic score ID in PGS Catalog) where available. The “Construction” column 
outlines the derivation method of each PRS, as described in its source paper. For a brief summary of the 
dataset(s) where each score was derived, see Supplementary Table 1. For more detailed information about each 
PRS, please see its source paper.

Disease PRS nSNPs Source (PGS ID) Trait Construction

Breast cancer
A 313 Mavaddat2019 (PGS000004) Overall breast cancer Hard-thresholding and stepwise forward regression, 

p <  10−5

B 118,388 Fritsche2020 (PGS000511) Overall breast cancer Lassosum, s = 0.5, lambda = 0.004281

Hypertension
A 267 Warren2017 (Not in PGS Catalog) Medication-adjusted BP traits (SBP, DBP, PP) Pairwise-independent, LD-filtered (r2 < 0.2) previously 

reported and novel variants

B 884 Evangelou2018 (PGS002257) Medication-adjusted BP traits (SBP, DBP, PP) Pairwise-independent, LD-filtered (r2 < 0.1) previously 
reported and novel variants

Dementia
A 57 Najar (Jan 2021) (PGS000812) Clinically defined Alzheimer’s disease Variants significant at p <  1e−5

B 39 Ebenau (Sep 2021) (PGS001775) Alzheimer’s disease Genome-wide significant variants
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from the International Consortium of Blood Pressure-Genome Wide Association Studies (ICBP), Million 
Veteran Program (MVP) and Estonian Genomic Centre of the University of Tartu (EGCUT).

• For dementia, both PRS-A (57 SNPs, PGS ID: PGS000812)21 and PRS-B (39 SNPs, PGS ID: PGS001775)22 
used effect sizes from the International Genomics of Alzheimer’s Project (IGAP)  GWAS23. PRS-A was con-
structed in January 2021 while PRS-B was developed in September of the same year. We selected PRS that 
did not contain the two APOE SNPs (rs429358 and rs7412), in order to prevent the APOE genotype from 
dominating the PRS.

We examined the overlap in SNPs between PRS-A and PRS-B for each disease, including those in high link-
age disequilibrium (LD)  (R2 > 0.8).

We took care to attempt to avoid the sample overlap issue, a potential pitfall for  PRS24. Since we planned 
to calculate PRS in the UKB population (i.e. target cohort), we preferred PRS that were not derived in the 
UKB population. During the PRS selection stage, we examined the base GWAS cohorts for PRS derivation and 
attempted to ensure that they do not contain our target cohort (i.e. UKB).

We were able to identify such PRS for breast cancer and dementia, but not PRS-A for SBP in the existing 
recent literature to the best of our knowledge. We investigated all the available PRS for SBP in the PGS Catalog, 
and found that UKB was present in all the derivation populations. Given the extensive blood pressure measures 
and genetic data in the UKB, it is unsurprising that researchers would include UKB in their derivation popula-
tion for PRS.

Calculating PRS. We computed the PRS of an individual j by the weighted sum of trait-associated SNPs,

where N is the total number of SNPs, βi is the effect size (or beta) of SNP i , and dosageij is the number of effect 
alleles (usually encoded as 0, 1 or 2 in SNP i for individual j for the effect allele).

We applied genetic quality control (QC) pipelines for both SNPs and samples. During SNP QC, we removed 
ambiguous SNPs (A/T or C/G SNPs with MAF > 0.49) and rare variants with MAF < 0.005; we only retained SNPs 
with high imputation quality (imputation information score > 0.4) (Supplementary Table 1). During sample QC, 
we excluded participants who were sex-discordant, outliers for missingness or heterozygosity, or related at 3rd 
degree or higher, using UKB Data Field 22020.

We then weighted the SNPs that passed our QC using the published effect sizes provided from the source 
paper for each score, given either in their supplementary materials or made available in the PGS Catalog, to 
compute PRS for those within the study population for each of the three disease outcomes.

Quantifying the stability of PRS. In each disease-specific study population, we first calculated the cor-
relation coefficient between each pair of PRS. We then computed the age- and sex-adjusted odds ratios (ORs) 
at various cut-points (e.g. top 1% or top 5% of the PRS), with the middle quintile of the PRS being the reference 
group.

