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Preface

In your hands, you hold the manuscript that is the result of my first steps in
the world of academic research. The last five years, I worked with great pleasure
on the research presented in this thesis. This thesis could, however, not have
been completed without the support of a number of people. Therefore, I want to
dedicate a few pages to express my gratitude to the people who contributed to
this thesis in one way or another.

First and foremost, I want to thank my promotor Mark van den Brand. Mark,
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steps in the academic world. I very much enjoyed our collaboration over the past
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the most important thing to succeed as a PhD. student is to find your ‘personal
itch’. The search for the right combination between my personal itch and the
wishes of the FALCON project proved to be a challenge at first and was therefore
sometimes a bit frustrating. Luckily, there were your encouraging motivational
speeches. Once we started looking in the area of model-driven engineering and
model transformations in particular, I soon knew that this was the topic I wanted
to work on. We have had a lot of discussions on this topic over the time. These
discussions I have always valued very highly, since most of the time they led to
fresh insights and new research ideas to work on. Of course, there was always
some time left to talk about non-research related topics. I am very glad to have
you as my promotor and I want to thank you for that.

This thesis would not have become what it currently is, if it were not for the
influence of a number of people. I want to thank Christian Lange, Alexander
Serebrenik, and Tom Verhoeff for the inspiration and feedback they gave me on
my research. Christian, or I should say ‘Herr Doktor’, during the time I was
working on my master’s thesis, you were my daily tutor. We talked a lot about
what it is to be a PhD. student, which made me very enthusiastic about it. You
had a great influence on my decision to pursue a PhD. degree myself. Also, it was
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your talk during the BENEVOL workshop of 2007 in Namur that inspired me
to start my research in the area of model transformation quality. The first steps
in this research area we took together. This led to a very nice paper that was
published at the ICMT conference in 2009, which Chapter 4 is based on. Tom,
the comments you gave during a trial conference presentation made me rethink
the contents of Chapter 3. We had some discussions about the meaning of quality
in computer science and you thoroughly reviewed the entire chapter related to
this topic. I want to thank you for that, since it greatly increased the quality of
the chapter. Alexander, when my thesis began to take shape, Mark and I asked
you to become my copromotor. I want to thank you for accepting this role and for
your many exhaustive reviews of all the chapters in this thesis. Your suggestions,
I think, really led to an overall improvement of the thesis. In hindsight, I regret
that you were not involved in the process earlier on.

I also want to thank the reading committee, consisting of Mehmet Aksit from
Twente University, Jean Bézivin from the University of Nantes, and Jos Trienekens
from the Eindhoven University of Technology, for their time to review my thesis.

I have always enjoyed the working atmosphere at the university. This could
not have been the same without my colleagues. Therefore, I want to thank my
roommates and fellow PhD. students, Jeroen Arnoldus, Yanja Dajsuren, Luc
Engelen, Arjan van der Meer, Zvezdan Proti¢, and Ulyana Tikhonova. The
discussions we had in our office and during the infamous coffee breaks, both about
research and other stuff that matters to us, were always a welcome interruption of
the daily course of academic research. I also want to thank Bogdan Vasilescu, who
joined us in the last months of my time as a PhD. student, for his seemingly endless
supply of cookies, in which there was always one for me. Two of my colleagues
I want to mention in particular, since I had the privilege of collaborating with
them quite intensively. Zvezdan, I vividly remember the many long discussions
we had at the beginning of our time as PhD. students in the ESI building. These
discussions led to the paper that Chapter 2 of this thesis is based on. This paper
was selected as one of the best papers of the first ICMT conference. Over the
last five years we traveled together to quite a number of conferences. I always
enjoyed your company during these trips and the many conversations we had over
the years. For sure, I will never forget your passionate stories about ‘svinjokolj’.
Luc, I want to thank you for the pleasant collaboration on our ‘Lego project’,
which resulted in a number of papers that together form Chapter 8 of this thesis.
What started out as a simple test to see if we could generate code from simple
models, soon became a case study that was also used for teaching and for starting
master’s projects around. I think this clearly indicates that our collaboration was
a very successful one.

Over the last five years, I was involved in two projects: the FALCON project
and the MSQ project. The FALCON project was a multi-disciplinary research
project that had as goal increasing automation in warehousing systems. Because
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this was a multi-disciplinary project, the project team consisted of a very diverse
group of people. It was enlightening to hear from all of you how academic research
is carried out in different research disciplines. I want to thank the members of the
FALCON team for all the fun times we had, especially during the off-site events,
such as the demonstrator days and the Argos trip. The MSQ project was one of
the projects carried out as part of the ‘kenniswerkersregeling’. The goal of this
arrangement was to allow companies to maintain highly knowledgeable employees
during the economic crisis by setting them to work at universities. Therefore, the
research team did not consist of academic researchers, but of, in this case, business
consultants. This difference in background meant that there were different views
on how to perform research and how to streamline a collaboration process. I want
to thank the members of the MSQ team for this pleasant collaboration and for
showing me academic research from a different perspective.

During my time as a PhD. student, I cosupervised a number of students. In
order of appearance they are Robert-Jan Bijl, Phu Hong Nguyen, Roy Bouten,
Ivo van der Linden, and Tim Huyzen. It was a pleasure to work with every one of
you. I particularly enjoyed the many in-depth discussions we had on the various
projects you worked on related to my own research.

I also want to thank my close friends, Ad van Amelsfoort, Mark Brouwers,
Ramon Kool, Mark Ligtvoet, Roy Maas, Bas Postema, Jeroen Remie, Maarten
Rossou, Martijn van Steensel, Jan Stoop, Frank van den Tillaart, and Ferry
Vermeer for providing me with the necessary distractions during the ‘Boys Nights
Out’, the basketball practices, the dinners, the vacations, the ‘rondjes door de
stad’, the trips on the racing bike, ...But also for your patience when I tried to
explain to you that research in computer science is not about finding out what the
best way is to fix your printers or wireless internet connections and that model
transformation is not the same thing as generating swimsuit models. Some of you
I want to mention in particular. First, Ramon for designing the nifty cover of my
thesis and for listening to my nagging on the details of it, or ‘mierenneuken’, with
an n as you called it. Second, Jan for helping me out with the statistics involved
in the empirical studies presented in Chapters 4, and 5. Third, Mark (Ligtvoet)
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part of the tool presented in Section 4.4, or, as you put it, with reducing the time
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Chapter 1

Introduction

Throughout the history of computer programming, many different programming
languages have been developed. The very first computers had to be programmed
directly using binary machine code. Programming using such first generation
programming languages was difficult, error-prone, and the programs were specific
for the hardware they are designed for. The second generation of programming
languages started appearing in the 1940s. In these so-called assembly languages,
shorthand notations for machine codes were introduced in the form of symbolic
names. These symbolic names are easier to understand for humans than machine
code. Therefore, programming using second generation programming languages
was easier and less error-prone than using the first generation ones. However,
the programs were still specific for the hardware they are designed for. Second
generation programming languages are still in use today, albeit in very rare
cases. FORTRAN, developed in 1954, was the first third generation, or high-level,
programming language [1]. High-level programming languages provide natural
language-like statements and data structures. This prevents software engineers
from having to program using machine concepts like they had to do with first
and second generation programming languages. Therefore, programs written
in high-level programming languages are much easier to write and understand.
Moreover, they are mostly hardware platform independent.

The developments throughout the history of programming languages have
one thing in common, i.e., with every generation, the level of abstraction raises.
Although the abstractions provided by, especially high-level, programming lan-
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guages greatly improve the productivity of software engineers, they are all oriented
towards the computing domain. It is therefore the job of a software engineer to
translate a customers’ problem into a solution in the computing domain, i.e., a
program. Software is becoming ubiquitous and more complex, while at the same
time software quality demands increase as well. Model-driven engineering (MDE)
is a software engineering paradigm that aims at dealing with this increasing
software complexity and improving productivity and quality by raising the level
of abstraction at which software is developed to a level where concepts of the
domain in which the software has to be applied, i.e., the target domain, can be
expressed effectively [2].

1.1 Model-Driven Engineering

Instead of writing code, the focus in MDE is on developing models, i.e., models
are first-class citizens. A model is an abstraction of an entity with a specific
purpose [3]. This is a broad definition that encompasses many things we regularly
encounter in our everyday life. For example, the recipe for our favorite dish is a
model aimed at describing how to prepare it. Also, an article in a newspaper is
a model of an event aimed at describing that particular event. The concept of
model is nicely illustrated by René Magritte’s painting La Trahison des Images,
in which not a pipe, but an image (model) of a pipe is shown (see Figure 1.1).
In a similar way as the previous examples, a program written in a high-level
programming language is a model as well.

LCeci nest pos une jufie .

L

Figure 1.1 La Trahison des Images (René Magritte 1929) [4]
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The abstractions provided by high-level programming languages are oriented
towards the computing domain. Models in MDE are intended to provide ab-
stractions tailored to the domain in which the software should be applied, i.e.,
the target domain. For that purpose, domain-specific languages (DSLs) are
employed. A DSL is a language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually restricted to, a particular
domain [5,6]. Since the domain concepts provided by DSLs are typically not
computing oriented, domain-specific models are not directly usable for, among
others, automatic execution. Therefore, these domain-specific models need to be
translated to different, computing-oriented, models, preferably automatically. For
that purpose, model transformations are employed [7]. A model transformation
automatically transforms one or more input models to one or more output models.
Using DSLs and model transformations, separation of concerns is achieved, viz.,
DSLs embody domain knowledge and model transformations embody software
engineering knowledge. In the remainder of this section, domain-specific languages
and model transformations will be explained in more detail.

1.1.1 Domain-specific Modeling Languages

DSLs are designed to capture the jargon of a specific domain. In this way, they
enable modeling using domain concepts rather than concepts provided by existing
formalisms, which typically do not provide the required or correct abstractions.
In Table 1.1, a number of domains are listed along with examples of DSLs that
are used in these domains.

Domain DSL

Music Staff notation

Traffic Traffic signs

Arithmetic Numbers and arithmetic operators
Process descriptions | Flowcharts

Typesetting BTEX

Web page mark-up | HTML

Database querying |SQL

Table 1.1 Examples of DSLs

The application of DSLs has both advantages and disadvantages. In Sec-
tion 1.1.1.1, we discuss a number of advantages as well as a number of disadvan-
tages of using DSLs. Similarly to traditional software engineering artifacts, a DSL
also goes through a development cycle. In Section 1.1.1.2, we explain a typical
DSL development cycle.
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1.1.1.1 Pros and Cons

In a traditional software development process, a group of domain experts pro-
vides the software development team with the required information to craft a
software solution for their problem. Because these groups of people have different
backgrounds, this way of working can lead to various misinterpretations that may
jeopardize the adequacy of the developed solution. Since the terminology and
expressivity of a DSL is focused on a particular domain, an expert in that domain
can understand the models created using a DSL. This reduces the risk of misin-
terpretations during knowledge transfer. Moreover, domain experts themselves
can be more involved in the software development process [§].

Since the level of abstraction of a DSL suits the domain in which a model has to
be developed, domain-specific models are typically concise. Moreover, the elements
of a DSL embody knowledge of the domain. Therefore, domain-specific models
are largely self-documenting. Partly because of these properties, the application
of DSLs leads to more expeditious development cycles. Kieburtz et al. report on
a study that shows that applying DSLs and accompanying transformations in a
software development process indeed increases productivity and also the reliability
of the software [9].

Unfortunately, it is not all sunshine and roses. The narrow focus of a DSL
limits its applicability, i.e., only to the domain it is designed for. Although the
application of DSLs leads to increased productivity in a software development
process, the development of the DSL itself entails certain costs as well. Moreover,
the code generated from domain-specific models may be less efficient than hand-
written code.

1.1.1.2 Development

The development process of DSLs consists of three phases [5,10], viz., domain
analysis, language design, and language implementation.

Domain Analysis

In the domain analysis phase, the concepts that are perceived to be important by
domain experts are defined, as well as the relations among them [11]. Aside from
the input of domain experts, there are other sources of domain knowledge that
can be used for the domain analysis. These are, among others, source code and
documentation of existing systems in the domain. In this way, the domain for
which a DSL has to be developed is defined by consensus, and its essence is the
shared understanding of a community [12].
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Language Design

In the language design phase, the concepts and relations defined in the domain
analysis phase are grouped into semantic notions [13]. These semantic notions
need to be mapped to syntactic carriers to enable the development of models.
In the context of MDE, typically metamodels are used to define the syntax of a
DSL. A metamodel describes the model elements that are available for developing
a class of models as well as their attributes and interrelations. Analogously, a
model describes the elements of a real-world object as well as their attributes
and the way they interrelate. Therefore, a metamodel can be considered as a
model of a class of models [14], or a model of a modeling language [15]. Since a
metamodel is itself a model, the concepts and relations that can be used to define
them need to be described as well. The metamodel used for this purpose is called
a meta-metamodel. A meta-metamodel is typically a reflexive metamodel. This
means that it is expressed using the concepts and relations it defines itself. This
four-layer metamodeling architecture [16] is schematically depicted in Figure 1.2.

conforms to
M3 |Meta-metamodel

Tmnforms to

M2 Metamodel

Tmnforms to

M1 Model
Tmodclcd by
MO Object

Figure 1.2 Four-layer metamodeling architecture

Language Implementation
In the language implementation phase, tools are developed that enable using
the DSL. Typically this means that the models created using the DSL have
to be executed. Three strategies for implementing DSLs can be distinguished
for achieving this, viz., compiler or interpreter development, embedding, and
transformation [5].

First, a compiler or interpreter can be developed to enable execution of
domain-specific models. In this stand-alone approach there is no dependence on
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other languages. This implies that no concessions have to be made with respect
to domain-specificness. However, implementing and maintaining a compiler or
interpreter is typically a costly task.

Second, a DSL can be embedded in an existing language, i.e., a host language.
This is achieved by adding libraries implementing the domain-specific abstractions
to this host language. The advantage of this approach is that tools available for
the host language can be used for the DSL as well. However, since the DSL is an
extension of the host language, it also inherits its look and feel. This may imply
that concessions have to be made with respect to domain-specificness, i.e., certain
domain-specific constructs may not be expressible as well as desired.

Last, domain-specific models can be transformed into different models that
are suitable for the required purpose, e.g., execution or simulation. In MDE,
typically this transformational approach is adopted. The main advantage of this
approach is the flexibility it provides by reusing other formalisms. Enabling
the use of the DSL for a different purpose solely requires the implementation
of another model transformation. In this way, model transformations facilitate
the transfer of models to and from specialized tools during the development life-
cycle [17]. ITmplementing model transformations is facilitated by a growing number
of model transformation languages (see Section 1.1.2.3) and is therefore a less
effortful task than implementing a compiler or interpreter. The disadvantage of a
transformational approach is that analyses are not performed on the domain level,
but on the level of the target language [18]. This raises the issue of traceability, i.e.,
results acquired from analyzing the target models of a model transformations have
to be related to their corresponding domain-specific source models. Moreover,
it may occur that there is a semantic gap between the DSL and the target
language. This means that for some constructs of the DSL to be transformed to
the target language a laborious and inefficient transformation may be required, if
transformation is possible at all.

1.1.2 Model Transformation

Model transformation has been defined in literature in a number of different but
similar ways. The Object Management Group defines model transformation as
the process of converting one model to another model of the same system [19].
According to the definition of Kleppe et al., a model transformation is the
automatic generation of a target model from a source model according to a
transformation definition [20]. They define a transformation definition as a set of
transformation rules that together describe how a model in the source language
can be transformed into a model in the target language, where a transformation
rule is a description of how one or more elements in the source language can be
transformed into one or more elements in the target language. Kurtev provides
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the following definition. A model transformation is the process of automatic
generation of a target model from a source model, according to a transformation
definition, which is expressed in a model transformation language [15]. According
to Tratt’s definition, a model transformation is a program that mutates one model
into another [17]. Mens and van Gorp suggest a generalization of the definition of
Kleppe et al. by taking into consideration multiple source and target models [21].
Sendall defines model transformation as an automated process that takes one or
more source models as input and produces one or more target models as output,
while following a set of transformation rules [7]. The definition we adopt is the
following. A model transformation is a mapping from a set of source models to a
set of target models defined as a set of transformation rules.

The origin of model transformation can be traced back to string rewriting
systems, or semi-Thue systems, introduced by Axel Thue in the early twentieth
century [22]. A semi-Thue system 7 is a binary relation on strings from an
alphabet ¥, i.e., T C ¥* x ¥*, where each element (u,v) € T is a rewrite rule. A
model transformation can be defined in a similar way. Let £ be the set of all model
elements. Then a model m is a finite non-empty subset of £, i.e., m C £\ 0. The
set of all possible models, M, is then a finite non-empty subset of all combinations
of model elements, i.e., M = P(E)\ 0. A set of source models S is a subset of the
set of all models, i.e., S C M. Similarly, a set of target models T is also a subset
of the set of all models, i.e., T'C M. Possibly the sets of source and target models
overlap, i.e., SNT # (). A model transformation M7 is then a binary relation
on sets of elements from source models P(|J S) and target models P(UT), i.e.,
MT =PUS)xP(UT), where each element (s,t) € MT is a transformation rule.
If MT is a symmetric relation, then the model transformation is a bidirectional
model transformation [23].

1.1.2.1 Architecture

Figure 1.3 schematically depicts the architecture of a model transformation [24].
The source and target models of a model transformation both adhere to the four-
layer metamodeling architecture depicted in Figure 1.2. A model transformation
can be considered as a model as well. Therefore, it also adheres to the four-layer
metamodeling architecture. In case of model transformation, the M0 (object)
layer represents a run-time instance of a transformation. Note that for the source
and target models the M0 layer is not shown in the figure.

Model transformations are generally developed with reuse in mind. If a
transformation would be needed only once, it would suffice to craft the target
models by hand instead of taking the trouble to develop a model transformation.
Therefore, a model transformation definition is not based on model instances, but
on metamodels describing the set of models conforming to them. A transformation
definition consists of a number of transformation rules. A transformation rule is a
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conforms to conforms to conforms to
Y Y Y
M3 Source Transformation Target
Meta-metamodel meta-metamodel meta-metamodel
A A A
conforms to conforms to conforms to
Source Transformation Target
M2 v ~
metamodel metamodel metamodel
Y Y X
conforms to based on ", conforms to -~ based on conforms to
M1 Source *\.| Transformation |,- Target
model definition model
T A
i Tinstance of i
| |
: input of . generates :
MO 0 Emmmmmm——————- » Transformation [---------=-----

Figure 1.3 Transformation architecture

description of how one or more elements in the source language can be transformed
into one or more elements in the target language [20].

1.1.2.2 Implementation Approaches

Three approaches for developing model transformations can be distinguished, viz.,
direct model manipulation, using an intermediate representation, and using a
dedicated model transformation language [7].

Direct Model Manipulation

When implementing a model transformation by direct model manipulation, it is
required that an API! is defined on both the source and the target metamodel of
the transformation. These APIs enable direct access to the internal representation
of the models involved in the transformation. In this way, they can be read
and modified. An existing general-purpose programming language is used in
combination with these APIs to implement the model transformation.

The advantage of this direct model manipulation approach is that transfor-
mation developers can use a general-purpose programming language they are
familiar with. This prevents them from having to learn a new language, which may
accelerate the development of the transformation. Moreover, existing libraries
for the general-purpose language can be reused to facilitate implementation of
complex algorithms that may be required for the transformation.

I Application Programming Interface
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The disadvantage of this approach is that it does not scale well. A general-
purpose programming language is not designed for model transformation, i.e., its
level of abstraction does not fit the domain of model transformation. Moreover,
the APIs themselves are abstractions from the metamodels that deviate from the
abstractions intended by the language designers. Therefore, it is hard to write
and maintain transformations using this approach. For small transformations the
direct model manipulation approach is viable, but for larger transformations it is
not suited.

Intermediate Representation

When implementing a model transformation using the intermediate representation
approach, the source model of a transformation is exported to a format that is
suitable for automatic transformation. Typically, an XML format such as the XML
Metadata Interchange (XMI) format [25] is used for this. XMI is a standard for
exchanging models between modeling tools. Transformation of XML documents
is commonly performed using eXtensible Stylesheet Language Transformations
(XSLT) [26] or using a library with functions for manipulating XML documents
in combination with a high-level programming language. Such a library is in fact
a DSL for manipulating XML documents embedded in a high-level programming
language. Languages with comprehensive regular expression support such as
Perl [27], Python [28], and Ruby [29] can also be used for transforming XML
documents. However, these languages are suitable for simple transformations only,
since implementations in these languages need to deal with the elaborate concrete
syntax of XMI rather than with abstract syntax [30].

Most modeling tools provide functionality for exporting models to some form
of XML. Therefore, the intermediate model approach is applicable to the majority
of models that are being developed. The advantage of the approach is that existing
tools for manipulating XML documents can be reused.

In contrast with a general-purpose programming language used in the direct
model manipulation approach, a transformation language like XSLT or a library
with functions for manipulating XML documents is designed for transformation of,
in this case, XML documents. Therefore, the level of abstraction of the transfor-
mation language suits the level of abstraction of the intermediate representation
of the models involved in a transformation. However, the XML representations of
the models are, again, abstractions that deviate from the abstractions intended
by the language designers. For instance, XML documents describe tree structures,
whereas models typically have a graph structure. This, again, has repercussions
for the scalability of transformations implemented using the intermediate repre-
sentation approach. Furthermore, XSLT has no facilities for the implementation
of complex algorithms that may be required for a transformation. However, a
library for manipulating XML documents embedded in a high-level programming
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language does not suffer from this problem, since the host language can be used
for implementing algorithms.

Model Transformation Language

The emergence of MDE has lead to the development of numerous dedicated model
transformation languages. These languages are in fact DSLs in the domain of model
transformation. A model transformation can be considered as a model conforming
to that language. This nicely fits the basic principle of MDE stating that everything
is a model [31]. In Section 1.1.2.3, a number of model transformation languages
and tools are discussed.

The advantage of using a dedicated model transformation language over the
direct model model manipulation and intermediate representation approach is
that the level of abstraction fits the domain it operates in. Therefore, frequently
required operations such as pattern matching and model element creation are
standard functionality in most model transformation languages.

While the level of abstraction provided by model transformation languages is
appropriate for performing model transformations, it is often inappropriate for
implementing complex algorithms which may be required for a transformation
task. Therefore, some transformation languages provide escape mechanisms to
enable inclusion of code from general-purpose programming languages in a model
transformation.

1.1.2.3 Model Transformation Languages

This section shortly describes four model transformation languages, viz., ATL,
QVT operational mappings, Xtend, and ATL. These four are selected, since these
are the ones studied in this thesis.

ATL

The ATLAS Transformation Language (ATL) [32-34] has been developed in
response to the QVT request for proposals issued by the Object Management
Group (OMG) [35]. However, since then ATL has evolved separately from the
QVT standard due to changing requirements resulting from experience with the
language [36]. At the time of writing this thesis, ATL is one of the most widely used
model transformation languages around. This can, among others, be concluded
from the large number of publications in which ATL is used for developing model
transformations and for experimenting with new transformational techniques (see
for example [37-40]).

An ATL model transformation generates a new write-only target model from
a read-only source model. ATL model transformations can be executed in one
direction only, i.e., they are unidirectional. In-place model transformations, i.e., a
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model transformation that adapts a model rather than generating a new one, can
be simulated using the refining mode in which the untransformed part of the input
model is automatically copied to the output model. This is not an actual in-place
transformation, since the input model is not adapted but a new target model
is generated. An ATL model transformation consists of transformation rules
and helpers. Transformation rules are used to generate target model elements,
generally from source model elements. Rules can be specified using both a
declarative and an imperative style. Therefore, ATL is a hybrid language. The
declarative style is used for specifying relations between source and target model
elements. The developers of ATL encourage using this declarative style as much
as possible [33]. The imperative style can be resorted to when it is hard to find a
declarative solution for a transformation problem. Helpers are expressions defined
in the Object Constraint Language (OCL) [41]. Their purpose is to define reusable
chunks of code, mainly for navigating source models and storing values. ATL has
support for modularity, although this is limited. Libraries containing helpers only
can be defined. However, transformation rules cannot be distributed over different
modules. It is possible to define parts of a transformation in Java, however this is
very limited and currently not documented in the user guide [42].

