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Abstract

Motivation: Bioinformatics software tools operate largely through the use of specialized genomics file formats.
Often these formats lack formal specification, making it difficult or impossible for the creators of these tools to ro-
bustly test them for correct handling of input and output. This causes problems in interoperability between different
tools that, at best, wastes time and frustrates users. At worst, interoperability issues could lead to undetected errors
in scientific results.

Results: We developed a new verification system, Acidbio, which tests for correct behavior in bioinformatics soft-
ware packages. We crafted tests to unify correct behavior when tools encounter various edge cases—potentially un-
expected inputs that exemplify the limits of the format. To analyze the performance of existing software, we tested
the input validation of 80 Bioconda packages that parsed the Browser Extensible Data (BED) format. We also used a
fuzzing approach to automatically perform additional testing. Of 80 software packages examined, 75 achieved less
than 70% correctness on our test suite. We categorized multiple root causes for the poor performance of different
types of software. Fuzzing detected other errors that the manually designed test suite could not. We also created a
badge system that developers can use to indicate more precisely which BED variants their software accepts and to
advertise the software’s performance on the test suite.

Availability and implementation: Acidbio is available at https://github.com/hoffmangroup/acidbio.

Contact: michael.hoffman@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 File format interoperability
For your latest research project, you have constructed a pipeline
from multiple published bioinformatics tools. Each tool works well
with the author’s data, but you run into errors with your data. The
author’s data and your data have slight differences in file metadata
and data formatting, which lead to the errors. As a result, you must
spend time manually editing your data files and intermediate out-
puts to conform to each tool’s expectations. Meanwhile, ensuring
interoperability between software tools that parse the data file for-
mat could have prevented your frustration.

Scientific software developed by academics often suffers from
software engineering deficiencies (Crouch et al., 2013), which can
lead to the scenario described above. Among these include problems
with deployment (Mangul et al., 2019), maintenance (Schultheiss,

2011), robustness (Taschuk and Wilson, 2017) and documentation
(Karimzadeh and Hoffman, 2018). Software engineering flaws may
hinder fulfilling the Findable, Accessible, Interoperable and
Reusable (FAIR) principles for scientific data management
(Wilkinson et al., 2016)—especially the guidelines on interoperabil-
ity and reusability. Software engineering flaws may also affect web
services that parse bioinformatics file formats, which may have vul-
nerabilities to attacks such as malicious code injections in input files
(Pauli, 2013).

One key difficulty arises from interoperability of specialized file
formats used for scientific data. Often, creators specify such formats
informally, or not at all, leaving users and developers to guess the
details of critical components or edge cases. Rare standardization
efforts such as those of the Global Alliance for Genomics and
Health (GA4GH) (Rehm et al., 2021) have developed a few formal
specifications. These include the Sequence Alignment/Map (SAM),
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BAM, CRAM and Variant Call Format (VCF) file formats (Global
Alliance for Genomics and Health, 2022).

Interoperability issues can also arise from issues within the soft-
ware. Developers can address some interoperability problems, how-
ever, through simple solutions such as checklists. For example,
Bioconda (Grüning et al., 2018) recipes require adequate tests and a
stable source code uniform resource locator (URL) (Bioconda,
2022). Bioconductor (Gentleman et al., 2004) also has guidelines for
package submission regarding code style, performance and testing
(Bioconductor, 2022). Simple checklists can greatly improve soft-
ware quality, even for programmers and researchers that lack formal
software engineering training.

Software testing recommendations and standard test suites can
aid researchers and developers. Extensive test suites for common
standards, such as TeX’s trip tests (Knuth, 1984), or the Web
Standards Project Acid test suite (Hickson, 2005) exercise independ-
ent implementations of common standards by focusing on edge
cases. In a bioinformatics context, tools that parse VCF (Danecek
et al., 2011) can use simulated VCF files with known behavior to
test software correctness (Yang et al., 2017).

Here, we tackled the bioinformatics software engineering prob-
lem of file format interoperability, specifically focusing on the plain-
text whitespace-delimited Browser Extensible Data (BED) format
(Kent et al., 2010). We chose to use the BED file format because of
its simplicity and its popularity.

Many software tools have taken a liberal approach to accepting
BED files. This seemingly increases the utility of these tools, but
removes an incentive for BED producers to be meticulous about
interoperability (Allman, 2011). Programmers may unwittingly cre-
ate software that generates incorrect BED files if they only supply
their output to downstream consumers with a liberal approach to
validation. This results in technical debt, where problems lay undis-
covered until after the developers complete the project, or years
later, when it becomes much harder to fix.

At the inception of this work, the BED format did not have a
comprehensive specification, but we considered such a specification
a prerequisite for this work. Therefore, first, we developed a formal
specification for the BED format, working with relevant stakehold-
ers and soliciting public comments. We then shepherded the specifi-
cation through the GA4GH standards process until it achieved
formal approval. Second, we quantified the degree to which a wide
variety of bioinformatics software varied in their processing of this
file format. In particular, we tested bioinformatics software input
validation, checking input data for correct formatting.

To facilitate this work, we created Acidbio (https://github.com/
hoffmangroup/acidbio), a system for automated testing and certifi-
cation of bioinformatics file format interoperability.

