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There is a need to accelerate crop improvement by introducing alleles conferring host

plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars,

landraces and wild relatives harbor useful genetic variation that needs to be more

easily utilized in plant breeding. We review genome-wide approaches for assessing and

identifying alleles associated with desirable agronomic traits in diverse germplasm pools

of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms

(SNPs) associated with desirable agronomic traits have been deployed to enhance crop

productivity and resilience. These include alleles associated with variation conferring

enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can

provide both environmental flexibility and improved yields. SNPs associated with length

of growing season and tolerance to abiotic stresses (precipitation, high temperature)

are valuable resources for accelerating breeding for drought-prone environments.

Both genomic selection and genome editing can also harness allelic diversity and

increase productivity by improving multiple traits, including phenology, plant architecture,

yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful

haplotypes also provides opportunities to enhance abiotic stress adaptation, while

epigenetic variation has potential to enhance abiotic stress adaptation and productivity

in crops. By reviewing current knowledge on specific traits and their genetic basis,

we highlight recent developments in the understanding of crop functional diversity

and identify potential candidate genes for future use. The storage and integration of

genetic, genomic and phenotypic information will play an important role in ensuring

broad and rapid application of novel genetic discoveries by the plant breeding

community. Exploiting alleles for yield-related traits would allow improvement of selection

efficiency and overall genetic gain of multigenic traits. An integrated approach involving
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multiple stakeholders specializing in management and utilization of genetic resources,

crop breeding, molecular biology and genomics, agronomy, stress tolerance, and

reproductive/seed biology will help to address the global challenge of ensuring food

security in the face of growing resource demands and climate change induced stresses.

Keywords: crop improvement, epigenetic variation, florigen pathways, functional diversity, genome editing,

genomic estimated breeding value, haplotypes, TILLING

ASSESSING CROP FUNCTIONAL
DIVERSITY

Producing sufficient food for the growing population is a
major challenge, with climate change emerging as an additional
threat to the food security and livelihood of millions of people
(Abberton et al., 2016). Achieving significant yield gains in staple
crops is essential because rising demand requires a twofold
increase in crop production by 2050 (Tilman et al., 2011). The
increasing frequency of droughts and heat stress is impacting
crop productivity (Deryng et al., 2014; Lesk et al., 2016), and the
increased frequency and severity of flooding events may cause
yield loss in regions such as Asia, where prolonged flooding of rice
fields already substantially reduces yields (Mackill et al., 2012). To
meet the challenges of increasing demand in a changing climate,
there is a need to more rapidly generate new and improved crop
cultivars.

Cereals and grain legumes constitute the major components
of the human diet and of livestock feed. Grain legumes also
enrich soil with nitrogen and improve soil texture for other
crops (Graham and Vance, 2003). The discovery of semi-
dwarfing genes fuelled the stark increase in yields (known
as the ‘Green Revolution’) in rice and wheat production
globally (Trethowan et al., 2007). However, the reliance on a
narrow range of elite cultivars has likely led to some negative
effects on agroecosystems productivity (Dwivedi et al., 2017),
though this assumption remains controversial and empirical
research provides contradictory evidence (Fu, 2015). More recent
evidence also suggests that productivity of major food crops
is either stagnating or not increasing at the rate needed to
ensure food security (Ortiz, 2015). Accelerated progress in plant
breeding is required to better harness crop genetic resources and
produce higher-yielding, climate-resilient cultivars.

As the methods to assess functional diversity in crops have
become more sophisticated during the last 100 years, our
understanding of the mechanisms underlying this diversity has
grown. Functional diversity refers to a component of biodiversity
related to what organisms do in communities and ecosystems
(Petchey and Gaston, 2006). The decreasing cost of high-
throughput DNA sequencing has facilitated the recent rise
of genome-wide methods such as genotyping by sequencing
(Scheben et al., 2017a) for assessing functional diversity of
crops using single nucleotide polymorphisms (SNPs) (Kilian
and Graner, 2012; Huang and Han, 2014). Common targets of
breeding are yield-related traits such as abiotic stress tolerance,
pest resistance and flowering time. The potential yield gains are
substantial, considering that abiotic stress can reduce average
yields of major crops by 50% (Bray et al., 2000) and pests can

cause 26–40% yield losses (Oerke, 2006). Assessing and using
functional diversity in pathways controlling flowering time is also
important for yield, particularly as control of crop development
can enhance adaptation to the predicted impact of climate
change. The genomics era has led to a rapid increase in sequence
data capturing the genetic diversity underlying heritable target
traits in elite cultivars, landraces and cropwild relatives. However,
while there were already over 100 plant genomes available in 2015
(Michael and VanBuren, 2015), over half of which were crops,
the functions of the vast majority of plant genes remain unknown
(Rhee and Mutwil, 2014).

Powerful and high-throughput forward and reverse genetic
techniques are required to help elucidate these unknown
gene functions to assist targeted breeding. Genetic mapping
approaches also play an important role in associating genomic
regions with phenotypic traits. Vast improvements in our
understanding of the functional knowledge of crop genomes
is an important prerequisite for targeted genome editing based
approaches to access novel diversity for breeding programs
(Scheben et al., 2017b), which often remain limited by the natural
diversity found in germplasm resources. Both understanding and
shaping of crop functional diversity using genomic technologies
will be necessary to ensure continuing yield increases to keep pace
with growing global food demand. In this review article, we focus
on the latest developments in assessing and exploiting functional
diversity associated with abiotic stress adaptation, phenology,
plant architecture, and yield attributing traits in cereals and food
legumes germplasm pools using genomics-led methods for crop
genetic enhancement. We focus on three questions: (1) How
do we characterize functional diversity? (2) What are the key
breeding targets? (3) How can we apply knowledge of functional
diversity to improve crop traits using genomic prediction and
genome editing?

APPROACHES FOR UNCOVERING
FUNCTIONAL DIVERSITY

Analysis of DNA variation regulating phenotypes (traits) in
crops can facilitate the identification of causal genes associated
with desired agronomic traits. Advances in genome sequencing
have dramatically reduced costs of measuring DNA variation,
facilitating the identification of candidate genes for complex
traits. To date, many crop genomes are sequenced, yielding
millions of SNPs, while resequencing of diverse germplasm
(including wild species) across crop genepools further provides
a wealth of genomic information (in some instances related
with discrete phenotypes). Single nucleotide polymporphisms
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TABLE 1 | Genome wide SNPs discovered in chickpea, common bean, cowpea, groundnut, pea, pigeonpea, and soybean.

Genome-wide SNPs, InDels and structural

variants (SVs)

Germplasm source Reference

Chickpea (Cicer arietinum)

2,058,566 SNPs and 292,588 InDels 35 accessions representing 16 mapping populations Thudi et al., 2016

CicArVarDB containing 1,965 803 SNPs and InDels 90 accessions Doddamani et al., 2015

82,489 SNPs 93 wild and cultivated accessions Bajaj et al., 2015

Common bean (Phaseolus vulgaris)

6286 DArT Seq high density SNPs 188 accessions, including landraces and cultivars from

Andean and Mesoamerican gene pools

Valdisser et al., 2017

44,875 SNPs, 3633 InDels 18 cultivated and wild accessions Ariani et al., 2016

768-SNP Illumina GoldenGate assay 6 common bean and 2 tepary bean accessions Gujaria-Verma et al.,

2016

BARCBean6K_3 BeadChip containing 6000 SNPs 365 dry bean and 134 snap bean accessions Song Q. et al., 2015

Cowpea (Vigna unguiculata)

1,048 SNPs 768 accessions Xiong et al., 2016

Groundnut (Arachis hypogaea)

Affymetrix 60K SNP array ± 20 cultivated accessions Clevenger et al., 2017

Pea (Pisum sativum)

131,850 SNPs 4 accessions Boutet et al., 2016

GenoPea 13.2K SNP Array 12 RIL populations Tayeh et al., 2015

Pigeonpea (Cajanus cajan)

4,686,422 SNPs and 779,254 InDels 20 accessions belonging to primary and secondary

genepools

Kumar et al., 2016

Soybean (Glycine max)

5,835,185 SNPs and 1,329,844 InDels 28 Brazilian cultivars dos Santos et al., 2016

9,790,744 SNPs, 876,799 InDels 302 wild, landraces, and improved accessions Zhou et al., 2015

Axiom R© SoyaSNP array containing 180 961 SNPs 47 accessions Lee et al., 2015

10 million SNPs, including 35% not previously

reported

106 accessions representing wild, landraces, and elite lines Valliyodan et al., 2016

3,871,469 SNPs 10 cultivated and six wild accessions Chung et al., 2014

5,102,244 SNPs and 707,969 insertion/deletions 55 accessions Li et al., 2013

SoySNP50K array 6 cultivated and 2 wild accessions Song et al., 2013

SoySNP6K BeadChip array containing 5,376 SNPs 92 RILs involving soybean cultivars ‘Maryland 96-5722’ and

‘Spencer’

Akond et al., 2013

205,614 SNPs 17 wild and 14 cultivated accessions Lam et al., 2010

SoySNP1.5K chip array GoldenGate assay Selected from 2,435 random SNPs evenly covering the

genome from the Soybean SNP database

Shen et al., 2005

± highly flexible for Arachis, with applications for genotyping tetraploid populations, interspecific populations, and intraspecific diploid populations.

(SNPs) are most abundant genetic markers that are amenable
to automation and cost-effective for use and integration with
crop breeding research. In particular, SNPs which are robustly
associated with desirable agronomic phenotypes can provide
a better understanding of gene function while also providing
markers that can be used for more-efficient plant breeding
schemes (Huq et al., 2016).

Genome-Wide SNP Polymorphism
Legumes

Soybean (Glycine max) has been extensively investigated for SNP
variation using diverse genepools (Table 1). Valliyodan et al.
(2016) reported over 10 million high quality SNPs and 0.75 m
InDels, mostly (82.6%) in intergenic regions. Wild soybeans had
15% more SNPs than landraces and elite lines. Soybean cultivars
also showed high SNP polymorphism (dos Santos et al., 2016).

SNP-based arrays in soybean include the SoySNP1.5K (Shen et al.,
2005), SoySNP6K (Akond et al., 2013), SoySNP50K (Song et al.,
2013), and 180 K AXIOM R© SoyaSNP (Lee et al., 2015) arrays.
The SoySNP355K array, which covers the whole genome, is also
available (Wang J. et al., 2016).

Clevenger et al. (2017) re-sequenced 20 diverse groundnut
(Arachis hypogaea) accessions to identify SNP variations and
constructed a large-scale genotyping array, which contains
58,233 putative SNPs, including those from groundnut ancestors
A. duranensis (21,547 SNPs) and A. ipaensis (22,933 SNPs).
The array is designed to be highly flexible for Arachis,
with applications for genotyping A. hypogaea populations,
interspecific populations, and intraspecific diploid populations.
A unique feature of this array is its set of 1,193 SNPs indicative
of tetrasomic recombination (i.e., tetrasomic inheritance) events.
Thus, this newly developed SNP array will be very useful for
further genetic and breeding applications in Arachis.
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TABLE 2 | Genome wide SNPs discovered in barley, maize, oat, pearl millet, rice, sorghum, and wheat.

Genome-wide SNPs, InDels and

structural variants (SVs)

Germplasm source Reference

Barley (Hordeum vulgare)

1,688,807 SNPs; 143,872 InDels 267 georeferenced landraces and wild accessions Russell et al., 2016

544,318 SNPs 433 wild and domesticated accessions Pankin et al., unpublished

ISelect 9K chip consisting of 7,864

SNPs

a diverse panel of 804 contemporary barley cultivars having a

spring or winter growth habit

Comadran et al., 2012

Maize (Zea mays)

3,252,194 SNPs, 213,181 InDels,

39,631 SVs

A four-row waxy landrace accession Liu H. et al., 2016

383,145 SNPs Targeted sequencing of 29 Mb genomic regions with 4,648

genes linked with biomass in 21 inbred lines

Muraya et al., 2015

616,201 SNPs and InDels 30 temperate maize lines Unterseer et al., 2014

6,385,011 SNPs 15 inbred lines Xu et al., 2014

687,257 SNPs 2815 inbred lines from USDA genebank Romay et al., 2013

MaizeSNP50 array 274 lines, including B73, Mo 17, NAM parents, and inbreds Ganal et al., 2011

1,272,134 SNPs and 30,178 InDels 6 elite inbred lines Lai et al., 2010

Pearl millet (Pennisetum glaucum)

83,875 SNPs 500 accessions Hu et al., 2015

Rice (Oryza sativa L.)