The ATL language is accompanied by a set of tools for developing model
transformations. This toolset is implemented as an Eclipse plug-in [43] and
consists of the ATL engine, an editor, and a debugger. The ATL engine consists of
two components, viz., the ATL compiler that compiles ATL code to bytecode and
the ATL virtual machine that executes the bytecode. Although the ATL virtual
machine does not explicitly require this, typically the models that are transformed
with ATL are created using the Eclipse Modeling Framework (EMF) [44].

QVT

Query/View/Transformation (QVT) is a model transformation language stan-
dardized by the OMG [45]. QVT consists of three sub-languages, viz., relations,
core, and operational mappings. Model transformations in the QVT relations
language are expressed as relationships between models. The QVT core language
is a declarative language that is equally powerful as the relations language. How-
ever, it is defined at a lower level of abstraction. The semantics of the relations
language can be described by the core language. The QVT operational mappings
language (QVTO) provides means to implement a model transformation using
an imperative programming style. The operational mappings language can also
be used to complement transformations specified in the relational language with
imperative operations. This is referred to as a hybrid approach.

A QVTO model transformation can either generate a new target model
from a source model or be an in-place model transformation. Like ATL, model
transformations in QVTO are unidirectional. A QVTO model transformation
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consists of operations. The mapping operation is the key operation in QVTO. It
is used to implement mappings from source to target model elements. Another
important operation type is the helper. Helpers are used to perform computations
on model elements. In QVTO it is possible to implement parts of a transformation
in Java, using blackbox operations. QVTO supports two forms of modularity. First,
it is possible to define types and operations in library modules. Second, a chain
of transformations can be created by composing multiple model transformations
in one large transformation.

There are a number of implementations for the QVTO language, notably
SmartQVT [46] and Eclipse M2M [47]. Both are implemented as Eclipse plug-ins
and are restricted to transforming EMF-based models.

Xtend

OpenArchitectureWare is a framework aimed at facilitating MDE by provid-
ing tools for metamodel development, model validation, model transformation,
and code generation [48]. Xtend is the model transformation language of this
framework. The developers claim it to be a functional language. However, since
functions can have side effects it is not a pure functional language.

Xtend supports both creation of new target models and in-place transforma-
tion. Similar to the aforementioned languages, model transformations in Xtend
are unidirectional. Transformation functions in Xtend are called extensions.
Besides creating model elements, navigation of source models and performing
computations is also done using extensions. Xtend provides, similar to QVTO,
facilities to implement parts of a transformation in Java by means of Java exten-
sions. Modularity is supported as well, i.e., the extensions that comprise a model
transformation can be divided over different modules.

All of the openArchitectureWare components are implemented as Eclipse plug-
ins. For Xtend this means that it is restricted to transformation of EMF-based
models. Xtend is an interpreted language. However, the successor of Xtend will
have a compiler that compiles a model transformation directly to Java classes.

ASF4SDF

ASF+SDF is a term rewriting system that is mainly used for transformations
between languages [49]. Although it was not designed for application in an
MDE setting, it has been successfully applied in a number of MDE projects [50,
51]. Transformations are performed between languages specified in the syntax
definition formalism SDF [52]. The main difference with the model transformation
languages discussed before is that SDF is based on context-free grammars, rather
than on metamodels. Consequently, the models that can be transformed with
ASF+SDF have a tree structure instead of a graph structure. Transformations
are implemented as conditional equations specified in the algebraic specification
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formalism ASF [53]. ASF can best be described as a functional language. The two
main advantages of ASF+SDF are modularity and syntax-safety. Syntax-safety
in the context of model transformations means that every syntactically correct
source model is transformed into a syntactically correct target model and that
syntactically incorrect source models are not transformed at all.

ASF+SDF transformations are also unidirectional. When performing a trans-
formation, a new target model is always generated. However, similar to ATL,
in-place model transformations can be simulated using so-called transforming
traversal functions. Transformations in ASF+SDF consist of transformation
functions. Transformation functions are defined by signatures and equations.
Signatures are defined in SDF, they describe the syntactic structure of a transfor-
mation function. Equations are defined in ASF, they form the implementation
of a transformation function. Equation can have zero or more conditions. These
conditions can be used, among others, to assign values to variables. In ASF+SDF
it is possible to implement parts of a transformation in C.

ASF+SDF is the only language of the four described here that is not imple-
mented as an Eclipse plug-in. Instead, it has its own development environment,
viz., the Meta-Environment [54]. A transformation is executed in three steps. A
source model, defined in SDF, is parsed using the SGLR parser [55] resulting in a
parse tree. Thereafter, the transformation specification, which has been trans-
formed to C code, is applied to that parse tree. The result of the transformation
is again a parse tree, which can be unparsed to acquire the target model.

Summary

Table 1.2 summarizes the characteristics of the model transformation languages
discussed above.

1.2 Problem Statement

MDE is gradually being adopted by industry [56]. Since MDE is becoming
increasingly important, so are model transformations. Model transformations are
in many ways similar to traditional software artifacts, i.e., they have to be used
by multiple developers, have to be changed according to changing requirements,
and should preferably be reused. Therefore, they need to adhere to similar quality
standards as well. To attain these standards, a methodology for developing
model transformations with high quality is required. However, before such a
methodology can be developed, quality needs to be defined in the context of model
transformation and factors that influence it should be identified. To identify
these influences, there should be a methodology for assessing the quality of model
transformations. Such methodologies have been developed for different kinds of
software artifacts, but not yet for model transformations.
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Characteristic ATL QVTO Xtend ASF+SDF
Directionality Unidirectional
Transformer
In-place support | Refining mode Yes traversal
functions
Tran§format1on Rules/helpers Mappings/ Extensions Equations
functions helpers
Programming l?eclarat}ve/ Declarative Functional
style imperative
Yes, also
Modularity Helpers only | composition of Yes
transformations
Escape .
. Java, limited Java C
mechanism
Platform Eclipse Meta-
environment
Metamodeling | 11y EMF EMF SDF
formalism

Table 1.2 Transformation language characteristics

An approach to increase the quality of model transformations is to support their
development and maintenance process by means of analysis techniques. Numerous
analysis techniques supporting development and maintenance exist for all kinds
of software artifacts such as source code or models. However, few techniques
currently exist for analyzing model transformations. A reason for this is that MDE,
and thereby model transformation, is a relatively young research discipline. Most
effort is currently invested in applications and in improving model transformation
languages, techniques, and tools [37-40]. To prevent model transformations
from becoming the next maintenance nightmare, analysis techniques should
be developed for them to assist in the development and maintenance process.
Moreover, appropriate tool support is required for further adoption of MDE by
the industry [57,58].
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1.3 Research Questions

To address the problems stated in Section 1.2, we formulate the central research
question to be discoursed in this thesis as follows.

RQ: How can the quality of model transformations be assessed and
improved, in particular with respect to development and maintenance?

In the remainder of this section we will decompose this central research question
into more detailed research questions.

In the development cycle of a (software) system, simulations and analyses are
often performed before the actual system is implemented, particularly when high-
cost hardware is involved. To enable simulations and analyses, models are used.
Traditionally, these models are no longer used afterwards and implementation
of the actual system starts from scratch. By employing model transformations,
these models can be (partially) reused for code generation. For these simulations
and analyses a simplified view of the world is typically assumed. For instance, the
notion of time may be abstracted from. For simulation and analysis this is fine.
In real-world applications, however, this is unthinkable. Therefore, to successfully
apply model transformations for generating code from simulation and analysis
models, such semantic gaps need to be identified and bridged. This leads to the
following research question.

RQ1: How should model transformations that transform between mod-
els from different semantic domains be approached?

Model transformations that need to bridge a semantic gap tend to be more
complex than those that merely transform syntax. This increased complexity has
consequences for the quality of these model transformations. Quality, in general,
is a subjective concept. For instance, when a number of people are asked how
they would rate the quality of a car, they will give different answers. For some its
fuel consumption may be important, whereas for others this may be its durability
or its ride comfort. Similarly, there are different faces to the quality of model
transformations. This leads to the following research question.

RQ2: How can quality be defined in the context of model transforma-
tions?

Once quality has been defined in the context of model transformations, it
can be assessed. There are many methods around that can be employed for
assessing the quality of software artifacts, such as for example testing, auditing,
and collecting metrics. Software metrics have been studied extensively over the
last decades and have been proposed for measuring various kinds of software
artifacts [59]. In this thesis, we focus on using metrics for assessing the quality of
model transformations. This leads to the following research question.
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RQs: How can metrics be used to assess the quality of model trans-
formations?

Metrics are used to measure certain characteristics of (software) artifacts, in
this case model transformations. By empirically relating the identified metrics to
different attributes of quality, insights are acquired as to what characteristics of
model transformations affect their quality. These insights enable increasing the
overall quality of model transformations and thereby also their maintainability.
In traditional software engineering processes, often visualization techniques are
employed to support maintenance and development. For model transformations,
this approach can be adopted as well. This leads to the following research question.

RQg4: What visualization techniques can be employed to support the
development and maintenance process of model transformations?

The development and validation of techniques and tools for answering the
foregoing research questions have led to insights regarding the development of
model transformations. Application of these insights, techniques, and tools should
result in model transformations of higher quality. This leads to the following
research question.

RQs: How can the acquired insights and developed techniques be
applied to facilitate the development and maintenance of model trans-
formations?

1.4 Thesis Outline

In this section, we provide an outline of the structure of the remainder of this
thesis. For every chapter we indicate the research question it addresses as well as
the previous publications it is based on. Note that since this thesis is based on
articles, there may be some overlap among the different chapters.

Chapter 2: Revealing and Bridging a Semantic Gap

In this chapter, we address research question RQ;. We discuss a model transfor-
mation from models suitable for analysis, i.e., process algebra models, to models
suitable for code generation, i.e., UML state machines. This transformation gives
rise to a semantic gap. We identify this semantic gap and propose a solution for
bridging it. This chapter is based on the following publication.

M.F. van Amstel, M.G.J. van den Brand, Z. Proti¢, and T. Verho-
eff: Transforming Process Algebra Models into UML State Machines:
Bridging a Semantic Gap? In: Theory and Practice of Model Transfor-
mations, Proceedings of the First International Conference on Model
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Transformation (ICMT 2008), volume 5063 of Lecture Notes in Com-
puter Science, pages 61-75, Zurich, Switzerland, July 2008 [50].

Chapter 3: Quality of Model Transformations

In this chapter, we address research question RQs. We distinguish two different
views on model transformation quality as well as two different approaches for
assessing it. For both assessment approaches we provide examples and discuss
their advantages and disadvantages when used for assessing the different views on
quality. In this chapter, we also explain why quality attributes that have been
used for evaluating the quality of traditional software artifacts are relevant for
model transformations as well. This chapter is based on the following publications.

M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand: Metrics
for Analyzing the Quality of Model Transformations. In: Proceedings
of the Twelfth ECOOP Workshop on Quantitative Approaches on
Object Oriented Software Engineering (QAOOSE 2008) (co-located
with ECOOP 2008), pages 41-51, Paphos, Cyprus, July 2008 [60].

M.F. van Amstel: The Right Tool for the Right Job: Assessing Model
Transformation Quality. In: Proceedings of the Fourth IEEE Inter-
national Workshop on Quality Oriented Reuse of Software (QUORS
2010) (co-located with COMPSAC 2010), pages 69-74, Seoul, South
Korea, July 2010 [61].

Chapter 4: Quality Assessment of ASF+SDF Model Transformations

This is the first of three chapters in which we address research question RQs.
We propose a set of metrics for evaluating the quality of model transformations
developed using the term rewriting system ASF+SDF. To assess whether the
metrics we propose are valid predictors for the quality attributes defined in
Chapter 3, we have conducted an empirical study. This study shows that for most
of the quality attributes there are metrics that correlate with them. This chapter
is based on the following publications.

M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand: Metrics
for Analyzing the Quality of Model Transformations. In: Proceedings
of the Twelfth ECOOP Workshop on Quantitative Approaches on
Object Oriented Software Engineering (QAOOSE 2008) (co-located
with ECOOP 2008), pages 41-51, Paphos, Cyprus, July 2008 [60].

M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand: Using
Metrics for Assessing the Quality of ASF+SDF Model Transformations.
In: Theory and Practice of Model Transformations, Proceedings of
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the Second International Conference on Model Transformation (ICMT
2009), volume 5563 of Lecture Notes in Computer Science, pages
239-248, Zurich, Switzerland, June 2009 [62].

Chapter 5: Quality Assessment of ATL Model Transformations

This is the second of three chapters in which we address research question RQs.
In this chapter, we propose a set of metrics for evaluating the quality of transfor-
mations developed using the model transformation language ATL. We also report
on a similar empirical study as presented in Chapter 4. This chapter is based on
the following publications.

M.F. van Amstel and M.G.J. van den Brand: Quality Assessment of
ATL Model Transformations using Metrics. In: Proceedings of the
Second International Workshop on Model Transformation with ATL
(MtATL 2010), volume 711 of CEUR Workshop proceedings, pages
19-33, M4élaga, Spain, June 2010 [63].

M.F. van Amstel and M.G.J. van den Brand: Using Metrics for
Assessing the Quality of ATL Model Transformations. In: Proceedings
of the Third International Workshop on Model Transformation with
ATL (MtATL 2011), volume 742 of CEUR Workshop proceedings,
pages 20-34, Zurich, Switzerland, July 2011 [64].

Chapter 6: Comparing Metric Sets for Model Transformations

This is the last of three chapters in which we address research question RQz. In
this chapter, we propose two additional sets of metrics for two different model
transformation languages, i.e., Xtend and QVT operational mappings. These
two metric sets are compared with the metric sets for ASF+SDF and ATL. We
discuss in this chapter the overlap and differences among them. This chapter is
based on the following publication.

M.F. van Amstel, M.G.J. van den Brand, and P.H. Nguyen: Metrics
for Model Transformations. In: Proceedings of the Ninth Belgian-
Netherlands Software Evolution Workshop (BENEVOL 2010), Lille,
France, December 2010 [65].

Chapter 7: Visualization Techniques for Model Transformations

In this chapter, we address research question RQ4. We present in this chapter four
different visualization techniques focused on facilitating model transformation
comprehension. Two of these techniques are aimed at visualizing dependencies
between the different components that comprise a model transformation. These
techniques have been applied before to traditional software artifacts. Since model
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transformations are in many ways similar, the techniques apply to them as well.
The other two techniques are specific for model transformations. They visualize
the relation between a model transformation and the metamodels it is defined on.
This chapter is based on the following publication.

M.F. van Amstel and M.G.J. van den Brand: Model Transformation
Analysis: Staying Ahead of the Maintenance Nightmare. In: Theory
and Practice of Model Transformations, Proceedings of the Fourth
International Conference on Model Transformation (ICMT 2011),
volume 6707 of Lecture Notes in Computer Science, pages 108122,
Zurich, Switzerland, June 2011 [66].

Chapter 8: Fine-grained Model Transformations

In this chapter, we address research question RQs. We discuss in this chapter
our experiences with developing a DSL and accompanying model transformations.
The purpose of this DSL is to enable application of formal methods by means of
model transformations. Consequently, no separate models have to be developed for
that purpose. These model transformations, again, need to bridge semantic gaps.
During their development, the quality attributes presented in Chapter 3 were taken
in mind as well as the quality attribute verifiability. Moreover, the techniques
and tools presented in Chapter 7 were used during the development process to
assess their applicability. This chapter is based on the following publications.

M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen: An Ezxer-
cise in Iterative Domain-Specific Language Design. In: Proceedings of
the Joint ERCIM Workshop on Software Evolution and International
Workshop on Principles of Software Evolution (IWPSE-EVOL 2010),
pages 48-57, Antwerp, Belgium, September 2010 [67].

M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen: Using a
DSL and Fine-grained Model Transformations to FExplore the Bound-
aries of Model Verification — Extended Abstract. In: Proceedings of
the Seventh Workshop on Advances in Model Based Testing (A-MOST
2011), pages 63-66, Berlin, Germany, March 2011 [68].

M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen: Using a
DSL and Fine-grained Model Transformations to FExplore the Bound-
aries of Model Verification. In: Proceedings of the Third Workshop
on Model-Based Verification & Validation From Research to Practice
(MVYV 2011) (co-located with SSIRI 2011) (MVV 2011), pages 120-127,
Jeju Island, South Korea, June 2011 [69].
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Chapter 9: Conclusions

This chapter concludes the thesis. In this chapter, we recapitulate the main
contribution of this thesis and reflect on the research questions. We will also
discuss opportunities for further research.



Chapter 2

Revealing and Bridging a Semantic
Gap

Many formalisms exist for modeling the behavior of (software) systems, each
having a different goal. Process algebras are used for algebraic and aziomatic
reasoning about the behavior of distributed systems. UML state machines are
suitable for automatic software generation. We want to enable automatic soft-
ware generation from process algebra models by transforming them to UML state
machines. This transformation needs to preserve both behavioral and structural
properties of the original model. The combination of these preservation require-
ments gives rise to a semantic gap. This semantic gap implies that we cannot
transform ACP models into UML state machines on a syntactic level only, but
we have to take into account the semantics as well. We reveal the semantic gap
between the formalisms and propose a way of bridging it.

2.1 Introduction

There are many formalisms available for modeling the behavior of (software)
systems, and more are being defined [70]. This variety of formalisms is the result
of the need for different viewpoints on the behavior of systems. Therefore, some of
these formalisms are more appropriate for visualization, some more for verification,
and some more for automated software generation.
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When transforming a model specified in one formalism into a model specified
in another formalism, two issues play a role. First, there is a syntactic difference
between the formalisms. Transforming syntax is a well-known and relatively
simple problem. Second, since models in different formalisms serve different
purposes, there can be differences in the semantic domains of the source and
target formalism. In particular, these semantic domains may involve different
paradigms. Also, a formal semantics may be lacking altogether. Typically, it is
required that a model transformation preserves semantic properties as much as
possible. Therefore, semantic gaps between the formalisms need to be revealed
and bridged. In this chapter, we address research question RQ; by discussing a
model transformation that transforms between two semantic domains that appear
to be similar, but are in fact quite far apart.

RQ1: How should model transformations that transform between mod-
els from different semantic domains be approached?

Process algebras are used for algebraic and axiomatic reasoning about the
behavior of (concurrent) systems [71]. Typically, process algebra models are solely
used for analyzing systems, in particular for verifying their correctness. We would
like to use these verified models for generating correct executable code as well.
However, little is known about automatically generating software from process
algebra models. We propose to generate executable code from process algebra
models using UML state machines [72] as an intermediate step, since multiple tech-
niques are available for automated software generation from UML state machines.
The state machine diagram is one of the thirteen diagram types available in the
Unified Modeling Language (UML). It is a visual means to describe the behavior
of an object by modeling the lifecycle of an object over time [73]. Although,
there exist no official formal semantics of UML state machines, a number of
attempts have been made to formalize their semantics [74-77]. We start with
plain process algebra, i.e., without time, data, stochastic, etc., to acquire under-
standing of code generation from, and model transformations based on process
algebras. Therefore, we use the well-known Algebra of Communicating Processes
(ACP) [78,79]. Already in the transformation of this limited process algebra we
encounter a semantic gap. An advantageous side-effect of this transformation is
that textual process algebra models can be visualized by means of UML state
machine diagrams. Since UML is widely used in industry, this transformation
makes formal methods, like process algebra, more accessible to the industry.

Processes in distributed systems are typically allocated on different machines
that operate in parallel. Therefore, we have to ensure that the automatically gen-
erated software can also be deployed on a set of machines. This requires structural
equivalence of the ACP models and the obtained state machines with respect to
parallel decomposition. Structure preservation also facilitates traceability, which
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in turn aids validation of algebraic specifications. An ACP model can be analyzed
by studying the behavior of the state machine acquired from the transformation
using a UML tool. When unintended or erroneous behavior is detected, this needs
to be traced back to the original ACP specification such that it can be adapted
appropriately. If structure is not preserved, then it can be hard to determine where
the ACP model needs to be corrected. The ACP models and the state machines
obtained from the transformation need to exhibit the same observable behavior.
We do not require full semantic equivalence, but trace equivalence, i.e., it suffices
if the state machine can generate the same execution traces as the corresponding
ACP model. It is this combination of requirements, viz., preserving structural
and behavioral properties, that gives rise to a semantic gap. This means that the
transformation from ACP models to UML state machines encompasses more than
just translating syntax. Special care is needed to ensure that the semantic gap is
bridged to preserve both behavioral and structural properties.

The remainder of this chapter is structured as follows. In Section 2.2, some
background information on ACP and UML state machines is provided. In Sec-
tion 2.3, the transformation from ACP to UML state machines is described. In
this section the semantic gap between the formalisms is revealed and our solution
for bridging it is discussed. We implemented the transformation in a tool such that
it can be applied automatically. This implementation is described in Section 2.4.
An example of the transformation of an ACP model using our implementation is
described in Section 2.5. In Section 2.6, we position our approach with respect to
related work. Section 2.7 concludes this chapter.

2.2 Preliminaries

2.2.1 Process Algebra

Process algebras are used for studying the behavior of distributed systems [71].
The word process refers to behavior of a system and the word algebra indicates
that the reasoning about behavior is done in an algebraic and axiomatic manner.
Process algebras have been developed for describing parallel behavior, since this
was difficult in the methods of denotational, operational, and axiomatic seman-
tics [71]. Three well-known process algebra formalisms are Milner’s Calculus of
Communicating Systems (CCS) [80], Hoare’s Communicating Sequential Processes
(CSP) [81], and the Algebra of Communicating Processes (ACP) from Bergstra
and Klop [78,79]. Most other process algebra formalisms are extensions of one
of the three aforementioned ones. For instance, Timed CSP [82] is an extension
of CSP that includes time, mCRL2 [83] extends ACP with data and time, and
Timed CCS [84] is an extension of CCS that includes time. Here we focus on the
Algebra of Communicating Processes.
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2.2.1.1 Algebra of Communicating Processes

A concurrent system in ACP is described by a process term and a communication
function. Process terms are composed of atomic actions and operators. The
communication function describes how the atomic actions may interact.

Atomic actions are abstractions of real-world events. Typically, meaningful
names such as send or receive are used to denote the atomic actions. Since these
actions are atomic, they cannot be divided into smaller actions. In addition to
atomic actions, there are two constants for expressing termination. First there is
the deadlock constant 0, denoting unsuccessful termination. Second there is the
empty process constant 1, denoting successful termination.

Operators are used to compose atomic actions and process terms to represent
behavior. We consider seven of the ACP operators.

e Sequential composition (-) and action prefix (.)

The sequential composition of n process terms, P; - P5 - ... - P,, denotes
that the execution of process term P; precedes the execution of process
term P, and so on. The process term a.P, containing the action prefix
operator, denotes that first action a is executed, whereafter process term P
is executed. From the operational semantics of ACP can be derived that
the action prefix operator is similar to the sequential composition, therefore
we consider it as such.

e Alternative composition (+)
The alternative composition of n process terms, P; + P> + ...+ P,, denotes
that only one of these process terms is executed. The choice for which
process term to execute is made non-deterministically.

e Parallel composition (||)
The parallel composition of n process terms, P || Ps]| ... || P, represents the
arbitrary interleaving of the process terms Py, Ps, ..., P,, but also allows
communication between the process terms.

o Left merge (||)

The left merge operator is closely related to the parallel composition. It
denotes that the first action on the left-hand side of the operator is executed
first, whereafter the remaining process term continues as a parallel composi-
tion. Consider the process term (a.x)||y. This means that first action a is
executed, whereafter the process term behaves as x||y. This operator occurs
for technical reasons in the reduction of ACP specifications and is seldomly
used in modeling directly [85].
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e Communication merge (|)

This operator is used together with the communication function ~ to express
communication, or interaction, between two actions. The communication
function expresses which actions can communicate and what the result of
this communication is. For example «(give, take) = pass expresses that in
the process term give|take actions give and take communicate, resulting
in action pass. If this communication function does not exist, actions give
and take cannot communicate. This means that the process term give|take
results in a deadlock (0). The communication merge operator also occurs
for technical reasons in the reduction of ACP specifications and is seldomly
used in modeling directly [85].

e Encapsulation 0y
This operator prevents actions in the encapsulation set H from being
executed. Its main purpose is to enforce communication between actions in
a parallel composition by preventing interleaved execution of these actions
individually. The effect of the encapsulation operator is demonstrated later
in this section.