We computed two versions of the AUC obtained from two separate logistic regression models for each 
continuous PRS:

1. Crude-AUC, where only PRS were fitted, adjusting for genetic array, and first 5 principal components (PCs) 
of ancestry (UK Biobank Field 22009), to reflect the predictive performance from the PRS itself.

2. Multivariable adjusted AUC (Multi-AUC), where the model further adjusted for age and sex (if applicable).

The outcome of these logistic regression models is the disease status (Yes/No), for each of the three diseases. 
The Crude-AUC measures the predictive ability of the PRS on its own, while the Multi-AUC measures this after 
having taken account of age and sex.

The continuous net reclassification index (NRI) was used to compare PRS-A with PRS-B in multivariable 
logistic models (Table 2). The categorical NRI was used in cross-classification of PRS percentile risk categories. 
Percentage reclassification for participants who experienced the outcome are shown in Supplementary Tables 5–7 
and 11–13, for top 1% and top 5% risk categorisations, respectively.

The 95% confidence interval (CI) of the AUC and NRI were estimated using 1 k bootstrap replications.

Ethics approval and consent to participate. The UK Biobank study (https:// www. ukbio bank. ac. uk) 
received ethical approval from the North West Multi-center Research Ethics Committee (REC reference: 11/
NW/03820). All participants gave written informed consent before enrolment in the study, which was conducted 
in accordance with the principles of the Declaration of Helsinki. This study has been conducted under the UK 
Biobank application ID 33952.

Patient and community involvement. The analyses presented here are based on existing data from 
the UK Biobank cohort study, and the authors were not involved in participant recruitment. To the best of our 
knowledge, no patients were explicitly engaged in the design or implementation of the UK Biobank study. No 

PRSj =

N∑

i

βi ∗ dosageij

https://www.ukbiobank.ac.uk
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patients were asked to advise on interpretation or writing these results. Results from UK Biobank are routinely 
disseminated to study participants via the study website and social media outlets.

Consent for publication. Yes.

Transparency statement. The lead author affirms that this manuscript is an honest, accurate, and trans-
parent account of the study being reported; that no important aspects of the study have been omitted; and that 
any discrepancies from the study as planned have been explained.

Results
Our study populations were N = 171,490 (incident cases = 6347) for breast cancer, N = 317,581 (prevalent 
cases = 137,649) for hypertension, and N = 335,689 (incident cases = 4460) for dementia. For comparing differ-
ent PRS, we focused on two aspects: firstly, the consistency of the selected SNPs and performance metrics. Then 
we assessed the correlation between each pair of PRS, and the extent to which PRS-B gave the same predictions 
for individuals as PRS-A.

We found that less than 80% of SNPs in PRS-A were represented in PRS-B for all three diseases, after having 
taken LD into account  (R2 > 0.8). This is somewhat surprising, as one might expect a newer score (PRS-B) to 
incorporate most of the previously identified SNPs from PRS-A.

Table 2 presents the performance characteristics of each PRS against the corresponding disease outcome 
in UKB. In each case the more recent PRS-B was associated with a slightly higher OR than the earlier PRS-A. 
For example, the OR of breast cancer among women in the top 1% compared to those in the middle quintile 
was 3.41 for PRS-A and 3.94 for PRS-B. Their corresponding AUCs were only minimally different (0.638 vs 
0.641), and the ROCs appear almost identical (Fig. 1). Similar results were obtained for hypertension (PRS-A 
OR = 1.83, AUC = 0.69; PRS-B OR = 2.18, AUC = 0.70) and dementia (PRS-A OR = 1.78, AUC = 0.80; PRS-B 
OR = 2.30, AUC = 0.80).

The Crude-AUC of PRS were modest, within 0.55–0.64. After including age and sex in the multivariable 
model, we observed an expected increase in AUC. Despite similar Multi-AUC, PRS-A and PRS-B were not very 
highly correlated for any outcome, with their Pearson correlation coefficient r only in the range of 0.51 to 0.65. 
Multi-AUC is noticeably higher than Crude-AUC for dementia, whereas such improvement is less prominent 
for breast cancer and hypertension. The likely explanation is that age is a more highly influential risk factor for 
dementia, but less so for breast cancer and hypertension.