976,791 SNPs and 46,640 InDels RGD-7S and Taifeng B Fu et al., 2016

Rice SNP50 (OsSNPnks) array 192 diverse accessions Singh et al., 2015

Rice SNP50 (Illumina Infinium platform)

array

801 accessions Chen et al., 2014

RiceSNP6K 500 landraces Yu et al., 2014

6,496,456 SNPs 40 cultivated and 10 wild accessions Xu et al., 2012

Sorghum (Sorghum bicolor)

∼265,000 SNPs 971 worldwide accessions Morris et al., 2013

4,946,038 SNPs 44 accessions Mace et al., 2013

1,957,018 SNPs, 99,948 InDels 3 accessions (sweet and grain sorghum) Zheng et al., 2011

Bread wheat (Triticum aestivum)

>4 million inter-varietal SNPs across

chromosome 7

16 Australian cultivars Lai et al., 2015

wheatSNP 90K array 726 accessions Wang S. et al., 2014

9,000 gene-associated SNPs 2,994 accessions including landraces and modern cultivars Cavanagh et al., 2013

The RCBean6K_3BeadChip array containing 6,000 SNPs is
widely used in beans (Song Q. et al., 2015). A gene-based
SNP array in tepary bean (Phaseolus acutifolius) provided
greater insight of this species’ population structure and its
relationship with common bean (Phaseolus vulgaris), facilitating
the introgression of agriculturally important traits (Gujaria-
Verma et al., 2016). Development of high throughput genotyping
arrays, GenoPea 13.2KSNP in pea (Pisum sativum) (Tayeh
et al., 2015) and Axiom R©Cicer50.6SNP array in chickpea
(Cicer arietinum) (Roorkiwal et al., 2016), are expected to
accelerate genetic research. The chickpea database repository
CicArVarDB contains 1.9 million SNPs and InDels anchored
on eight pseudomolecules, allowing to select for variation
associated with quantitative trait loci (QTL) (Doddamani et al.,
2015).

The International Cowpea Consortium and Illumina have
developed a new SNP genotyping array for cowpea (Vigna
unguiculata). This 60,000-marker iSelect array provides a 40-fold
increase in marker density compared to an older, 1,536-marker
GoldenGate Illumina panel (Close, 2015). Pigeonpea (Cajanus

cajan) has lagged behind in array technology, though abundant
SNPs have been identified (Kumar et al., 2016).

Cereals

Both maize (Zea mays) and rice (Oryza sativa) have been
extensively studied for SNP variation using diverse germplasm
(Table 2). A publicly available high-density SNP array (609,442
SNPs and 6,759 InDels) optimized for European and American
temperate maize, the Affymetrix R© Axiom R© Maize Genotyping
Array, was recently developed (Unterseer et al., 2014).
MaizeSNP3072 array containing 3,072 SNPs is more efficient
than MaizeSNP50 array in fingerprinting Chinese cultivars (Tian
et al., 2015). A maize 55 K SNP array with improved genome
coverage was developed on an Affymetrix R© Axiom R© platform
with 55,229 SNPs evenly distributed across the genome, which
contains 451 markers associated with 368 known genes including
those for drought tolerance and kernel oil biosynthesis, 4067
markers not assigned to any chromosome or position in the
current reference genome, 734 markers differentiating heterotic
groups, and 132 markers tagged for important transgenic events.
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TABLE 3 | SNPs and germplasm-based genome-wide association studies (GWAS) for phenology and yield in chickpea, common bean, cowpea and soybean.

Association mapping panel

and SNPs

Summary of marker-trait association and candidate genes identified Reference

Chickpea (Cicer arietinum)

211 accessions; 44,844 SNPs 22 major loci associated with pods/seeds plant−1 and 100-seed weight; an

allelic variants of CesA-type cellulose synthase gene, Ca_Kabuli_CesA3,

regulated high pods/seeds plant−1, contributing 47% phenotypic variation

Kujur et al., 2015

Common bean (Phaseolus vulgaris)

237 accessions; 5,398 SNPs A candidate gene Phvul.001G221100 on P. vulgaris (Pv) chromosome 01

associated with days to flower and maturity; significant SNPs for seed yield

mapped on Pv03 and Pv09 colocalized with previously identified QTL for yield

Kamfwa et al., 2015

Cowpea (Vigna unguiculata)

299 accessions; 50,000 SNPs 72 SNPs associated with pod length Xu P. et al., 2017

Soybean (Glycine max)

309 accessions; 50,000 SNPs 27, 6, 18, and 27 loci, respectively, associated with flowering, maturity, flowering

to maturity duration, and plant height; Dt1 strongly associated with maturity and

plant height; a pectin lyase-like gene near the major for plant height locus

Zhang J. et al., 2015

139 accessions; 47,000 SNPs 1-8 loci associated with maturity, plant height, and seed weight, with most

co-populated with priori known QTL affecting these traits

Sonah et al., 2014

168 landraces; 1,536 SNPs 51 SNPs associated with chlorophyll and chlorophyll fluorescence parameters,

of which 14 co-associated with two or more traits and 8 with previously

reported yield and yield components

Hao et al., 2012

This array improves MaizeSNP50 (Ganal et al., 2011), and
is a powerful tool for germplasm evaluation, marker-assisted
breeding, QTL mapping and association studies for both tropical
and temperate maize (Xu C. et al., 2017).

Rice SNP50 array contains 51,478 evenly distributed markers
(Chen et al., 2014). This array incorporates 50,051 SNPs from
18,980 single copy genes (3,710 conserved between wheat and
rice, 14,959 unique to rice, 194 agronomically important cloned
rice genes) and 117 multicopy rice genes, mapped on 12 rice
chromosomes. The utility of this assay was demonstrated for
genetic diversity and phylogenetic research, using a panel of
diverse genepools, and in breeding (Singh et al., 2015).

A high-density array in wheat (Triticum aestivum) contains
about 90,000 gene-associated SNPs from populations of diverse
geographical origins. This array consists of 46,977 SNPs that
were mapped using eight segregating populations (Wang S. et al.,
2014).

Whole-genome resequencing (16–45× genome coverage) of
44 accessions of the diverse origins, end-use and taxonomic
groups unravels 8 million high-quality SNPs and 1.9 million
InDels in sorghum (Sorghum bicolor) (Mace et al., 2013), while
resequencing three sorghum inbred lines uncovered 1 million
SNPs, 0.099 million InDels, 0.106 million presence/absence
variations, and 0.017 million copy number variations (Zheng
et al., 2011). Sequencing of 500 pearl millet (Pennisetum glaucum)
accessions identified 83,875 SNPs (Hu et al., 2015), while targeted
resequencing of 433 diverse accessions generated a genome-wide
panel of 544,318 high quality SNP in barley (Hordeum vulgare)
(Pankin et al., unpublished).

Clearly, technological innovations in genomics have already
led to discovery of abundant polymorphic SNPs in most
cereal and legume crops, thus facilitating trait discovery and
introgression. As the pace of technological advances and
cost-reductions in next-generation sequencing technologies is

extremely rapid, it is possible that SNP-array based platforms
may be superseded by or become largely integrated with high-
throughput sequencing approaches to genotyping (Pérez-Enciso
et al., 2015).

QTL and Candidate Genes for Complex
Traits
Genome-wide association studies (GWAS) carried out on
diversity panels can provide higher mapping resolution than
linkage mapping based on biparental crosses, thus allowing
better detection of candidate causal genes (Ingvarsson and
Street, 2011; Huang and Han, 2014). GWAS success depends,
however, on data quality, population size, and the degree of
linkage disequilibrium (LD) (Flint-Garcia et al., 2005; Mackay
and Powell, 2007). Mutation, population structure, epistasis,
and population perturbations such as migration, inbreeding,
and selection all affects LD (Jannink and Walsh, 2002). LD
decay varies between species, among different populations within
species, and among different loci within a given genome
(Tenaillon et al., 2001; Gupta et al., 2005; Caldwell et al., 2006).

Multigenic complex traits such as plant architecture, yield
and related traits, and stress adaptation are typically affected by
many genes and are also influenced by genotype × environment
interactions. GWAS has been successful for detecting natural
variation underlying some complex traits which has enabled
researchers to identify several associated SNPs, some of which
were co-located with previously reported QTL or candidate
genes.

Phenology and Pod/Seed Traits in Legumes

Table 3 lists selected candidate genes for crop phenology in
soybean and common bean or those associated with pod or
seed characteristics in chickpea and cowpea. Zhang J. et al.
(2015) reported new loci and refined genomic regions of known
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TABLE 4 | SNPs and germplasm-based genome-wide association studies for plant architecture traits in barley, maize, rice, sorghum, and wheat.

Association mapping panel

and SNPs

Summary of marker-trait association and candidate genes identified Reference

Barley (Hordeum vulgare)

1420 nested association

mapping panel; 7864 SNPs

Eight major QTL accounted for 64% variance associated to flowering, with strongest QTL effect

corresponded to Ppd-H1

Maurer et al., 2015

224 accessions; 957 SNPs 171 significant marker-trait associations for agronomic traits delineated into 107 QTL (57 novel and

50 congruent QTL), populated with priori mapped QTL

Pasam et al., 2012

Maize (Zea mays)

336 accessions; 50K SNP 34 QTL for individual and six for trait combinations, with only five pleiotropic; a cluster of QTL

around Tb1 associated with tiller and ear row numbers; candidate genes for tillering, leaf number

and kernel weight

Bouchet et al., 2017

258 inbreds; 224,152 SNPs 41 SNPs associated with plant and ear height, of which 29 located in 19 unique candidate gene

regions related to plant growth and development

Li X. et al., 2016

346 inbreds; 60,000 SNPs 10 quantitative trait variants associated with grain yield, plant and ear height, and flowering with

some colocalizing to previously reported QTL

Farfan et al., 2015

NAM panel of 5000 RILs by

crossing 25 diverse lines to a

reference line; 1.6 m SNPs

Key genes with small effects (little epistasis, environmental interaction or pleiotropy) controlled leaf

angle, leaf length and width; variations at the liguleless genes contribute to more upright leaves

Tian et al., 2011

Rice (Oryza sativa)

225 accessions; 83,374 SNPs 56 SNPs associated with panicle architecture traits: 17, spikelets panicle−1; 10, primary branches;

11, secondary branches; 7, primary branch length; 11, secondary branch length

Rebolledo et al., 2016

242 accession; 700,000 SNPs 10 candidate genes regulate plant architecture, half of which overlap with QTL associated with

panicle architecture traits

Crowell et al., 2016

315 accessions; 44,100 SNPs 7, 5, 10, 8, and 6 genomic regions associated with panicle architecture traits including grain

characteristics

Ya-fang et al., 2015

529 accessions; 4,358,600

SNPs

141 associated loci for 15 agronomic traits; of which 25 mapped within known gene, i.e., SD1 Yang et al., 2014

950 cultivars; 4,109,366 SNPs 32 SNP loci associated with flowering and grain related traits; identified candidate genes for 18

associated loci

Huang et al., 2012

413 accessions; 44,100 SNPs A dozen of common variants influencing numerous complex traits Zhao et al., 2011

517 landraces; 3.6 million SNPs The identified loci contributed ∼36% of the phenotypic variance, on average; six loci closely

associated with previously identified genes

Huang et al., 2010

Sorghum (Sorghum bicolor)

390 accessions; 268,830 SNPs SNPs loci for grain yield, grain number, and 1000-grain weight, dispersed across the genomes, and

located within previously mapped QTL

Boyles et al., 2016

1315 accessions; 36,285 SNPs 101 SNPs associated with at least one of the 9 plant architecture traits; KS3 and GA2ox5

associated with seed number and plant height, respectively; novel QTL for tillers, stem

circumference, internode number, seed number, panicle exsertion, and length

Zhao J. et al., 2016

1,000 accessions; 265,000

SNPs

SNPs with distinct haplotypes confer variation in plant height and inflorescence architecture traits Morris et al., 2013

Bread wheat (Triticum aestivum)

210 winter wheat accessions;

7.928 SNPs

Novel QTL and candidate genes reported that are involved in assimilate partitioning, floret fertility,

spike morphology and grain numbers

Guo et al., 2016

130 elite lines and landraces;

90K SNP array

5 and 32 SNPs for spike ethylene, and 22 and 42 SNP for spike dry weight, in glasshouse and field

conditions, respectively; some SNPs closely localized to SNPs for plant height, suggesting close

association between plant height and spike related traits

Valluru et al., 2017

loci associated with crop duration (i.e., number of days from
sowing to harvesting) and plant height in soybean. Candidate
genes homologous to flowering genes in Arabidopsis thaliana
were located near the peak SNP associated with flowering in
soybean (Zhang J. et al., 2015). An allelic variant of the CesA-
type cellulose synthase gene, Ca_Kabuli_CesA3, was found to
regulate pod and seed numbers plant−1 in chickpea (Kujur et al.,
2015). Phvul.001G221100 was associated with days to flower and
maturity in common bean (Kamfwa et al., 2015). SNPs were also
identified which are associated with pod length in cowpea (Xu P.
et al., 2017).