In ACP, reasoning about the behavior of a system is done by means of rewriting.
This is done by applying axioms to the process term that models a system. The
entire set of axioms of ACP used for rewriting can be found in Appendix A.
Rewriting changes the syntactic structure of the term, while preserving its (trace)
semantics. By appropriate application of the axioms, a process term can be
rewritten to its normal form. A term that is in its normal form no longer contains
any parallelism, i.e., it is linearized. A linear process term consists of actions,
sequential composition operators, and alternative composition operators only. In
this normal form, the order in which actions are executed, i.e., the traces of the
system, can easily be derived. This means that the effects of concurrency are still
visible, but there is no parallel composition operator anymore, i.e., the structure
has been lost. An example of the rewriting process is shown in Figure 2.1. In this
example, the ACP model consisting of the process term Oy give, take} (give.1||take.1)
and the communication function v(give, take) = pass is rewritten to its normal
form. This example demonstrates the effect of the encapsulation operator in
combination with a parallel composition. The actions in the encapsulated part of
the ACP specification is allowed, but execution of the individual actions is not.

2.2.2 Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose visual modeling
language that is used to specify, visualize, construct, and document the artifacts
of a software system [73]. The UML version 2 provides thirteen diagram types to
model the static structure and the behavior of a software system [72]. For our
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O give,take} (give.1||take.1)
= {Axiom M: z|ly = z[ly + yllz + z[y}
O give, take} (give.1| take.1 + take.1| give.1 + give.1|take.1)
= {Axiom LM3: a.z|y = a.(z|ly) (2x)}
O give,take} (give.(1| take.1) 4 take.(1| give.1) + give.1|take.1)
= {Axiom D5: 9u(x +y) = 0u(z) + 0u(y) (2x)}
O give,take} (give. (1| take.1)) 4 O give,take} (take. (1| give.1))
+0{ give,take} (give.1|take.1)
= {Axiom D3: 9n(a.x) =0, if a € H (2x)}
0 + 0 4 Oggive, take} (give.1|take.1)
= {Axiom Al:z+4+y=y+z}
O give,take} (give.1|take.1) +0 40
= {Axiom A6: 2+ 0=z (2x)}
O give,take} (give.1|take.1)
= {Axiom CM5 : a.z|b.y = c.(z|y), if v(a,b) = c}
a{give,take}(pass'(lHl))
= {Axiom SC2: z||1 =z}
8{givc,take}(pa55~1)
= {Axiom D4: 9y (a.z) = a.0u(z), if a ¢ H}
pass'a{give,take} (1)
= {Axiom D1:0x(1) =1}

pass.1

Figure 2.1 Rewriting the ACP model O give,take} (give.1||take.1), v(give, take) = pass
using the ACP axioms

purposes, we require class diagrams and state machine diagrams only. Therefore,
only these two diagram types will be explained in more detail.

2.2.2.1 Class Diagrams

Class diagrams are used for modeling the static parts of a system. These are,
among others, classes, types, and their interrelations. Every class has a name and
may have attributes and operations. The dynamics of a class is expressed in other
diagrams, such as a state machine diagram. A state machine diagram describes
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the life cycle of the class from the moment it is instantiated, to the moment its
execution has terminated.

2.2.2.2 State Machines

State machine diagrams contain, as their name suggest, state machines. State
machines are hierarchical structures used for modeling the behavior of a class.
Here, we consider a subset of UML state machines only, viz. without the history
mechanism. The basic building blocks of state machines are states and transitions.
A graphical representation of the constructs available in UML state machine
diagrams is depicted in Figure 2.2. There are three types of states, viz. simple
states, composite states, and pseudo states. A simple state can have an entry,
internal, and exit activity. A composite state is a state that can contain other
states. It is used to express hierarchy. It can have the same activities as a simple
state. An entry activity is executed in its entirety upon entry of the state. An
exit activity is executed in its entirety when the state is left. Internal activities
are executed when the state is active and may be interrupted. Activities usually
represent the operations modeled in a class.

There are six types of pseudo-states. Start states represent the initiation of
behavior. End states represent the termination of a (sub) state machine. Choice
states represent a non-deterministic choice between multiple execution paths. Fork
states are used to split behavior into two parallel execution paths that are active
simultaneously. Junction and join states are used to merge the execution paths
that were split by a choice or a fork state respectively.

States are connected by transitions. A transitions can have a guard condition
and an activity. A transition can be taken when its guard condition holds. When
the transition is taken, the activities are executed in their entirety.

2.3 Transformation

The transformation f from ACP models to UML state machines takes an ACP
model, which consists of a process term and a communication function, as an
argument and returns a UML state machine.

f : ACP model — UML state machine

Every non-atomic process term is built from smaller process terms, resulting in
an implicit tree structure. The transformation traverses this tree and transforms
every subtree into a partial state machine that is structurally equivalent to the
process term in the node.

The axiomatic rewrite rules of ACP can be used to rewrite an ACP model into
a different, but equivalent model. To ensure the required structural equivalence
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(a) Simple state (b) Composite state
> —®
(c) Start state (d) Final state
—>
(e) Fork state (f) Join state
A
L >
(g) Choice state (h) Junction state
[guard]
action

(i) Transition

Figure 2.2 State machine constructs

with respect to parallel behavior, the original ACP model should not be rewritten
to remove parallel composition operators. It is not required to maintain the
structure of the ACP model with respect to the other ACP constructs. However,
we will maximize structure preservation for all ACP constructs, since we want
to preserve designer’s choices as closely as possible. Therefore, we will avoid
rewriting as much as possible.

We use the formal semantics of ACP described in [86] and the semantics
description of UML presented in [72] to explain informally the behavioral equiva-
lence of ACP constructs and the resulting UML state machines. With behavioral
equivalence we mean that the state machines need to define exactly the same
traces as the original ACP models.

In the remainder of this section, the transformation is explained in five steps.
In each subsection, a new step which introduces one or more new ACP constructs
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is discussed. Every step, together with the steps preceding it, presents a complete
solution for the transformation of the ACP constructs that have been discussed
until then.

2.3.1 Atoms and Sequential Composition

The transformation generates a partial state machine for every ACP construct
used in the model. These partial state machines do not have a start and an end
state. Instead, partial state machines are connected to each other in such a way
that it corresponds to the syntax tree of the ACP model it represents. In this way,
compositionality is achieved. Only the complete state machine, representing the
full ACP model, has a start and an end state. Figure 2.3 depicts the state machine
that is acquired when a full ACP model is transformed. The model consists of a
process term P and a communication function . The state labeled f(P) denotes
the partial state machine acquired after applying the transformation to process
term P.

Figure 2.3 Full specification

Note that the result of the transformation of process term P will have an
incoming and an outgoing transition. The outgoing transition of the start state
and the incoming transition of the transformation result will merge. Also the
incoming transition of the end state will merge with the outgoing transition of the
transformation result. When transitions merge, the guard condition on the merged
transition will be the conjunction of the guard conditions on the transitions that
merge. In this case, the guard conditions on the incoming and outgoing transitions
of the transformation result apply, since the outgoing transition of the start state
and the incoming transition of the end state have no guard conditions.

2.3.1.1 Atoms

The atomic actions in an ACP specification represent real-world events. The trans-
formation maps the atomic action a to the state machine depicted in Figure 2.4.
The entry activity on the simple state executes the atomic action.

Figure 2.4 Atomic action
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The empty process constant 1 represents successful termination of a process
term. The transformation maps the empty process constant to a partial state
machine similar to the one depicted in Figure 2.4. The only difference is that
there is no entry action on the simple state. An alternative solution would have
been to map the empty process constant to a final state. However, a process term
can be followed by another process term, viz., using the sequential composition
operator. Therefore, the state machine should continue instead of terminating by
progressing into a final state. Termination of a state machine in this way can be
circumvented by mapping every process term to a composite state, since a state
machine will progress into the next state when a composite state has successfully
terminated [87]. Although this is a valid solution, we did not opt for it because
we want to have as little hierarchy as possible in order not to clutter the state
machine diagrams.

The deadlock constant 0 denotes unsuccessful termination of a process term,
or inaction. The transformation maps the deadlock constant to the partial state
machine depicted in Figure 2.5. The guard on the outgoing transition of the
simple state ensures that that state can never be exited. In this way the state
machine cannot proceed from this state. Since in this section (2.3.1) we deal with
atoms and sequential composition only, this results in a total deadlock.

[false]

Figure 2.5 Deadlock

2.3.1.2 Sequential Composition

Process terms composed by the sequential composition operator - are executed in
sequence. The transformation maps the sequential composition Py - Py - ... P, to
the partial state machine depicted in Figure 2.6. This construct enforces that the
execution of P; precedes the execution of P;11, for all ¢ < n. States labeled f(P;)
represent the partial state machines acquired after applying the transformation
to process term P;.

Figure 2.6 Sequential composition
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2.3.2 Alternative Composition

Of the process terms composed by a alternative composition operator +, only
one is executed. The choice for which process term to execute is made non-
deterministically. The transformation maps the sequential composition Py +
P, + ...+ P, to the partial state machine depicted in Figure 2.7. The choice
state ensures that only one of the paths will be selected for execution. States
labeled f(P;) represent the partial state machines acquired after applying the
transformation to process term P;. The junction state is used to connect all
partial state machines.

Figure 2.7 Alternative composition

2.3.3 Parallel Composition

Process terms composed by a parallel composition operator || are executed quasi-
parallel and may communicate. Quasi-parallel execution means that the actions
in the parallel process terms are arbitrarily interleaved whilst maintaining their
internal ordering. Consider the parallel composition (a - b)||(c - d). The arbitrary
interleaving will never result in a situation where the execution of action b precedes
the execution of action a, or where the execution of action d precedes the execution
of action ¢. Communication can occur when actions in the parallel process terms
are executed simultaneously. An ACP specification consists of a process term
and a communication function . This communication function specifies which
actions can communicate and what the result of this communication is. The
parallel composition Py||P; terminates when both process Py and process P; have
terminated.

The transformation maps the parallel composition Pyl|| Py || ... || P, to the partial
state machine depicted in Figure 2.8. The fork and join states are used to split and
merge the control flow. They ensure that all state machines running in parallel
will start and end simultaneously. A junction state cannot be used here instead
of a join state, because it does not synchronize the branches of execution.
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Figure 2.8 Parallel composition

2.3.3.1 Semantic Gap

The state machine construct depicted in Figure 2.8 represents arbitrary interleaving
and simultaneous execution of actions. However, communication as a result of
the simultaneous execution of actions in parallel branches is not represented by
this construct. In UML state machines the simultaneous execution of two actions
cannot result in another action being executed like in ACP. This is part of the
gap between the semantics of ACP and UML state machines.

One possibility to bridge this gap is to use the ACP axioms to rewrite an ACP
model such that all parallel composition operators are removed. In this way all
communication is made explicit. Consider the process term a||b together with the
communication function ~y(a,b) = ¢. The state machine acquired after rewriting
and transforming is sketched in Figure 2.9. This is not a valid solution since one
of the requirements is that the UML state machines need to preserve the structure
of the ACP models, at least with respect to the parallel composition. In fact,
the combination of the requirements of preserving both behavioral and structural
properties gives rise to the semantic gap. Our solution to bridge the semantic gap
is presented in Section 2.3.3.2.

o+ b 2 @

Figure 2.9 State machine representations of al|b and ~y(a,b) = c after rewriting
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2.3.3.2 Action Dispatcher

To bridge the semantic gap, we chose to exploit the semantic openness of the
UML. Therefore, we propose an action dispatcher that takes care of executing
all actions. This solution requires a change in the way atoms are handled. This
change will be explained later in this section.

Figure 2.10 depicts the class diagram representing the (single) action dispatcher.
This action dispatcher object has an action pool of zero or more action objects.
The action pool consists of all action objects ready for execution. The ~ attribute
of the class is the communication function . It is, like in ACP, used to determine
whether a pair of actions can communicate. The methods of the class handle
adding actions to, executing actions in, and removing actions from the action
pool. The functionality of the methods is explained below. The action dispatcher
is generic. This means that the same action dispatcher is generated for all ACP
models. Only the v attribute is generated from the model.

<< Singleton >
ActionDispatcher
P Action
v 1 0..*
AddToPool(x: Acti ActionPool Id
dToPool(x: Action) Name

Execute(x: Action)
RemoveFromPool(x: Action) 0.7 Ancestor |0..*

Figure 2.10 Action dispatcher class diagram

An action object has two attributes, viz., an identifier to uniquely identify the
syntactic occurrence of the action and the name of the action. This name is the
same name as the one occurring in the ACP process term. An action can be related
to other actions, its ancestors. If an action x is the result of communication, e.g.
~(a,b) = x, actions a and b are considered to be parents of action x. The set of
ancestors of = can be found by taking the transitive closure of the ‘is parent of’ x
relation. Note that an action that is the result of communication can communicate
with other actions, e.g., v(a,b) = ¢ and ~(¢,d) = e. Because an action cannot
communicate with its ancestors, the ancestors of an action need to be known to
correctly handle communication. If an action is not the result of a communication
it does not have any ancestors.

The life cycle of an action object is such that it will first be added to the
action pool. After some time, it may be executed whereafter it is removed from
the action pool. In case of communication, action objects can also be removed
from the action pool without having been executed themselves. Action objects
can even stay in the action pool forever in case of a deadlock.
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Transformation of Atoms

Atoms are no longer executed in the state machine. Instead they are announced
at the action pool, which ensures their execution. All atoms are treated in the
same way.

The atom a maps to the state machine depicted in Figure 2.11. The entry
activity on the simple state creates an action object from atom a and invokes the
AddToPool method of the action dispatcher. For the empty process and deadlock
constants also action objects will be created with names 1 and 0 respectively.
The entry activity then puts the newly created action object in the action pool.
To ensure that the state machine does not continue until the action has been
executed, a guard is present on the outgoing transition. This guard is true when
the action object is not in the action pool. This is the case when the action has
been executed or has communicated.

entry/ |[a¢ ActionPool|
AddToPool(a)

Figure 2.11 Transformation of atoms for use with the action dispatcher

Addition

The method AddToPool(z) is invoked by the entry activity on the simple state
an atom is mapped to (see Figure 2.11). Its purpose is to extend the action pool
with z and to maintain closure of the action pool under ~y. If an action object x
is added to the action pool, and it can communicate with another action object a
already in the pool that is not one of its ancestors, then a new action object
for the communication result given by + is recursively added to the action pool
(lines 3-6 in Figure 2.12). On line 5, a new action object is created by calling
its constructor. This action object is assigned a new identifier by the function
Newld() and a name provided by the communication function «. Also, the set
containing all its ancestors is assigned to the action object.

Execution

An action object z in the action pool that does not represent a deadlock constant
will non-deterministically be selected at an arbitrary moment for execution. The
purpose of method Ezecute(x) is to find all actions that execute along with z, i.e.,
all actions that, directly or indirectly, gave rise to  through communication, and
to clean up the action pool. If the state machine cannot proceed and there are
only action objects in the action pool that represent a deadlock constant, it is in
a deadlock state.
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1. AddToPool(xz: Action):

2 ActionPool := ActionPool U {z};

3 Vq : y(a.Name, z.Name) = y

4. — if a € ActionPool A a ¢ x.Ancestor

5 — NewAction := Action(Newld(), y, a.Ancestor U x.Ancestor U {a, z});
6 AddToPool(NewAction)

7. Ezecute(z: Action):

8. Vo : a € x.Ancestor

9. — Ezecute(a)

10.  RemoveFromPool(z)

11. RemoveFromPool(z: Action):

12. ActionPool := ActionPool — {z};
13. Vo : a € ActionPool

14. — if € a.Ancestor

15. — RemoveFromPool(a)

Figure 2.12 Pseudo code for the action dispatcher methods

Removal

The purpose of method RemoveFromPool(z) is to remove action object x from the
action pool. To maintain closure of the action pool under -y, also all action objects
that are the result, directly or indirectly, of communication involving x are removed.
Note that these resulting action objects do not occur in the conditions of outgoing
transitions (see Figure 2.11), because they are the result of communication.

2.3.3.3 Correctness Considerations

Interference between methods of the action dispatcher can be avoided by executing
them under mutual exclusion. The action dispatcher controls the state machine
through conditions of the form a ¢ ActionPool only. Note that a is added to the
action pool, falsifying the condition, upon entry into the immediately preceding
simple state, and is removed upon its execution, making the condition true.
During execution of each method, the action pool changes monotonically to avoid
undesired condition changes. This means that no conditions in the state machine
are evaluated until the action pool is in a stable state, i.e., until the invoked
method, either AddToPool() or Ezxecute() has successfully terminated.

2.3.4 Left Merge and Communication Merge

2.3.4.1 Left Merge

The left merge operator || denotes that the first action on the left-hand side of
the operator is executed first, whereafter the remaining process term continues as
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a parallel composition. The left merge operator occurs for technical reasons in
the reduction of ACP specifications and is seldomly used in modeling directly [85].
Furthermore, this operator cannot be expressed in a natural way in a state
machine. It is impossible to express that a specific action in one branch of a
parallel composition should be performed first. Therefore, the left merge operator
is eliminated by rewriting according to the axioms of ACP.

2.3.4.2 Communication Merge

The communication merge operator | together with the communication function ~
is used to express communication between two parallel processes. Like the left
merge, the communication merge operator occurs for technical reasons in the
reduction of ACP specifications and is seldomly used in modeling directly [85].
Therefore, the communication merge operator is eliminated by rewriting according
to the axioms of ACP.

2.3.5 Encapsulation

The main purpose of the encapsulation operator is, as described in Section 2.2.1.1,
to enforce communication between actions in a parallel composition by preventing
the interleaved execution of these individual actions. For a set of actions H, the
encapsulation operator Jy prevents actions in the encapsulation set H from being
executed. Instead, it maps these actions to the deadlock constant. Therefore,
besides explicit occurrences of deadlocks, i.e., deadlock constants in a process
term, they can also occur implicitly, i.e., when an action gets encapsulated. In
itself this is not an issue, because actions can be annotated such as to derive
whether it is encapsulated or not. However, the combination of the encapsulation
operator and the alternative composition leads to additional difficulties. In ACP,
the non-deterministic choice operator is actually not completely non-deterministic.
Choices that immediately lead to a deadlock will never be made. For example in
the process term a + 0, the choice will always be to execute action a (see axiom
A6 in Appendix A). Since deadlocks can occur implicitly, for example the result
of a communication may be encapsulated, it is not always obvious which process
terms in an alternative composition lead to a deadlock immediately. This means
that in such cases, without additional bookkeeping, it is not clear which process
terms in an alternative composition may be executed. Therefore, the combination
of encapsulation and alternative composition leads to another semantic gap.

We have a solution to bridge this semantic gap as well. However, it is not
presented here.



2.4. Implementation 37

2.4 Implementation

Since we want to use the resulting state machines in UML tools, we defined another
transformation from UML state machines to the XML Metadata Interchange
(XMI) format [25]. XMI is a standard used for, amongst others, exchanging UML
models between various tools. The tool Telelogic Rhapsody [88] can be used to
generate simulation software from UML state machines. We use this feature to
simulate the execution of process algebra specifications.

We use the term rewriting system ASF+4SDF [49, 54] for the development
of our metamodels' and for the implementation of our transformation. The
transformation from ACP models to UML state machines expressed in the XMI
format is too complex to implement in a single step. Therefore, we split the
transformation into four independent steps. This has as additional advantage
that every step is (re)usable in isolation.

In the first step of the transformation, the ACP model is rewritten using
the ACP axioms to remove all instances of the left merge and communication
merge operator. Consider for example the ACP process term al| (b|c) and suppose
~(b,c) = d. This rewrites to a.d. This step has as input and output an ACP
model conforming to the ACP metamodel we defined. After this step the ACP
model will only consist of constructs that have a state machine equivalent, viz.,
atoms, action prefixes, sequential compositions, alternative compositions, and
parallel compositions. With a few extensions the transformation used in this step
can also be used for rewriting ACP models to their normal form.

In the second step, the implicit tree structure of an ACP model is made explicit.
For the representation of this tree structure we use an intermediate language for
which we also defined a metamodel. This language uses a prefix format. Consider
for example the alternative composition Py + P; + ... + P,. The transformation
function finds all the alternatives and represents them as alt(Py, Py, ..., P,).

These first two steps are mere preparation for the actual transformation. In
the third step, the tree representation of an ACP model is transformed into
a state machine. This state machine is defined in a state machine language
for which we have also defined a metamodel. This language closely resembles
UML state machines. The only difference is that it does not support the history
mechanism. We chose to use this intermediate format to avoid having to transform
into complex XMI constructs directly. Moreover, it enables the transformation of
any UML state machine defined in our state machine language into XMI. This
third transformation step is similar to Thompson’s algorithm for transforming
regular expressions into non-deterministic finite automata [89]. The transformation
function has as arguments an ACP process term represented as a tree and a start
and an end state. For the alternative and parallel composition these start state

LOur metamodels are in fact context-free grammars.
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and end state are respectively the choice and junction state, and the fork and join
state. In Figure 2.13 an example is depicted in which the partial state machines
for n alternatives are generated and connected to the choice and junction states.
The sequential composition needs to be handled differently since the end state
of the first partial state machine in the sequence is the start state for the next.
These states are not known in advance. To overcome this, dummy states are
inserted such that the start and end states are known in advance. These dummy
states are removed afterwards.

P() —’: f( Pn ) E—l

Py o ——O—>  fP) ——@—>
start end oo /

P, e (AR

Figure 2.13 Transformation of the alternative composition

In the last step a state machine is transformed into its XMI [25] representation.
This back-end part is isolated, because the XMI standard is actually not so
standard. Most UML tools use a different dialect of XMI, requiring different
back-ends. Currently our implementation is able to generate XMI files for the
UML tools ArgoUML [90] and Telelogic Rhapsody [88]. Since there is a one-to-one
mapping from UML state machine constructs to XMI, this final transformation
step is straightforward. State machines can be simulated using the Telelogic
Rhapsody tool. To ensure correct handling of communication, an implementation
of the action dispatcher presented in Section 2.3.3.2 is added to the XMI file.

2.5 Illustration

We transformed a number of ACP models to verify the correctness of our trans-
formation. In this section, we describe the transformation of an ACP model of a
conveyor system into a UML state machine.

The conveyor system is schematically depicted in Figure 2.14. Machines M;
and M put products on a conveyor belt. The products from machine M; can go
to machines M3 or M, for further processing and the products from machine M,
can go to machines My or Ms. When products are sent to machine My by both
machines M; and Ms at the same time a collision will occur and an operator
should ensure that both products can still enter the machine for processing.
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Figure 2.14 Conveyor system

The ACP model representing this system is depicted in Figure 2.15. The process
term expresses that a product is produced by machine M; which is then sent to
machine M3 or My for further processing and that another product is produced
by machine My which is then sent to machine M5 or M, for further processing,
possibly at the same time. The communication function 7 expresses that an
operator rearranges products that collide if two products go from machines M;
and M, to machine M, at the same time. Note that in this example only one
iteration is modeled.

v(Ch4,Co4) = operator
(M1.<013.M3 + 014.M4) || MQ.(CQ5.M5 + 024.M4)).1
Figure 2.15 ACP model of the conveyor system

The state machine resulting from the transformation should exhibit the same
behavior. A screen shot of the state machine acquired from the transformation
imported in ArgoUML can be found in Figure 2.16.