1.2 The BED file format
The BED format describes genomic intervals in plain text. Each
BED file consists of a number of lines, each with 3–12 whitespace-
delimited fields. The mandatory first three fields (chrom, chromStart
and chromEnd) define an interval on a chromosome. The optional
last nine fields provide additional information about the interval
such as a name, score, strand and aesthetic features used by the
University of California, Santa Cruz (UCSC) Genome Browser
(Haeussler et al., 2019). The optional fields have a required order—
all fields preceding the last field used must contain values.

BED variants distinguish BED files based on its number of fields.
BEDn denotes a file with only the first n fields. For example, a BED4
file has the chrom, chromStart, chromEnd and name fields. BED3 to
BED9, along with BED12, represent the 8 standard BED variants.

BEDnþm denotes a file with the first n fields followed by m
fields of custom-defined fields supplied by the user. The custom-
defined fields can contain many types of plain-text data. BEDnþm
files act as custom BED files. Currently, no in-band information
exists to supply information about a BED file’s fields. A BED parser
must infer the fields present in a BED file.

The file conversion tool bedToBigBed (Kent et al., 2010), devel-
oped by the UCSC Genome Browser team, has served as the de facto
file validation tool for the BED format (H.Clawson, personal

communication). The BED format appears deceptively simple, and
without careful consideration of the specification, a developer may
miss unexpected flexibility or rigidity in some fields.

2 Materials and methods

2.1 The Acidbio test system
We developed the Acidbio test system, which automatically runs a
number of bioinformatics tools on a test suite (Fig. 1). To determine
an actual success or failure, we consider the exit status and outputs
to standard output and error. A test case passes on a successful exit
status and no error or warning messages printed.

We identified error and warning messages by manually running
the tools. We had to identify these error and warning messages
manually because some tools logged errors without returning a non-
zero exit code or logged issues in the BED file through warnings in-
stead of errors.

To provide Acidbio with details on how to run each tool, we cre-
ated a YAML Ain’t Markup Language (YAML) configuration file
that stored each tool’s command-line usage file (Fig. 2). The YAML
file also stored the locations of the additional files needed to run
each tool and each tool’s Conda environment.

2.2 Tool discovery
To identify tools to test, we used Bioconda (Grüning et al., 2018), a
repository that contains thousands of bioinformatics software pack-
ages. Each package contains one or more tools. We only included
Bioconda packages with tools that have a command-line interface,
as opposed to add-on modules executed within another program,
and use the BED format as input. This excluded the numerous R,
Bioconductor (Gentleman et al., 2004) and Perl packages that have
no command-line interface.

For packages that contain multiple tools, we selected a smaller
set of subtools to test. We systematically identified these packages
by manually examining the documentation for over 1000 packages

Run tool on  
test case

Test case expected  
to pass or fail?

Test case failed? Test case passed?

Log incorrect
behaviour

Actual  
pass

Actual  
fail

Actual
pass 

Actual
fail 

Expected
pass 

Continue to test
case j + 1

Test case j

Test case 1

Test case 92

...

Tool iTool 1 Tool 99... ...

Expected
fail 

...

Fig. 1. Flowchart depicting how Acidbio evaluates tools on the test suite. Rounded

rectangles: inputs; sharp rectangles: procedures; rhombuses: conditional branches.

All 99 tools run on all 92 test cases. After the 92nd test case, Acidbio moves onto

the next tool and runs it on the first test case
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to determine whether they matched our criteria. We had to manual-
ly examine documentation because Bioconda has no structured
metadata on each package’s input file formats. This process yielded
80 packages, with 99 tools total.

Some tools use the BED format as the primary input file, such as
a mandatory argument. Examples include bedtools (Quinlan and
Hall, 2010) and high-throughput sequencing toolkits such as ngs-
bits (Sturm et al., 2018). These tools generally perform calculations
using the intervals found in the BED file.

Other tools use the BED format as a secondary input file, such as
an optional argument. Tools that use BED as a secondary input file
generally use it to define genomic intervals of interest for data in an-
other file format, such as SAM. In the tools we tested, 60 packages
used the BED format as the primary input file, and 20 packages used
the BED format as a secondary input file.

After collecting a list of all the possible packages that we could
test, we then attempted to install each package and run the tools.
We excluded packages that we could not install or could not run
without error on any input files. We found no cases where a package
contained both working and broken tools.

2.3 Test suite
We created a test suite that contains tests for each BEDn format,
covering various edge cases drawn from our BED specification. The
test suite contains both expected success test cases (Supplementary
Table S2) and expected fail test cases (Supplementary Table S3).
Some tests include validating ranges for numeric fields, validating
character sets for alphanumeric fields or data formatting for fields
such as itemRgb or the block definitions.

We manually generated the test cases, designing them to make
sense for all the tools tested. We used genomic intervals between
positions 250 000 and 260 000 since one might find them in both
chromosomes and non-chromosome scaffolds. Each test case varies
based on the criteria tested. Some criteria only require a deviation in
one field in one feature to generate a test case. For example, to test a
score greater than 1000, only a single feature had a score greater
than 1000. Other criteria required deviation in multiple features to
generate a test case. For example, to test that the parser accepts
strand ‘.’, we set all features to strand ‘.’.

We built tests upon each other—we repeated a test case for all
BED variants with additional fields added. As an example, a test
case in BED5 testing a negative score gets repeated in testing the
BED6 through BED12 variants.

For tools that use BED as a secondary file format, we collected test
files for their non-BED primary file formats. For each of these file for-
mats, we sourced an example file from the creators of the format or
from a repository such as a FASTA for GRCh38/hg38 (Schneider
et al., 2017) from the UCSC Genome Browser (https://hgdownload.

cse.ucsc.edu/goldenpath/hg38/bigZips/). We edited non-BED files to
ensure that their ranges matched the BED test cases. We also validated
the collected non-BED files with a file validator, when possible.