Plant Architecture and Edible Yield in Cereals

Domestication and subsequent artificial selection by humans
has dramatically changed plant architecture, phenology and
components of grain yield in many cereals, largely to address
agronomic needs and to adapt the crops to various stress-prone
environments. Candidate genes and SNPs associated with crop
phenology, plant architecture, and yield-attributing traits are
known in cereals (Table 4). Several unique candidate gene regions
related to plant growth and development and grain yield have
been identified in maize (Farfan et al., 2015; Li X. et al., 2016).
Bouchet et al. (2017) found 34 and 6 QTL for individual or
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TABLE 5 | SNPs and germplasm-based GWAS for abiotic stress tolerance in soybean (Glycine max).

Association mapping panel

and SNPs

Summary of marker-trait association and candidate genes identified Reference

373 accessions; 31,145 SNPs 31 SNPs, associated with photochemical reflectance index and measure of

non-photochemical quenching, tagged into 15 putative loci on 11

chromosomes

Herritt et al., 2016

219 accessions; 1536 SNPs 19 SNPs associated with low P-tolerance QTL, with a novel cluster of SNPs on

chromosome 3 associated with more than one trait

Ning et al., 2016

332 accessions; 31,253 SNPs 52 unique SNPs tagged in 27 putative loci associated with total chlorophyll

content

Dhanapal et al., 2016

373 accessions; 12,347 SNPs 39 SNPs, tagged at 21 loci, associated with carbon isotope ratio (δ13C), 15 of

these located within a gene

Dhanapal et al., 2015

combinatorial trait combinations in maize, respectively. They
identified a QTL cluster in a 5 Mb region around Tb1 associated
with tiller number and ear row number. The latter was positively
correlated with flowering (days to anthesis for male and female
flowering and anthesis to silking interval measured in days) and
negatively correlated to grain yield. Kn1 and ZmNIP1 have been
identified as candidate genes for tillering, along with ZCN8 for
leaf number and Rubisco Activase 1 for kernel weight. A more
upright leaf inmaize has been shown to be influenced by variation
in liguleless genes (Tian et al., 2011).

A large GWAS study in rice detected 42 significant genotype–
phenotype associations for plant morphology, grain quality, and
root architecture traits, which in most cases were co-localized
with QTL and candidate genes controlling the phenotypic
variation of single or multiple traits (Biscarini et al., 2016).
Several SNPs in rice were associated with plant and panicle
architecture, biomass and yield (Zhao et al., 2011; Yang et al.,
2014; Ya-fang et al., 2015; Rebolledo et al., 2016), while candidate
genes in pathways regulating plant architecture overlap with QTL
associated with panicle architecture traits (Crowell et al., 2016;
Rebolledo et al., 2016).

In wheat, candidate genes associated with SNPs were involved
in carbohydrate metabolism, floral fertility, spike morphology
and grain number, providing valuable targets for selection (Guo
et al., 2016). Significant marker-trait associations also provided
insight into genetic architecture of flowering, plant height and
grain weight in barley (Pasam et al., 2012). Individual QTL
accounted, however, only for a small portion of phenotypic
variation.

In sorghum, several SNPs were associated with plant and
inflorescence architecture traits, with many located within
previously mapped QTL (Morris et al., 2013; Maurer et al., 2015;
Boyles et al., 2016; Zhao J. et al., 2016). Candidate genes KS3
(associated with seed number) andGA2ox5 (associated with plant
height) were also reported (Zhao J. et al., 2016). A QTL with
a major effect corresponded to the priori known photoperiod
response gene Ppd-H1 (Maurer et al., 2015).

Abiotic Stress Adaptation in Soybean

Multiple SNPs are reported to be associated with tolerance to
drought and heat stress in soybean (Table 5). Dhanapal et al.
(2015) reported 39 SNPs associated with carbon isotope ratio
(δ13C), which is a surrogate trait to measure water use efficiency.
The genomic distribution of these SNPs revealed that several are

co-located and likely tag the same locus, suggesting that markers
for δ

13C can be identified in soybean using GWAS. Dhanapal
et al. (2016) reported 52 unique SNPs for total chlorophyll
content tagged on 27 loci across 16 chromosomes. While many
of these putative loci were near genes previously identified or
annotated as related to chlorophyll traits (Hao et al., 2012),
numerous SNPs marked chromosomal regions with unknown-
function genes.

Non-photochemical quenching (NPQ) under abiotic stress
conditions protects plants from heat when more light is absorbed
than can be used for photosynthesis (Li et al., 2009). Canopy
reflectance measured as photochemical reflectance index (PRI),
amenable for high throughput field phenotyping, is a surrogate
to measure NPQ (Gamon et al., 1992). Thirty-one PRI-specific
SNPs, tagged in 15 loci on 11 chromosome harboring candidate
genes associated with NPQ, photosynthesis, and sugar transport,
may provide an opportunity to improve photosynthesis in
soybean (Herritt et al., 2016).

Abiotic Stress Adaptation in Cereals

Cereal crops have been extensively investigated for SNPs
and candidate genes associated with abiotic stress adaptation
(Table 6). Ethylene levels have been linked to yield penalty
under heat stress in wheat, largely due to reduction in spike
fertility and grain weight (Hays et al., 2007). Valluru et al.
(2017) reported 5 and 32 significant SNPs associated with
spike ethylene, and 22 and 142 significant SNPs associated with
spike dry weight, in greenhouse and field studies, respectively.
Some of these SNPs are close to SNPs associated with plant
height, suggesting associations between plant height and spike-
related traits. This opens the possibility of gene discovery and
breeding of wheat cultivars with reduced ethylene effects on yield
under heat. The D genome progenitor of bread wheat Aegilops
tauschii has potential as an excellent source of abiotic stress
tolerance. Qin et al. (2016) reported 25 SNPs and several putative
candidate genes (enzyme, storage protein, and drought-induced
protein) associated with drought adaptation, while Liu Y. et al.
(2015) found 13 SNPs and putative candidate genes related to
P-deficiency tolerance.

A major Al-tolerance gene SbMATE on chromosome 3 has
been shown to be associated with grain yield in sorghum, where
SbMATE specific SNPs under –P conditions contributed up to
16% genotypic variance (Leiser et al., 2014). Forty-eight genomic
regions associated with Al tolerance were reported in rice, four of
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TABLE 6 | SNPs and germplasm-based GWAS for abiotic stress tolerance in barley, pearl millet, rice, and sorghum.

Association mapping panel

and SNPs

Summary of marker-trait association and candidate genes identified Reference

Barley (Hordeum vulgare)

179 accessions; 5,892 SNPs 17 QTL for root/shoot traits, with exotic alleles at 14 loci; a QTL on chromosome 1H

accounted for root dry weight and tiller number; exotic alleles at 7 loci significantly

interacted with drought stress

Reinert et al., 2016

167 accessions; 7,864 SNPs 60 significant marker-trait associations; grain yield under heat stress on 2H, yield stability on

7H and grain yield under elevated CO2 on 4 H and 7H under two factor treatments, while

markers from single factor were not retrieved under two factor treatments

Ingvordsen et al., 2015

Pearl millet (Pennisetum glaucum)

250 inbreds; 46 SNPs and

InDels from 17 genes of a

known drought tolerant QTL

7 SNPs from five genes common under varying moisture stress; a SNP associated with

grain yield and harvest index, while a InDel with stay-green and yield under drought stress

Sehgal et al., 2015a

Rice (Oryza sativa)

391 temperate rice accessions;

57,000 SNPs

31 significant genotype-phenotype associations detected: 21 and 10 for plant and root

architecture traits, respectively, and colocalized with QTL and candidate gene traits

controlling phenotypic variation

Biscarini et al., 2016

220 accessions; 6,000 SNPs 20 and 44 SNPs, respectively, associated with Na+/K+ ratio and grain yield under stress

contributed 5-18% phenotypic variance; the region harboring Saltol, a major QTL on

chromosome 1, associated with Na+/K+ ratio; SNPs representing new QTL on

chromosome 4, 6, 7

Kumar et al., 2015

292 accessions; 44K SNPs

array

SNPs associated with phosphorus use efficiency (PUE) on chromosomes 1, 4, 11 and 12,

with distinct haplotypes contributed greatest PUE

Wissuwa et al., 2015

413 accessions; 44,000 SNPs Four regions co-localized with a priori candidate genes for Al tolerance, while two regions

co-localized with previously identified QTL

Famoso et al., 2011

Sorghum (Sorghum bicolor)

343 accessions; 325,487 SNPs 14 SNPs with two heat stress responsive traits, leaf firing and blotching, with many

candidate genes near SNPs linked to biological pathways involved in plant stress responses

including heat stress

Chen et al., 2017

1943 landraces; 404,627 SNPs Genic SNPs associated with environment variables predicted genotype × interactions

under drought stress

Lasky et al., 2015

187 accessions; 220 934 SNPs A major Al-tolerance gene, SbMATE, collocated in a genomic region on chromosome 3

associated with grain yield, and SbMATE specific SNPs under –P conditions showed very

high associations to grain yield production, contributed up to 16% variation

Leiser et al., 2014

Bread wheat (Triticum aestivum)

373 A. tauschii accessions;

7,185 SNPs

25 SNPs associated with traits related to drought resistance; several candidate/flanking

genes associated with drought resistance grouped into three categories per the type of

encoded protein (enzyme, storage protein, and drought-induced protein)

Qin et al., 2016

380 A. tauschii accessions;

7,185 SNPs

13 SNPs associated with P-deficiency tolerance traits distributed on six of the seven

A. tauschii chromosomes; several candidate/flanking genes related to P-deficiency

tolerance grouped in five categories by the types of proteins they encoded (defense

response proteins, enzymes, promoters and transcription factors, storage proteins, or

proteins triggered by P deficiency)

Liu Y. et al., 2015

which co-localized with a priori known candidate genes, and two
co-located with previously identified QTL (Famoso et al., 2011).

In barley, a genomic region on chromosome 2Hwas associated
with grain yield under heat stress, a region on chr 7H with
grain yield, and a region on chr 4H and chr 7H with elevated
CO2 under two factor treatments (high temperature and elevated
CO2). None of the SNPs associated with single factor treatments
were retrieved under two factor treatments, thus emphasizing
the importance of multifactor treatments (Ingvordsen et al.,
2015).

Genic SNPs associated with environmental variations
(but independent of geographical location) predicted
genotype × environment interactions for drought stress
and aluminum toxicity in sorghum (Lasky et al., 2015).

Wissuwa et al. (2015) reported several SNP loci associated with
phosphorus use efficiency (PUE) in rice on chromosomes 1, 4,
11, and 12. A minor indica-specific haplotype on chromosome
1 and a rare aus-specific haplotype on chromosome 11
displayed the highest PUE, and could have potential for targeted
introgression while breeding for rice under P-limited cropping
systems.

Emerging evidence suggests that responses to stress
combinations cannot be reliably predicted from the responses
to individual stresses (Makumburage et al., 2013). An integrated
approach is therefore needed to model the genetics of responses
to a range of single and combined stresses. For example,
association analysis report QTL with contrasting and with similar
responses to biotic versus abiotic stresses, and below-ground
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versus above-ground stresses. There is a need to conduct
multi-trait GWAS to identify robust candidate genes for multiple
stresses (Thoen et al., 2016).