[C13 notin AP]__ [M3 not in AP]
lentry /AddToPool(M3)

[entry 7AddToPool(C13)

entry /AddToPool(M1)

[C14 notin AP]_

lentry /AddToPool(C14) lentry /AddToPool(M4)

[Ma not in AP]

( Yc24 notin AP, [ [M4 not in AP]
lentry /AddToPool(C24) lentry /AddToPool(M4)
( M2 notin AP)
entry /AddToPool(M2) ( €25 notin AP
notin AP],_( )
lentry /AddToPool(C25) lentry /AddToPool(M5)
[M5 not in AP]

Figure 2.16 ArgoUML screen shot depicting the acquired state machine diagram
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We also transformed this ACP model into an XMI file for Telelogic Rhapsody.
This enables simulation of the state machine. Three screen shots showing the
results of three different executions of the simulation are depicted in Figure 2.17.
In trace 1 and 3 both products go to different machines. In trace 2 the operator
is needed to rearrange collided products.

Executahble started Executable started

Dispatcher Started Dispatcher Started

Executing M1 - Mi

M2 i : M2

G24 i : operator
i : M4

Executing ; M4

(a) Trace 1 (b) Trace 2 (c) Trace 3

Figure 2.17 Three Telelogic Rhapsody execution results

2.6 Related Work

In this section, we position our approach with respect to related work. First,
we discuss work related to bridging a semantic gap. Several papers have been
published on this topic. However, the solutions to deal with a semantic gap differ
among them. Second, we discuss a number of approaches that deal with trans-
forming process algebra models to models expressed in different other formalisms.
We present here just a selection of such approaches, there are many more around.

2.6.1 Semantic Gap

Corbett et al. describe an approach for automatically extracting finite state models
that can be used for verification from Java code [91]. The authors observe a
semantic gap between artifacts produced by software developers and artifacts
accepted by verification tools, which they refer to as the model construction
problem. Their solution to this problem is twofold. First, clever abstractions
should be defined to avoid semantic mismatches. Second, if these abstractions
cannot be defined, the input should be bounded such that it can be transformed
into the target formalism. They also address the issue of traceability, i.e., how to
trace the results of a model checking process back to the original Java program.
They solve this by using intermediate representations that can be used to relate
nodes in the abstract syntax trees of the model used for model checking and the
original Java program. We avoid the problem of traceability by preserving the
structure of the process algebra model as much as possible.
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An approach similar to the one presented by Corbett et al. is described by
Sabetta et al. [92]. The authors aim at generating analysis models from UML
models. Their solution is to aggregate model elements to raise the level of
abstraction. These abstractions should semantically be closer to the target model.

Sawada defines a transformation that enables analysis of models defined in
the hardware description language VHDL by the theorem prover ACL2 [93]. His
first defines a transformation in the opposite direction. The semantic gap that
arises by the different properties of the languages is minimized by considering
only a limited form of the source language. This approach is similar to the one
we adopted. We first considered a limited form of the ACP process algebra, viz.,
without the encapsulation operator, which led to a smaller semantic gap.

A transformation from business process models to another formalism on the
same level of abstraction is described by Grangel et al. [94]. The authors do not
bridge the semantic gap that arises from their transformation, instead they avoid
it by adapting the target formalism. They create a UML profile that has all the
features of the source language. In this way the transformation is straightforward.

Rountev et al. note that in the field of reverse engineering little work has been
done on constructing reverse engineered sequence diagrams [95]. Their goal is to
build a tool that can reverse engineer UML sequence diagrams from Java code
through static analysis. One of the semantic gaps between the two formalisms
they encounter is the way breaks are handled. The break fragment for UML
sequence diagrams is shallow, i.e., it breaks out of the immediately surrounding
fragment, whereas the break statement in Java is deep, i.e., it breaks out of several
levels of nesting. Their solution to deal with this semantic gap is to augment
the UML notation with a generalized break fragment that allows breaking out of
multiple enclosing fragments. In this case, also, the semantic gap is not bridged,
but avoided by adapting the target formalism.

Gerber et al. question how to determine the correctness of model transforma-
tions [30], both on a syntactic and on a semantic level. They argue that it is not
always needed to have a complete and consistent model. This does not hold in our
case. The output of our transformation should be structurally and behaviorally
equivalent to the input.

2.6.2 Transforming Process Algebra

An approach for transforming the Algebra of Timed Processes (ATP) into timed
graphs is described by Nicollin et al. [96]. The goal of the authors is to unify
behavioral description formalisms for timed systems. An advantage of their
transformation is that model checking can be applied to ATP specifications via
timed graphs. The main difference with our approach is that they apply their
transformation on a canonical form of the initial specification, whereas we preserve
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the structure of the process algebra specification as much as possible.

Pardo et al. describe a transformation from a self-defined timed process
algebra based on LOTOS operators to dynamic state graphs [97]. The authors
have defined an operational semantics for their process algebra and proved that
their transformation preserves semantics. Their goal is also to simulate execution
of process algebra models. Similar to the approach described by Nicollin et al.,
the structure of the process algebra models is not preserved. The authors note
that their approach does not scale well, but that it is suitable for smaller models.

An approach to employ process algebra for the design and verification of web
services is proposed by Ferrara [98]. Thereto two model transformations are
implemented, viz., from BPEL to LOTOS and the other way around. In addition,
the author provides guidelines for transforming from arbitrary process algebra
formalisms to BPEL.

Doxsee and Gardner note that although formal methods contribute to reliable
software, they are still not widely used in industry [99]. Therefore, they advocate
a technique called selective formalism for concurrent system design. This is a
hybrid technique that incorporates both formal methods and traditional software
engineering practices. One of the key components of this approach is a tool that
can transform formal models into executable code. For this purpose they use a
framework called CSP++. One of the components in this framework is used to
transform CSPm models to C++ code.

2.7 Conclusions

In this chapter, we presented a transformation from the process algebra ACP to
UML state machines. We have addressed the semantic gap that arises in this
transformation. Transforming a model specified in one formalism into a model
in another formalism involves more than transforming syntax. Differences in the
characteristics of semantics need to be handled meticulously to ensure correctness
of the transformation. In our case, a semantic gap emerged as a result of the
requirements on the transformation, viz., the transformation should preserve both
structural and behavioral properties. Our transformation preserves structure for
all operators except for the seldomly used left merge and communication merge
operators. It also preserves behavior by exploiting the semantic openness of UML
state machines. We have extended UML state machines with an action dispatcher
to ensure that they can generate the same execution traces as the ACP model.
Note that trace equivalence is in general only one aspect of semantic equivalence.
Without providing a formal semantics for UML state machines we cannot guarantee
that we have bridged the semantic gap completely. Since there are many formalisms
with different (or without) formal semantics, there are probably many model
transformations that are not proven to be semantics preserving. Proving that a
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model transformation preserves semantics requires different expertise.

Using the tool Telelogic Rhapsody we can generate software to simulate the
acquired UML state machine and action dispatcher. In this way, the execution
of an ACP model can be simulated. Since our transformation preserves most
structure of ACP models, UML tools can be used for visualizing this structure.
We performed several case studies using our implementation to illustrate our
mapping of ACP constructs to UML state machines.






Chapter 3

Quality of Model Transformations

Model transformations play a pivotal role in MDE. Consequently, they have to be
treated in a similar way as traditional software artifacts. It is, therefore, necessary
to define and assess their quality. We present two definitions for two different
views on the quality of model transformations. We also provide some examples of
quality assessment techniques for model transformations. This chapter concludes
with a discussion about which type of quality assessment technique is most suitable
for either of the views on model transformation quality.

3.1 Introduction

MDE is gradually being adopted by industry [56]. Since model transformations
play a key role in MDE, they are becoming increasingly important as well. Model
transformations are in many ways similar to traditional software artifacts, i.e.,
they also require maintenance and should preferably be reused.

Three categories of software maintenance activities can be distinguished, viz.,
adaptive, corrective, and perfective maintenance [100]. Adaptive maintenance
is performed to make a model transformation usable in a changed environment.
This type of maintenance occurs for example when the metamodels of the source
or target language of a model transformation change and the transformation
needs to co-evolve, or to add functionality to a model transformation, e.g., due to
changing requirements. Corrective maintenance is performed to correct faults in
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a model transformation. Perfective maintenance is performed to improve a model
transformation, e.g., performance or modularity.

Models are frequently used in traditional software development. However, their
applicability is typically limited to documentation and analysis. Reusing models
is one of the challenges that should be solved by MDE [101]. However, reuse in
MDE is not limited to models. Model transformations should be considered as
reusable assets as well. A model transformation can be reused for every model
adhering to the source metamodel on which it is defined. This as-is type of reuse
is referred to in [102] for application generators, such as model transformations,
in general, i.e., they are typically implemented once and reused often. Yet, model
transformations can be reused in different ways as well. A model transformation
that is part of a chain of model transformations, may be reused in another chain
of model transformations that is defined on the same metamodels. Besides as-is
reuse, reuse-with-modify also plays an important role in the context of model
transformations. As the need for new target platforms arises, e.g., Java code
is required instead of C++ code, new model transformations will have to be
developed. In such cases, it is desirable to reuse as much as possible from existing
model transformations.

Since model transformations are in many ways similar to traditional software
artifacts, they need to adhere to similar quality standards as well. To attain these
standards, a methodology for developing model transformations with high quality
is required. However, before such a methodology can be developed, quality needs
to be defined in the context of model transformation. Therefore, we address in
this chapter research question RQs.

RQs: How can quality be defined in the context of model transforma-
tions?

The remainder of this chapter is structured as follows. In Section 3.2, we will
distinguish two views on the definition of model transformation quality. Section 3.3
describes the quality attributes that we consider relevant for model transformations,
in particular with respect to maintenance and reuse. In Section 3.4, we will show
for both of the views on quality different ways to assess it. Section 3.5 concludes
this chapter.

3.2 Internal vs. External Quality

It is often said that quality is in the eye of the beholder, i.e., it depends on
the perspective and objectives of the evaluator [103]. Therefore, quality can be
defined in different ways. Five approaches to the definition of quality are given by
Garvin [104]. Trienekens and van Veenendaal and also Kitchenham and Pfleeger
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describe these five definitions from the perspective of software development as
follows [105,106].

1.

Transcendent definition:

Quality is an ideal toward which we strive. It is easy to recognize, but hard
to measure. It depends on the perceptions and affective feelings of a person
or a group towards a software product.

. Product definition:

This view on quality concerns the inherent characteristics of a software
product. Quality is based on a well-defined set of internal software quality
attributes. These quality attributes can be measured in an objective way.

User-based definition:

Quality is fitness for use [107]. It should be determined by the users of a
software product in a specific situation. It is therefore subjective and cannot
be measured in an objective way.

Manufacturing-based definition:

Quality is conformance to requirements [108]. It is aimed at the development
process of a software product by stating that a software product is of high
quality when the developers have ensured that it does what it should do.
Higher quality in this case implies less rework during development and after
delivery.

Value-based definition:
Quality should be determined by means of a decision process on trade-off’s
between performance of the product, time, effort, and cost.

For model transformations, the definition that is applicable depends on the chosen
perspective. A model transformation can be considered in two different ways, viz.,
as a (static) transformation definition or as a (dynamic) runtime instance of that
definition, i.e., the process of transforming a source model to a target model (see
Figure 3.1). Accordingly, the quality of a model transformation can be considered
in two different ways as well.

Source Transformation Target
model definition model

Tinstance of

—————————————— » Transformation |[---------=-----

Figure 3.1 Model transformation context
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When a model transformation is considered as the definition according to
which a source model is transformed into a target model, the model transformation
is considered as a product. Therefore, a product definition is most applicable
to this view on model transformation quality. The quality of the definition is of
importance during its development and maintenance and therefore most relevant
to developers. Using this view on quality, the focus is on the internals of a model
transformation. Therefore, this is referred to as internal quality. This definition
is consistent with the accepted definition of internal quality that is adopted for
traditional software [109].

When a model transformation is considered as the process of transforming a
source model to a target model, in fact the effect of the model transformation is
considered. This concerns quality aspects of a transformation that are observable
from the outside, i.e., the transformation is considered as a black-box. These qual-
ity aspects include among others conformance to requirements and performance.
This view on model transformation quality is primarily of importance for the
users of a transformation. Therefore, a user-based definition is most applicable
in this case. Using this view on quality, the focus is on the externals of a model
transformation. Therefore, this is referred to as external quality. Again, this
definition is consistent with the accepted definition of external software quality.

Besides internal and external quality, two other views on quality can be
distinguished, viz., quality of the development process and quality in use [109].
However, we will not consider these views here. The research presented in this
thesis mainly focuses on the internal quality of model transformations. However,
in Section 3.4, we will also address issues regarding the assessment of their external
quality. Note that a number of studies have been performed that confirm the
intuitive observation that the internal quality of a software artifact affects its
external quality. Plosch et al. report on these studies, but also on a study that
criticizes the findings of these studies [110].

3.3 Quality Attributes

In the previous section, we observed that there are many faces to quality. The
different characteristics that quality can be decomposed into are referred to as
quality attributes. In the remainder of this section, we describe the attributes
of internal quality that we consider as relevant for model transformations, in
particular with respect to development and maintenance. Most of these quality
attributes have already been defined earlier for software artifacts in general [109,
111-113]. We explain here why they are relevant for model transformations in
particular.
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Understandability

Understandability refers to the amount of effort that is required for understanding
the purpose of a model transformation. High understandability of a model
transformation is of crucial importance when it has to be maintained or reused.
For traditional software artifacts, a significant proportion of the time required
for maintenance, debugging, and reusing tasks is spent on understanding the
software [114,115]. Since model transformations are similar to traditional software
artifacts, we expect that this observation holds for model transformations as well.

A model transformation is a set of functions that transform metamodel ele-
ments. Therefore, the understandability of a model transformation is affected by
the understandability of the involved metamodels. Their syntax and semantics
need to be understood to fully comprehend the model transformation.

Modifiability

Modifiability refers to the amount of effort required for adapting a model transfor-
mation to provide different or additional functionality. A model transformation
may have to be changed for various reasons, viz., to remove faults, i.e., corrective
maintenance, to accommodate metamodel changes , i.e., adaptive maintenance,
or to adhere to changed requirements, i.e., perfective maintenance. Modifiability
is closely related to understandability, since typically a modification of a model
transformation requires the model transformation to be understood.

Reusability

Reusability refers to the extent in which parts of a model transformation can be
reused by other (related) model transformations. Reuse is one of the fundamental
points of MDE. Therefore, we argued in Section 3.1 that model transformations
should be considered as reusable assets as well.

Reuse is closely related to maintenance. Therefore, reusability is closely related
to understandability as well. A model transformation needs to be understood
in order to evaluate whether (parts of) it can be reused for another model
transformation. In Section 3.1, we noted that a model transformation may need
modifications in order for it to be reusable. Therefore, reusability is related to
modifiability as well.

Modularity

Modularity refers to the extent in which a model transformation is systematically
separated and structured. Most model transformation languages have support for
structuring model transformations by packaging transformation rules into mod-
ules [116]. Proper modularization has a number of advantages [117]. First, every
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module in a model transformation can be developed separately. Second, a module
can be modified without affecting the other modules in a model transformation.
Last, modules should be sufficiently small to be understood in isolation which
benefits the overall understanding of a model transformation. Since modularity
benefits understandability, it also benefits modifiability and reusability.

Completeness

Completeness refers to the extent in which a model transformation is fully devel-
oped. A model transformation is fully developed when it fulfills its requirements,
i.e., when it correctly transforms models conforming to its source metamodel to
models conforming to its target metamodel.

This is the only quality attribute we list in this section that addresses both
internal and external quality. Completeness is defined as conformance to require-
ments. Conformance to user requirements is an attribute of external quality since
this is of interest to the users of a model transformation. Conformance to software
requirements is an attribute of internal quality since this is of interest to the
developers of a model transformation.

Consistency

Consistency refers to the extent in which a model transformation is implemented
in a uniform manner. A model transformation is consistent if a uniform pro-
gramming style is used throughout the transformation. Programming style has
many facets [118]. Here, we focus mainly on notation, i.e., the terminology and
symbology used in a transformation. This definition of consistency is similar
to the definition of internal consistency of Boehm et al. [112]. They also define
external consistency, which is similar to our definition of completeness.

There is a wide range of causes for inconsistencies [119]. Our definition of
consistency refers to programming style. The most prominent cause for inconsis-
tency of this type is the multiplicity of developers involved in the development
process. Consistency is related to understandability, since typically the use of
uniform notation increases understandability [112].

Conciseness

Conciseness refers to the extent in which a model transformation is free of
superfluous elements. Superfluous elements include variables that are never used
and transformation functions that are never invoked. Conciseness may conflict
with understandability, since a transformation function that is written using less
elements may be more difficult to comprehend.
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3.4 Quality Assessment of Model Transformations

In Section 3.2, we distinguished two views on model transformation quality, viz.,
internal and external quality. Similarly, two methods for assessing quality (both
internal and external) can be distinguished. On one hand, a model transformation
can be treated as a white-box. In this case, measurements can be performed
on the transformation definition. Since in this approach the transformation
definition is assessed directly, we refer to this type of quality assessment as direct
quality assessment. The quality @ of a model transformation M7 can thus be
expressed as a function of the transformation definition, i.e., Q@ = f(MT) for
some function f. On the other hand, a model transformation can be treated
as a black-box. In this case, it is not possible to perform measurements on the
definition, but only on its environment. Since in this approach the effect of a
model transformation is assessed and not the transformation definition itself, we
refer to this type of quality assessment as indirect quality assessment. One method
to assess the quality of a model transformation indirectly is by measuring a source
model and the corresponding target model and comparing the results of these
measurements. In this case, quality @ can be expressed as Q@ = P(f (M), g(M")),
where @ is a comparison operator and functions f and g are used to assess source
model M and target model M’ respectively. Another method to assess the quality
of a model transformation indirectly is by calculating the differences between
the source and the corresponding target model and measuring these differences.
Obviously, it should be possible to calculate these differences, for example using
the techniques described by Protié [120]. Therefore, this method is only applicable
when the source and target metamodel of a transformation is the same, i.e., in
case of an endogenous model transformations [21]. In this case, quality @) can be
expressed as Q = f(A(M, M")).

Intuitively, it is to be expected that direct quality assessment is most appropri-
ate for assessing the internal quality of a model transformation, since the subject
under evaluation is the one from which the quality should be assessed. Likewise,
indirect quality assessment seems to be most appropriate for assessing the external
quality of a model transformation. In the remainder of this section, we will provide
examples of direct and indirect quality assessment. These examples will show
that direct quality assessment can be used for assessing external quality as well.

3.4.1 Direct Quality Assessment

When applying direct quality assessment to model transformations, the model
transformation itself is being measured. The source and target model of the
transformation are not considered in the evaluation. In this thesis, we mainly focus
on assessing the internal quality of model transformations directly using metrics.
In Chapters 4, 5, and 6, five sets of metrics are presented for measuring model
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transformations developed with five different model transformation languages.
Since different languages have different characteristics, a metric set is specific for
a model transformation language. In Chapter 6, we will show that conceptually
similar metrics can be defined for different model transformation languages.
For two of the metric sets, viz., for ASF+SDF and ATL, we report on an
empirical study aimed at determining whether the metrics can be used for assessing
the quality attributes presented in Section 3.3. For both languages, significant
correlations were found between a number of metrics and the quality attributes.

Although metrics for model transformations do not measure the process of
transforming a source model to a target model, they are applicable for determining
certain characteristics of this process. This is not unexpected, since the imple-
mentation, i.e., the transformation definition, prescribes how the process should
flow. An external quality attribute that can be assessed by means of direct quality
assessment of model transformations is performance. We performed experiments
with the model transformation languages ATL and QVTO to determine what
factors influence the execution time of a model transformation [121]. One of the
experiments was aimed at evaluating the influence of the chosen implementation
strategy on performance. The implementation strategy that is chosen for a model
transformation is reflected in the values of a number of metrics. We performed
regression analyses to determine whether a relation exists between these metrics
and the execution time of a model transformation. Such relations were found,
however, because of the limited number of subjects in the study, they are insuf-
ficiently significant. Although more research into this relation is required, the
preliminary results we acquired do confirm our expectation.

For other external quality attributes, such as completeness, direct assessment
is less applicable. Only very general observations can be made. Consider a model
transformation that adds accessor methods to a class diagram. The number of
model elements in a target model should be larger than the number of model
elements in the source model. In Section 5.3, we will show a metric for ATL that
measures how much a transformation function increases or decreases the number
of model elements in the target model. If there is no transformation function that
increases the number of model elements, this may imply that there is a fault in
the transformation. Note, however, that such an observation should be treated
merely as an indication and no far-reaching conclusions should be drawn.

3.4.2 Indirect Quality Assessment

Software metrics have been studied extensively over the last decades [59]. Metrics
have been proposed for measuring various kinds of software artifacts, e.g., object-
oriented programs [122], UML models [123], and process models [124]. Such metric
sets can be used for measuring and comparing the source and corresponding target



3.4. Quality Assessment of Model Transformations 53

model of a model transformation. The result of such a comparison reflects the
effect of a model transformation. This result can be used to judge how well the
model transformation adheres to its requirements, i.e., how complete it is. Note,
however, that the extracted metric values may be incomparable, in particular
when the source and target model of a transformation are not defined in the
same language, i.e., in case of an exogenous model transformation [21]. Therefore,
care has to be taken to prevent comparing apples and oranges. Note also that,
in general, indirect quality assessment is case specific, i.e., the outcome will be
different for each pair of source model and corresponding target model. It may
therefore be hard to draw general conclusions about the external quality of a
model transformation based on a limited number of observations.

Saeki and Kaiya advocate indirect quality assessment for assessing the external
quality of model transformations [125]. They propose to extend the source and
target metamodels on which a model transformation is defined with metrics and
methods for their calculation. These metrics can then be used to assess the quality
change of a model induced by a model transformation.

Differences between the source and corresponding target model of a model
transformation can be calculated by model comparison tools [120,126]. These
differences represent the changes induced on the source model by the model
transformation. They can be used to assess whether the changes to the source
model are as expected, and thereby whether the model transformation adheres to
its requirements. Note, however, that a discrepancy between the expected changes
and actual changes may also indicate a flaw in the source model. For this method
of indirect quality assessment, a subset of the code churn metrics as defined by
Nagappan and Ball can be used [127].

Indirect quality assessment using metrics seems to be inadequate for assessing
the internal quality attributes for model transformations presented in Section 3.3.
The reason for this is that metrics that can be derived from models have no relation
at all with any of the internal quality attributes for model transformations.

3.4.2.1 Validation of Model Transformations

In the previous sections, we presented approaches based on metrics. There are
also approaches that do not use metrics that can be used for assessing the quality
of model transformations indirectly. Model checking can be used to validate
whether model transformations preserve certain behavioral properties [128]. This
type of validation can be used to acquire insight in the completeness of model
transformations. A schematic overview of the approach is depicted in Figure 3.2.
A source model M and the resulting target model M’ of a model transformation ¢
are transformed by model transformations ¢; and ¢y into models that can be
used for model checking, M,,. and M/ . respectively. For the transformed source
model M,,., a property p is defined that it should satisfy. A model checker can be
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used to verify the validity of property p. This property is then transformed using
another transformation ¢, into an equivalent property p’ that the transformed
target model M/ . should satisfy. Again, a model checker can be used to verify
whether model M, in fact satisfies property p’. If this is not the case, it can be
concluded that model transformation ¢ does not maintain the validity of property p
and may, therefore, be defective.