Since the new formal BED specification prohibits BED10 and
BED11, we considered all BED10 and BED11 tests expected fail, even
if the test case fell under expected success for other BED variants.

2.4 Fuzzing
We used a fuzzing approach (Miller et al., 1990) to automatically
generate test cases beyond our manually designed test suite (Fig. 3).
We created an ANother Tool for Language Recognition 4
(ANTLR4) grammar (Parr et al., 2014) to define the structure of the
BED format and the possible values for each field. Then, we used a
file generator that builds a file based on our grammar. We tested the
tools using grammar-based fuzzing and grammarinator (Hodován
et al., 2018) as the file generator.

To introduce further variation into the BED file, we created an
ANTLR4 meta-grammar that defines possible ANTLR4 BED gram-
mars. The meta-grammar produces variation by allowing the BED
grammar to vary on the structure or definition of fields. For ex-
ample, the meta-grammar may produce a BED grammar that only
allows tabs as the whitespace, or it may produce a BED grammar
that allows both tabs and spaces. By varying the BED grammar pro-
duced, the user can test different combinations of field definitions
and BED file structure that a single BED grammar cannot achieve.

3 Results

3.1 A new formal specification addresses ambiguities in

the BED format
Despite existing for almost two decades, the BED format until recently
lacked a formal specification similar to the SAM (Li et al., 2009) or
VCF (Danecek et al., 2011) specification. The UCSC Genome Browser
Data File Formats Frequently Asked Questions (https://genome.ucsc.
edu/FAQ/FAQformat.html) specified some details, but lacked tech-
nical details that other formal specifications clearly define.

Through the GA4GH standards process (Rehm et al., 2021), we
established a specification of the BED format (https://samtools.github.
io/hts-specs/BEDv1.pdf). The new specification defines each BED field
and their possible numerical range or valid character patterns. It also
provides semantics surrounding whitespace, sorting and default field
values. The specification formalizes missing details and captures the
existing use of the BED format, taking the input from relevant stake-
holders into account. During the development of the specification, we
solicited input from a number of stakeholders, including the UCSC
Genome Browser team, the File Formats subgroup within the
GA4GH Large Scale Genomics work stream (https://www.ga4gh.org/
work_stream/large-scale-genomics/), and the public through GitHub
comments (https://github.com/samtools/hts-specs/pull/570).

3.2 Most existing tools perform poorly on a BED test

suite
To measure the ability of BED parsers to accept good input and re-
ject bad input, we created an Acidbio test suite with 92 individual
test cases. Specifically, we used the new specification to develop a
test suite of expected pass and expected fail BED files. The expected
pass test cases conform to our specification—for these cases, we ex-
pect tools to return a zero exit code and not output any error or
warning messages. The expected fail test cases do not conform to
our specification—for these cases, we expect tools to return a non-
zero exit code or output an error or warning message. The test suite
contains 92 tests, covering the definitions of fields and the structure
of the BED file. The test suite also covers all BED variants from
BED3 to BED12. The BED3 test cases represent the core of our test
suite, as all BED files must have the first three fields.

The BED format does not contain in-band information on
whether a file uses BED fields only or also has custom fields.
A parser might assume that for BED files with 4–12 fields, all the

settings:
file-locations:

BAM: data/toy.bam
SIZES: data/hg38.chrom.sizes

tools:
- samtools:

bedcov: samtools bedcov FILE BAM
- ucsc:

bedSort: bedSort FILE /dev/stdout
bedClip: bedClip FILE SIZES /dev/stdout
bedRemoveOverlap: bedRemoveOverlap FILE /dev/stdout
bedToBigBed: bedToBigBed FILE SIZES TMPDIR/out.bb

conda-environment:
samtools: base
ucsc: base

Fig. 2. Excerpt from the Acidbio configuration file. The configuration file contains

three sections. The ‘settings’ section lists the location of files or directories that

Acidbio will insert into command-line execution. The ‘tools’ section contains the

command-line invocations of the tested tools. In each invocation, Acidbio replaces

‘FILE’ with the location of the test BED file. The ‘conda-environment’ section lists

each tool’s Conda environment name
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fields represent standard BED fields. In this case, the parser should
validate the fields according to the file format rules.

Alternatively, a parser might treat fields 4 through 12 as custom
data. A tool designed to handle arbitrary custom BED files may not
validate the optional BED fields. This means the tool may not fail
on the expected fail test cases. The expected success test cases, how-
ever, should all work even for non-specified custom data. Also, this
flexibility does not apply to mandatory fields one through three, as
their definition cannot change.

We examined behavior of tools, expecting strict validation of
standard BED4 through BED12 files. This provides more inform-
ative results than permitting the whole range of behavior one might
expect for custom data. Unexpected results in the optional fields

indicate the need for better means for interchange of metadata on
these fields.

Using our test suite, we assessed 80 Bioconda packages that sup-
port the BED format as input (Fig. 4). In some packages, we assessed
multiple tools, making 99 tools in total. For each tool, we calculated
its performance on each BED variant by taking the number of tests
that behaved as expected divided by the number of tests for the BED
variant. Of the 99 tools, only 26 achieved � 70% expected results
for BED3 tests. Averaged for tests across all BED variants, 51 tools
achieved � 50% expected results. We have deposited full results on
Zenodo (https://doi.org/10.5281/zenodo.5784787). Beyond the pos-
sibility of expecting custom BED files, we attributed unexpected
results to several causes described below.