The proliferation of genome wide association analyses has
led to identification of candidate loci (often co-located with
major QTLs or candidate genes) associated with abiotic stress
adaptation, phenology and plant architecture, and edible yield.
The identification of such loci can facilitate genomics-assisted
breeding in cereal and legumes.

TILLING: Mutagenesis and Reverse
Genetics for Elucidating Gene Function
Chemical mutagenesis and subsequent screening for mutations
linked to altered agronomic phenotypes is a reverse genetic
technique to identify candidate genes for crop improvement.
Targeting Induced Local Lesions IN Genomics (TILLING) is
the commonly used approach, employing a mismatch-specific
endonuclease to detect single base pair (bp) allelic variation
in a target gene (Gilchrist and Haughn, 2005). TILLING by
sequencing (Tsai et al., 2011) can greatly increase throughput
and novel allele discovery by applying second-generation
sequencing approaches rather than endonucleases to facilitate
variant discovery across the genome rather than in individual
genes (Henry et al., 2014; Kumar et al., 2017). TILLING has
been successfully used to detect both induced and natural
variations in a wide range of plant species, including: novel
allelic variation in the barley genesHvCO1, Rpg1, elF4E,HvHox1,
BMY1, GBSS1, LDA1, SSI, SSlla, mlo and Mla (Mejlhede et al.,
2006; Talamé et al., 2008; Gottwald et al., 2009; Sparla et al.,
2014); the maize genes DMT101, DMT102, DMT103, DMT
106, HAC110, HDA105 (Till et al., 2004); and the wheat genes
PpD-1, Rubisco activase A and Rubisco activase B (Chen et al.,
2012). In sorghum, TILLING generated a functional-effect point
mutation in the CYP79A1 gene, generating sorghum lines with
reduced levels of the cyanogenic glycoside dhurrin, which has
potential to enhance the use of this widely grown crop as
forage for livestock (Blomstedt et al., 2012). A TILLING-induced
mutation in a TI1 protease inhibitor increased the digestibility
and thus nutritional value of pea. Although mutagenesis in
TILLING approaches is untargeted and does not provide the
versatility of genome editing, crops improved using chemical or
radiationmutagenesis via TILLING are not regulated as GMOs in
most jurisdictions, increasing their commercial competitiveness
with more precise genome editing approaches (Kumar et al.,
2017).

Using Haplotypes to Identify Alleles in
Cultigen Pools
A haplotype is a combination of DNA polymorphisms
(markers, alleles) that are tightly linked to each other on
a chromosome and hence tend to be inherited together
from parent to offspring. Maize was among the first crops
for which a comprehensive haplotype map was generated,
which showed highly divergent haplotypes and recombination
rates based on several million sequence polymorphisms in
27 diverse inbred lines (Gore et al., 2009). This research

also identified hundreds of selective sweeps and highly
distinct chromosome regions likely bearing loci related to
domestication and geographic adaptation. Genetic structure
and subpopulation structure are also associated with origin
of germplasm and post-domestication selection, as revealed
by comparative haplotype analysis in tropical and temperate
maize germplasm (Lu et al., 2011). Moreover, Thirunavukkarasu
et al. (2017) were able to identify 252 haplotype blocks in
subtropical elite inbred maize lines, which varied in size
from 1 to 15.8 Mb, with slow LD decay (200–300 Kb) across
all chromosomes, suggesting selection of favorable traits
around low LD regions in breeding programs. Due to strong
population substructure, this subtropical maize germplasm
grouped into three distinct clusters, which provides means
for exploiting heterotic potential among them. The use of
haplotypes improved mapping efficiency to detect QTL related
to drought adaptation in maize (Lu et al., 2009). Furthermore,
integrated mapping (based on independent linkage and LD
analysis) along with haplotypes led to identification of significant
QTL explaining up to ca. 35% of phenotypic variation. Two
significant haplotypes were involved in the control of flowering
time, and encoding aldo-keto reductases associated with
detoxification pathways contributing to cellular damage due to
stress.

There is a continual need to identify allelic variants conferring
desirable agronomic traits. For example, recent haplotype
analysis in Indian wild rice identified the variants H5 and
H1 of HKT1;5 and HKT2;3 as associated with high salinity
tolerance (Mishra et al., 2016b). Haplotype variation of major
and few minor alleles seems to be distributed over distant
geographic regions (Mishra et al., 2016a). Such alleles may be
useful for broadening the range of cultivars to enhance rice
productivity in salt-prone areas. The rice DNA markers RM
464A and RM 219 at the Sub-1 locus of chromosome 9 (which
accounts for 70% of phenotypic variation for submergence
tolerance) have assisted in breeding cultivars that are tolerant
to submergence for up to 2 weeks during the vegetative
growth stage (Rathnayake et al., 2012). The Sub-1 locus encodes
the ethylene-responsive factor (ERF) genes sub1B (from the
submergence tolerant FR13A landrace) and Sub1C in all Oryza
sativa cultivars, while the ERF paralog Sub1A is found in a
subset of O. sativa ssp. indica accessions, and seems to arise from
duplication of Sub1B (Fukao et al., 2009). Some submergence
tolerant rice accessions lack Sub1A (Tamang et al., 2011), which
appears to suppress leaf elongation under submergence (Singh
et al., 2010). This suggests that Sub1A may not be the only
contributing factor to submergence tolerance in rice (Samal et al.,
2014).

The haplotype map of disomic hexaploid bread wheat,
based on resequencing 62 wheat lines using exome capturing
and genotype-by-sequencing, has exposed distinct patterns of
directional selection in homeologous genomes (Jordan et al.,
2015). This finding suggests that the likelihood of beneficial
allele recovery was increased in bread wheat by broadening
the set of selection targets. Haplotype analysis of stem rust
resistance genes revealed that most breeding lines (83 out of
115) released by CIMMYT until the 2000s carry Sr2. Five were
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found to carry the Sr25 haplotype, while a small number of
(5 out of 22) cultivars bred by the United States Department
of Agriculture haboured the Sr2, Sr24, Sr36 haplotypes. Sr2
was also found in two out of 43 wheat breeding lines from
China (Yu et al., 2010). Diverse bread wheat lines bred in
different Africa countries have been found to harbor the
Sr2, Sr36, Sr24, Sr31and Lr34/Yr18/Sr57 haplotypes (Prins
et al., 2016). Tetraploid Ethiopian durum wheat landraces and
bred cultivars carry the Sr2 and Sr22 haplotypes, with only
a few bearing Sr13 (Haile et al., 2013). Haplotype analysis
also located the origin of Sr33, an ortholog of a barley
mildew resistance Mla gene that was introgressed to bread
wheat from the wild relative Aegilops tauschii (Periyannan
et al., 2013). Such analyses can identify sources of novel
alleles for use in improving host plant resistance through
breeding.

Landraces and Wild Relatives
Landraces are a repository of crop genetic diversity that
have evolved through natural and artificial selection over
millennia, and represent valuable resources for crop adaptation
to stresses. For example, the allelic variation amongst rice
and wheat landraces has provided agronomically beneficial
traits for abiotic stress tolerance (Dwivedi et al., 2016). Pasam
et al. (2014) noted that widely adapted (5◦–62.5◦ N, 16◦–
71◦ E) spring barley landraces (LRC1485), which showed
abundant genetic diversity, clustered into six major germplasm
groups, differentiated by geographical origin and latitude,
ear row type, caryopsis types, and climate zones. Creole
wheat landraces introduced into Mexico from Europe are
adapted to a wide range of climatic regimes and represent
a useful genetic resource. Vikram et al. (2016) characterized
9,416 landrace accessions using genotyping-by-sequencing and
identified 15 genetic groups that are likely adapted to specific
environments of Mexico, with some groups adapted to extreme
environments. For example, landraces from Michoacán (high
temperature and rainfall) and Durango (high annual average
temperature and low precipitation) had an exceptionally high
frequency of rare alleles, which may be a contributing factor
of landrace adaptation to these climates. A similar study on
local adaptation of barley landraces in Ethiopia revealed that
environmental differences (temperature and precipitation) and
geographic effects contributed 40 and 29% of the explained
genetic variation, respectively (Abebe et al., 2015). Pearl
millet landraces (249 accessions) from Senegal were genetically
distinct from many global accessions1, 262 accessions from
Africa, Asia, and the American contents, with the greatest
representation from India, Kenya, South Africa, Yemen, and
Zimbabwe, showed little population structure, and higher-
levels of linkage disequilibrium decay, providing a valuable
resource for use in breeding (Hu et al., 2015). Population
structure analysis involving cowpea landraces and wild relatives
delineated most African landraces into two major genepools,
with most landraces fromWest Africa forming genepool 1, while
the majority of the landraces in genepool 2 were from East

1http://www.ars-grin.gov

Africa. Furthermore, the authors noted that each genepool was
closely related to wild cowpea in the same geographic region,
suggesting divergent domestication leading to the formation of
two genepools in cowpea (Huynh et al., 2013). Lentil (Lens
culinaris) landraces (predominantly from Greece and Turkey)
also have revealed high levels of genetic diversity (Lombardi et al.,
2014).

Wild and weedy relatives of crops are an important source of
adaptation and stress tolerance genes. Wild species often grow in
harsh environments and therefore could be the source of genes
conferring abiotic stress adaptation. The greatest impact of wild
relatives in crop improvement to date have been in increasing
host plant resistance to pathogens and pests in several crops.
Wild species have also been the source of genes for edible yield
and quality traits in some crops (Dwivedi et al., 2008). Poets
et al. (2015) compared SNP polymorphism between landraces
and wild barley accessions and noted that landraces comprised
multiple source populations with unequivocal contributions from
wild barley populations across the genome. Furthermore, two
genomic regions on the 2H and 5H chromosomes contributed
to geographic differentiation in allele frequencies (Fang et al.,
2014). Wild barley accessions collected at ‘Evolution Canyon’
at Nahal Oren, Israel were more genetically diverse than
those from other regions in northern Israel, while those from
the hot and dry south-facing slope were genetically more
distinct from north-facing slope accessions (Bedada et al.,
2014).

A study on genetic basis of phenotypic variations among wild
pearl millet populations from two north–south aridity gradients
in West Africa revealed that the size of the inflorescence,
the number of flowers and above-ground dry mass co-varied
positively with rainfall decrease. Moreover, two SNPs located in
theMyosin XI gene were significantly associated with variation in
the average flower number. Both the allele frequency of the two
SNPs and the average flower number co-varied with the rainfall
gradient on the two gradients. Myosin XI is a good candidate
for fitness-related adaptation in wild populations (Ousseini
et al., 2017). Structure analysis of 99 ecotypes of wild soybean,
sampled across their native geographic range and genotyped by
SoySNP50K array, identified four genetic groups that largely
corresponded to geographic regions of central China, northern
China, Korea, and Japan, with high levels of admixture between
genetic groups. Moreover, the environmental factors contributed
23.6% to population differentiation, while geographical factors
accounted for 6.6%. Precipitation variables explained divergence
of the groups along longitudinal axes, whereas temperature
variables contributedmore to latitudinal divergence (Leamy et al.,
2016).

Such delineation of landraces and wild relatives into groups of
genetic relatedness associated with geographic or environmental
differences, and identification of accessions harboring higher
numbers of rare alleles (with functional effects) will be valuable
genetic resources in breeding and for improving the management
and utilization of germplasm in crop improvement. There are
significant barriers (both pre-fertilization and post-fertilization)
to inter-specific hybridization. Technology for circumventing
these barriers are required for increased introgression of allelic
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variation from wild relatives to primary crop genepools (Dwivedi
et al., 2008).

KEY BREEDING TARGETS TO ENHANCE
ADAPTATION AND PRODUCTIVITY

Optimizing Crop Productivity Using
Mutagenesis in the Florigen Pathway
Flowering time, the transition from vegetative to reproductive
growth, is a major determinant of crop yield (Cockram et al.,
2007; Jung and Muller, 2009). The universal flowering activator
florigen has several genetic components, including the key
FLOWERING LOCUS T (FT) gene (Koornneef et al., 1991;
Samach et al., 2000; Turck et al., 2008). While FT and FT-like
genes generally activate flowering, another group of genes
including TERMINAL FLOWER 1 (TFL1) and TFL1-like genes
act as flowering repressors (Karlgren et al., 2011). These genes
belong to the CENTRORADIALIS/TERMINAL FLOWER
1/SELF-PRUNING (CETS) gene family, which display sequence
similarity to the phosphatidylethanolamine binding protein
(PEBP) genes. The balance and interplay between flowering
activators and repressors determines flowering response.
Selection of variant genes in the florigen pathway to increase
environmental flexibility and yield has played in important role
in the domestication and improvement of many crops, including
barley (Comadran et al., 2012) and rice (Ogiso-Tanaka et al.,
2013).