M > M
tp )
Mine p—77"7—">P My
Model checker Model checker

Figure 3.2 Model checking model transformations

There are, however, a few threats to the validity of this approach. The
validity of the approach is affected by three model transformations, viz., model
transformations ¢;, t2, and t,. When model transformation ¢ is an endogenous
model transformation, the same model transformation can be used for generating
models M, and M}, ., i.e., t; = t2. Since the technique is aimed at validating
behavioral equivalence, the property that needs to be verified can remain the same
in most cases, i.e., p = p’. Therefore, the validity of the approach, when applied to
endogenous model transformations, is affected by one model transformation only,
i.e., the one that transforms the source and target model of model transformation ¢
into the models suitable for model checking.

The approach presented here is similar to the one presented by Varré and
Pataricza [129]. They also present solutions to some of the threats to validity. To
ensure the correctness of transformations ¢1, and t,, they define the operational
semantics of the source and target language of the transformation using graph
transformation rules. They use the algorithm defined by Varré to automatically
generate transition systems from the source and the target model that are suitable
for model checking [130]. To ensure the validity of transformation ¢,, they state
that a domain expert should be consulted to verify that the generated property p/
is correct.

Note that verifying whether properties are maintained by a model transforma-
tion does not guarantee the completeness of that model transformation. It can
be used to validate whether the model transformation maintains the behavioral
properties that have been verified, and for the models against which they have
been verified only. Therefore, the strength of this method depends on the number
of realistic models and properties that are verified. To guarantee completeness of
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model transformations, other techniques should be used. One such approach is
described by Giese et al. [131]. In their approach, a theorem prover is used to
ensure semantic equivalence between a model and the code generated from it by
a model transformation.

3.5 Conclusions

In this chapter, we have addressed the need for techniques to analyze the quality of
model transformations. We gave two definitions for model transformation quality,
viz., internal quality and external quality. We also defined and gave examples of
two different types of quality assessment techniques for model transformations,
viz., direct assessment and indirect assessment.

Direct quality assessment is specific for a model transformation language
and not for a pair of metamodels. For assessing the internal quality attributes
presented in Section 3.3 it is most appropriate. In Chapters 4 and 5, we will
present two studies aimed at establishing a relation between metrics for model
transformations and the internal quality attributes. Although the metamodels
of the source and target models of a transformation are not taken into account,
it can be used for assessing the external quality attribute performance. Indirect
quality assessment may be used for assessing the external quality of a model
transformation, but only if comparison of (metrics collected from) the source and
the target models is possible. It should not be used for assessing the internal
quality of a model transformation. At least not using metrics, since metrics that
are used for evaluating a model are unrelated to any of the quality attributes
for model transformations. Applying model checking to a source model and
corresponding target model of a model transformation to validate whether it
maintains a behavioral property seems a valid approach for indirectly assessing the
external quality of a model transformation. Note that indirect quality assessment
provides a partial conclusion only, i.e., it is as good as the amount of cases that
have been assessed. Indirect quality assessment is related to testing, since it
requires executing a model transformation. Table 3.1 summarizes the conclusions.

Assessment technique

Quality type

Direct Indirect
Internal Yes No
see Chapters 4 and 5
. . . !
External some quality attributes if M and M
only, e.g., performance are comparable

Table 3.1 Types of quality and quality assessment techniques






Chapter 4

Quality Assessment of ASF4+SDF
Model Transformations

Since model transformations are becoming increasingly important, there is a need
for a methodology to assess their quality. Software metrics have been successfully
employed for assessing the quality of various kinds of software artifacts. There-
fore, we present in this chapter a set of 28 metrics for assessing the quality of
model transformations developed with ASF+SDF. Metrics alone, however, do
not suffice for evaluating quality. Therefore, we conducted an empirical study
aimed at determining whether the metrics we defined are valid predictors for the
quality attributes presented in Chapter 3. Based on the results of this empirical
study, we identified a set of predicting metrics for the quality attributes for model
transformations developed with ASF+SDF.

4.1 Introduction

In Chapter 3, we indicated that model transformations need to adhere to quality
standards similar to those of traditional software artifacts. Therefore, there should
be a methodology for assessing their quality. An approach that is frequently
applied for assessing the quality of various kinds of software artifacts is the
application of software metrics [59]. Although it has been recognized that metrics
should be proposed for measuring model transformations as well [101], little
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research has been performed in this area. Therefore, we address in this chapter
research question RQs.

RQs: How can metrics be used to assess the quality of model trans-
formations?

In this chapter, we focus on direct assessment of the quality of model transfor-
mations developed with the ASF+SDF term rewriting system [49]. We defined 28
metrics for measuring ASF+SDF model transformations. While, these metrics
are specific for ASF+SDF, in Chapter 6 we will show that conceptually simi-
lar metrics can be defined for different model transformation languages as well.
Having metrics alone does not suffice for assessing quality. A relation should
be established between the metrics and quality attributes the metrics intend to
assess. To establish this relation, we conducted an empirical study. Metric values
were collected from six ASF+SDF transformations by a tool we created. The
quality, in terms of the quality attributes presented in Section 3.3, of the same
transformations has been assessed by ASF+SDF experts manually. We analyzed
the correlations between the metrics data and the expert data to explore the
relations between the metrics and the quality attributes. In this way we could
assess whether the automatically collected metrics are appropriate for assessing
the quality attributes.

The remainder of this chapter is structured as follows. A short introduction
to ASF+SDF is given in Section 4.2. In Section 4.3, the metrics we defined
for analyzing ASF+SDF transformations are described. The tool we created
for automatically extracting these metrics from ASF+SDF transformations is
described in Section 4.4. In Section 4.5, we report on the empirical study we
conducted. Related work is described in Section 4.6. Section 4.7 concludes this
chapter and is used to reflect on research question RQs.

4.2 ASF+SDF

In this chapter, we consider quality attributes of model transformations defined
using the term rewriting system ASF+SDF. One of the main applications of
ASF+SDF is transformations between languages. These transformations are per-
formed between languages specified in the syntax definition formalism (SDF) [52].
Transformations in ASF+SDF are implemented as conditional rewrite rules speci-
fied in the algebraic specification formalism (ASF) [53].

SDF is used to define context-free grammars that represent the concrete
syntax of a (modeling) language. In the context of MDE, a grammar represents
a metamodel. Such a grammar is used to generate a parser for the language
described by that grammar. This parser can be used to generate concrete syntax
parse trees from input models that adhere to the grammar. A rewrite rule,
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specified in ASF, is applied to a node in such a parse tree, resulting in a new
parse tree node. The new parse tree node is part of the parse tree of the output
model. Rewrite rules are based on the concrete syntax of the source and target
language. The parse tree representing the output model can be unparsed to
acquire the output model. Since rewrite rules generate parse tree nodes that
adhere to the grammar of the target language, syntactical correctness of target
models is guaranteed.

A model transformation in ASF+SDF consists of multiple transformation
functions. A transformation function is defined by one or more signatures and
implemented by one or more equations. The signatures of a transformation
function consist of the name of the transformation function, followed by a list of
arguments and a return value. Signatures are defined in SDF. Apart from function
signatures, SDF is also used to define variables and their types that can be used in
the rewrite rules. Variables are usually defined in the hiddens section of an SDF
module, which means that they can only be used in the module they are defined
in. It is possible to define an unlimited number of variables in ASF+SDF using
the Kleene star operator () [132]. An example showing two signatures and two
variable definitions in SDF is depicted in Listing 4.1. In this example there are
two signatures for one transformation function, i.e., the transformation function is
overloaded. The first signature defines that the function t ransform accepts one
attribute as argument and returns a list of attributes. The second signature defines
that the function transform accepts two attribute as arguments and returns a
list of attributes. Consider the variable definition "$SAttribute" [0-9] . This
variable is of type Attribute, which is specified after the —>-sign. Since the
Kleene star operator is applied to the [0-9] part, SAttribute can be postfixed
with any number of digits. In this way, an unlimited number of instances of
variables of type Attribute are defined.

exports
context-free syntax

transform (Attribute) —> List[[Attribute]]
transform(Attribute, Attribute) -> List|[[Attribute]]

hiddens
variables

"SAttribute" [0-9] * -> Attribute
"SReturn_value" [0-9]x -> List[[Attribute]]

Listing 4.1 Function signature and variable definition in SDF

Transformation functions are implemented by one or more equations. Equa-
tions are conditional rewrite rules defined using ASF. The equations implementing
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a transformation function have to adhere to the signature of the transformation
function that has been defined using SDF. An equation can have zero or more
conditions. Two types of conditions can be distinguished, viz., (in)equality condi-
tions and matching conditions. An (in)equality condition is used to restrict the
applicability of the equation, they can be used to implement case distinctions
when an equation is overloaded. A matching condition is typically used to assign
values on the righthand side of a condition to variables on the lefthand side of
that condition. Upon evaluation of a transformation function, all alternatives, i.e.,
all equations implementing the transformation function, are evaluated in arbitrary
order until one of them is applied or none of them can be applied. An equation is
applied if all of its conditions, and the equation itself can be successfully evaluated.
The conditions are evaluated in order, i.e., if one fails, evaluation stops and the
equation is not applied. Two examples of implementations of a transformation
function with one condition in ASF are depicted in Listing 4.2. The equations
adhere to the signatures depicted in Listing 4.1. The variables used in the equa-
tions also adhere to their definitions depicted in Listing 4.1. An equation has
the following form. First there is a label (lines 3 and 8). Then there are one or
more conditions (lines 4 and 9). Conditions typically consist of a lefthand side, a
match symbol (:=) or an (in)equality symbol (== or !=), and a righthand side.
After the condition there is a separator symbol (====>) to separate an equation
from its conditions (lines 5 and 10). An equation consists of a lefthand side, an
=-symbol, and a right-hand side. The equation labeled [equation—-1] takes one
attribute as argument and returns a list with that attribute as only element. The
equation labeled [equation-2] takes two attributes as arguments and returns
a list with those attributes as elements. When the transform function is applied
to a single attribute, only the first equation can be applied, since it is the only one
that accepts one attribute as argument. Upon evaluation, the attribute is stored
in the $Attribute variable. Then the first condition is evaluated (line 4). This
condition creates a list containing the attribute, by putting it between square
brackets, and assigns this list to the variable SReturn_value. Recall that the
type of the variable $SReturn_value is a list of attributes (see Listing 4.1, line 11).
Finally, the value of the variable $Return_value is returned as a result.
Recall that a transformation function in ASF+SDF is applied to a node
in a parse tree. Navigation over a parse tree has to be defined explicitly in a
transformation. This means that to apply a function at a certain node, a number
of auxiliary functions are needed to descent to this node. Traversal functions
provide a shortcut to this. A traversal function has a start point and an end point.
The start point is the node at which it should be invoked. The end point is the
node that should be rewritten. For the start point, only a signature needs to be
defined. For the end point, a signature needs to be defined as well as an equation
that specifies how the node should be rewritten. The parse tree traversal from
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equations

[equation-1]
SReturn_value := [$Attribute]
====>
transform($SAttribute) = SReturn_value

[equation-2]
SReturn_value := [$Attributel, S$Attribute2]
====>
transform($SAttributel, S$Attribute2) = $Return_value

Listing 4.2 Function implementation in ASF (equations)

start point to end point is performed automatically, so no auxiliary functions
are needed to descent to the end-point. For more details on and examples of the
traversal functions in ASF+SDF, the reader is referred to [133].

4.3 Metrics

This section describes the 28 metrics we defined for assessing the quality of
ASF+SDF model transformations. The metrics are divided into three categories,
viz., transformation function metrics, module metrics, and consistency metrics.
In the remainder of this section, we will address each of these categories and
elaborate on the metrics belonging to them. An overview of all the metrics can
be found in Tables 4.1, 4.2, and 4.3.

4.3.1 Transformation Function Metrics

A measure for the size of a model transformation is the number of transformation
functions it encompasses. In Section 4.2, we noted that a transformation function
in ASF+SDF consists of one or more signatures and one or more equations.
Therefore, we define the metric number of transformation functions as the number
of signatures that are implemented by at least one equation. Since transformation
functions may be defined by more than one signature and may be implemented
by more than one equation, a transformation function may have multiple variants.
The size of a model transformation is affected by the number of variants of
transformation functions. To measure the number of variants of a transformation
function, we propose the metrics number of signatures per transformation function
and number of equations per transformation function. Equations may have
conditions. We measure the size of an equation as the number of conditions it
has. The total size of the implementation of a transformation function is the sum
of the sizes of all variants. This is measured by the metric number of equations
and conditions per transformation function.
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The complexity of a transformation function can be measured by the number
of arguments it takes and by the number of values it returns. In ASF+SDF, a
transformation function can be overloaded by defining multiple signatures and
equations for it. These signatures may have different arguments. We propose
to measure the number of arguments per transformation function. This metric
is called wal-in. A transformation function in ASF4+SDF can return only one
value. Therefore, there is no need to measure the number of return values
of a transformation function, i.e., val-out. However, different signatures of an
overloaded transformation function may return values of different types. Therefore,
we measure the number of distinct return types per transformation function.

Transformation functions generally depend on other transformation functions.
To measure this dependency, we measure fan-in and fan-out of transformation
functions in a similar way as is done for traditional software artifacts [134]. Fan-in
of a transformation function f is the number of times f is invoked by an another
transformation function f’. Fan-out of a transformation function f is the number
of times f invokes another transformation function f’. Note that recursive function
calls are not taken into consideration when calculating fan-in and fan-out. Related
to these dependency metrics are Henry and Kafura’s complexity metric [134]
and Shepperd’s information-flow metric [135]. Although we did not do so, these
metrics can be defined for ASF4+SDF as well.

In ASF+4SDF, there are a few mechanisms to influence the flow of control of
the transformation engine. These are conditions, default equations and traversal
functions. Two types of conditions can be distinguished, viz., matching conditions
and (in)equality conditions. We measure how often the different condition types
are used, by measuring the number of matching conditions per equation and
the number of (in)equality conditions per equation. The number of matching
conditions is of particular interest. It is possible to write equations that express
the same in different ways. One can either write relatively small equations with a
relatively large number of matching conditions, or relatively large equations with
relatively few matching conditions.

Equations can be marked as default by prefixing its label with the string
default-. Upon evaluation, default equations are always evaluated last. This
means that in case both a default and a non-default equation can be applied, the
non-default one will be applied. Since it is not possible to influence the order of
evaluation of equations in another way, it may be the case that transformation
functions without a default equation may not rewrite properly. It is possible to
define multiple default equations per transformation function. We measure the
number of default equations per transformation function because it may indicate
the completeness of a function. Note that ASF+SDF has built-in facilities for
determining the completeness of a transformation function. When a transformation
function is annotated with the complete annotation, an error message will be
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generated if none of the equations that implement the function can be applied to
the arguments of the function.

Traversal functions can also be used to change the way evaluation of a trans-
formation function is performed [133]. A traversal function visits every node of a
tree once, whereas a standard transformation function is applied to one node only.
In this way, traversal functions allow a collapse of the number of transformation
functions corresponding to a syntax directed translation scheme. Therefore, we
distinguish traversal functions when measuring the number of transformation
functions. In other transformation languages, different mechanisms are used to
influence the transformation engine. For example, ATL distinguishes between
matched rules and lazy matched rules (see Section 5.2). A matched rule is applied
only once to a model element, whereas a lazy matched rule is applied as often as
it is invoked.

Table 4.1 shows all the transformation function metrics we defined.

No. | Metric
1. | Number of transformation functions
2. | Number of traversal functions
3. | Number of signatures per transformation function
4. | Number of equations per transformation function
5. | Number of matching conditions per equation
6. | Number of (in)equality conditions per equation
7. | Number of conditions per equation
8. | Number of equations and conditions per transformation function
9. | Number of default equations per transformation function
10. | Transformation function val-in
11. | Transformation function fan-in
12. | Transformation function fan-out
13. | Number of distinct return types per transformation function

Table 4.1 Transformation function metrics

4.3.2 Module Metrics

Most model transformation languages have support for structuring model trans-
formations by packaging transformation rules into modules [116]. This is also the
case for ASF+SDF. A module in ASF+SDF consists of an SDF file and optionally
an ASF file with the same name.

The number of modules is another metric that can be used for measuring the
size of a model transformation. The size of an individual module can be measured
in different ways. We introduce three metrics to measure the size of a module, viz.,
the number of transformation functions per module, the number of signatures per
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module, and the number of equations per module. These metrics can be compared
with the mean values over all modules to assess the balance of a module with
respect to the rest of the model transformation.

The dependency of a module on other modules and vice versa can be measured
on a module level. A module m depends on another module m’ if module m
imports module m’. To measure this type of dependency between modules, we
measure the number of import declarations per module and the number of times a
module is imported by other modules.

Dependencies between modules can also be measured on the level of transfor-
mation functions. Transformation functions may invoke transformation functions
defined in other modules. To measure this type of dependency between mod-
ules, we measure fan-in and fan-out for modules. Fan-in of a module m is the
number of times a transformation function defined in module m is invoked by a
transformation function defined in another module m’. Fan-out of a module m
is the number of times a transformation function defined in module m invokes
a transformation function defined in another module m’. The metrics module
fan-in and module fan-out are similar to Martin’s metrics for measuring afferent
couplings and efferent couplings respectively [136]. These metrics are also related
to Marchesi’s package metrics he defined for the UML [137].

ASF+SDF allows creating parameterized modules. A parameterized module
is similar to a generic class in C4++. Examples of parameterized modules in
ASF+SDF are the container modules, such as list and table. These are generic
lists and tables that can be parameterized such that they can contain elements of
any type. Parameterized modules increase reusability. Therefore, we measure the
number of parameterized modules in a transformation.

Table 4.2 shows all the module metrics we defined.

No. | Metric
14. | Number of modules

15. | Number of transformation functions per module
16. | Number of signatures per module

17. | Number of equations per module

18. | Number of parameterized modules

19. | Number of import declarations per module

20. | Number of times a module is imported

21. | Module fan-in

22. | Module fan-out

Table 4.2 Module metrics



4.4. Tool 65

4.3.3 Consistency Metrics

Recall that a transformation function consists of signatures and equations. Each
signature is related to one or more equations. A signature may have no related
equations. This can, for instance, occur when a transformation is still under
development. To detect this inconsistency, we measure the number of signatures
without equations. An equation that is not related to a signature will result in an
error message being generated by ASF+SDF. Therefore, we do not measure this.

Variables are usually defined in a hiddens section. This means that they can
only be used in the module they are defined in. Therefore, a variable needs to be
redefined if it is to be used in other modules. This may lead to inconsistencies in
variable naming, i.e., a variable name in one module can be related to a different
type in another module, or vice versa. It may also cause (re)definition of variables
that are not used in a module. To detect these inconsistencies, we measure the
number of (distinct) variable names per type, the number of types per variable
name and the number of unused variables. A variable is unused in a module if
there are no instances of it used in the module it is defined in.

A start-symbol defines a starting point of a transformation. If only a part of
a transformation needs to be used, for instance during testing and debugging,
additional start-symbol may have to be defined. Usually, a transformation has
only one starting point and thus requires only one start-symbol. The presence
of multiple start-symbols may indicate that some are obsolete. Therefore, we
measure the number of start-symbols.

Table 4.3 shows all the consistency metrics we defined.

No. |Metric
23. | Number of signatures without equations

24. | Number of variable names per type

25. | Number of distinct variable names per type

26. | Number of types per variable name
27. | Number of unused variables
28. | Number of start-symbols

Table 4.3 Consistency metrics

4.4 Tool

We implemented a tool that enables automatic collection of the metrics presented
in Section 4.3 from ASF+SDF specifications. Figure 4.1 shows the architecture
of the tool. The tool is divided into two parts, viz., a front-end and a back-end.
The front-end is a C program that reads an ASF+SDF specification and uses
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the ASF+SDF API to extract facts from the specification that are required to
perform the measurements. The API is generated from the ASF and SDF language
definitions (metamodels) by the ApiGen tool [138]. The extracted facts are stored
in a relational database. The database management system used is SQLite [139].
The back-end is a Java program that uses the facts stored in the database to
calculate the values of the metrics. These metrics are presented in an HTML and
a CSV file. The decoupling of front-end and back-end enables an easy extension
of the metrics, i.e., it only requires changing the back-end.

Fact extractor

Facts
database

Metrics calculator
ASF+SDF API

ASF+SDF Metrics
specification reports

Figure 4.1 Tool architecture

Library modules can have great effects on the analysis results. For example,
ASF+SDF comes with a library module for arithmetic operations on integers
that contains over 350 equations. This number is far larger than the typical
number of equations in a module. A metric such as number of equations per
module is affected by this in such a way that the value for it does not provide an
accurate reflection of the model transformation under analysis. Therefore, the
tool produces two analysis reports, viz., one that includes library modules and
one that does not. These two reports can be used to analyze the influence of the
domain-independent (library) part of the transformation on the results.

4.5 Empirical Study

The presented metrics can be collected in a fast and repeatable way using our
metrics collection tool. The quality attributes that are relevant for the evaluation
of model transformations in practice are not directly measurable. Therefore,
we are interested in the relation between metrics and quality attributes. The
purpose of the case study described in this section is to explore the relation
between the metrics and the quality attributes. In the case study, we used six
model transformations specified in ASF+SDF. For each of the transformations we
collected metrics data using the metrics collection tool described in Section 4.4.
To evaluate the quality attributes for each of the transformations, we used a
questionnaire that was completed by four experts in ASF+SDF. In this section we
describe the design of the case study and the statistical analysis and interpretation
of the collected data.
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4.5.1 Objects

The experimental objects are six model transformations specified using ASF+SDF.
To diversify the object set, we selected transformations created by different
developers in different research projects. The transformations differ in size, style,
structure and functionality.

The first transformation is used to transform ACP process algebra models
into UML state machines. This transformation is discussed in Chapter 2 and
in [50]. The second transformation generates a UML activity diagram from a UML
activity diagram that is annotated with surface language elements. This surface
language provides a shorthand textual notation for elaborate graphical structures
required in UML activities, e.g., for assignments of values to variables. A number
of static semantic checks of surface language statements are performed by the
third transformation. The fourth transformation is used to generate a visual
representation from UML activity diagrams. It takes an XMI file representing
an activity and generates a file that serves as input for the visualization engine
Dot [140]. All three transformations have been used in a research project [51].
The fifth transformation is part of the ASF+SDF compiler. It transforms ASF
equations into C code [141]. The last transformation is a template engine, named
Repleo. Repleo fills a template with input data while guaranteeing syntax correct-
ness of the result. Repleo has been developed as part of a research project [142].
Table 4.4 summarizes the characteristics of the transformations.

Transformation ‘ LOC ‘ # Funcs. ‘ Purpose ‘ Ref. ‘
ACP2UML 5694 173 Transform process algebra models into UML | [50]
SL2XMI 1851 70 Transform surface language into activities [51]
SLCheck 1430 58 Surface language wellformedness checker [51]
UML2Dot 1553 98 Transform UML aFtiV.ities to' the input lan- 151]
guage of the visualization engine Dot
ASF2C 7096 396 Generate C code from ASF specifications [141]
Repleo 4058 47 Syntax-safe template engine [142]

Table 4.4 Characteristics of the analyzed model transformations

4.5.2 Participants

The participants in the study were four experienced users of ASF+SDF. All
participants are researchers who have developed several ASF4+SDF transformations
and some of them are involved in teaching ASF+SDF. None of the authors of
the article this chapter is based on participated as participant in this study. The
participants were not informed about the purpose of the study on beforehand.
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4.5.3 Task

The task of the participants was to quantitatively evaluate the quality of the
ASF+SDF transformations in the object set. They were requested not to consider
the standard library modules provided with ASF4+SDF. The participants were
asked to fill in a questionnaire consisting of 23 questions, each addressing one of
the quality attributes. To enable checking the consistency of the answers provided
by participants, the questionnaire contained at least three similar, but different
questions for every quality attribute. For instance, in one of the questions the
participants were asked to rate the understandability of the model transformation
and in another one they were asked to indicate how much effort it would cost them
to comprehend the model transformation. In each question, the participants had
to indicate their evaluation on a five-point Likert scale (1 indicating a very low
value and 5 indicating a very high value) [143]. For all six model transformations,
the same questionnaire was used. The questionnaire can be found in Appendix B.
During the evaluation, the participants had the transformation opened in the
ASF+SDF Meta-Environment [54] on their own computer. There was no time-
bound for the evaluation task.