BED meta-grammar Generate random
BED grammar BED grammar Generate random

BED file BED file

Fig. 3. Flowchart depicting grammar-based fuzzing. Rounded rectangles: files; sharp rectangles: generators. The BED meta-grammar describes different BED grammars to

introduce further variation in the generated BED file

Fig. 4. Heatmap of performance of 80 Bioconda packages on 10 BED variants. Each cell shows the proportion of successful tests from the BED variant. Green cells: strong per-

formance on the test suite; blue cells: poor performance. An expected success test case that succeeds or an expected fail test case that fails both represent a successful test. For

packages with multiple tools, we display only results from the package’s best-performing tool. Labeled, negative indented rows emphasize the 20 packages most downloaded

from Bioconda. Rows sorted by ascending performance on the mandatory BED3 fields, then on performance of subsequent optional fields, ending with BED12 performance.

The table below the heatmap lists the number of expected success and expected fail test cases for each BED variant. BED10 and BED11 have zero expected success test cases

because the specification forbids BED10 and BED11 (A color version of this figure appears in the online version of this article.)
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3.3 Existing tools parse BED files in different ways
All tools have distinct purposes, causing them to parse the BED format
in different ways and focus on varying aspects of BED files. Different
purposes mean some test cases may never arise in the expected usage
of the tool. We have identified a few groups of tools that have similar
behaviors, which cause poor performance on the test suite.

Tools that require a specific BED variant. Some tools require a
specific number of fields in the input BED file. For example, slncky
(Chen et al., 2016) requires a BED12 file. This causes all BED3 to
BED11 inputs to raise an error.

Tools that only validate a subset of BED fields. Many tools use
the BED format only for interchange of genomic intervals in the first

Fig. 5. Performance of 99 tools from 80 packages on 92 BED12 test cases (Alneberg et al., 2014; Ay et al., 2014; Bentsen et al., 2020; Bioconvert Developers, 2017; Bollen

et al., 2019; Boyle et al., 2008; Breese and Liu, 2013; Broad Institute, 2019; Buske et al., 2011; Chen et al., 2016; Cingolani et al., 2012a; 2012b; Cooke et al., 2021; Costanza

et al., 2019; Cotto et al., 2021; Cretu Stancu et al., 2017; T.Curk et al., in preparation; Dale et al., 2011; Daley and Smith, 2014; Dunn and Weissman, 2016; Fang et al.,

2015; 2016; Farek, 2017; Feng et al., 2011; Garrison, 2012; Gremme et al., 2013; Hanghøj et al., 2019; Heger et al., 2013; Heinz et al., 2010; Hensly et al., 2015; Herzeel

et al., 2015; 2019; Heuer, 2022; Huddleston et al., 2021; Karunanithi et al., 2019; Kaul, 2018; Kaul et al., 2020; Kent et al., 2002; Khan and Mathelier, 2017; Kodali, 2020;

Langenberger et al., 2009; Leonardi, 2019; Li, 2012; Li et al., 2009; 2011; Lopez et al., 2019; Mahony et al., 2014; Mapleson et al., 2018; Mikheenko et al., 2018; Narzisi

et al., 2014; Neph et al., 2012; Neumann et al., 2019; Okonechnikov et al., 2016; Orchard et al., 2020; Pedersen, 2018; Pedersen et al., 2012; Pedersen and Quinlan, 2018;

Pertea and Pertea, 2020; Pongor et al., 2020; Quinlan and Hall, 2010; Ram�ırez et al., 2016; Ramsköld et al., 2009; Rausch et al., 2019; Robinson et al., 2011; Sadedin and

Oshlack, 2019; Schiller, 2013; Shen et al., 2016; Sims et al., 2014; Song and Smith, 2011; Stovner and Sætrom, 2019; Sturm et al., 2018; Talevich et al., 2016; Thorvaldsdóttir

et al., 2013; Uren et al., 2012; van Heeringen and Veenstra, 2011; van’t Hof et al., 2017; Vorderman et al., 2019; Wala et al., 2016; Wang et al., 2012; 2013; Webster et al.,

2019; Willems et al., 2017; Xu et al., 2010; Zerbino et al., 2014; Zhang et al., 2008; Zhao et al., 2014). Green: the tool performed as expected; blue: the tool did not perform

as expected. Rows sorted ascending by the number of test cases with an expected result. We grouped tools in the same package together as they tend to have similar results.

For packages with multiple tools, we sorted the package using the best-performing tool. Within the same package, we sorted tools by ascending performance (A color version

of this figure appears in the online version of this article.)
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three fields. Some of these tools will accept any BEDn file and per-
form no validation after the first three fields. For example, many
tools ignore fields that describe aesthetic features only for genomic
browser display, such as thickStart, thickEnd and itemRgb. A tool
such as bedtools (Quinlan and Hall, 2010) that mainly operates on
genomic intervals would incorrectly succeed on an expected fail
BED9 test case.

File converters. Some tools convert the BED format to a different
file format, without performing any validation. Some file converters
use a garbage-in-garbage-out approach, going from invalid input in
BED format to invalid output in some other format. For example,
bioconvert bed2wiggle (Bioconvert Developers, 2017) fails as
expected on most expected fail test cases, but still produces output
retaining the input file errors. Using a garbage-in-garbage-out ap-
proach may make debugging complex pipelines more difficult.
Raising warnings during file conversion helps debugging, as the user
can narrow down the source of the error to steps before file
conversion.