Recently, more targeted breeding approaches have used
florigen pathway genes to control flowering in crops. A study
in tomato showed that reproductive growth could be influenced
by combining mutations in SINGLE FLOWER TRUSS (SFT; an
FT homolog) and a bZIP transcription factor within the florigen
pathway, to produce plant architecture increasing yields (Park
et al., 2014). Similarly, SFT heterozygosity in tomato was also
observed to alter plant architecture (Jiang K. et al., 2013). Using
the CRISPR/Cas9 system in tomato, it has been demonstrated
that mutation of the floral repressor gene SP5 can produce early
yielding plants (Soyk et al., 2017).

Rational engineering of flowering time remains constrained
by a lack of knowledge on the functions of many components
of the florigen pathway in different plant species, which contains
many closely related genes with diverse functions, including
unknown interaction and regulation networks. Because of the
diversification of the florigen pathway genes in flowering plants,
an improved understanding of species-specific florigen pathways
will be important for crop breeding (Zhang et al., 2010). Recent
studies investigating genetic control of flowering have identified
an important regulator of florigen transport in rice (Song et al.,
2017). Other studies have identified a loss of vernalization
requirement in narrow-leafed lupin (Lupinus albus), caused by a
deletion in the FT promoter (Nelson et al., 2017). In Arabidopsis
thaliana, mutagenesis of codons within the FT gene identified
differences critical for the related antagonist TFL1 and indicated
potential candidate transcription factors interacting with the
protein. As knowledge of species-specific flowering mechanisms

develops, fine-tuning of the florigen pathway should allow yield
increases through better control of flowering and growth in
crops.

Enhancing Abiotic Stress Adaptation
Breeding for adaptation to abiotic-stress remains a challenging
task (Dwivedi et al., 2010, 2017; Kole et al., 2015). Conventional
crossing and selection for abiotic stress adaptation had had
limited success. However, when supported by applied genomics
tools and genetic engineering, accelerated introgression of
beneficial alleles has enhanced yield and abiotic stress adaptation
in cereals and legumes.

Six large-effect QTL related to drought adaptation have been
shown to be effective in multiple genetic backgrounds and
production environments in rice. Pyramiding of these large-effect
QTL has improved drought adaptation of widely grown Asian
cultivars (Kumar et al., 2014). Submergence tolerant rice cultivars
bearing SUB1A-1 have had significant impacts in Asia (Bailey-
Serres et al., 2010; Dar et al., 2013). Furthermore, pyramiding
SUB1A-1 and drought-tolerant QTL (Kumar et al., 2014) or salt
(Saltol1) and flood (Sub1) tolerance QTL (Mackill et al., 2012)
is expected to lead to improved cultivars adapted to stress-prone
lands in Asia. The Pup1 allele increases P uptake and confers
significant grain yield advantage in rice grown on P-deficient
soils (Wissuwa et al., 2002). Introgressed lines containing Pup1
significantly increased grain yield on P-deficient soils (Chin et al.,
2011). Also, overexpression of a Pup1-specific protein kinase
gene (PSTOL1) significantly enhances grain yield in P-deficient
soils. POSTL1 promotes early root growth, thereby enabling
plants to acquire more P and other nutrients (Gamuyao et al.,
2012).

Identifying SNPs that are robustly associated with
environmental adaptation can be useful for crop improvement.
Environment-associated SNPs independent of geographic
origins predicted genotype × environment interactions under
drought stress and aluminum toxicity in sorghum (Lasky
et al., 2015). Climatic variables accounted for most of the
genetic variation in barley (Abebe et al., 2015). Many SNPs
were associated with putative adaptive loci and candidate
genes conferring enhanced adaptation. In barley, five and
two SNPs were correlated with length of growth season and
precipitation, respectively (Selçuk et al., 2015). However, none
were correlated with both. More recently, Russell et al. (2016)
noted extensive sequence variations amongst known flowering
associated barley genes HvCEN, HvPPD, and HvFT1 (Turner
et al., 2005; Casas et al., 2011; Comadran et al., 2012), with
haplotypes exhibiting strong geographical structuring, likely
contributed to range-wide ecogeographical adaptation. In
maize, Westengen et al. (2012) noted that 79 and 22 SNPs
associated with maximum temperature and mean precipitation,
respectively, with many located in genes functioning in abiotic
stress adaptation. Non-synonymous SNPs clustered in the
region harboring six known QTL associated with relatively
high phenotypic variation for drought adaptation in maize
(Xu et al., 2014). Pyhäjärvi et al. (2013) observed that SNPs
in wild teosinte ancestor were associated with altitude. Millet
et al. (2016) noted 8 and 12 QTL associated with heat and
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drought stress adaptation in maize, respectively, with low or
negative effects in favorable environments. Another 24 QTL
improved yield in favorable environments but without any
effects under stress, thereby indicating that QTL effects were
expressed as functions of environmental variables and scenarios.
Such genomics-assisted knowledge can potentially be used to
accelerate breeding for drought-prone environments (Millet
et al., 2016).

African pearl millet landraces collected in 2003 displayed a
short life cycle, reduced plant and spike size, and increased
frequency of early flowering alleles (from 9.9% in 1976 to 18.3%
in 2003) at the flowering locus PHYC (Saïdou et al., 2009),
which suggests that recurrent drought may promote shortening
of growth duration in pearl millet (Vigouroux et al., 2011).
Similar observations were noted after monitoring changes in
functional diversity due to possible climate effects in wild emmer
wheat and wild barley populations. Populations collected in
2008 flowered earlier than those collected in 1980, with greater
shortening of flowering time after 28 years for wild barley
than wild emmer wheat. However, the study indicated that
emmer wheat lost more alleles than wild barley. The allelic
reduction in emmer wheat was negatively correlated with altitude
(−0.854∗) and humidity (−0.673∗), while in barley the difference
between the sampling years was positively correlated with rainfall
(0.790∗) but negatively with evaporation (−0.692∗) (Nevo et al.,
2012).

Villordo-Pineda et al. (2015) have identified 37 SNPs
with a potential drought adaptation function in common
bean. A ‘QTL-hotspot’ region harboring 12 QTL associated
with drought adaptation traits contributed up to 58% of the
phenotypic variation in chickpea (Varshney et al., 2014).
Indeed, introgressions containing this region in JG 11, a
widely grown cultivar in India, have improved root traits and
drought tolerance (Varshney et al., 2013). Subsequently, Kale
et al. (2015) fine-mapped this ‘QTL-hotspot’ and identified
four candidate genes from this region that are associated with
drought tolerance. Anderson et al. (2016) identified several
candidate loci that putatively contributed to adaptation to
abiotic stresses, which may permit targeted use of Glycine
soja germplasm for enhancing the genetic potential of
cultivated soybeans. Qi et al. (2014) noted that sequence
variations in GmCHX1 were associated with salt tolerance
in a wild soybean, W05. Likewise, 20 loci associated with P
efficiency-related traits have been identified in soybean, some
coinciding with known P efficiency-related genes GmACP1
and GmPT1, while Glyma.04G214000 and Glyma.13G161900
displayed differential expression in low-P soils (Zhang et al.,
2016c).

The evidence to date suggests that understanding (and
deployment) of major QTL or candidate genes associated with
abiotic stress adaptation has led to the development and release
of several maize and rice cultivars adapted to different abiotic
stresses (Ortiz, 2013). A large effort is underway to introgress
major QTL associated with drought and heat stress adaptation in
common bean and chickpea (Dwivedi et al., 2017). The discovery
of several SNPs associated with variation in both temperature and
precipitation responses in barley, maize and sorghum provide a

further opportunity to develop cultivars with enhanced fitness in
the context of a changing climate.

Phenology, Yield and Adaptation
Crop Duration and Yield

Understanding the nucleotide variation and mechanism of
molecular evolution of flowering, maturity and plant height genes
could accelerate the development of cultivars of specific duration
to better adapt them to growing seasons. Knowledge on sequence
variation in genes related to plant or panicle architecture (and
yield) may provide opportunities to genetically enhance crop
productivity per se.

Rice adaptation to climate is influenced by days to flowering
and its sensitivity to photoperiod variation. OsPRR37 (PRR37) is
within the Early heading 7-2 (EH7-2)/Heading date 2 (Hd2) QTL
in rice. The japonica cultivars having Ghd7/Hd4 and PRR37/Hd2
non-functional alleles flower early under extended photoperiod,
and are adapted to the northernmost region of cultivation, up
to 53◦N latitude. Genetic analysis reveals that the effects PRR37
and Ghd7 effects on heading date are additive (Koo et al., 2013).
PRR37 down-regulates Hd3a expression to suppress flowering
under extended photoperiods, thus suggesting that PRR37/Hd2
and Ghd7/Hd4 contributed to adaptation of rice in temperate
and cool regions. Further investigation using accessions from the
O. japonica core collection have revealed that RICE FLOWERING
LOCUS T1 (RFT1) is the major contributor to flowering among
japonica cultivars adapted to northern areas (Naranjo et al.,
2014). Ghd7 is a gene with pleotropic effects that controls
plant height, heading date and yield in rice. Lu et al. (2012)
noted 76 SNPs and six indels within a 3932bp DNA fragment
of Ghd7 derived from two distinct ancestral genepools (indica
and japonica), of which SNP S_55 was associated with plant
height while another seven SNPs were in complete linkage with
spikelets per panicle, regardless of photoperiod. Their finding
suggests major flexibility of Ghd7 to improving phenology,
panicle architecture, and yield in rice.

The genes IDEAL PLANT ARCHITECTURE (IPA), LONG
PANICLE1 (LP1), SPIKELET NUMBER (SPIKE), Gna1 (grain
number), Ghd7 (grain number, plant height, and flowering),
GS3 (grain weight and length), GW5 (grain weight), and DEP1
(DENSE AND ERECT PANICLE1) greatly influence panicle
architecture and seed yield in rice (Ashikari et al., 2005; Fan et al.,
2006; Weng et al., 2008; Xue et al., 2008; Huang et al., 2009; Jiao
et al., 2010; Miura et al., 2010; Fujita et al., 2013; Liu E. et al.,
2016).DEP1 locus has been widely used for developing high yield
rice cultivars with erect panicle architecture (Yan et al., 2013).
Mining allelic variations for panicle traits unravels 45 SNPs and
26 InDels within the DNA fragment of DEP1 and replacement
of 637 bp by 12 bp fragment explain most of the phenotypic
variations for panicle architecture, and SNP(G/C) largely affects
branches and grains panicle−1 (Zhao M. et al., 2016).

Ghd7 (Ma6) and pseudoresponse regulator protein 37 (PRR37)
alleles in sorghum confer differences in photoperiod sensitivity
and flowering times that are critical for production of high-
biomass energy or grain sorghum (Murphy et al., 2011, 2014).
Furthermore, Wang Y. et al. (2014) investigated nucleotide
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diversity of Ma3, another maturity gene in sorghum, and
identified three and 17 SNPs that affected flowering at high-
latitude and at low-latitude environments, respectively. Indeed,
a major QTL on chromosome 6, FlrAvgD1, which contributed
85.7% of variation in flowering under LD, was narrowed to a
10 kb interval containing the only one annotated protein-coding
gene (Sb06g012260) with potential to accelerate cross-utilization
of temperate and tropical germplasm for production of grain or
bioenergy sorghum types (Cuevas et al., 2016).