Table 2 also shows NRI with PRS-B being the updated model. The positive NRI indicates that PRS-B is better 
at correctly assigning people to the appropriate risk categories. The small positive NRI is in line with the slight 
increase in the AUC.

Compatible with these correlation coefficients, there was substantial reclassification of predicted risk accord-
ing to percentiles of PRS-A and PRS-B for all three diseases. Table 3 shows that for women in the top 1% of breast 
cancer risk by PRS-A, only 23.1% were in the top 1% risk of PRS-B. The equivalent percentage was 22.9% and 
22.7% for hypertension and dementia, respectively (Supplementary Tables 3–4). We focused on the top 1% of risk 
because of the widely-promulgated concept that these risks approximate those of the risks for monogenic  traits4.

For participants in the top 5% (a more relaxed risk category than the top 1%) of risk for breast cancer by PRS-
A, only 35.7% were in the top 5% risk by PRS-B. The equivalent percentage was 35.8% and 40.0% for hypertension 
and dementia, respectively (Supplementary Tables 8–10).

Table 2.  PRS compared for each outcome and their performance characteristics in the UK Biobank. N: 
number of participants whose PRS score was obtained. nSNPs: number of SNPs in PRS prior to genetic quality 
control. OR: odds ratio for top 1% versus middle quintile of PRS from multivariable logistic regression model 
adjusted for age, sex, genotyping array and first 5 PCs. AUC: area under receiver-operating curve. Crude-AUC: 
only continuous PRS was fitted in a regression model. Multi-AUC: continuous PRS was fitted, further adjusted 
for age and sex. NRI: continuous net reclassification index obtained from predicted risks by two multivariable 
logistic regression models that contain age, sex, continuous PRS for this disease, genotyping array and first 
5 PCs. The model containing PRS-B is considered the “updated” model. r : Pearson correlation coefficient 
between the two continuous PRS for this disease. LD: number (%) of SNPs in PRS-A which either appear in 
or are in linkage disequilibrium  (R2 > 0.8) with SNPs in PRS-B. Breast cancer models are not adjusted for sex 
because its population is restricted to females. 95% CI for AUC and NRI calculated by bootstrapping.

Disease (N) PRS nSNPs OR (95% CI)
Crude-AUC 
(95% CI)

Multi-AUC 
(95% CI) NRI (95% CI) r

LD:  R2 > 0.8 (% 
overlap)

Breast cancer 
(171,490)

A 313 3.41 (2.89, 4.03) 0.63 (0.63, 0.64) 0.64 (0.63, 0.64)
0.03 (0.00, 0.05) 0.65 225 (72%)

B 118,388 3.94 (3.36, 4.61) 0.64 (0.63, 0.64) 0.64 (0.63, 0.65)

Hypertension 
(317,581)

A 267 1.83 (1.70, 1.98) 0.57 (0.56, 0.57) 0.69 (0.69, 0.69)
0.16 (0.16, 0.17) 0.66 210 (79%)

B 884 2.18 (2.02, 2.35) 0.59 (0.59, 0.59) 0.70 (0.70, 0.70)

Dementia 
(335,689)

A 57 1.67 (1.30, 2.13) 0.55 (0.54, 0.56) 0.80 (0.79, 0.80)
0.13 (0.10, 0.16) 0.51 13 (23%)

B 39 2.30 (1.85, 2.87) 0.57 (0.56, 0.57) 0.80 (0.79, 0.81)
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Discussion
The clinical utility of PRS depends on the clinical validity of the predictions. Clinical validity is not only depend-
ent on the information PRS provides on the risk of future events, but also on the stability of these estimates. 
Here, we demonstrate that for three common conditions (breast cancer, hypertension and dementia), the risk 
estimates derived from different PRS would result in very different information on risk of future disease being 
provided to a high proportion of individuals. Choice of the PRS may also influence the use of PRS as covariates 
or effect modifiers in epidemiologic analyses.