Tools that use another library for BED parsing. Some tools call
an external library to perform operations on BED files. If the main
tool does not perform extra error checking of its own, it can only de-
tect the same errors that the external library finds. For example,
intervene (Khan and Mathelier, 2017) uses bedtools as a depend-
ency, which results in their similar patterns of performance.

3.4 Ambiguous format specification makes uniform

behavior more difficult
The previous absence of a formal specification for the BED format
also influenced test performance. Inevitably, tools addressed edge
cases heterogeneously when the lack of formal specification made
the expected behavior non-obvious. Our formal specification and
the behavior of the reference implementation bedToBigBed conflict
with the expectations of tool developers in many ways.

Definition of whitespace. Many BED files use tabs to delimit
fields. The BED format, however, also accepts spaces to delimit
fields, if the fields themselves contain no spaces (H.Clawson, person-
al communication). Of the 99 tools examined, 60 reject space-
delimited BED files allowed by the specification (Supplementary
Table S1, ‘other-fully_space_delimited.bed’). Also, the BED format
permits blank lines, though 37 tools do not accept this
(Supplementary Table S1, ‘other-space_between_lines.bed’).

Expanded definition of fields. The BED format requires strict
limits for certain fields and some generators do not respect these lim-
its. For example, the specification defines score as an integer value
between 0 and 1000, inclusive. Some tools use the score as a P-
value, which violates the integer definition. To allow tools to repur-
pose the nine optional fields, one can treat these tools as BEDnþm
parsers, with custom definitions for the remaining fields.
Nonetheless, repurposing field names, such as score, with different
definitions can confuse parsers that will misinterpret the data and
use it incorrectly.

Conflict between our formal specification and bedToBigBed. We
used the de facto file validator bedToBigBed to inform the design of
our test suite. Without a formal specification, however, uncertainty
surrounding specific edge cases arose when bedToBigBed disagreed
with our understanding of correct behavior.

Our formal specification disagreed with bedToBigBed in three
instances. First, bedToBigBed accepted a BED7 file with thickStart
less than chromStart. Second, bedToBigBed accepted a BED12 file
with the length of the blockSizes or blockStarts list greater than
blockCount. Third, bedToBigBed accepted BED11 files while our
specification disallowed BED11. The definitions of the above fields
are in both Supplementary Tables S2 and S3.

3.5 Software engineering deficiencies lead to poor

performance on the test suite
Beyond issues in differences in design between tools and the previous
informal specification of the file format, we can also attribute poor
testing performance to problems in software engineering. Given the
previous underspecification of the BED format and the lack of test

suites, however, we would recommend extreme caution before con-
sidering poor test performance as an indication of poor software
quality for tools that existed before this article.

Silently accepting invalid input. Tools should alert users on input
errors, allowing them to check whether they have made an error. In
some cases, developers prefer to skip an invalid data point and con-
tinue. In this case, the tool should at least provide a warning mes-
sage describing the skipped line. Otherwise, an error could slip past
the user and affect their results. In our test suite, a warning message
would count as an expected failure, improving the performance sta-
tistics for a tool that generates them.

Errors in BED file generators can easily slip past users. When a
downstream tool raises an error on bad input, this reduces the time
before someone discovers the problem with the upstream generator.

Insufficient testing. While some of our test cases cover format-
ting issues that can hinder interoperability, others represent ‘can’t
happen’ scenarios that, uncaught, pose logic bombs for a software
tool. For example, all tools should reject negative start positions
(Fig. 5), ‘02-negative-start.bed’, but 48/99 tools accepted a test case
that has negative starts. Given the limited resources and incentives
to publish in academic software engineering, developers require a
simpler way to ensure avoidance of obvious problems than manually
developing test cases.

3.6 No relationship between package performance and

downloads found
We observed little correlation between the number of downloads a
package has compared to the package’s performance on the test
suite (Fig. 6). Many packages had a similar number of downloads.
We attribute this to packages having specific purposes that make
them useful for a few users. However, very highly downloaded pack-
ages such as bedtools (Quinlan and Hall, 2010) and the UCSC
Genome Browser tool suite (Kent et al., 2002) had better perform-
ance than other tools.

3.7 Automated fuzzing can detect errors that a manually

designed test suite does not
Differential testing (McKeeman, 1998) using files generated from a
grammar-based fuzzer (Godefroid et al., 2008) can discover new
errors not found by the test suite. A grammar-based fuzzer automat-
ically generates files based on a defined structure of the file format.

We found one example of unexpected behavior in bedtools
coverage (Quinlan and Hall, 2010) where coverage raised an error
but bedToBigBed did not. Since bedtools coverage requires two in-
put files, we generated two files using the fuzzer (Table 1) and vali-
dated them using bedToBigBed. On the generated files, bedtools

Fig. 6. Scatter plot of the number of downloads a package has on Bioconda against

its performance on BED3 tests. Labeled points indicate the top four performing

tools and the top four most downloaded tools. For packages with multiple tools, we

display results from the best-performing tool
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coverage exited with exit status 1 and error message ‘Error: line
number 1 of file 2.bed has 4 fields, but 0 were expected’. Our manu-
ally designed test suite did not catch this error—we only uncovered
it due to the use of fuzzing.