The discovery and deployment of alleles of semi-dwarfing
genes have contributed to enhanced lodging resistance and
increased productivity in both rice and wheat (Peng et al.,
1999). For example, the use of semi-dwarf1 (sd1) in rice and
reduced height (Rht) alleles in wheat, which encode a GA
biosynthesis enzyme and a dominant suppressor protein of
GA signal transduction, respectively, have been widely used
to confer lodging resistance in these crops (Peng et al., 1999;
Sasaki et al., 2002). A semi-dwarfing gene (sdw1) locus has been
widely introgressed into barley cultivars grown worldwide. At
least four alleles (sdw1.a, sdw1.c, sdw1.d, and sdw1.e) have been
reported (Franckowiak and Lundqvist, 2012). The gibberellin
20-oxidase gene (HvGA20ox2) is the functional gene of sdw1
mutants, and deletions resulted in different functional alleles
for breeding purposes. Diagnostic markers can differentiate the
wild type allele from the sdw1.d, sdw1.a, and sdw1.c alleles
(Xu Y. et al., 2017). In sorghum, four unlinked dwarfing genes
(Dw1–Dw4) were combined to reduce plant height to increase
lodging resistance and improve mechanized harvesting (Quinby
and Karper, 1954). Of these, only Dw3 has been cloned (Multani
et al., 2003). Yamaguchi et al. (2016) isolated the Dw1 gene,
which encodes a novel uncharacterized protein. A histological
analysis comparing the Near Isogenic Line (NIL)-dw1 with that
of wild type showed similar longitudinal parenchymal cell lengths
of the internode, but significantly reduced number of cells per
internode in NIL-dw1. NILs containing dw1 and dw3 displayed
a synergistic phenotype, which contributes to improved lodging
resistance and mechanical harvesting in sorghum (Yamaguchi
et al., 2016).

To date, 10 major genes (E1 to E9 and J) and several QTL have
been shown to be involved in control of flowering in soybean.
Different allele combinations at E1-E4 and E9 loci produce
diverse flowering habits in soybean cultivars (Xu et al., 2013;
Kong et al., 2014; Tsubokura et al., 2014; Zhao C. et al., 2016).
Multi-locus genotypes involving E1 to E4 account for 62–66%
of natural variation in the flowering time and identified a new
allele in E1 locus, e1-re, for flowering in soybean (Tsubokura et al.,
2014). FT2a and FT5a, the orthologs of FLOWERING LOCUS
T (FT) (Kong et al., 2010), play a major role in initiation of
flowering. Indeed, their expression in response to photoperiod is
controlled by different allelic combinations involving E1 to E4.
More recently, Takeshima et al. (2016) identified a QTL in LG
J which was localized to a genomic region of 107 kb (harboring
FT5a). The study detected SNP polymorphisms between the
parents involving early (ef ) and late (lf ) flowering alleles, and
also detected ef, a rare haplotype distinct from others including
lf. A higher transcript abundance of FT5a in NILs containing ef
allele suggests that differential transcriptional activities or mRNA

stability may cause differences in flowering (Takeshima et al.,
2016).

An investigation of flowering time variation and SNP
polymorphisms in key regulatory genes in common bean
revealed that PvVRN1 and Pv PHYB are associated with
days to flowering, PvMYB29 with number of flower buds per
inflorescence, and PvTFL1z and PvFCAwith inflorescence length
(Raggi et al., 2014). More recently, a QTL on linkage group Pv01,
harboring the Phvul.001G189200 gene (with sequence similarity
to the TERMINALFLOWER1 (TFL1) gene in Arabidopsis
thaliana), explained up to 32% of phenotypic variation for time
to flowering, 66% for vegetative growth, and 19% for rate of plant
production, supporting Phvul.001G189200 (referred as PvTFL1y)
as a candidate gene for determinacy locus in common bean
(González et al., 2016). CcTFL1, a candidate gene for determinacy
in pigeonpea, contributed substantial phenotypic variations for
determinacy (45–96%), flowering (45%) and plant height (77%)
(Mir et al., 2014). Foucher et al. (2003) isolated three TFL1
homologs, PsTFL1a, PsTFL1b, and PsTFL1c in pea. PsTFL1a
controls indeterminacy of the apical meristem during flowering,
while PsTFL1c delays the induction of flowering by lengthening
the vegetative phase in pea. The development of genetic markers
has potential to allow manipulation of the determinacy trait in
these and other legume species.

Understanding the molecular basis of allelic variation
associated with flowering, plant height, maturity, plant
architecture, and yield provides opportunities to tailor crop
ideotypes that are better adapted to specific agro-ecosystems or
meeting end-use preferences.

Tropical vs. Temperate Adaptation

Although maize, rice and sorghum were domesticated in tropical
regions, they are all commercially grown both in tropical and
temperate climates. Understanding the molecular basis of such
adaptation differences for these important cereal crops is critical
for targeted introgression of beneficial alleles from one genepool
to another, or for developing grain or bioenergy sorghum types.
Sorghum is a short-day plant requiring a daylength below 12 h
20 min to induce flowering. Hence, most of the tropical sorghum
germplasm flowers too late or is too tall to be exploited for seed
production in temperate environments. In the 1970s a large-
scale sorghum conversion program was initiated by USDA-ARS
to convert tropical accessions to plants adapted to temperate
zones by introgressing recessive day-neutral flowering alleles and
dwarf-height genes into the exotic backgrounds via a backcross
scheme to recover the exotic genome in early flowering, combine-
height inbred lines (Stephens et al., 1967). This effort resulted in
the release of 40 such converted lines for use in temperate zones
worldwide (Klein et al., 2016). Three genomic regions, each with
multiple linked loci for phenology (plant height and flowering),
have been found to control adaptation of grain type sorghum in
temperate zones (Thurber et al., 2013).

Although maize is highly sensitive to low temperature,
there is natural variation in freezing and chilling tolerance.
The mechanisms responsible for chilling tolerance include
modification of photosynthetic apparatus modification, cell wall
properties, and developmental processes (Sobkowiak et al., 2016).
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Differential gene expression in response to freezing identified
nine candidate genes with higher expression levels and eight
candidate genes with lower expression levels in the tolerant
compared to the intolerant lines (Li Z. et al., 2016; di Fenza
et al., 2017). Dent and flint maize, which differ in their kernel
phenotypes, represent two major temperate gene pools in maize.
The flint contributes to early vigor and cold tolerance, while
dent increases productivity in hybrids. Unterseer et al. (2016)
identified candidate genes under differential selection pressure
in these two genepools. Most flint-specific candidate genes were
associated with endogenous pathways, whereas dent candidate
genes were mainly involved in response to environmental factors
such as light and photoperiod.

Low temperature is one of the major constraints limiting
rice productivity and cultivation in high-altitude regions. The
major rice QTL COLD1, which functions as a regulator of
G-protein signaling, confers chilling tolerance. The allele SNP2
in COLD1jap/ind enhances the ability to activate G-protein α

GTPase, as COLD1 interacts with G protein to activate the
Ca2+ channel for temperature sensing (Ma et al., 2015). A novel
gene CTB4a controlling cold tolerance at booting stage in rice
enhances seed setting and grain yield under cold stress conditions
(Zhang et al., 2017). Oryza glaberrima has contributed the major
QTL OgTT1, which confers adaptation to heat stress. OgTT1
protects cells from heat stress through more efficient elimination
of cytotoxic denatured proteins and more effective maintenance
of heat-response processes. Overexpression of this gene was
associated with markedly enhanced thermotolerance in rice,
Arabidopsis and Festuca elata (Li et al., 2015). Thus, deployment
of QTL conferring chilling- and thermo-tolerance is expected to
aid development of rice cultivars with enhanced adaptation to
these climatic variables.

Soybean was domesticated in temperate regions and is highly
sensitive to photoperiod. However, temperate soybean cultivars
are not adapted to tropical and sub-tropical climates. The
discovery of the long juvenile (LJ) trait in tropical soybean
germplasm and its deployment has extended cultivation of
temperate soybean to low altitude tropical and sub-tropical
climates (Hartwig and Kiihl, 1979; Neumaier and James, 1993).
A major locus J identified as the ortholog of Arabidopsis
ELF3 confers the LJ trait: J promotes flowering, while j delays
flowering, providing new insight into soybean adaptation to
tropical climates (Lu et al., 2017).

The discovery of novel allelic variation and investigation of
its genetic and molecular basis has facilitated the successful
conversion and adaption of tropical genepools to temperate
climates (or temperate genepools to tropical climates) as noted
in maize, rice, sorghum, and soybean. This enables exploration
of new adaptation niches in agro-ecosystems where farmers are
currently growing crops that may become unsuitable due to
future climate change.

Rare Alleles to Benefit Future Genetic
Improvement
While common alleles in crops are more likely to be involved
in beneficial traits, useful variation may persist as rare alleles

that have not undergone strong natural or human selection.
The potential agronomic benefits of rare alleles are evident in
many traits associated with domestication that are rare in natural
populations. For instance, dwarf height, reduced tillering, non-
shattering seeds and male sterility alleles will be rare in natural
populations. In humans, the search for the ‘missing heritability’
of diseases has led to the understanding that rare alleles (at
frequencies as low as <0.1%) can have major phenotypic effects
(Fritsche et al., 2016). However, identifying rare alleles in wild
or crop populations is challenging because extremely large
populations need to be phenotyped and genotyped to detect rare
alleles. There is also considerable ascertainment bias against rare
alleles because these alleles can be confounded with sequencing
errors (Heslot et al., 2013) and routine filtering often excludes
alleles with a frequency below 5% to facilitate detection of
common variants linked to traits.

Despite the challenges involved in detecting trait-linked rare
alleles to use as candidates for crop improvement, substantial
progress has been made as the cost of sequencing has decreased
and the power of association mapping has risen. A remarkable
success was achieved in maize, where the discovery of beneficial
rare alleles LcyE and crtRB1 using association mapping (Harjes
et al., 2008; Yan et al., 2010) later allowed introgression of the
high-provitamin A trait into cultivars consumed in developing
countries where vitamin A deficiency in children is an important
public health concern (Azmach et al., 2013). In rice, a rare allelic
variant of an upstream promoter of OsglHAT1 was shown to
enhance grain weight and yield (Song X.J. et al., 2015), and a
rare allele of the grain length QTL, qGL3, increases grain length,
filling, and weight (Zhang et al., 2012).

Harnessing Epigenetic Variation for Crop
Improvement
Epigenetics is broadly defined as “the study of mitotically and/or
meiotically heritable changes in gene function that cannot be
explained by changes in DNA sequence” (Russo et al., 1996).
In the context of nuclear genes, epialleles are epigenetically
modified alleles whose function is altered as a result of the
particular epigenetic modification(s) (Finnegan, 2002). The range
of reversible molecular mechanisms that can generate epialleles
includes DNA methylation and a range of possible modifications
(methylation, acetylation, phosphorylation, ubiquitination) to
histones that can change chromatin states (Pikaard and Scheid,
2014). Additional molecular mechanisms that can generate or
alter epialleles involve structural proteins and enzymes involved
in chromatin assembly and remodeling (Pikaard and Scheid,
2014).

While transposable elements are key drivers of genetic
variation in crop genepools (Bennetzen and Wang, 2014), they
are also major drivers of epigenetic variation (Seymour and
Becker, 2017; Song and Cao, 2017). In addition, there is a strong
interplay between genetic variation (e.g., SNPs) and epiallelic
variation (as measured by DNA methylation variation) (Eichten
et al., 2013; Meng et al., 2016). Transposon-associated epigenetic
variation has been shown to have functional effects in a range
of crops, including rice (Zhang X. et al., 2015), melon (Citrullus
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lanatus) (Martin et al., 2009) and oil palm (Elaeis guineensis)
(Ong-Abdullah et al., 2015).

Unlike mutational changes, epigenetic changes are potentially
reversible. For instance, research on paramutation (since Brink’s
pioneering studies of the R locus in maize) showed that at
some loci, one allele can induce a heritable epigenetic change in
the other allele (Brink, 1958; Hollick, 2016). Similar reversible
epigenetic states are evident for loci regulated by genomic
imprinting (Garnier et al., 2008), nucleolar dominance (Tucker
et al., 2010) and gene silencing (Pikaard and Scheid, 2014).
Indeed, epigenetic studies in plants (e.g., for the Lcyc and
FWA loci) demonstrated that epialleles associated with biological
functions can be heritable over multiple generations (Cubas et al.,
1999; Soppe et al., 2000). Fundamental research using genetically
identical yet epigenetically diverse recombinant inbred lines
(epiRILs) has shown that epigenetic variation is associated with
phenotypic variation and that such epiRILs can remain stable
over generations (Johannes et al., 2009), at least in inbreeding
plant species. Epigenetic quantitative trait loci (epiQTL) have
been identified associated with traits such as root length and
flowering time (Cortijo et al., 2014; Kooke et al., 2015). It has
been also demonstrated that RNA interference (RNAi) pathways
are important to maintain DNAmethylation pattern fidelity over
generations (Teixeira et al., 2009).