Five of the transformations in the object set were evaluated by three partici-
pants, the transformation “ASF2C” was evaluated by four participants. Since the
developers of the transformations we used as objects for the study were among the
participants, they also evaluated the transformation they developed themselves.
This may lead to biased results. However, in Section 4.5.4, we will show that
there are no large inconsistencies between the evaluations of the developer and
the other participants.

In addition to the quantitative evaluation of the transformations, a semi-
structured interview was conducted after the questionnaire task to obtain qual-
itative statements. For each of the quality attributes, the participants were
asked what characteristics of an ASF+SDF transformation influences the quality
attribute.

4.5.4 Quality of the Analyzed Model Transformations

Each of the transformations has been manually evaluated by three participants
(four for ASF2C) using the questionnaire. Recall that at least three similar, but
different questions were asked for every quality attribute. For each participant,
the evaluation of a particular quality attribute we used in our analysis is the mean
of the answers he provided to all questions addressing that quality attribute. The
results of the manual evaluation can be found in Table 4.5. The table shows per
model transformation and per quality attribute three values. The first value is the
mean evaluation of the participants. This value is used for establishing the relation
between the metrics and the quality attributes. The second value is the standard



4.5. Empirical Study 69

deviation of the evaluations. The standard deviation gives an indication of the
consistency of the evaluations of the participants, i.e., it indicates disagreement.
Since the standard deviations are in general low (< 1), we can conclude that the
evaluations of the participants are relatively consistent. The last value is the
difference between the evaluation of the developer of the transformation and the
other participants. A positive value indicates that the developer’s evaluation was
higher than the average evaluation of the other participants and a negative value
indicates that the developer’s evaluation was lower than the average evaluation
of the other participants. These differences indicate that there are in general
no large inconsistencies between the evaluations of the developer and the other
participants. However, there are some exceptions.
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Mean 2,50 3,25| 2,89 3.89| 3,89| 3,61| 3,11

ACP2SM  |Std. Dev. | 0,90 0,87| 1,05 0,33| 0,33| 0,60| 1,05

El

Difference | 0,00| -1,13| -1,33| -0,33| 0,17| 0,08 0,83
Mean 3,17 3,17| 3,11| 2,00 4,11| 3,89| 3,33
SL2XMI Std. Dev. | 0,83| 0,83| 1,27| 0,87| 0,60| 0,78| 0,71
Difference | 0,13| 0,13| 0,33| 0,00, -0,17| 0,67 | 0,50
Mean 3.04] 2,92] 289 222 3,83 4,00] 3,22
SLCheck [Std. Dev. | 0,92| 0,70] 1,17| 0,83| 0,61| 0,00] 0,97
Difference | 0,31| 0,13| 0,67] -0,33| -0,25| 0,00 0,17
Mean 3,38 3,25| 3,56| 2,00 4,06| 4,11| 3,56
UML22Dot | Std. Dev. | 0,77| 0,62| 0,53| 0,87| 0,39| 0,60| 0,73
Difference | 0,19| 0,00| -0,83| 0,00 0,42| 0,33 -0,33
Mean 1,69 1,44| 2,25| 4,00| 4,00 3,50| 2,67
ASF2C Std. Dev. | 0,60| 0,51| 1,14| 0,60| 141| 0,80| 0,89
Difference | 0,42 | -0,25| -1,67| -0,44| 1,33| 0,22| 0,44
Mean 2,38 2,54 3,11| 3,50| 3,33| 3,06| 3,11
Repleo Std. Dev. | 0,77 0,66| 0,78 1,12] 0,87| 0,63| 0,60
Difference | 0,00| -0,63| 0,33] 1,50| 1,50 -0,83] -0,67

Table 4.5 Quality of the analyzed model transformations

Table 4.5, shows the differences in quality among the transformations as
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evaluated by the participants. We explain a number of these differences using the
feedback we obtained from the interviews. We also discuss other influences on the
different quality attributes indicated by the participants.

Understandability is one of the quality attributes that shows differences be-
tween the transformations. An explanation given by the experts is that the
understandability of a transformation is related to its size, viz., larger transfor-
mations are harder to understand. From Tables 4.4 and 4.5 we can conclude
that the ascending ordering of transformation size, both in terms of the number
of lines of code and in terms of the number of transformation functions they
comprise, is almost the same as the descending ordering of their understandability.
The participants also indicated that the use of descriptive names for variables
and functions benefits the understandability of a model transformation. Besides
characteristics of the transformation itself, the participants indicated that the
understandability of a model transformation is affected by the understandability
of its source and target metamodel.

According to the participants, the modifiability of a model transformation is
strongly related to its understandability and its modularity. Understandability
is related to modifiability since a transformation needs to be understood before
it can be modified. Modularity is related to modifiability, since a modification
can be performed more easily when the modification fits the module structure of
the transformation. Therefore, also the type of modification that is required has
influence on modifiability.

Modularity is affected by the number of modules in a transformation, but a
low number of modules does not mean that the transformation is not modular
per se. There are other means to mimic a module structure. For example, in the
transformations “SL2XMI”, “SLCheck”, and “UML22Dot”, comments are used
to indicate where a new piece of functionality, or “module”, starts.

The participants found it hard to assess the reusability of the transformations,
since they had no idea what to reuse parts of the transformations for. Therefore,
care should be taken when drawing conclusions regarding reusability based on
the evaluations of the participants. In Chapter 3, we explained that there are two
types of reuse, viz., as-is reuse and reuse-with-modify. As the name suggest, the
latter type of reuse requires modifications. Therefore, reusability and modifiability
are closely related. The participants indicated that reusability is, similar to
modifiability, affected by understandability as well. A model transformation
should be understood to assess whether it is eligible for reuse and how it should
be modified if that is required. The participants also indicated that they expect
that transformations with smaller modules are more reusable.

The participants also found it hard to assess the completeness of the transfor-
mations, since they did not know the exact specification of the transformations. In
one of the questions in the questionnaire, the participants were asked to indicate
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their familiarity with the transformations they had to evaluate. All participants
knew of the existence of most of the transformations. However, except for the
developer, they had no detailed knowledge about them. Since they knew that
the transformations had been applied in practice already, they assumed that the
transformations adhere more or less to their specifications. This explains why
the values for completeness are about the same. Therefore, again, care should
be taken when drawing conclusions regarding completeness based on the evalua-
tions of the participants. The participants indicated that the source and target
metamodel of a transformation should be well understood to assess whether all
(required) elements of the source metamodel are covered by the transformation. In
Section 7.2.2, we describe a visualization technique for analyzing the metamodel
coverage of a model transformation.

For two of the analyzed transformations, viz., “ACP2SM” and “ASF2C”,
the participants indicated that it was clearly visible that multiple developers
worked on these transformations. This was reflected by using a different style of
writing comments and equations. However, the involvement of multiple developers
is not the sole cause for inconsistencies, since the consistency of the “Repleo”
transformation, which has been developed by one person only, was rated the
lowest. Inspection of the source code of the “Repleo” transformation revealed
that symbology and indentation are not used in a uniform manner throughout
the transformation. The participants further indicated that the use of consistent
naming is the main factor that influences consistency in general.

Conciseness is hard to evaluate according to the participants because the
transformation needs to be well-understood to judge whether it can be written
down in a more concise way. They did indicate that dead code in a transformation
should be removed since it leads to inconciseness and decreases understandability.

4.5.5 Relating Metrics to Quality Attributes

To establish a relation between metrics and quality attributes, we analyze the
correlation between them. The metrics were collected using the metrics collection
tool we presented in Section 4.4. Since the participants were requested not
to consider the standard libraries provided with ASF+SDF, metrics were also
collected without considering library modules. For the metrics that require
aggregation, we used the mean. An example of a metric requiring aggregation
is number of functions per module. The value we used in the analysis represents
thus the mean number of functions per module.

The data that has been acquired from the questionnaire is ordinal. Therefore,
we use a non-parametric rank correlation test [59]. Since we have a small data set
and we expect a number of tied ranks, we use Kendall’s 73, rank correlation test to
acquire the correlations [144]. This test returns two values, viz., significance and
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_ No. _ Metric C.C. _ Sig. | C.C. _ Sig. | C.C. _ Sig. | C.C. _ Sig. | C.C. _ Sig. | C.C. _ Sig. | C.C. _ Sig.
1. | # Transformation functions -,550 | ,002 | -,303 | ,092 | -,242 | ,183 | ,439|,017 | ,053 |,772|-,190 |,307 |-,438 | ,020
2. | # Traversal functions -,356 | ,048 | -,432 | ,016 | -,216 | ,235| ,159|,385 | ,053 |,772|-,136 |,465 |-,368 | ,051
3. | # Signatures per function ,032(,858 | ,019(,914 |-,033|,857 | ,040 | ,828|-,172|,347 |-,203 | ,274 | -,021 | ,912
4. | # Equations per function -,265 | ,141 | -,213 | ,237 | ,033|,857 | ,279|,128 |-,146 | ,426 | -,285 | ,125 | -,063 | ,741
5. | # Matching conditions per equation ,693 | ,000 | ,587 |,001 | ,268|,140|-,571|,002| ,172|,347| ,407 |,029 | ,507 | ,007
6. | # (In)equality conditions per equation -,2781,123|-,097|,591|-,072|,692 | ,372|,043 | ,026 | ,885 |-,068 | ,715 |-,202 | ,286
7. | # Conditions per equation ,550 | ,002 | ,432|,016| ,190 |,297 | -,518 | ,005 | ,238|,193| ,488|,009 | ,424 | ,025
8. | # Equations and conditions per function | ,175|,332| ,252|,162| ,229|,208|-,093|,612|-,040|,828|-,068 | ,715| ,257 | ,173
9. | # Default equations per function ,084|,641 | -,161 | ,370| ,098 |,590 | -,080 | ,664 | -,053 | ,772 |-,041 | ,827 | ,076 | ,686
10. | Function val-in -,123 1,495 | -,136 | ,452 | -,098 | ,590 | ,080 | ,664 |-,172|,347 |-,231 | ,215 |-,104 | ,581
11. | Function fan-in -,136 | ,451 | -,058 | ,747| ,111|,541 | ,106 |,562 |-,040 | ,828 | -,176 | ,343 | ,035 | ,854
12. | Function fan-out ,019 (1,914 | ,097 |,591| ,177|,331| ,066|,717|-,040|,828|-,149 |,422 | ,118 | ,532
13. | # Distinct return types per function -,637 | ,003 | -,355 | ,049 | -,150 | ,408 | ,465 | ,011 | -,093 | ,613 |-,515 | ,006 |-,382 | ,043
14. | # Modules -,801 | ,000 | -,553 | ,003 | -,256 | ,166 | ,713|,000 | -,164 |,379 | -,483 | ,011 | -,532 | ,007
15. | # Functions per module -278|,123[-,032 | ,858 | -,111 | ,541 | ,279,128 | ,106 |,563 | -,054 | ,770 | -,285 | ,131
16. | # Signatures per module S123,495 | ,123 [,496 | -,059 | ,746 | ,120|,515| ,106|,563 | ,027 | ,884 |-,146 | ,440
17. | # Equations per module ,667 | ,000 | ,381|,035| ,177,331|-,638|,001| ,212|,247| ,570|,002| ,452 | ,017
18. | # Parameterized modules -,1951,338 |-,137|,500| ,012|,955| ,235|,256 |-,234 | ,257 |-,432 | ,039 | -,049 | ,818
19. | # Import declarations per module -,162|,370 | ,148|,410|-,059|,746 | ,319 | ,082 | -,172 |,347 |-,258 | ,165 | -,090 | ,632
20. |# Times a module is imported -,655 | ,000 | -,393 | ,032 | -,175 | ,343 | ,658 | ,000 | -,232 |,213 | -,566 | ,003 |-,437 | ,023
21. | Module fan-in -,601 | ,001 | -,307 | ,104 | -,195 | ,306 | ,690 | ,000 | -,073 |,703 | -,374 | ,054 | -,399 | ,044
22. | Module fan-out , 188,298 | ,432|,016 | ,059|,746 |-,199 | ,277| ,106|,563 | ,271|,144 | ,160 | ,397
23. | # Signatures without equations -,481 | ,009 | -,146 | ,424 | -,135| ,466 | ,631 |,001 |-,150 |,420 |-,476 | ,012 | -,366 | ,057
24. | # Variable names per type -,758 | ,000 | -,432 | ,016 | -,268 | ,140 | ,678 | ,000 | -,053 |,772|-,407 | ,029 | -,507 | ,007
25. | # Distinct variables names per type -,758 | ,000 | -,432 | ,016 | -,268 | ,140 | ,678 | ,000 | -,053 | ,772 |-,407 | ,029 | -,507 | ,007
26. | # Types per variable name -,658 | ,000 | -,378 | ,045 | -,152| ,426 | ,631 |,001 |-,190 | ,321 |-,584 | ,003 | -,399 | ,044
27. | # Unused variables per module -,2911,106 | -,071|,694 | -,124 | ,494 | ,332 | ,070 | ,053 |,772|-,054 |,770 | -,313 | ,098
28. | # Start-symbols -.680 | ,000 | -,497 | ,006 | -,190 | ,297 | ,611 | ,001 |-,119 |,515 |-,407 | ,029 | -,382 | ,043

Table 4.6 Kendall 7, correlations
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correlation coefficient. The significance of the correlation indicates the probability
that there is no correlation between two variables even though correlation is
reported, i.e., the probability for a coincidence. The correlation coeflicient indicates
the strength and direction of the correlation. A positive correlation coefficient
means that there is a positive relation between metric and quality attribute and a
negative correlation coefficient implies a negative relation. For more information
on the interpretation on these values, the reader is referred to [145]. Since we
are performing an exploratory study and not an in-depth study, we accept a
significance level of 0,10. Note that correlation does not indicate a causal relation
between metric and quality attribute!. Table 4.6 contains the correlations we
acquired. The columns labeled C.C. list correlation coefficients and the columns
labeled Sig. list (two-tailed) significance values.

Metrics that indicate the size of a transformation, viz., number of (traversal)
functions and number of modules, correlate negatively with the quality attributes
understandability and modifiability. This means that larger model transformations
are harder to understand and to modify, which was acknowledged by the partici-
pants. Since understanding and modifying are the core activities in a maintenance
process, this correlation implies that larger transformations are harder to maintain.
A similar argument would hold for reusability as well. The results of our empirical
study show a negative correlation between the aforementioned size metrics and
reusability. However, these correlations are not significant. Modularity correlates
positively with the size metrics. More functions implies a larger transforma-
tion. Especially in larger transformations the need for splitting functionality
over modules becomes higher. Therefore, a larger transformation often implies
a more modular transformation. The data indeed show a significant, positive
correlation between the metrics number of functions and number of modules (see
Table 4.7). A higher number of modules implies higher modularity. However, a
high number of modules alone is not enough for a model transformation to be
modular. Functionality should be well-spread over the modules. This usually leads
to smaller modules, i.e., modules with fewer equations. This explains the negative
correlation between number of equations per module and modularity. The metric
number of modules correlates negatively with consistency as well. A high number
of modules implies a high number of interfaces between modules. This may lead
to inconsistencies. Also, when multiple developers work on a transformation, it
is likely that they work on separate modules. Since every developer has his own
style, this can lead to inconsistencies. Inspection of the “ASF2C” transformation,
which has been developed by multiple developers, indeed reveals different pro-
gramming styles. The size metrics also correlate negatively with conciseness. A
model transformation is concise if it is free of superfluous elements. For larger

IThe reader is referred to [146, p. 122] for some anecdotal examples of situations where
correlation is interpreted as a causal relation.
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transformations it is to be expected that their size can somehow be reduced.

The metric number of (matching) conditions per equation is positively corre-
lated with understandability and modifiability. When writing equations, a tradeoff
has to be made between writing a complex equation with little matching conditions
or writing a simple equation with more matching conditions. The correlation
indicates that simple equations with more matching conditions are preferred. The
metric number of (matching) conditions per equation also correlates positively
with conciseness. This may seem surprising, but the more (matching) conditions
are used, the smaller, and hence more concise they become. Here conciseness
plays a role on a different level, i.e., on the level of condition rather than on the
level of complete transformation.

In transformations consisting of multiple modules, modules depend on each
other. These dependencies are measured by the metrics module fan-in, module
fan-out, number of times a module is imported, and number of import declarations.
The metrics module fan-in, number of times a module is imported significantly
correlate with modularity in a positive way. The metric module fan-out also
correlates with modularity positively, however, this correlation is not significant.

The metrics module fan-in and the number of times a module is imported
correlate negatively with modifiability. When a module on which other modules
depend needs modifications, attention should be paid that these dependencies
remain correct.

The metric number of distinct return values per function is negatively correlated
with understandability and modifiability. When a function has multiple return
values, it usually also has multiple equations. This has two disadvantages with
respect to modifying a transformation. First, if only the equations belonging to
one, or a few signatures need modifications, attention should be paid that the
correct equation is modified. Second, more equations imply more modifications.
From the correlation between the number of distinct return values per function
and modifiability, it is to be expected that also a negative correlation is found
between number of signatures per function and modifiability. However, this is not
the case. The metric number of distinct return values per function also correlates
negatively with consistency. This is to be expected because the return values are
not consistent with each other. Another form of inconsistency is measured by the
metric number of types per variable, since a variable that is of a different type in
different modules is defined inconsistently. The results presented in Table 4.6 show
that this metric indeed correlates with consistency negatively. Related to this is
the negative correlation between the metric number of (distinct) variables per type
and consistency. Redefinition of variables may lead to inconsistent naming. In
fact, the metric number of (distinct) variables per type, which correlates negatively
with consistency, measures this directly.

None of the metrics correlate significantly with reusability and completeness.
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The participants in the empirical study indicated that they cannot evaluate
reusability properly because they do not see what they can reuse parts of the
transformations for. The reason that completeness does not correlate significantly
with any of the metrics is that the experts could not evaluate completeness
properly because they did not have the specification of the transformations they
analyzed. Moreover, the time needed to get acquainted with the source and target
language of the transformations is large.

4.5.5.1 Relations between Metrics

The metrics we defined in Section 4.3 are aimed at measuring certain concepts
of ASF+SDF model transformations. Most of these concepts are related to each
other in some way. Therefore, correlations can be found between the metics as
well. Tables 4.7 and 4.8 present a few of them. Again, we use Kendall’s 7, rank
correlation test to acquire the correlations.

We already observed when transformations grow larger, the need for splitting
functionality over modules becomes higher. This is supported by the data, that
show a significant, positive correlation between the metrics number of functions
and number of modules. The metrics number of variables per type and number
of distinct variables per type correlate significantly with the metric number of
modules as well. Since variables are usually declared in a hiddens section of an
SDF module, they have to be redefined in every module they are required. The
metric number of start symbols also correlates significantly with the metric number
of modules. An explanation for this is that the start-symbols are leftovers from
unit testing the module.

# Modules
Metric C.C. Sig.
# Transformation functions 474 ,012
# Variable names per type , 722 ,000
# Distinct variable names per type| ,722 ,000
# Start-symbols ,846 ,000

Table 4.7 Kendall 73, correlations between metrics (1)

Another pair of metrics that goes hand-in-hand is module fan-in and the
number of times a module is imported (see Table 4.8). Functions in a module that
is imported by another module are expected to be used by that module, which is
expressed by fan-in.
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Module fan-in
Metric C.C. Sig.
# Times a module is imported | ,433 ,028

Table 4.8 Kendall 7, correlations between metrics (2)

4.5.6 Threats to Validity

Conducting empirical studies inherently involves threats to validity [147]. Here we
discuss how we addressed potential threats to the validity of the study presented
in this chapter.

An important issue that should be taken into account for empirical studies
in general is the representativeness of the experimental design with respect to
practice. We selected experienced ASF+SDF users as participants in our study.
Our experience shows that model transformations are developed and maintained
by experts in practice. Therefore, we exclude participant experience as a threat
to the validity of our study.

The model transformations used as objects in our study are designed in and
applied for practical purposes. Additionally, our sample of transformations is
heterogeneous with respect to several characteristics. Hence, we do not consider
the object selection as a threat to the validity of this study.

In our study, the participants conducted an evaluation task that is not repre-
sentative for practical model engineering tasks, and therefore this is a potential
threat to the validity. We addressed this threat in the design of our study by
using at least three self-controlled questions for each quality attribute and we used
the evaluations of four experts. The results were relatively consistent between
the experts and between the self-controlled questions, respectively (see Table 4.5).
Therefore, we minimized this threat to validity.

Our choice for the transformation language ASF+SDF could be discussed.
Future replications of our study must prove whether the findings for ASF+SDF
presented in this study will also hold for conceptually similar metrics for other
transformation languages. Such a study is presented in Chapter 5 for the model
transformation language ATL [34].

The number of observations in this study is rather small. This is a potential
threat to the validity. It is difficult to find a larger number of experts in ASF+SDF
for participation in such a study. We accepted this threat to the validity, since the
study is a first exploration of transformation quality metrics. In future studies we
plan to address this threat more accurately.

The participants were asked to evaluate the quality attributes of the trans-
formations on a five-point Likert scale. The questionnaire contained at least
three similar, but different questions for every quality attribute. In the statistical
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analysis, we used the mean of the evaluations for each of the quality attributes. In
general, the intervals between ordinal categories, such as Likert categories, cannot
be assumed to be equally spaced since it cannot be assumed that participants
regard them this way [148]. Therefore, an ordinal scale should not be treated
as an interval scale. This means that the mean of a number of evaluations on
an ordinal scale cannot be considered as the average evaluation. However, if the
categories on the ordinal scale resemble an interval scale, i.e., if the categories
appear to be equally spaced, it can be treated as an interval scale [149]. For
each quality attribute, a similar scale is used for all questions addressing that
quality attribute. Moreover, the evaluations were relatively consistent among
those questions (see Table 4.5). Therefore, we treat the Likert scale as an interval
scale and accept the small error that may be introduced.

There are a number of metrics that measure the size of a model transformation,
in particular the metrics number of transformation functions and number of
modules. From Table 4.6 can be observed that in case both these size metrics
correlate with the quality attributes, other metrics do so as well. This may be
an indication that the size of the model transformation has a confounding effect
on the results of the empirical study [150]. To verify whether this is the case, we
analyzed correlations between the size metrics and other metrics. The results
of this analysis show that from the metrics that correlate significantly with all
quality attributes when the size metrics do so, seven of them correlate significantly
with both size metrics. We observed in Section 4.5.5.1, that for some of these
metrics this is to be expected. However, additional research should be performed,
preferably with more data, to investigate whether the size of a transformation
has a confounding effect on the validity of the results of the empirical study.

4.6 Related Work

Harrison observes that research into metrics for assessing the quality of software
systems mostly focusses on imperative and object-oriented software [151]. The
study he presents in his article is aimed at defining metrics that can be used to
assess quality attributes of functional programs. An experiments to relate a subset
of these metrics to quality attributes is presented by Harrison et al. in [152]. Since
ASF is a functional language, we adapted a number of the metrics he defined such
that they can be used to measure the quality of model transformations.

In this chapter, we proposed a set of metrics for assessing the quality of
model transformations created using ASF+SDF. Alves and Visser propose a set
of metrics to monitor iterative grammar development in SDF [153]. They took
metrics applicable to measure (E)BNF grammars and adapted them such that
they can be used for measuring SDF grammars. Since SDF provides constructs
for disambiguating grammars, they also introduced metrics for measuring the
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number of disambiguation constructs used in grammars. The main difference
with our work is that they focus on grammar development using SDF, whereas
we focus on transformation development using both ASF and SDF. Therefore, we
could not reuse the metrics they defined.

Kapova et al. have defined a set of metrics for evaluating maintainability of
model transformations created with QVT Relations [154]. Most of the 24 metrics
they defined are similar to the metrics we have defined. Their extraction process
of 21 of their metrics has been automated by means of a tool in a similar way as
we have done for ATL (see Section 5.4). They have applied their tool to three
different transformations to demonstrate how to judge the maintainability of a
model transformation using their metrics. This judgment is based on expectations
rather than empirical evidence. Performing empirical validation is a point they
indicate for future work.