3.8 BED badge indicates conformance with the BED

format
We designed badges that developers can display in a tool’s documen-
tation to clearly indicate the file types used and indicate the tool’s
performance on the test suite (Fig. 7). The badges reassure users that
the software underwent thorough testing. The availability of such
badges encourages developers to perform input validation.

Acidbio includes steps to produce a BED badge. We recommend
developers to display a BED badge if their software conforms to the
BED formal specification.

4 Discussion

4.1 Use in software development
Acidbio can help researchers and programmers test their tools to im-
prove the robustness and interoperability of their code. Acidbio can
serve a similar function to the Web Standards Project Acid test suite
(Hickson, 2005) designed to improve interoperability of web brows-
ers. When the Web Standards Project created the Acid tests, many
web browsers had poor compliance with existing web standards.
Over time, browsers such as Opera (Gohring, 2006) and Internet
Explorer (Schofield, 2007) began to achieve perfect performance on
the Acid tests and interoperability improved. Similarly, we intend
Acidbio to make it easier for developers to create bioinformatics
software that more easily interoperates with other software.

To test new tools, developers need only create a short configur-
ation YAML file to describe their tool’s command line interface, and
run the Acidbio test harness. From the test results, a programmer
may identify edge cases they missed and fix them before distributing
their software. Once fixed, the programmer can put a BED badge in
a software’s documentation to indicate that it interoperates with the
BED format. Editors or reviewers of articles describing tools can use
the test suite to verify the software’s quality. Package repository
managers can also use the test suite to verify the quality of submitted
packages.

4.2 The utility of a formal specification
The interpretation of a standard can turn into a matter of opinion.
While formalizing the standard with a specification can help im-
prove interoperability, the only way to truly ensure agreement on

expected behavior involves further formalization through a formal
grammar or including test cases in the standard. A deterministic
grammar or test suite removes potential for misunderstandings
about standard conformance.

4.3 Postel’s law
Postel’s law, ‘be conservative in what you do, be liberal in what you
accept from others’ (Postel et al., 1981), related initially to how soft-
ware sends and accepts messages over the internet. Adherence to
Postel’s law helped the internet to succeed—leniency in accepting
data without strict validation helped more organizations implement
internet software (Bray, 2004).

The developers of the Extensible Markup Language (XML) for-
mat purposefully rejected Postel’s law, deciding that malformed
XML files would raise fatal errors (Bray, 2003). They did this be-
cause this approach encourages producers of the file format to
strongly conform to the specification. A strict validation approach
reduces opportunities for parsers to misunderstand input and pre-
vents common errors from becoming accepted.

The lack of a strict validation approach for previous HyperText
Markup Language (HTML) implementations led to a morass of in-
compatible and poorly described HTML file formats. This greatly
increased the complexity of potential bugs in web browsers that
could actually handle the existing base of web pages. Despite the ex-
istence of formal HTML specifications, web browsers had to create
special ‘quirks modes’ to handle HTML files that did not satisfy
these specifications (Olsson, 2014).

The history of HTML and XML should inform file validation
behavior in bioinformatics software. While one may not want to
raise fatal errors for each non-conforming file, BED parsers must at
least provide warnings when encountering them. Users can easily ig-
nore warnings, however, or miss them in a stream of irrelevant and
voluminous diagnostic information. To ensure that users notice
problems with file formats and that programmers fix upstream gen-
erators, parsers must take a strict validation ‘warnings are errors’
approach and refuse to parse invalid files.

4.4 Application to other bioinformatics file formats
Users and developers can apply the same methodology developed
here to test other bioinformatics file formats for conformance.
Establishing a common interface to parse a file format will improve
interoperability of bioinformatics software and move closer to FAIR
(Wilkinson et al., 2016) goals. For binary file formats or software
written in languages with weak memory safety, testing and inter-
operability become even more important.

Computational tools described in scholarly articles often under-
go precious little testing. The existence of test systems such as
Acidbio make it easy to test that a tool interoperates with other soft-
ware well. We recommend that when such a test system exists, jour-
nal editors, reviewers and software repository managers ensure that
the tool achieves good performance in the test suite prior to accept-
ance. For example, the European Variation Archive validates sub-
mitted VCF files against the VCF specification (Cezard et al., 2022).
After acceptance, repository managers can indicate which file for-
mats the package uses as input and output to make searching for
tools easier. Developers can also add badges similar to the BED

Table 1. Two files generated by a grammar-based fuzzer

File 1 File 2

chr18 455914 533415 woG chr12 632184 753365 Vx6

#I

#_

#_

Fig. 7. Example of BED badges. BED badges allow developers to indicate the tool’s support for the BED format and its conformance to the specification. The fourth badge,

‘BED parser’, displays the BEDn formats the tool supports. The fifth through seventh badges displays the performance of the tool on the BED3, BED4 and BED6 variants. In

this example, the tool passes 78.8% of BED3 tests, 77.5% of BED4 tests and 69.2% of BED6 tests
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badge to indicate software’s conformance to the relevant
specification.

4.5 BED metadata
Tools parse BED files in the absence of in-band information
embedded within the file. The lack of in-band information may lead
to difficulties parsing BED files. For example, a tool cannot deter-
mine whether a BED file has custom fields without in-band informa-
tion. This also makes testing tools properly more difficult. Without
an idea of what BED variants a tool accepts, we cannot determine
whether a test case suits the tool’s intended use. With such meta-
data, tools can easily determine whether the input file has the fields
it needs.