While it is clear that epialleles contribute to functional
effects in plants, that can be trans-generationally inherited
and be reversible (e.g., in response to abiotic or biotic
environmental stimuli) (Becker et al., 2011; Schmitz et al., 2011),
it is also emerging that epigenetic variation (epialleles) and
mechanisms can potentially make contributions to functional
traits in crop genepools (Eichten et al., 2011; Li Q. et al.,
2014). Plant epigenome diversity research revealed that while
different geographic origins display different genome-wide DNA
methylation levels and epiallelic gene expression (Kawakatsu
et al., 2016), there is no detectable signal of DNA methylome
adaptation to the environment (Hagmann et al., 2015). In
addition, the contribution of the DNA methylome to gene
expression regulation has been demonstrated to be much less
than the contribution from SNPs (Meng et al., 2016). While over
a 1000 expression traits displayed significant SNP associations,
less than 60 of these displayed an association with DNA
methylation polymorphisms (Meng et al., 2016). Such findings
have implications for crop improvement, particularly if epiallelic
variation is contributing to specific adaptation of crops or their
wild relatives to agro-environments.

Heterosis refers to the superior performance of F1 progeny
compared to their parents and is extensively harnessed for crop
improvement (Duvick, 2001). While heterosis in plants may be
due to genetic dominance (complementation), overdominance
and pseudo-overdominance effects (Birchler et al., 2010;
McKeown et al., 2013; Schnable and Springer, 2013), there is
emerging evidence that epigenetic variation and mechanisms
may contribute to heterosis effects in plants (Shivaprasad et al.,
2012; Groszmann et al., 2013; Offermann and Peterhansel,
2014). For instance, “heterosis without hybridization” has
been demonstrated in plants using epiRILs and triploid
lines that are genetically identical but epigenetically different

(Duszynska et al., 2013; Dapp et al., 2015; Fort et al.,
2016).

Metastable epialleles are alleles that display variable
expressivity despite being in an identical genetic background.
Research using metastable epialleles of the red color r1 locus
in maize did not, however, support a metastable epigenetic
contribution to heterosis or inbreeding depression (Auger et al.,
2004). While non-additive DNA methylation effects have been
observed in F1 hybrids that display heterosis (Greaves et al.,
2014), the functional significance of such DNA methylation
changes is unclear, as genetic ablation of such RNA-mediated
DNA methylation interactions did not affect heterosis biomass,
while the chromatin remodeller DDM1 has been identified as a
modifier of heterosis (Groszmann et al., 2011; Shen et al., 2012;
Kawanabe et al., 2016; Zhang et al., 2016a,b).

Apomixis refers to asexual reproduction via plant seeds.
Despite being a naturally occurring phenomenon, the fixation
of heterosis via apomixis to generate true-breeding lines in crop
improvement programs has been extensively proposed but has
not been realized to date (Spillane et al., 2004). Indeed, while it
was expected that apomixis could fix F1 heterosis effects that have
a genetic basis, this had not been demonstrated until recently
where it has been shown that apomixis could fix 90% of traits
generated in Pilosella F1 hybrids over two successive generations
(Sailer et al., 2016).

Research in tomato (Solanum lycopersicum) and
emerging studies on other fleshy fruit crops are revealing
a role for epigenetic control of fruit ripening (Gallusci
et al., 2016), e.g., DEMETER-like DNA demethylases and
CHROMOMETHYLASE3 (SICMT3) genes regulate fruit-
ripening associated transcription factors (e.g., RIN) and
epi-alleles (Cnr) in tomato (Manning et al., 2006; Zhong et al.,
2013; Chen et al., 2015; Liu R. et al., 2015). Epigenetic variation
in crop genepools at loci that are sensitive to environmental
signals (e.g., temperature, vernalization, photoperiod, flowering
time, and ripening) has potential for more effective harnessing
through breeding (King, 2015), involving selection of functional
epiallelic variants, and potentially future epi-genome editing
(Klann et al., 2017).

Epigenetic variation that contributes to adaptive phenotypic
variation may be particularly important in fluctuating
environments, and could play an important phenotypic plasticity
role as a buffer to environmental stimuli, and both abiotic and
biotic stresses. For instance, tight epigenetic regulation of the
antagonistic NLR receptors PigmR and PigMS is necessary to
confer rice blast resistance with minimal yield penalty (Deng
et al., 2017). The identification of such epialleles and epigenetic
regulatory systems conferring functional impacts on agronomic
traits can feed into a range of different approaches emerging
for epigenetic breeding of crop plants, including use of mutant
lines (Yang et al., 2015), recurrent epi-selection (Hauben et al.,
2009; Greaves et al., 2015), hybrid mimics (Wang L. et al., 2015),
epigenomic selection (Jonas and de Koning, 2013; Oakey et al.,
2016) and epigenome editing (Park et al., 2016).

Many studies on the relationship between epigenetic
variation and epialleles and phenotypic variation (including
expression variation) have been conducted under controlled
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conditions. As a result, little is known of the extent of
epigenotype × genotype × environment (epiG × G × E)
interactions of crops under field conditions. For crop
improvement, harnessing both multilocus epiallele interactions
(with associated epistasis effects) and single locus “major effect”
epialleles offer opportunities for developing novel approaches for
increased epigenetic gain in crop breeding programs.

HARNESSING FUNCTIONAL DIVERSITY
WITH NEW TRAIT IMPROVEMENT
TECHNOLOGIES

Genomic-Estimated Breeding Values to
Predict the Utility of Germplasm
Accessions
While there are 100s or 1000s of germplasm accessions
conserved in ex situ genebanks globally, the lack of phenotyping
and genotyping data limits their use. Advances in genomics,
phenomics and bioinformatics are increasing the availability and
quality of data to better leverage this germplasm for breeding
(McCouch, 2013). Association genetics along with genomic
prediction further allows expansion of use of genetic variation,
with the aim of increasing yield-related genetic gains in cereals
(Spindel et al., 2016). Ayling (2016) provides an overview
of promising methods for increasing the knowledge on (and
utility of) genebank accessions using next generation sequencing
(NGS). Moreover, emerging cross-disciplinary “genoplasmics”
has been proposed as new term to refer to genomics-assisted
plant germplasm research (Jia et al., 2017). Such a research
methodology involves defining core collections or core subsets
(that capture maximum evolutionary history in a limited number
of accessions) are promoted for genetic enhancement or gene
discovery (van Hintum et al., 2000). For example, investigation
of spring bread wheat diversity (in a genebank from mega
environments) by high quality genotyping-by-sequencing (GBS)
loci and gene-based markers permitted selection of novel
variation for further use in breeding crops with traits such as
adaptation to drought or heat stress (Sehgal et al., 2015b).

Longin and Reif (2014) proposed a stepwise strategy for
better use of wheat genetic resources that are available in
genebanks. They propose using representative core subsets
of accessions that are defined after genotyping and assessing
their genetic relationships, including consideration of whether
different accessions harbor major adaptation genes to stressful
environments. Specific accessions are selected according
to phenotyping and genome-wide data; i.e., genotypic and
phenotypic data are used to estimate effects for all genomic
regions and to develop models for predicting genomic estimated
breeding values (GEBV) of genebank accessions that may be
candidate parents of elite wheat breeding lines. This approach
targets the entire genome rather than focusing on major genes
with large effects related to traits of interest. Genomic prediction
models including the genotype × environment interaction have
already been shown to be promising for introgressing highly
heritable traits from exotic wheat landrace germplasm stored in

genebanks into elite breeding lines (Crossa et al., 2016). These
results validate the direct use in crop breeding of the substantial
landrace genetic diversity that is conserved in genebanks. This
introgression breeding approach also requires GEBV to predict
the value of the resulting offspring. In the last step of the
proposed strategy, genotypic and phenotypic data along with
passport and pedigree information are shared through a database
platform to facilitate breeding.

As noted by Brown (2016), the major interest of using GEBV
for predicting traits lies on replacing expensive phenotyping with
inexpensive genotyping. In this regard, Yu et al. (2016) provided
a proof-of-concept study that integrated genomic prediction into
the evaluation of germplasm with a broad genetic base. They
first characterized a sorghum core subset (962 accessions) with
GBS. Next, 299 accessions representing the overall diversity of the
core subset were selected as a training set for biomass yield and
other related phenotypic traits such as plant height, stalk number
and root lodging, amongst others. Cross-validation demonstrated
a high prediction accuracy for stalk number and biomass
yield. Similarly, Gorjanc et al. (2016) used GEBV to harness
multigenic variation from maize landraces. Their results suggest
that genetic enhancement using high levels of genetic diversity
can begin directly with landraces. They also indicated that early
introgression into elite germplasm seems to be feasible for loci
with large effects, but not for landrace haplotypes harboring
multi-genic variation because further improvement will favor the
elite haplotypes and limit the distinctness of resulting germplasm.
Similarly, Burstin et al. (2015) were able to predict flowering,
seeds per plant, and seed weight using diverse pea accessions
after characterizing the accessions with DNA markers. Genomic
prediction, as shown by Jarquin et al. (2016), depends on having
both the target population and environment in the training set,
and on including data from diverse geographical locations and
genetic clusters. Their research highlights the value of historical
germplasm data to develop predictive models that assist in
selecting genebank accessions for introgressing useful genetic
variation into breeding populations and programs.

CRISPR/Cas9 to Release Novel Variation
Genome editing is a rapidly emerging targeted mutagenesis
approach that offers unique opportunities to elucidate gene
functions and introduce novel beneficial alleles into crop
germplasm (Voytas, 2013; Scheben and Edwards, 2017).
Although engineered nucleases such as transcription activator-
like effector nucleases (TALENs) and zinc finger nucleases
(ZFNs) can be used for genome editing, the dominant tool
at present is the type II clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein
(Cas) system using the Cas9 nuclease (Jinek et al., 2012). The
CRISPR/Cas system targets specific genomic regions via a guide
RNAwhich hybridizes to a G(N)19−22NGG target DNA sequence
downstream of an NGG protospacer adjacent motif (Gasiunas
et al., 2012; Jinek et al., 2012). The guide RNA forms a complex
with the Cas9 nuclease which then cleaves double stranded DNA
at the target site. The error-prone non-homologous end joining
(NHEJ) DNA repair pathway repairs the double-strand break,
typically introducing a deletion. By delivering a DNA repair
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template together with the CRISPR/Cas system, in principle
precise insertions or deletions can be achieved via the error-free
homology directed repair (HDR) pathway.

CRISPR/Cas has now been demonstrated to improve
agronomic traits in numerous crops. For example, genome
edited lines of the rice genes gn1a, dep1, gs3, dep1 and gs3
showed enhanced grain number, dense erect panicle, larger grain
size, semi-dwarf stature and long-awned grains, respectively (Li
M. et al., 2016). Disrupting pest-susceptibility genes increased
resistance to fungal blast in rice (Wang F. et al., 2016), resistance
to powdery mildew in bread wheat (Wang Y. et al., 2014)
and broad-spectrum disease resistance in tomato (de Toledo
Thomazella et al., unpublished). The CRISPR/Cas system has
also unraveled several biallelic mutations of Glyma06g14180 and
Glmya08g02290 with varying gene expression during hairy root
development in soybean (Sun et al., 2015). While these studies
have relied on disruption of target genes via error-prone NHEJ
to change plant phenotypes, progress has also been made in the
more difficult to achieve precise gene targeting using HDR. In
a recent study in maize, a promoter of the drought-tolerance
associated ARGOS8 gene was swapped using CRISPR/Cas and
HDR with the U3 maize promoter to increase expression of the
ARGOS8 gene (Shi et al., 2016). Field trials showed that genome
edited maize plants had significantly higher yield under drought
stress and no yield loss under normal conditions.

