Assessing Alternatives for Mitigating Net Greenhouse Gas Emissions and Increasing Yields from Rice Production in China Over the Next 20 Years

Changsheng Li¹, William Salas², Benjamin DeAngelo³, and Steven Rose³

¹Complex Systems Research Center, University of New Hampshire, Durham, NH, 03824 ² Applied Geosolutions, LLC, Durham, NH 03824 ³ Climate Change Division, Office of Atmospheric Programs, U.S. Environmental Protection Agency

Total rice paddy area (km² per 0.5° grid cell)

Paddy area ~ 300,000 km² Rice sown area ~ 470,000 km²

Rice Paddies with mid-season drainage (estimated)

A former study indicated CH₄ emission from rice agriculture in China was reduced by 5 Tg CH₄ due to midseason drainage applied from 1980-2000

Questions:

Can net GHG emissions from rice paddies in China be reduced even further?

CH₄ is typically sole focus for rice systems, but N₂O and SOC effects can be significant

How do mitigation options 'rank' with further consideration of crop yield and water resources effects?

Methane production driven by anaerobic conditions and available C:

$$H_2 + C \longrightarrow CH_4$$

The principles for CH₄ mitigation:

- 1. Increase soil Eh by introducing oxidents (e.g., O₂, nitrate, Mn₄+, Fe₃+, sulfate etc.) into the CH₄-production systems;
- 2. Decrease availability of DOC.

Note: Any change in the two factors will also affect SOC dynamics and N₂O emissions.

Observed and modeled CH₄ and N₂O fluxes from paddy with mid-season drainings, Jiangsu Province, China, 1997 (field data from Zheng et al. 1999)

The DNDC Model

A regional prediction for China from 2000-2020:

Baseline management scenario:

- -Crop yield increases at rate of 1% per year (matching IFPRI projections)
- -Rice area remains fixed over time (IFPRI projects decline, with regional variation)
- -Crop residue incorporation increases from 15% to 50% in 2000-2010; rice straw is amended at rate 1000 kg C/ha at early season; no animal manure is applied
- -Urea and ammonium bicarbonate are used at rate 140 kg N/ha per crop season
- -80% rice paddies are under midseason drainage

Water Management Evolution for Rice Paddies in China

- 1980: continuous flooding

1980-2000: midseason drainage

2000 -: Marginal flooding

Biogeochemical Implications:

- Improve soil aeration;
- Stimulate root/shoot development;
- Increase soil mineralization.

Consequences:

- Increase crop yield;
- Decrease water consumption;
- Alter GHG emissions.

A regional prediction for China from 2000-2020:

Alternative management scenario:

- 1. Marginal flooding
- 2. Upland rice
- 3. Off-season rice straw amendment
- 4. Ammonium sulfate
- 5. Fertilizer with slow-release rate

A regional prediction for China from 2000-2020:

- -For each management scenario, DNDC simulated crop growth, soil water dynamics, and soil C and N biogeochemistry for each of 11 rice-rotated farming systems in 2,473 counties at daily time step for 21 years from 2000-2020;
- -Crop yield, water consumption, and GHG fluxes from each farming system were summed up to get a county total. The county totals were further integrated to obtain watershed or national inventories.

DNDC-Predicted Total Emissions of CH₄ from Rice Yields in China in 2000-2020: Baseline v. Alternative Management Scenarios

DNDC-Predicted Total Emissions of N₂O from Rice Yields in China in 2000-2020: Baseline v. Alternative Management Scenarios

DNDC-Predicted Total Emissions of CO₂ from Rice Yields in China in 2000-2020: Baseline v. Alternative Management Scenarios

DNDC-Predicted National GWP of Rice Yields in China in 2000-2020: Baseline v. Alternative Management Scenarios

Predicted rice yield under different management scenarios

Rice field water demand under different management conditions

DNDC Predicts 2000 Crop Yield and GHG Emissions under Different Climate/Soil/Management Conditions at County Scale

Discussion:

- 1. Results indicate 2000 net GHG level can be further reduced by 20-80%
- 2. Based on net GWP calculations, effectiveness order of alternatives:
 - upland rice
 - shallow flooding
 - sulfate fertilizer
 - off-season straw amendment
- 3. Change in water management showed to be most effective in reducing both CH₄ and N₂O.
- 4. Shallow flooding decreased CH_4 by 1/2 and N_2O by 1/3. Upland rice eliminated CH_4 and reduced N_2O by 1/3. The two options slightly decreased soil C sequestration rates by <20 Tg CO_2 eq/yr.
- 5. Adopting ammonium sulfate slightly depressed CH₄ although significantly decreased N₂O.
- 6. Shifting straw amendment from in-season to off-season slightly decreased CH₄ but almost no effect on N₂O or SOC.

Discussion (continued):

7. Based yield predictions, alternatives can be divided into 3 groups:

- Slow-release fertilizer & shallow flooding <u>increased yield</u>.
- Sulfate & off-season straw incorporation almost <u>no effects on yield</u>.
- Continuous flooding & upland rice significantly <u>decreased crop yield</u>.

8. Based on water use prediction:

- Shallow flooding & upland rice significantly reduced water consumption.
- Alternative water management practices mainly affected surface water and soil evaporation while plant physiological demand for water (i.e., transpiration) basically remained unchanged.
- This study adopted 1990 climate data for all simulated 21 years -- no significant inter-annual variations in water consumption observed. Effect of inter-annual yield increase on field water consumption was relatively small.