We found that the more recent PRS resulted in minimal increases in AUC compared to older PRS, in line 
with the small improvement measured by NRI. However, the PRS differed substantially in how they assigned 
participants into risk categories with a substantial proportion of individuals classified at very high risk by one 
PRS, not so classified by the other PRS. This suggests a major potential problem for the use of these PRS in clinical 
practice, given the changes in clinical recommendations associated with labelling a person in the same category 

Figure 1.  ROC plots obtained from predictions from multivariable logistic regression of age, sex, continuous 
PRS, genotyping array and first 5 PCs against disease outcome.
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of risk as a monogenic disorder. Our results demonstrated large differences across all percentiles of risk; although 
the clinical consequences at the lower percentiles may not be as extreme as at the higher percentiles, the clinical 
utility will still be reduced by incorrect classification.

The continual growth of large GWAS studies means researchers are more likely to encounter the issue of 
inter-cohort sample overlap between derivation and target data sets that may artificially increase the concord-
ance of  PRS25. This was indeed our experience when selecting appropriate PRS. We were able to confirm that 
most of our selected PRS do not have the sample overlap issue, but not PRS-A for SBP (detail in “Selection of 
PRS” section). The reason is that the UKB represents by far the largest single study contributing to PRS for blood 
pressure, and is unlikely to be excluded from any attempt to derive a clinically-applicable PRS for blood pressure. 
We anticipate that fellow researchers will encounter the same obstacle, and would like to highlight this challenge 
to the research community.

The sample overlap between the base GWAS (i.e. derivation cohort for deriving PRS) and UKB (i.e. target 
cohort for calculating PRS) in our PRS-A for SBP is a limitation of our study. As a result, our results on PRS for 
SBP should be interpreted with the awareness of potential bias introduced by the sample overlap in PRS-A for 
SBP.

Current methodological development in the sample overlap issue includes the EraSOR (Erase Sample Over-
lap and Relatedness)  method25, which is a potential direction for further research to clarify the roles of sample 
overlap and different statistical methods in the genesis of PRS discordance.

The portability of PRS depends on the characteristics (such as socio-economic status, age or sex) of the 
individuals in the base GWAS studies, as well as on the GWAS design, even within a single ancestry  group26. A 
difference in study characteristics between the PRS derivation and a target cohort could contribute to the disa-
greement among different PRS that we have observed in this study. The choice of GWAS sample makes implicit 
assumptions on sample characteristics that may not hold for the prediction set (i.e. target cohort)26. An obvious 
example is different ethnic backgrounds, but we minimized this by restricting to the White British subset of the 
UKB. Our study further supports the importance of providing study characteristics along with the PRS.

We note that we have not established the reasons for the extent of misclassification between different PRS. 
It does not appear to be attributable solely to the number of SNPs included in the PRS. We show this for PRS 
comprised of over 100 thousand versus several hundred SNPs (breast cancer), for PRS composed of hundreds 
of SNPs (SBP), and for PRS composed of approximately 50 SNPs (dementia). The surprisingly small number of 
SNPs held in common by different PRS for the same condition published only a year apart indicates that different 
analytical methods used to derive the PRS accounts for some of the discrepancies in classification; understanding 
this phenomenon is clearly important for PRS selection in broad clinical practice. The correlations we observed 
between PRS for the same condition are in the same range as is seen for variation in risk predictors measured 
several years apart such as blood pressure and serum cholesterol, far from the “fixed” or “one-time” value at birth 
that is often assumed for PRS.

This phenomenon has been previously described. For instance, Läll27 compared the performance of four 
PRS in breast cancer prediction, noting that some of the correlations were as low as r = 0.3, and observed that 
a “metaGRS” of the PRS performed better than any of the individual  PRS28. After completing our analysis and 
submitting this paper, we found a  preprint29 with similar findings for two different phenotypes (cardiovascular 
disease, and educational attainment) in the UKB, providing further generalizability to our results. However, this 
issue does not seem to be widely appreciated, and most publications comparing a new PRS with previous ver-
sions assert the superiority of the new PRS and do not address the issue of misclassification of risk between PRS.