A header section at the beginning of a BED file can provide meta-
data to make parsing of BED files easier. The header can define the
file’s BED variant and specify information such as the genome as-
sembly used. For custom BEDnþm files, the header can define the
custom-defined fields, similar to the INFO lines in the VCF meta-
information lines. Having a header would provide a direct method
of supplying file metadata directly within the file, allowing parsers
to easily read the BED file. Future versions of the GA4GH BED spe-
cification may add such metadata.

Future versions of the GA4GH BED specification may add meta-
data to provide essential information in-band. If this happens, an
updated version of the test suite would need to incorporate the use
of such metadata.

4.6 Limitations of the testing approach
Our testing approach applies the same BED files and secondary files
to all the tools, except tools that use BAM input. Given the diversity
of tools that use the BAM format, we could not find a single BAM
file with data relevant to all tools. Instead, we used two different
BAM files to avoid tools raising logical errors on our test cases.

More broadly, our testing applies the same criteria to all pack-
ages. The purposes of each package differ, but examining written
documentation for all packages to apply specific tests for each
presents an unfeasible challenge. Therefore, one should not regard
poor performance on certain portions of the test suite alone as evi-
dence of the quality of the software, which may otherwise remain fit
for the purposes described. The previous underspecification of the
BED format and the lack of test suites made consistent treatment of
edge cases challenging for even very conscientious software develop-
ers. Nonetheless, now that a formal specification exists and the
Acidbio test system testing for conformance to it easier, we recom-
mend that future developers should ensure conformance with the
specification to maximize interoperability with the rest of the BED
ecosystem.

Our testing approach only considers whether a BED parser
accepts valid input and rejects invalid input. It does not consider
correctness of the output. Developers can validate output file format
using a file validation tool. For BED files, one can use bedToBigBed
(Kent et al., 2010) for file validation, keeping in mind the edge cases
discussed above where its behavior differs from the GA4GH BED
specification. Testing for correctness of analyses represents a much
more difficult problem that one cannot trivially address.

The fuzzing approach also has some limitations. The quality of
the generated test cases relies on the file generator to cover a wide
range of possible BED files. For a grammar-based fuzzing approach,
the grammar would have to describe all possible variations in a file,
which becomes difficult for more complex file formats. Another po-
tential issue with file generation arises if the generator has too few
methods to vary its output files, generating files that do not cover
enough cases. Machine learning or other approaches that inform fu-
ture file generation from past unexpected behavior can address this
issue (Saavedra et al., 2019).

Other fuzzing approaches, such as mutation-based fuzzing,
may not work in a bioinformatics context. Mutation-based fuzzers
randomly modify existing files by adding random or non-sense
characters. These fuzzers would not create diverse BED files and
the mutations would likely create invalid and meaningless BED

files. A security-oriented fuzzer such as American Fuzzy Lop
(Zalewski, 2018) can detect these vulnerabilities. Security-oriented
fuzzers will produce test cases that can have nonsense data such as
non-American Standard Code for Information Interchange (ASCII)
characters, which tests the tool’s ability to handle unexpected
data.
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Grüning,B. et al.; Bioconda Team. (2018) Bioconda: sustainable and compre-

hensive software distribution for the life sciences. Nat. Methods, 15,

475–476.

Haeussler,M. et al. (2019) The UCSC Genome Browser database: 2019 up-

date. Nucleic Acids Res., 47, D853–D858.

Hanghøj,K. et al. (2019) DamMet: ancient methylome mapping accounting

for errors, true variants, and post-mortem DNA damage. GigaScience, 8,

giz025.

Heger,A. et al. (2013) GAT: a simulation framework for testing the associ-

ation of genomic intervals. Bioinformatics, 29, 2046–2048.

Heinz,S. et al. (2010) Simple combinations of lineage-determining transcrip-

tion factors prime cis-regulatory elements required for macrophage and B

cell identities. Mol. Cell., 38, 576–589.

Hensly,J. et al. (2015) ATACTK: A Toolkit for ATAC-Seq Data. https://atactk.

readthedocs.io/en/latest/index.html (22 March 2022, date last accessed).

Herzeel,C. et al. (2015) elPrep: high-performance preparation of sequence

alignment/map files for variant calling. PLoS One, 10, e0132868.

Herzeel,C. et al. (2019) elPrep 4: a multithreaded framework for sequence

analysis. PLoS One, 14, e0209523.

Heuer,M. (2022) dishevelled-bio. https://github.com/heuermh/dishevelled-bio

(22 March 2022, date last accessed).

Hickson,I. (2005) Acid2. https://www.webstandards.org/files/acid2/test.html

(22 March 2022, date last accessed).

Hodován,R. et al. (2018) Grammarinator: a grammar-based open source fuz-

zer. In: Proceedings of the 9th ACM SIGSOFT International Workshop on

Automating TEST Case Design, Selection, and Evaluation, Lake Buena

Vista, FL, USA. pp. 45–48.

Huddleston,J. et al. (2021) Augur: a bioinformatics toolkit for phylogenetic

analyses of human pathogens. JOSS, 6, 2906.

Karimzadeh,M. and Hoffman,M.M. (2018) Top considerations for creating

bioinformatics software documentation. Brief. Bioinform., 19, 693–699.

Karunanithi,S. et al. (2019) Automated analysis of small RNA datasets with

RAPID. PeerJ, 7, e6710.