The major current limitations in the application of
CRISPR/Cas genome editing for crop improvement relate to the
inefficient precise gene targeting via HDR (Steinert et al., 2016).
However, targeted base editing has now been demonstrated in
rice, wheat, maize and tomato using Cas9-cytidine deaminase
fusions (Zong et al., 2017; Shimatani et al., 2017). In addition,
given that most cereal and legume crops are auto- or allo-
polyploids, genome editing now offers the exciting opportunity
for targeted mutagenesis in polyploid plant genomes (Ryder
et al., 2017), which has not been possible with conventional
mutagenesis techniques (Kumar et al., 2017). While there has
been some focus on potential lack of target site specificity (Fu
et al., 2013; Jiang W.Z. et al., 2013; Pattanayak et al., 2013)
from early generation CRISPR/Cas systems, improved systems
are under development to minimize any off-target edits. For
instance, innovative techniques such as paired Cas9 nickases
(Ran et al., 2013) and highly specific Cas9 variants (Kleinstiver
et al., 2016) are increasing the DNA target specificity of genome
editing. In any event, weighing up the benefits of gene targeting
against any (hypothetical) costs associated with off-target editing
in crop genomes, very low levels of off-target editing in crop
genomes is unlikely to be of any major concern, given that
(chemical and radiation) mutagenized lines have been used
for decades for crop improvement. Genome editing has major
potential not only for crop improvement but also for rapid
domestication of novel crops from wild species or minor crops
by simultaneously editing genes related to domestication such
as grain size, shattering, plant stature, and flowering time. As
wild plants may harbor greater diversity in climate-related traits
such as stress tolerance and pest resistance, CRISPR/Cas-assisted
breeding approach may play an important role in increasing
global food production in a changing climate.

STORAGE AND INTEGRATION OF
GENETIC AND PHENOTYPIC
INFORMATION

Although vast amounts of sequence and expression data are
hosted by the European Molecular Biology Laboratory (EMBL)
(Kanz et al., 2005), GenBank (Benson et al., 2012), and the
DNA Data Bank of Japan (DDBJ) (Mashima et al., 2016),
crop improvement relies on the integration of such data
with more widely dispersed data on sequence variation and
phenotypes. Storing and managing the increasing amounts of
public and private genotypic and phenotypic data on crops,
however, is challenging (Batley and Edwards, 2009; Lee et al.,
2012). In the past decade or so, crop-specific databases and
bioinformatics services have been developed for many crops
(Table 7). These public databases provide access to genomes
and the corresponding annotation data, together with data
on phenotypes and genotypes. Tools such as ngs.plot (Shen
et al., 2014) and QTLNetMiner2 enable integrated analysis of
genotype and phenotype information contained in databases.
Mining of genomic databases in this way or using more advanced
machine learning approaches can facilitate discovery of genes
related to specific target functions. A range of databases for the
management of crop germplasm have also been developed by the
European Cooperative Programme for Plant Genetic Resources
Networks (ECPGR) and the United States. National Plant
Germplasm System (NPGS). Linking germplasm information to
broader genetic and phenotypic resources would allow easier
accessibility of germplasm for experimentation.

The large scale of genotypic and phenotypic data requires
a powerful computational platform for data management and
parallel processing. The open-source Apache Hadoop framework
suits the demands of large-scale processing of genomic data
(Niemenmaa et al., 2012; Nordberg et al., 2013; O’Driscoll
et al., 2013). Cloud computing services such as those provided
by Amazon (Madduri et al., 2014), or institutional dedicated
computing clusters, allow researchers cost-effective access to
the computational power required for integrated analysis of
large biological datasets. While the infrastructure for developing
databases to host and help analyze big biological data is available,
long-term funding of database projects is rare, despite being
essential infrastructure to maintain and curate the continuously
growing databases. Moreover, the usefulness of existing databases
is often severely limited by a lack of phenotype data because the
generation of genotypic data has fast outstripped that of other
data types. Without phenotype data, it is not possible to carry
out association genetics or identifying candidate genes linked to
agronomic traits (Cobb et al., 2013). Advances in phenomics such
as remote sensing, robotics and automated environmental data
collectionmay help overcome the bottleneck in phenotyping data
(Furbank and Tester, 2011; Araus and Cairns, 2014).

Another step required to facilitate the integration of large-
scale crop data is the use of shared vocabularies for genetic
and phenotypic information. The gene ontology (GO) project

2http://ondex.rothamsted.ac.uk/QTLNetMiner/
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TABLE 7 | Databases integrating crop data including genomes, genotypes and phenotypes.

Database Crops Web link Reference

Gramene Grasses http://www.gramene.org Tello-Ruiz et al., 2016

International Rice Informatics Consortium Rice (Oryza sativa) http://iric.irri.org n/a

Maize Genetics and Genomics Database Maize (Zea mays) http://www.maizegdb.org Lawrence et al., 2004

SoyKB Soybean (Glycine max) http://soykb.org Joshi et al., 2014

T3 Triticaceae toolbox Wheat (Triticum aestivum), barley (Hordeum

vulgare) and oat (Avena sativa)

https://triticeaetoolbox.org/ Blake et al., 2016

Wheat Information System Wheat (Triticum aestivum) http://wheatis.org n/a

has made major strides in the use of universal vocabularies
for the annotation of genes, gene products and sequences.
Nevertheless, the vocabularies used for describing sequence
variation and phenotypic traits remain inconsistent and hamper
data integration. Researchers must collaborate closely in
developing consistent vocabularies to accelerate the development
of broadly informative crop databases that are useful for plant
breeders.

Finally, an important step for crop improvement would
be an increase in data sharing between public and private
sector institutions (Spindel and McCouch, 2016). Political
disagreements on access to crop genetic resources and the
distribution of benefits have led to protectionist attitudes
regarding plant genetic resources, indicating the need for an
acceptable data sharing framework. The 2001 International
Treaty on Plant Genetic Resources for Food and Agriculture (IT
PGRFA) provides a multilateral framework (agreed between the
world’s governments) for exchange of plant genetic resources
(using a common material transfer agreement (MTA) for each
accession) between countries (and their institutions). The IT
PGRFA covers access to the vast majority of the world major crop
and forage species, which are listed in Annex 1 of the Treaty.
Future challenges will undoubtedly emerge regarding access and
benefit sharing relating to genomic or phenomic data derived
from crop genetic resources, which fall under the auspices of the
International Treaty on Plant Genetic Resources.

CURRENT KNOWLEDGE AND FUTURE
CHALLENGES IN FUNCTIONAL
DIVERSITY

Advances in genomic technologies have led to an unprecedented
availability of crop sequences and sequence variation data.
As crop genomes are re-sequenced to better represent the
genetic diversity in the gene pool, pangenomes capturing core
and variable genes in crop species are becoming available,
e.g., in maize (Hirsch et al., 2014), rice (Schatz et al., 2014),
wheat (Montenegro et al., 2017), soybean (Li Y.H. et al.,
2014), Brassica rapa (Lin et al., 2014), and Brassica oleracea
(Golicz et al., 2016). Despite this wealth of genomic data, gene
functions and networks remain very poorly characterized, even
in crops such as rice (Rhee and Mutwil, 2014). The genetic
mechanisms controlling important agronomic traits are only
slowly being elucidated, revealing complex interaction networks

and considerable diversity between crops, as in the case of the
universal florigen flowering pathway (Turck et al., 2008). The
genes underlying other complex traits such as abiotic stress
adaptation are still only partly known and often confounded
by gene by environment interactions (Fleury et al., 2010).
Association mapping of these complex traits, combined with
reverse genetic screening to elucidate trait-gene associations, will
be crucial to uncover both common and rare alleles of yield-
related traits.

While trait-gene association is currently hampered by a lack of
extensive phenotype data from well characterized environments,
recent advances in high-throughput phenotyping platforms that
can be used in the field may soon help overcome this challenge
(Furbank and Tester, 2011; Araus and Cairns, 2014). By utilizing
the diverse germplasm resources available from crops and their
wild relatives to uncover genes that can be introgressed into
elite breeding germplasm, crops can continue to be improved
for potential yield and yield stability. An important step to
accelerate such breeding efforts worldwide is the integration
of this information in openly accessible databases, which is
currently lagging behind the rapid generation of data. As climate
change and a growing population put increasing pressure on
plant breeders in the public and private sectors to produce
high-yielding, climate resilient cultivars, a consensus needs to
also be reached on the merits of genome editing to produce
novel and useful diversity in crop germplasm, to rapidly improve
agronomic traits associated with known genes. It is increasingly
clear that crop improvement must draw on diverse germplasm
pools and leverage advances in biotechnology to ensure future
global food security.

CONCLUSION

Plant genetic resources provide raw materials for mining
allelic variations associated with target traits (Figure 1). Crop
improvement continues to rely on combining diversity in crop
populations and their wild relatives via genetic recombination.
Sequencing technology advances and bioinformatic tools used
for assessing diversity in germplasm panels have identified
millions of polymorphic SNPs in cereals and legumes, as noted
by the examples included in this article. Unlocking functional
diversity for key agronomic traits such as crop phenology, plant
architecture, yield and stress tolerance is facilitating greater
use of germplasm in crop breeding. Major QTL and candidate
SNPs associated with such agronomi traits, identified through
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FIGURE 1 | Assessing and exploiting functional diversity in germplasm pools in the omics era for plant breeding under a changing climate.

genome wide association research (and ideally confirmed by
functional studies), have been deployed in crop breeding to
enhance adaptation and productivity of staple food crops. The
discovery and deployment of alleles associated with variation
in response to photoperiod and flowering has allowed the
cultivation of tropical crops such as maize, rice and sorghum in
temperate climates (CTB4a, Ghd7, PRR37, RFT1, Sb06g012260)

or temperate crops such as soybean in tropical regions (J
locus).

Flowering time is a major determinant of crop yield, and
selection of variants in florigen pathway and their deployment
in crop breeding has increased yield in several crops. In
particular. fine-tuning of the florigen pathway has allowed yield
increases through better control of flowering and growth in
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crops. Grain legumes have indeterminate flowering, leading to
low productivity compared to cereals. The discovery of candidate
genes, Phvul.001G189200 in common bean and CcTFL1 in
pigeonpea associated with determinate flowering may allow
manipulation of determinacy trait in these and other legumes.

Functional allelic diversity has been successfully harnessed
through breeding to enhance abiotic stress (drought, salinity, low
soil P, and submergence tolerance) adaptation and productivity
by manipulating panicle architecture in rice. Likewise, QTL
hotspots associated with drought adaptation in chickpea have
been introgressed in several leading cultivars in Asia and Africa.
Glycine soja is an interesting source of variation for abiotic stress
adaptation in soybean. Candidate SNPs associated with drought
adaptation are known in common bean. Changes in functional
diversity due to global warming were noted for flowering in
wild barley and emmer wheat from Israel or among pearl
millet landraces from Africa, thus providing valuable resource
for enhancing crop adaptation to variable climates leading to
shortening of growing season. Genomics have unraveled SNPs
associated with precipitation and length of growing season in
barley or with precipitation and high temperature in maize
and sorghum, with many located in genes known for abiotic
stress adaptation, thus providing valuable resource to accelerate
breeding for drought-prone environments.

Maize has comprehensive haplotype maps that has enabled
researchers to identify selective sweeps and chromosome
regions harboring loci related to domestication and geographic
adaptation. Identification of distinct haplotypes in subtropical
maize germplasm provided opportunity to exploit heterotic
potential among them. Likewise, distinct haplotypes discovered
amongst Indian wild rice accessions associated with high
salinity tolerance from distant geographic regions may be useful
for broadening the available cultigen pool to enhance rice
productivity in salt-prone areas.

Landraces and wild relatives are proven genetic resource
to identify genetic variants associated with environmental
adaptation, particularly temperature and precipitation. In
addition, such genetic resources are also the source of discovering
rare alleles; however, identifying such alleles is challenging
because of their low presence in populations, necessitating
phenotyping and genotyping of extremely large populations.
Evidence suggests that epigenetic variation (i.e., epialleles) can
also be successfully exploited to enhance abiotic stress adaptation
and productivity in crops. Genome editing in maize, rice and
soybean or estimating genomic-estimated breeding values of

genebank accessions in maize, pea, sorghum, and wheat provide
means to access and generate additional variability for agronomic
and stress tolerance traits.

Phenomics and genomics are enabling generation of vast
data sets in crop breeding. However, archival and easy retrieval
of these data set is a challenge. Crop-specific databases along
with bioinformatics services provide access to genomes and
the corresponding annotation data, together with data on
phenotypes and genotypes for many crops. An integrated
analysis of genotype and phenotype information contained in
databases facilitates the discovery of genes related to specific
target functions. Such insights on crop biodiversity and trait
inheritance along with mapping of genetic variation controlling
key traits, and using them for developing breeding germplasm
will accelerate crop improvement, increase genetic gains and
allowing improved crop yields and yield stability under a
changing climate and in stress-prone environments.
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