Our observation shows two PRS that only minimally differ in predictive performance on a population level 
may substantially differ in terms of individual risk classification, even among individuals with the same con-
tinental ancestry. This issue requires careful consideration before utilising PRS in real-world settings, because 
such an arbitrary element in health care is obviously undesirable. An individual’s genetic profile is generally 
considered fixed at birth, leading to the widely held conviction that genetic susceptibility is an immutable value; 

Table 3.  Cross-classification of predicted risk of breast cancer among the whole study population, according 
to the percentiles of each PRS. Number of participants are shown as n (col%, row%, cell%). Higher percentiles 
of PRS indicate increased risk of breast cancer; “≥ 99%” percentile corresponds to the top 1% risk.

Percentiles of 
PRS-A (%) Percentiles of PRS-B

 < 1% 1–20% 20–40% 40–60% 60–80% 80–99%  ≥ 99%

 < 1 345 (20.1, 20.1, 0.2) 1140 (66.5, 3.5, 0.7) 176 (10.3, 0.5, 0.1) 44 (2.6, 0.1, 0.0) 9 (0.5, 0.0, 0.0) 1 (0.1, 0.0, 0.0) 0 (0.0, 0.0, 0.0)

1–20 1117 (3.4, 65.1, 0.7) 15,409 (47.3, 47.3, 
9.0) 8818 (27.1, 25.7, 5.1) 4696 (14.4, 13.7, 2.7) 2052 (6.3, 6.0, 1.2) 490 (1.5, 1.5, 0.3) 1 (0.0, 0.1, 0.0)

20–40 198 (0.6, 11.5, 0.1) 8788 (25.6, 27.0, 5.1) 9989 (29.1, 29.1, 5.8) 8053 (23.5, 23.5, 4.7) 5210 (15.2, 15.2, 3.0) 2051 (6.0, 6.3, 1.2) 9 (0.0, 0.5, 0.0)

40–60 43 (0.1, 2.5, 0.0) 4648 (13.6, 14.3, 2.7) 7998 (23.3, 23.3, 4.7) 8908 (26.0, 26.0, 5.2) 8050 (23.5, 23.5, 4.7) 4607 (13.4, 14.1, 2.7) 44 (0.1, 2.6, 0.0)

60–80 11 (0.0, 0.6, 0.0) 2098 (6.1, 6.4, 1.2) 5296 (15.4, 15.4, 3.1) 7988 (23.3, 23.3, 4.7) 10,047 (29.3, 29.3, 
5.9) 8688 (25.3, 26.7, 5.1) 170 (0.5, 9.9, 0.1)

80–99 1 (0.0, 0.1, 0.0) 497 (1.5, 1.5, 0.3) 2006 (6.2, 5.8, 1.2) 4574 (14.0, 13.3, 2.7) 8736 (26.8, 25.5, 5.1) 15,674 (48.1, 48.1, 
9.1) 1095 (3.4, 63.8, 0.6)

 ≥ 99 0 (0.0, 0.0, 0.0) 3 (0.2, 0.0, 0.0) 15 (0.9, 0.0, 0.0) 35 (2.0, 0.1, 0.0) 194 (11.3, 0.6, 0.1) 1072 (62.5, 3.3, 0.6) 396 (23.1, 23.1, 0.2)
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however, our findings show that methodologic decisions in the construction of the PRS can lead to meaningful 
differences in PRS derived from the genome. Although it is reasonable to expect incremental improvements in 
any risk prediction algorithm over time, these results suggest there is still considerable uncertainty associated 
with estimates of risk derived from different PRS for the same disease. It will be important to develop guidelines 
on best practice in constructing PRS to minimize the extent to which people could be given inaccurate or con-
tradictory information over short periods of time.

Data availability
Further summary data can be found in the Supplementary Materials; the authors are happy to provide further 
information upon the request of individual members of the public. Please note that the UK Biobank does not 
permit researchers to provide the raw data reported in this paper. However, interested readers are able to request 
the raw data via application directly to the UK Biobank (https:// www. ukbio bank. ac. uk). The analytical script in 
R is available in at https:// github. com/ 2cjenn/ AgrPRS.
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