Kaul,A. (2018) Novasplice. https://aryakaul.github.io/novasplice/ (22 March

2022, date last accessed).

Kaul,A. et al. (2020) Identifying statistically significant chromatin contacts

from Hi-C data with FitHiC2. Nat. Protoc., 15, 991–1012.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

Kent,W.J. et al. (2010) BigWig and BigBed: enabling browsing of large distrib-

uted datasets. Bioinformatics, 26, 2204–2207.

Khan,A. and Mathelier,A. (2017) Intervene: a tool for intersection and visual-

ization of multiple gene or genomic region sets. BMC Bioinformatics, 18,

287.

Knuth,D.E. (1984) A torture test for TeX. Technical report, Department of

Computer Science, Stanford University.

Kodali,V. (2020) cthreepo. https://github.com/vkkodali/cthreepo (22 March

2022, date last accessed).

Langenberger,D. et al. (2009) Evidence for human microRNA-offset RNAs in

small RNA sequencing data. Bioinformatics, 25, 2298–2301.

Leonardi,T. (2019) Bedparse: feature extraction from BED files. JOSS, 4,

1228.

Li,H. (2012) Seqtk. https://github.com/lh3/seqtk (22 March 2022, date last

accessed).

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Li,Q. et al. (2011) Measuring reproducibility of high-throughput experiments.

Ann. Appl. Stat., 5, 1752–1779.

Lopez,F. et al. (2019) Explore, edit and leverage genomic annotations using

Python GTF toolkit. Bioinformatics, 35, 3487–3488.

Mahony,S. et al. (2014) An integrated model of multiple-condition ChIP-seq

data reveals predeterminants of Cdx2 binding. PLoS Comput. Biol., 10,

e1003501.

Mangul,S. et al. (2019) Challenges and recommendations to improve the

installability and archival stability of omics computational tools. PLoS

Biol., 17, e3000333.

Mapleson,D. et al. (2018) Efficient and accurate detection of splice junctions

from RNA-seq with portcullis. GigaScience, 7, giy131.

McKeeman,W.M. (1998) Differential testing for software. Digit. Tech. J., 10,

100–107.

Mikheenko,A. et al. (2018) Versatile genome assembly evaluation with

QUAST-LG. Bioinformatics, 34, i142–i150.

Miller,B.P. et al. (1990) An empirical study of the reliability of UNIX utilities.

Commun. ACM, 33, 32–44.

Narzisi,G. et al. (2014) Accurate de novo and transmitted indel detection in

exome-capture data using microassembly. Nat. Methods, 11, 1033–1036.

Neph,S. et al. (2012) BEDOPS: high-performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Neumann,T. et al. (2019) Quantification of experimentally induced nucleotide

conversions in high-throughput sequencing datasets. BMC Bioinformatics,

20, 258.

Okonechnikov,K. et al. (2016) Qualimap 2: advanced multi-sample quality

control for high-throughput sequencing data. Bioinformatics, 32, 292–294.

Olsson,M. (2014) CSS Quick Syntax Reference Guide. Apress, Berkeley, CA,

USA.

Orchard,P. et al. (2020) Quantification, dynamic visualization, and validation

of bias in ATAC-seq data with ataqv. Cell Syst., 10, 298–306.

Parr,T. et al. (2014) Adaptive LL (*) parsing: the power of dynamic analysis.

ACM SIGPLAN Not., 49, 579–598.

Pauli,J. (2013) The Basics of Web Hacking: Tools and Techniques to Attack

the Web. Elsevier, Waltham, MA, USA.

Pedersen,B.S. (2018) Smoove. https://github.com/brentp/smoove (22 March

2022, date last accessed).

Pedersen,B.S. and Quinlan,A.R. (2018) Mosdepth: quick coverage calculation

for genomes and exomes. Bioinformatics, 34, 867–868.

Pedersen,B.S. et al. (2012) Comb-p: software for combining, analyzing, grouping

and correcting spatially correlated p-values. Bioinformatics, 28, 2986–2988.

Pertea,G. and Pertea,M. (2020) GFF utilities: GffRead and GffCompare.

F1000Research, 9, 304.

Pongor,L.S. et al. (2020) BAMscale: quantification of DNA sequencing peaks

and generation of scaled coverage tracks. Epigenet. Chromatin, 13, 21.

Acidbio 3335

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/13/3327/6586286 by guest on 28 Septem
ber 2023

https://github.com/jfarek/alignstats
https://github.com/ekg/vcflib
https://www.ga4gh.org/genomic-data-toolkit/
https://www.networkworld.com/article/2309699/acid-test-may-prove-new-browsers-are-tough-sell.html
https://www.networkworld.com/article/2309699/acid-test-may-prove-new-browsers-are-tough-sell.html
https://atactk.readthedocs.io/en/latest/index.html
https://atactk.readthedocs.io/en/latest/index.html
https://github.com/heuermh/dishevelled-bio
https://www.webstandards.org/files/acid2/test.html
https://aryakaul.github.io/novasplice/
https://github.com/vkkodali/cthreepo
https://github.com/lh3/seqtk
https://github.com/brentp/smoove


Postel,J. et al. (1981) Transmission Control Protocol, Request For Comments

793. https://datatracker.ietf.org/doc/html/rfc793 (22 March 2022, date last

accessed).

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Ram�ırez,F. et al. (2016) deepTools2: a next generation web server for

deep-sequencing data analysis. Nucleic Acids Res., 44, W160–W165.
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