Empirical studies have been performed for other types of software artifacts?.
Basili et al. performed an empirical study to assess whether a set of metrics for
measuring characteristics of object-oriented systems are suitable quality predic-
tors [155]. The participants in their study, eight groups of three students each,
had to develop a medium-sized system. Metrics were extracted from the source
code of the various developed systems at the end of the implementation phase.
Data was also collected on faults detected during the testing phase. Correlations
between the metrics data and the fault data were analyzed to assess whether
the metrics can be used to detect fault-prone classes. A similar study for model
transformations can give valuable insights into the causes for faults in model
transformations, and thereby on the influences on their quality. Based on the
result of such a study, guidelines can be formulated aimed at decreasing the
probability for faults.

Lange presents a number of empirical studies aimed at assessing and improving
the quality of UML models [123]. In one of the studies, industrial UML models were
analyzed for defects. Based on this study, two follow-up studies were conducted
to assess whether respectively modeling conventions and the use of visualization
techniques can reduce the number of defects in UML models.

4.7 Conclusions

In software engineering, metrics are frequently employed for evaluating the quality
of software. Although it has been recognized that metrics should be proposed for
measuring model transformations, little research has been performed in this area.
Therefore, we presented in this chapter a set of 28 metrics for assessing the quality
of model transformations developed with ASF4+SDF. However, metrics alone do

2See for example the Empirical Software Engineering journal or the proceedings of the
International Symposium on Empirical Software Engineering and Measurement



4.7. Conclusions 79

not suffice. They have to be related to quality attributes in order to establish
whether they serve as valid predictors for these quality attributes. We presented
the results of an empirical study in which we try to find relations between metrics
that can be automatically derived from a set of ASF+SDF model transformations
and a quantitative quality evaluation of the same set of transformations by a group
of ASF+SDF experts. Our study is a first step into this direction and provides
data that supports the selection of metrics for particular quality attributes. For
most of the quality attributes we found metrics that correlate with them. In this
study, we also requested the participants to state what in their opinion influences
the different quality attributes of an ASF+SDF model transformation.

Metrics can be used, besides assessing quality, for different purposes as well.
They can provide quick insights into the characteristics of a model transformation
such as its size. Metrics can also be used to detect bad smells in a model
transformation. Some of the traditional code smells [156] apply, maybe in a
slightly adapted form, to model transformations as well. Examples of this are
large module, long parameter list, and dead code.






Chapter 5

Quality Assessment of ATL Model
Transformations

At the time of writing this thesis, ATL is one of the most popular model trans-
formation languages around. We present in this chapter a set of 66 metrics for
assessing the quality of model transformations developed with ATL. Again, we
conducted an empirical study aimed at determining whether the metrics we defined
are valid predictors for the quality attributes presented in Chapter 3. In this
chapter, we present the results of this study.

5.1 Introduction

In Chapter 4, we presented a set of metrics for analyzing the quality of model
transformations developed using the ASF+SDF term rewriting system. ASF+SDF
has originally been developed for program transformation. However, it has proved
its applicability to model transformation as well. Typically, modelware languages
are used for developing model transformations instead of grammarware languages
such as ASF+SDF [157]. Modelware languages are based on metamodels rather
than on context-free grammars, which is the case for grammarware languages.
The main difference between the two is that metamodels describe graphs, whereas
grammar rules describe trees [158]. For model transformation languages based
on metamodels also little research has been performed to establish metric sets to
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assess the quality of model transformations developed with them. Therefore, we
address in this chapter again research question RQs.

RQs: How can metrics be used to assess the quality of model trans-
formations?

At the time of writing this thesis, ATL is one of the most popular model
transformation languages around. Therefore, we focus here on ATL. We have
defined a set of 66 metrics for measuring ATL model transformations and developed
a tool for automatically collecting them. Similarly to Chapter 4, we analyzed
correlations between expert evaluations and metric values for a number of model
transformations to establish a relation between the metrics and the quality
attributes presented in Section 3.3.

The remainder of this chapter is structured as follows. Since this chapter
mainly focuses on ATL, a short introduction to ATL is given in Section 5.2.
In Section 5.3, the metrics we defined for analyzing ATL transformations are
described. The tool we created for automatically extracting these metrics from
ATL transformations is described in Section 5.4. In Section 5.5, we report on the
empirical study we conducted. The research described in this chapter is strongly
related to the research described in Chapter 4. Therefore, we will not describe
related work here. Instead, the reader is referred to Section 4.6. Section 5.6
concludes this chapter.

5.2 ATL

In this chapter, we consider quality attributes of model transformations defined
using the model transformation language ATL. A model transformation in ATL
consists of rules and helpers. Rules are used to generate target model elements.
Helpers are expressions defined in the Object Constraint Language (OCL) [41].
Their purpose is to define reusable chunks of code, typically intended for navigating
source models and storing values. A model transformation in ATL is specified in
one module, however, helpers can be specified in separate modules, called libraries.

Two types of rules can be distinguished, viz., declarative rules and imperative
rules. A declarative rule consists of a source pattern and a target pattern. A
source pattern consists of a set of model element types (metaclasses) that exist
in any of the source metamodels of the transformation. During execution of a
transformation, a rule matches a set of model elements from the source model
that conform to the model element types defined in the source pattern of the rule.
Optionally, a source pattern has a filter condition that restricts a match. After
a rule has matched, target model elements are generated with their attributes
and references as prescribed by the target pattern. Optionally, a rule has a do-
section that provides imperative programming facilities. There are three types of
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declarative rules, viz., matched rules, lazy matched rules, and unique lazy matched
rules. Matched rules are automatically matched by the ATL engine, whereas
(unique) lazy matched rules have to be invoked explicitly. A set of model elements
may be matched by one matched rule only. Guards on source patterns can be
used to enforce this. Lazy matched rule generate new target model elements upon
each invocation, whereas unique lazy matched rules generate new target model
elements only once. There is only one type of imperative rule, viz., the called rule.
Called rules provide imperative programming facilities and, since they are rules,
can also generate target model elements. Instead of having input patterns, called
rules accept parameters, which are typically model elements. The target pattern
is optional for called rules.

The definition of a helper comprises a context, a name, an optional list of
parameters, a return value, and a body. The context of a helper defines the kind
of (model) elements it applies to. The body of a helper is an OCL expression
that should return a value of the specified return type. Local variables can be
defined by means of let-clauses. Two types of helpers can be distinguished,
viz., attribute helpers and operation helpers. Attribute helpers do not accept
parameters. The main difference between the two is in their execution semantics.
The return value of an operation helper is computed on each invocation of the
helper, whereas the value of an attribute helper is computed only once.

An example of an ATL model transformation is depicted in Listing 5.1. The
transformation is the book to publication transformation that can be found in
the ATL zoo [159]. Its purpose is to transform a book model that adheres to
the book metamodel into a publication model that adheres to the publication
metamodel. This has to be done as follows. The title of a publication should be
the title of a book. The authors attribute of a publication should be set to the
concatenation of the authors of each of the chapters separated by the word ‘and’
and there should be no duplicates. The number of pages of the publication should
be the sum of the number of all of the pages of the chapters in the book.

The name of the transformation specified in this ATL module is defined on
line 1. On line 2, the input metamodel and output metamodel the transformation
is based on are defined. In this case these are the Book and Publication
metamodel respectively. The transformation consists of one matched rule and
two operation helpers. The helper defined on line 4 is named getAuthors. It is
defined in the context of the Book metaclass from the Book metamodel, meaning
that it can be applied to model elements of that type. The parameter list of
this helper is empty and its return type is String. The body of this helper
(lines 5 to 14) collects all the authors (line 6) of the chapters of the book model
element the helper is applied to (line 5), removes duplicates (line 7), and returns
the concatenation of the authors of each of the chapters separated by the word
‘and’ (lines 8 to 14). The helper defined on line 16 is named getSumPages.
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module Book2Publication;
create OUT: Publication from IN: Book;

helper context Book!Book def: getAuthors(): ¢ g o=
self.chapters

—>collect (e | e.author)
->asSet ()
->iterate (authorName;
acc: St g = """ |
acc + if acc =/
then authorName
else ’ and ' + authorName
endif
)i
helper context Book!Book def: getSumPages() : Integer =
self.chapters
—>collect (£ | f.nbPages).sum();

rule Book2Publication {
from b : Book!Book (b.getSumPages () > 2)
to out : Publication!Publication(
title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getSumPages ()
)

Listing 5.1 Book to publication transformation

Like the helper getAuthors, it is defined in the context of the Book metaclass
from the Book metamodel. The parameter list of this helper is empty and its
return type is Integer. The body of this helper (lines 17 and 18) collects the
number of pages (line 18) of the chapters of the book model element the helper is
applied to (line 17) and returns the sum of this (line 18). The rule defined on
line 20 is named Book2Publication. It matches on model elements of type
Book from the Book metamodel. The filter condition states that for the rule to
match on a model element of type book, the result of the call to the operation
helper get SumPages, which calculates the number of pages in a book, should
be larger than two. The model element on which the rule matches is bound to
variable b. The output pattern (lines 22 to 26) specifies that a model element of
type Publication from the Publication metamodel should be generated. The
title field of this model element should be set to the title of the book. The
authors field should be set to the result of the helper getAuthors applied to
the source model element. The nbPages field should be set to the result of the
helper get SumPages applied to the source model element.
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5.3 Metrics

This section describes the metrics we defined for assessing the quality of ATL
model transformations. The metrics described here are specific for ATL. However,
we will show in Chapter 6 that for most of them a conceptually equivalent metric
can be defined for other model transformation languages as well.

Vignaga also presented a set of metrics for ATL [160]. We used the metrics he
defined to complete our own set of metrics. Therefore, his metrics set overlaps
with ours. In his report, Vignaga relates his metrics to quality attributes based
on his expectations.

The metrics set we defined, can be divided into four categories, viz., rule
metrics, helper metrics, dependency metrics, and miscellaneous metrics. In the
remainder of this section, we will address each of these categories and elaborate
on the metrics belonging to them. An overview of all the metrics can be found in
Tables 5.1, 5.2, 5.3, and 5.4.

5.3.1 Rule Metrics

A measure for the size of a model transformation is the number of transformation
rules it encompasses. In ATL, four different types of rules can be distinguished,
viz., matched rules, lazy matched rules, unique lazy matched rules, and called
rules. We have defined metrics for measuring the number of rules of every type.
In case of a completely declarative model transformation, i.e., one with non-lazy
matched rules only, it is to be expected that the amount of non-lazy matched
rules is related to the size of the input metamodel, since typically a matched rule
matches on one metamodel element. However, this is not necessarily the case,
since matched rules can have input patterns that match on multiple metamodel
elements at the same time or it may be the case that only part of the metamodel
needs to be transformed.

Matched rules are scheduled by the ATL virtual machine, hence they do not
have to be invoked explicitly. Lazy matched rules and called rules however need
to be invoked explicitly in an ATL model transformation. Therefore, it may
be the case that there are lazy matched rules or called rules in an ATL model
transformation that are never invoked. This can have a number of reasons, e.g.,
the rule has been replaced by another rule. To detect this form of dead code, we
propose to measure the number of unused lazy matched rules and the number of
unused called rules.

ATL has support for rule inheritance. The use of inheritance may affect the
quality of a model transformation in a similar way as it affects object-oriented
software [155]. A rule deeper in the rule inheritance tree may be more fault-
prone because it inherits a number of properties from its ancestors. Moreover,
in deep hierarchies it is often unclear from which rule a new rule should inherit



86 Chapter 5. Quality Assessment of ATL Model Transformations

from. To acquire insights into the rule inheritance relations in an ATL model
transformation, we defined a number of metrics. We propose to measure the
number of rule inheritance trees and per such tree the mazimum depth and
the maximum width. Note that this definition of the metric mazximum depth
of inheritance tree differs from the common definition of the metric depth of
inheritance tree for object-oriented software [122]. Furthermore, we defined the
metric number of abstract transformation rules. We also propose to measure for
each abstract rule the number of children that inherit from it.

We have also defined a number of metrics on the input and output patterns of
rules. The metrics number of elements per input pattern and number of elements
per output pattern measure the size of the input and the output pattern of rules
respectively. For an example, see Listing 5.2. In this example a rule is shown
that has one input pattern element and two output pattern elements. These
two metrics can be combined. The metric rule complexity change measures the
amount of output model elements that are generated per input model element.
For example, if the input pattern consists of one model element and two model
elements are generated, the rule complexity change is % = 2. We do not consider
model elements that are generated within distinct foreach blocks, since the
amount of generated elements depends on the input model and can therefore not be
determined statically. This metric may be used for measuring the external quality
of a model transformation because it addresses the size increase (or decrease) of a
model. Note that the metrics number of elements per input pattern, and hence
the metric rule complexity change, are defined on matched rules only, since called
rules do not have an input pattern. Instead, called rules have parameters similar
to operation helpers. Therefore, for called rules we defined the metric number of
parameters per called rule. It may be the case that some of these parameters are
never used. To detect this form of dead code, we defined the metric number of
unused parameters per called rule.

rule In20ut {

from in_1 : InMetamodel!MetaClassA

to out_1 : OutMetamodel!Metaclassl
binding_1 <- in_1l.AttributeA,
binding_2 <- in_1.ReferencelA

)y

out_2 : OutMetamodel!Metaclass2
binding_1 <- in_1.AttributeB
)

Listing 5.2 Example transformation rule
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Bindings are used to initialize target model elements in an output pattern,
which is also shown in Listing 5.2. The metric number of bindings per output
pattern is another measure for the size of the output pattern of a transformation
rule. Typically, the bindings of an output pattern are initialized with attributes
and references derived from elements in the input pattern. We propose the metric
number of unused input pattern elements to detect input pattern elements that are
never referred to in any of the bindings and may therefore be obsolete. Matched
rules require input pattern elements for the matching. In case that none of the
input pattern elements of a lazy matched rule are used in that rule, this could be
an indication that a called rule may be used instead. Note, however, that this
is not always the case, since switching from a lazy matched rule to a called rule
will no longer provide implicit tracing information that can be used elsewhere in
the transformation. A related metric is the metric number of direct copies. This
metric measures the number of rules that only copy (part of) an input model
element to an output model element without changing any of the attributes. Note
that this only occurs when the input metamodel and the output metamodel are
the same, i.e., when the transformation rule is endogenous [21].

The input pattern of a matched rule can be constrained by means of a filter
condition. The metric number of rules with a filter condition measures the amount
of rules that have such an input pattern. Using such filter conditions, a rule
matches only on a subset of the model elements defined by the input pattern.
Therefore, it may be the case that there are multiple matched rules that match
on the same input model elements. We defined the metric number of matched
rules per input pattern to measure this. Note that it is required, except in case of
rule inheritance, to have a filter condition on the input pattern since ATL does
not allow multiple rules to match on the same input pattern.

Transformation rules can have local variables. These variables are often used
to provide separation of concerns, i.e., to split the calculation of certain output
bindings in orderly parts. We define two metrics to measure the use of local
variables in rules, viz., number of rules with local variables and number of local
variables per rule. We also measure the number of unused local variables defined
in rules to detect obsolete variable definitions.

ATL allows the definition of imperative code in rules in a do section. This
can be used to perform calculations that do not fit the preferred declarative style
of programming. To measure the use of imperative code in a transformation,
we defined two metrics, viz., number of rules with a do-section and number of
statements per do-section.

Table 5.1 shows all the rule metrics we defined.
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No. | Metric
1. | Number of transformation rules
2. | Number of matched rules
3. | Number of lazy matched rules
4. | Number of unique lazy matched rules
5. | Number of called rules
6. | Number of unused lazy matched rules
7. | Number of unused called rules
8. | Number of rule inheritance trees
9. | Maximum depth of inheritance tree
10. | Maximum width of inheritance tree
11. | Number of abstract transformation rules
12. | Number of children per abstract rule
13. | Number of elements per input pattern
14. | Number of elements per output pattern
15. | Rule complexity change
16. | Number of parameters per called rule
17. | Number of unused parameters per called rule
18. | Number of bindings per output pattern
19. | Number of unused input pattern elements
20. | Number of direct copies
21. | Number of rules with a filter condition
22. | Number of matched rules per input pattern
23. | Number of rules with local variables
24. | Number of local variables per rule
25. | Number of unused local variables defined in rules
26. | Number of rules with a do-section
27. | Number of statements per do-section

Table 5.1 Rule metrics

5.3.2 Helper Metrics

Besides transformation rules, an ATL transformation also consists of helpers.
Helpers also affect the size of a model transformation. Therefore, we defined
metrics to measure the number of helpers in a transformation. There are a number
of different types of helpers, in particular two orthogonal distinctions can be made.
On one hand, there are helpers with context and helpers without context. On
the other hand, there are attribute helpers and operation helpers. The operation
helpers can be further subdivided into operation helpers with parameters and
without parameters. We defined different metrics for measuring the number of
helpers of each type. Since helpers may be defined in the transformation module
or in library units, we also measure the number of helpers per unit. This provides
an indication of the division of helpers among units.
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Similarly to lazy matched rules and called rules, helpers need to be invoked
explicitly. Therefore, again, it may be the case there are some helpers present in
a model transformation that are never invoked. To detect such unused helpers,
we propose the metric number of unused helpers.

Helpers are identified by their name, context, and, in case of operation helpers,
parameters. It is possible to overload helpers, i.e., define helpers with the same
name but with a different context. To measure this kind of overloading we define
the metrics number of overloaded helpers and number of helpers per helper name.
Overloading is typically used to define similar operations on different datatypes.
Of course it is also possible to define multiple different operations on the same
datatype, i.e., in a different context. Therefore, we propose to measure the number
of helpers per context.

Helpers are often used to manipulate collections. Therefore, we measure
the number of operations on collections per helper. Also, conditions are often
used in helpers. The metric helper cyclomatic complexity is related to McCabe’s
cyclomatic complexity [161], it measures the amount of decision points in a helper.
Currently, only if statements are considered as decision points. In the future, it
could be extended to take into consideration other constructs that influence the
flow of control, such as the for loop. Also the complexity of OCL expressions
could be taken into account when measuring the complexity of a helper [162].

Similar to transformation rules, helpers also allow the definition of local
variables. We define the metrics number of helpers with local variables, and
number of local variables per helper to measure the use of local variables in helpers.
Again, we also measure the number of unused local variables defined in helpers
to detect obsolete variable definitions. Similar to called rules, operation helpers
have parameters. To get more insight in the use of parameters we propose to
measure the number of parameters per operation helper. Also parameters may
be unused. To detect this form of dead code, we propose the metric number of
unused parameters per operation helper.

Table 5.2 shows all the helper metrics we defined.

5.3.3 Dependency Metrics

Transformation rules and helpers also depend on each other. Transformation
rules can invoke (other) lazy matched rules, called rules, and helpers. Helpers can
invoke (other) helpers and called rules. These dependencies are measured using
the metrics rule fan-out, helper fan-out, lazy rule fan-in, called rule fan-in, and
helper fan-in. Rules can also refer to each other in an implicit way, i.e., using
a resolveTemp () expression. This dependency is measured using the metrics
number of calls to resolveTemp () and number of calls to resolveTemp ()
per rule.
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No. | Metric

28. | Number of helpers

29. | Number of helpers with context

30. | Number of helpers without context

31. | Number of attribute helpers

32. | Number of operation helpers

33. | Number of operation helpers with parameters

34. | Number of operation helpers without parameters
35. | Number of helpers per unit

36. | Number of unused helpers

37. | Number of overloaded helpers

38. | Number of helpers per helper name (overloadings)
39. | Number of helpers per context

40. | Number of operations on collections per helper

41. | Helper cyclomatic complexity

42. | Number of helpers with local variables

43. | Number of local variables per helper

44. | Number of unused local variables defined in helpers
45. | Number of parameters per operation helper

46. | Number of unused parameters per operation helper

Table 5.2 Helper metrics

An ATL model transformation can consist of multiple units that depend on
each other. For measuring this dependency, we defined four metrics. The metrics
number of imported units and number of times a unit is imported are used to
measure the import dependencies of units. To measure how the internals of units
depend on each other, we defined the metrics unit fan-in and unit fan-out. These
metrics measure the number of calls from rules and helpers in a unit to helpers in
another unit and vice versa.

The last dependency category, i.e., the dependency of rules and helpers on
built-in functions is measured by the metric number of calls to built-in functions.
Built-in functions are OCL functions and also additional ATL operations such as
replaceAll (). The built-in functions println () and the debug () deserve
special attention. The debug () function is used to print information to the
console that can be used for debugging. In practice, we see that sometimes the
println () function is used for a similar purpose. The occurrence of these two
functions may indicate that the model transformation is still under development.

Table 5.3 shows all the dependency metrics we defined.
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No. | Metric

47. | Rule fan-out

48. | Helper fan-out

49. | Rule fan-in

50. | Lazy matched rule fan-in

51. | Called rule fan-in

52. | Helper fan-in

53. | Number of calls to resolveTemp ()
54. | Number of calls to resolveTemp () per rule
55. | Number of imported units

56. | Number of times a unit is imported
57. | Unit fan-in

58. | Unit fan-out

59. | Number of calls to built-in functions
60. | Number of calls to println ()

61. | Number of calls to debug ()

Table 5.3 Dependency metrics

5.3.4 Miscellaneous Metrics

We defined six more metrics that do not fit the discussed categories. The metric
number of units measures the number of units that make up a model transforma-
tion. Apart from the unit that contains the transformation rules, i.e., the module,
units can only contain helpers. Therefore, the metric number of helpers per unit
can be used to measure the size of a unit. These metrics can provide insight in
the size and modularity of a model transformation. It may be the case that there
are library units imported from which no helper is invoked in the transformation.
To detect this, we define the metric number of unused units.

The last two metrics provide insight in the context of the model transformation.
It is to be expected that model transformations involving more models are more
complex. Therefore, we propose to measure the number of input models and the
number of output models.

Recall that in the body of a rule or a helper, local variables can be defined.
Since these variables are local to a rule or helper, they need to be redefined in
another rule or helper if a local variable of the same type is required. This may
lead to inconsistencies in variable naming, i.e., variables of the same type may
have different names in different rules or helpers. To detect such inconsistencies
we defined metrics that measure the number of types per variable name.

Table 5.4 shows all the miscellaneous metrics we defined.
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No. | Metric

62. | Number of units

63. | Number of helpers per unit

64. | Number of unused units

65. | Number of input models

66. | Number of output models

67. | Number of types per variable name

Table 5.4 Miscellaneous metrics

5.4 Tool

We implemented a tool that enables automatic collection of the metrics presented
in Section 5.3 from ATL model transformations. The architecture of the tool is
shown in Figure 5.1.

Ea ATL Metrics Pretty Ea
—> — .
parser extractor printer

ATL files ATL model Metrics model Metrics report

Figure 5.1 Metrics extraction tool architecture

An ATL model transformation consists of a module and possibly a number of
libraries. The files containing this module and libraries are parsed by the ATL
parser. This results in ATL models representing the model transformation. These
models are the input for the metrics extractor. This metrics extractor is itself
a model transformation implemented in ATL. It consists of one matched rule
that matches on an ATL module, and a number of lazy matched rules, each for
calculating the value of one of the metrics. An example of such a lazy matched
rule is depicted in Listing 5.3.

The output of the metrics extractor is a model that contains the metrics data.
The metamodel that describes such metrics models is depicted in Figure 5.2. The
Object Management Group (OMG) has defined a software metrics metamodel as
well [163]. Their metamodel is intended to serve as a format for the interchange of
measurement data derived from software artifacts. Since we require a metamodel
for the presentation of metrics only, it is too elaborate for our purposes. Therefore,
we defined one ourselves. Note, however, that model transformations can be
defined to transform between the two formats. A metrics model can be provided
as input to a pretty printer. This pretty printer is a model-to-text transformation
implemented in Xpand [164]. The output of the pretty printer is a comma
separated value file that can be read by a spreadsheet application.
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lazy rule NumTransformationRules{
from m_in : ATL!Module
to s_out: Metrics!SimpleIntegerMetric (
Metric <- ’"Number of Transformation Rules’,
Value <- thisModule.getAllRules ()
—>size ()

}

helper def: getAllRules(): OrderedSet (ATL!Rule) =
ATL!Rule.al 1stances () ;

Listing 5.3 Metric extraction rule

Metrics
simpleMetrics aggregatedRealMetrics
TrafoName
aggregatedIntegerMetrics
0.* 0. 0.*
SimpleMetric AggregatedIntegerMetric AggregatedRealMetric
Value Minimum Minimum
Maximum Maximum
Median Median
Average Average
StandardDeviation StandardDeviation
VA
Metric
MetricName

Figure 5.2 Metrics metamodel

In Section 5.3 we presented two types of metrics, viz., metrics that are measured
over the entire transformation and metrics that are measured on a smaller scale,
i.e., per unit, per rule, or per helper. The former type of metric has as single value
for the entire transformation. We refer to this type of metrics as simple metrics.
The latter type of metric has multiple values for the entire transformation, viz.,
one for every element that is measured (unit, rule, or helper). To assess the
transformation as a whole we do not present all of these values. Instead, we give
average, minimum, maximum, median and standard deviations for these metrics.
We refer to this type of metrics as aggregated metrics.

The metrics extractor gathers data from an ATL model. Therefore, there is
a problem with identifying calls to helpers. The call to a helper consists of only
its name. However, a helper is defined by its name, context, and parameters.
To distinguish between calls to helpers with the same name, more information
is required. Unfortunately, this information is only available at run-time. We
therefore identify a call to a helper by its name only. We realize that this is a threat
to the validity of our measurements, since some of the metrics may be calculated
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incorrectly. However, from our own experience and from the transformations
available in the ATL zoo [159], we can conclude that there are few transformations
that have overloaded helpers. Moreover, if there are overloaded helpers, this is
indicated by a metric.

5.5 Empirical Study

The quality of a model transformation is not measurable directly. Therefore, we
resort to metrics, which can be measured directly. Before these metrics can be used
for assessing the quality of model transformations, we have to establish a relation
between the metrics and quality attributes relevant for model transformations. To
explore this relation, we conducted an empirical study similar to the one presented
in Section 4.5. In the empirical study we used a collection of seven ATL model
transformations with different characteristics. For each of these transformations,
metrics data were collected using the metrics collection tool presented in Section 5.4.
Quality attributes of the same collection of transformations were quantitatively
assessed by nineteen ATL experts using a questionnaire. To establish a relation
between the metrics and the quality attributes, we analyzed the correlations
between the metrics data and the expert feedback. In this section, we describe
the design and results of the empirical study.

5.5.1 Objects

We used seven ATL model transformations as objects in our empirical study.
These transformations were acquired from various sources and they have different
characteristics. Here, we shortly describe their purpose.

The first transformation is used to perform some type checking and refer-
ence resolving of a PicoJava program. PicoJava is a subset of the full Java
language [165]. The transformation was developed in a research project. The
second transformation generates a relational database model taking as input a
UML class model. It also generates a trace model specifying links between source
and target model elements. Transformation users can configure the transformation
behavior by means of a configuration model. The transformation has been used
as a case study in a research project [166]. The third transformation has been
used for educational purposes. Students were asked to develop a transformation
that generates code from a simple state machine language. The purpose of the
fourth transformation is to transform an R2ML model into an XML model with
R2ML syntax elements. The Rule Markup Language (R2ML) is a general web rule
markup language used to enable sharing rules between different rule languages.
The transformation language is part of the ATL transformation zoo [159]. The
fifth transformation copies a UML2 model. The transformation is part of a
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collection of MDE case studies [167]. The sixth transformation is part of a chain
of refining model transformations presented in Chapter 8. The purpose of the
transformation is to enable reliable communication over a lossy channel between
two communicating objects. It was developed as part of a research project. The
last transformation is the transformation used for conducting the experiment
presented in Section 5.4. It takes an ATL model transformation and extracts the
metrics presented in Section 5.3 from it. Table 5.5 provides an overview of the
objects of our empirical study along with some of their characteristics.

Transformation | LOC | # Rules | # Helpers | Purpose Ref.

PicoJavaType 997 19 14 PICO'J ava type checking and reference re-
solving

R2ML2X ML 1125 55 1 Generate an XML document of an R2ML [159]
model

SM2NQC 158 13 1 Generate NQC code from state machines

Generate a relational database model

UML2DB 5152 84 76 from a UML class model [166]

UML2Copy 4158 199 1 Copy a UML 2 model [167]

Lossy2Lossless | 1003 37 9 Enab'le reliable communication over an (67]
unreliable channel

ATL2Metrics 9110 93 28 Extract metrics from ATL transforma- [63]

tions

Table 5.5 Characteristics of the analyzed model transformations

5.5.2 Participants

The participants in the study were nineteen experienced users of ATL with various
backgrounds. Some of them are part of the ATL development team, whereas
others use ATL only occasionally. None of the authors of the article this chapter
is based on participated as participant in this study. The developers of some of
the objects presented in Section 5.5.1 were among the participants. To avoid
biased results, measures were taken such that the participants did not evaluate a
model transformation they developed themselves.

5.5.3 Task

The task of the participants was to quantitatively evaluate the quality of one or
more of the objects, i.e., ATL model transformations. They were asked to fill
out a questionnaire consisting of twenty-one questions each addressing one of the
quality attributes. To enable checking the consistency of the answers provided by
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the participants, the questionnaire contained at least three similar, but different
questions for every quality attribute. For instance, in one of the questions the
participants were asked to rate the understandability of the model transformation
and in another one they were asked to indicate how much effort it would cost
them to comprehend the model transformation. In each question, the participants
had to indicate their evaluation on a seven-point Likert scale [143]. For all objects,
the same questionnaire was used.

It was likely that the participants had no previous knowledge of the trans-
formations they needed to evaluate. Therefore, we provided them with a brief
description explaining that purpose We also provided them with the input and
output metamodels of the transformation, such that they could run the transfor-
mation if desired. The participants could use as much time for the evaluation
task as they needed.

In addition to the quantitative evaluation task, we used the questionnaire
to obtain qualitative statements from the participants. They were requested to
indicate what characteristics of an ATL model transformation in their opinion
influences each of the quality attributes.

In total, there were nineteen participants in the empirical study. All partic-
ipants evaluated at least one of the objects. There were two participants that
evaluated three objects. This leads to a total of twenty-two evaluations.

5.5.4 Quality of the Analyzed Model Transformations

Each of the transformations has been manually evaluated by at least two partic-
ipants using the questionnaire. Recall that at least three similar, but different
questions were asked for every quality attribute, For each participant, the eval-
uation of a particular quality attribute we used in our analysis is the mean of
the answers he provided to all questions addressing that quality attribute. The
results of the manual evaluation can be found in Table 5.6. The table shows in the
second column the number of observations for a particular transformation, i.e.,
the number of participants that evaluated that transformation. In columns 4 to 9,
the table shows per model transformation and per quality attribute two values.
The first value is the mean evaluation of the participants. This value is used for
establishing the relation between the metrics and the quality attributes. The
second value is the standard deviation of the evaluations. The standard deviation
gives an indication of the consistency of the evaluations of the participants, i.e., it
indicates disagreement. Since the standard deviations are in general low (< 1,5),
we can conclude that the evaluations of the participants are relatively consistent.
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|

Understandability

# Observations
Modifiability
Reusability
Completeness
Consistency
Conciseness

Average |5,06|4,88(4,92|6,00|6,25|5,00
Std. Dev. |1,34|1,15[1,24|0,73|0,75| 1,71
Average |4,56|4,94(4,25|5,71|6,00 4,58
Std. Dev. | 1,59 0,85 2,22]0,83]0,74 | 1,51
Average |4,50|4,63|4,50|5,88|5,67|5,67
Std. Dev. | 1,41 1,06 |1,05]0,64 0,82 | 1,03
Average |2,13]2,25 3,17 4,29 5,33 2,50
Std. Dev. |0,64|1,04|1,60|1,80|1,03|0,55
Average |5,42]4,423,33/6,00]5,11 3,44
Std. Dev. | 0,67 | 1,62 | 1,32]0,60 | 1,54 | 2,01
Average |3,884,25(3,67|6,295,67 2,67
Std. Dev.|1,81(0,89|1,21|0,76|1,03|0,82
Average |4,78|4,63|5,21|5,53|5,47|3,93
Std. Dev. 1,59 1,16 |1,31|1,43|0,99| 1,75

W~

PicoJavaType

R2ML2XML | 4

SM2NQC 2

UML2DB 2

UML2Copy 3

Lossy2Lossless | 2

ATL2Metrics | 5

Table 5.6 Quality of the analyzed model transformations

5.5.5 Relating Metrics to Quality Attributes

To establish the relation between metrics and quality attributes we analyze the
correlation between them. The metrics were collected using the metrics collection
tool presented in Section 5.4. For the metrics that require aggregation, we used
the mean. An example of a metric requiring aggregation is number of parameters
per called rule. The value we used in the analysis represents thus the mean number
of parameters per called rule.

The data that has been acquired from the questionnaire is ordinal. Therefore,
we use a non-parametric rank correlation test [59]. Since we have a small data set
and we expect a number of tied ranks, we use Kendall’s 7, rank correlation test to
acquire the correlations [144]. This test returns two values, viz., significance and
correlation coefficient. The significance of the correlation indicates the probability
that there is no correlation between two variables even though correlation is
reported, i.e., the probability for a coincidence. The correlation coefficient indicates
the strength and direction of the correlation. A positive correlation coefficient
means that there is a positive relation between metric and quality attribute and a
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negative correlation coefficient implies a negative relation. For more information
on the interpretation on these values, the reader is referred to [145]. Table 5.7
shows the correlations that were acquired. Since we are performing an exploratory
study and not an in-depth study, we accept a significance level of 0,10. The
significant correlations are marked. The columns labeled C.C. list correlation
coefficients and the columns labeled Sig. list (two-tailed) significance values.

In Section 4.5, we presented the results of a similar empirical study for model
transformations developed with the ASF+SDF term rewriting system. In that
study we found that the size of a transformation expressed in terms of the
number of transformation functions correlates negatively with understandability
and modifiability. Therefore, we expect to find similar correlations for ATL as
well. In Table 5.7 it is shown that no significant correlation is found between the
metrics that measure the amount of transformation rules and helpers, and the
quality attributes understandability and modifiability. However, the participants
indicated in the qualitative part of the empirical study that they see size as a
negative influence on both the understandability and modifiability of an ATL
model transformation. Note that only one of the nineteen ATL experts also
participated in the empirical study for ASF+SDF. Most of the participants
indicated that the amount of called rules in particular has a negative impact
on understandability and modifiability. The correlation coefficient between the
metric number of called rules and understandability and modifiability is negative,
however insignificant. A reason that was mentioned by the participants for this
negative influence is that called rules, and also do-sections, are resorted to when
a specific solution to part of a transformation problem is required. This is also
addressed as a reason for low reusability of called rules. Table 5.7 shows that
significant negative correlations have been found between the metrics called rule
fan-in and lazy rule fan-in and a number of quality attributes. The participants
mentioned that the use of, specifically, called rules leads to more complex rule
interaction and coupling between rules. Although this argument holds for lazy
matched rules as well, it is mentioned less often.

ATL allows defining helpers in separate units, or libraries as they are called in
ATL terminology. Table 5.7 shows that the metric number of units correlates neg-
atively with the quality attributes understandability, modifiability, completeness,
and conciseness. Modularizing software is generally considered to be beneficial for
its quality. Therefore, a positive correlation would have been expected here. It
must be noted that the participants mentioned the use of libraries as an influence
on quality only with respect to conciseness and reusability. However, no significant
correlation has been found between the metric number of units and reusability. In
Table 5.7 it is also shown that some other metrics related to the use of libraries,
viz., unit fan-in, and unit fan-out correlate in a negative way with the quality
attributes understandability, modifiability, completeness, and conciseness. A high
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l Metric C.C. [ Sig. | C.C. [ Sig. | C.C. [ Sig. | C.C. [ Sig. | C.C. [ Sig. | C.C. [ Sig.
# Transformation rules ,024 | ,885|-,086| ,604 |-,082|,623|-,364 |,031 |-,273 | ,099 | -,092 | ,582
# Matched rules ,014 | ,931| ,000 | 1,000 | ,034|,839 |-,029|,861|-,129 | ,435 | -,383 | ,022
# Lazy matched rules -,081| ,633| ,041| ,812|-,201|,243|-,058 |,741| ,051|,765| ,239 |,168
# Called rules -,128 | ,482|-,263 | ,149 (-,158|,389 | -,308 | ,098 | -,365 | ,046 | -,347 | ,060
# Unused lazy matched rules -,025| ,893| ,138| ,460 |-,152|,419| ,026 |,892| ,076 |,687 | ,217 | ,251
# Unused called rules -,128 | ,482|-,263| ,149|-,158|,389 |-,308 | ,098 | -,365 | ,046 | -,347 | ,060
# Elements per output pattern -375| ,026 |-,215| ,202|-,228|,180| ,124 |,472|-,146 | ,389 | -,122 | 474
# Parameters per called rule -,407 | ,029 | -,407 | ,029 |-,391 | ,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Unused parameters per called rule -,407 | ,029 | -,407 | ,029 |-,391 | ,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Unused input pattern elements -,032| ,854| ,059| ,737(-,033|,854|-,056 |,758 | ,033|,854 | ,297 | ,097
# Direct copies ,227 | ,197 | ,040| ,822| ,322|,070 |-,059 | ,745|-,125 | ,478 | -,196 | ,271
# Rules with filter -,005| ,977|-,038| ,818|-,005|,977 |-,049 |,771 |-,129 | ,435|-,402 | ,016
# Rules per input pattern -,109 | ,507|-,114| ,489(-,130|,434| ,029 |,861|-,014 |,931 | ,315|,059
# Rules with local variables -,013| ,944|-051| ,780| ,032|,861|-,137 |,460|-,178 | ,328 | ,302 |,100
# Variables per rule -,038 | ,834|-,076| ,676| ,070|,700 |-,111 |,550 |-,242 |,184 | ,225|,220
# Rules with do-section ,000 | 1,000 | -,153 | ,385|-,057 | ,747 | ,018|,922|-,108 | ,540 | -,173 | ,332
# Helpers -,178 | ,296 |-,229 | ,180 |-,201 | ,243 | -,047 | ,786 | -,246 | ,152 | ,187 | ,281
# Unused helpers -,407 | ,029 | -,407 | ,029 |-,391 | ,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Helpers per helper name (overloadings) | -,033 | ,855 |-,066 | ,714 |-,054 |,769 | ,220 |,237 | ,060 | ,741| ,007 | ,971
Helper cyclomatic complexity -,248 | ,142|-,154 | ,364 |-,357 | ,037 | -,026 | ,882|-,175|,304 | ,126 | ,461
# Variables per helper ,006 | ,972| ,063| ,727| ,013|,944|-,111|,550| ,178 |,328 | ,328 | ,074
Rule fan-out -,223| ,175|-,124 | ,453|-,333|,046 | -,157 | ,351 | -,235 | ,157 | ,024 | ,885
Helper fan-out ,020 | ,907 | ,183| ,278|-,105|,537 | ,302 | ,081 | ,264 | ,120 | ,136 |,426
Lazy rule fan-in -,356 | ,037 |-,143| ,404|-,397|,021 | ,005 |,976 |-,021 |,905 | -,062 | ,719
Called rule fan-in -,407 | ,029 | -,407 | ,029 (-,391 | ,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
Helper fan-in ,138 | ,402 | ,000 | 1,000 | -,024 | ,885 |-,236 | ,162 | -,196 | ,236 | -,005 | ,977
# Calls to resolveTemp () -,352 | ,049 |-,358 | ,045|-,159|,380 |-,088 |,632|-,236|,189|-,179 | ,323
# Calls to resolveTemp per rule -,326 | ,068 |-,306| ,087 |-,106|,558|-,061 |,741|-,236|,189|-,153 |,399
# Imported units -,252 | ,164|-,080 | ,661|-,323|,078 | ,110 |,554 |-,027 | ,883|-,223 | ,225
# Times a unit is imported -,318 | ,088|-,138| ,459 (-,379 | ,045 | ,086 |,654 |-,084 | ,656 |-,247 | ,192
Unit fan-in -,407 | ,029 | -,407 | ,029 |-,391 |,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
Unit fan-out -,407 | ,029 | -,407 | ,029 |-,391|,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Units -,407 | ,029 | -,407 | ,029 |-,391|,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Helpers per unit -,178 | ,296|-,229 | ,180|-,201 | ,243 | -,047 |,786 |-,246 | ,152 | ,187 | ,281
# Input models -,407 | ,029 | -,407 | ,029 (-,391 | ,038 | -,122 | ,524 | -,345 | ,066 | -,218 | ,249
# Output models -,407 | ,029 | -,407 | ,029 |-,391 | ,038 |-,122 |,524 |-,345 | ,066 | -,218 | ,249

C.C. : Correlation coefficient

Sig. : Significance (two-tailed)

Table 5.7 Kendall 7, correlations
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value for unit fan-in and fan-out indicates a high coupling between the units
that comprise a model transformation. In traditional software development, it is
considered to be desirable to have low coupling between modules [168]. A reason
for this is that having less interconnections between units reduces the time needed
by developers to understand the details of other units. Moreover, a change in
a unit can cause a ripple effect, i.e., the effect of the change is not local to the
unit [169]. Similarly, an error in one unit can affect other units. The metrics
number of imported units and number of times a unit is imported also relate to
the use of libraries. However, they correlate less with the quality attributes.

Unused elements are usually not beneficial for the understandability and
modifiability of a transformation because they clutter it. Since unused elements
are in principal superfluous, they have an obvious negative effect on conciseness.
For the metrics number of unused helpers, number of unused called rules, and
number of unused parameters of called rules such correlations have been found.
However, no significant correlations can be found for the metrics number of unused
lazy rules and number of unused input pattern elements.

The participants mentioned that simple transformations with one-on-one
mappings tend to be the most complete. The number of direct copies measures
one-on-one copies. This metric correlates positively with completeness, supporting
the claim of the participants. Having simple, or small, transformations was
mentioned as having a positive influence on reusability as well. Some of the
participants indicated that model transformations should be split up in a chain
of smaller transformations, because this increases reusability and, as mentioned
before, also understandability. A negative influence on reusability and also
modifiability that was mentioned is the use of the resolveTemp () expression.
The correlations presented in Table 5.7 partly support this. The reason that
was mentioned for this influence is that the use of resolveTemp () expressions
increases coupling between rules. This is also an explanation for the negative
correlation that was found between understandability and the metrics number of
calls to resolveTemp () and number of calls to resolveTemp () per rule.

The number of input and output models that a transformation takes correlates
in a negative way with the quality attributes understandability, modifiability,
and completeness. When a transformation takes multiple models as input and
generates multiple output models, it is to be expected that the transformation
rules of that transformation are more complex, and thereby less understandable
and modifiable, since information from multiple sources needs to be combined
and assigned to the correct targets. The data partially support this. A significant,
positive correlation exists between the metrics number of output models and
number of elements per output pattern. Since the transformations we used for our
study all have one element per input pattern, no correlation can be found between
this metric and the metric number of input models. In the qualitative part of
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the empirical study, the participants indicated that the number, as well as the
complexity of the involved metamodels has a negative effect on understandability,
modifiability, and also completeness. The reason for this is that the metamodels
need to be understood before the transformation can be understood and modified.
Moreover, it is hard to detect incompleteness in a transformation if the metamodels
and their interrelations are not fully understood.

In the qualitative part of the empirical study, more feedback was acquired
regarding the quality of ATL model transformations of which some cannot be
related to metrics directly. The participants indicated that lay-out of the code of
a model transformation, as well as the use of proper naming for rules, helpers, and
variables will increase the understandability and modifiability of the transforma-
tion. Enforcing proper naming by means of a coding convention was mentioned as
a positive influence on consistency as well. Proper comments and additional doc-
umentation of the requirements and design of the transformation were mentioned
as positive influences on completeness and, again, understandability. According to
the participants, the use of helpers has a positive influence on almost all quality
attributes, albeit that they should not become too complex. Helpers prevent
duplication of code, which increases consistency and conciseness. It was mentioned
that navigation of the source model should be delegated to helpers rather than
implementing it as part of a rule. Besides being beneficial for the quality attributes
considered in this paper, experiments have shown that this has a positive effect
on performance as well [121]. Rule inheritance has, according to the participants,
a positive influence on the quality attributes understandability, conciseness, and
consistency. The use of rule inheritance can lead to rules that are more concise
and have a common pattern, which are in general more understandable. Although,
a deep inheritance tree should be avoided, since it decreases understandability
again. Similarly to what holds for inheritance trees in object-oriented software, a
rule deeper in the rule inheritance tree may be more fault-prone because it inherits
a number of properties from its ancestors [155]. Moreover, in deep hierarchies it
is often unclear from which rule a new rule should inherit from.

5.5.6 Threats to Validity

When conducting empirical studies, there are always threats to the validity of the
results of the study [147]. Here, we address the potential threats to validity we
identified for the empirical study we performed.

An important issue that should be taken into account for empirical studies
in general is the representativeness of the experimental design with respect to
practice. The objects used in the study are seven ATL model transformations
that have been developed and applied for various purposes. Therefore, they
have different characteristics. It must be noted, however, that there is only one
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transformation that is largely imperative, i.e., 57 of the 84 transformation rules
of the UML2DB transformation are called rules and all of the 84 rules have a
do-section. In Figure 5.3, a scatter plot is depicted of the data concerning the
number of called rules in the objects and their reusability. Since almost all data
points are on the left side of the graph, the significant negative correlation that has
been found between the number of called rules and reusability is mainly explained
by the two outlying data points that originate from the UML2DB transformation.
Even though we use a ranked correlation test to reduce the influence of outlying
values, these correlation would not have been found if this transformation would
not have been in the object set. Therefore, we cannot base our conclusions solely
on the correlations we found. To address this threat to validity, we also collected
qualitative data. The participants were requested to indicate the characteristics of
an ATL model transformation that in their opinion influences each of the quality
attributes. These qualitative statements were used to support or refute the results
of the quantitative analysis.
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Figure 5.3 Relating the number of called rules to reusability

The participants in our study have different backgrounds. Some of them are
part of the ATL development team, whereas others use ATL only occasionally. In
the questionnaire, the participants were requested to rate their knowledge of ATL.
Most of the participants rated their knowledge as high or very high. Therefore,
we do not consider participant experience as a threat to the validity of this study.

The task the participants had to perform was evaluating different quality
attributes of model transformations. Evaluating model transformations is not a
typical task for a model transformation developer. Moreover, participants are not
always the most careful readers [170]. Both these issues may decrease the validity
of the data. To address both threats to validity, we posed for each of the quality
attributes at least three similar but different questions. The results showed that
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the responses provided by the participants to each of the similar questions were
relatively consistent. Also the answers among the participants were relatively
consistent. Therefore, we minimized these threats to validity.

Recall that we investigated the possible confounding effect of the size of a model
transformation on the results of the empirical study we conducted for ASF+SDF
(see Section 4.5.6). Since hardly any quality attribute correlates significantly with
any of the metrics that indicates the size of a model transformation, we conclude
that the size of a model transformation had no confounding effect on the results
of our empirical study.

5.6 Conclusions

In this chapter, we presented a set of 66 metrics for measuring model transforma-
tions developed with the model transformation language ATL. We performed an
empirical study aimed at establishing whether the metrics are valid predictors for
the quality attributes presented in Chapter 3. The quality of seven model trans-
formations developed with ATL was manually assessed by nineteen experienced
ATL users. Metrics were collected from the same set of model transformations
using the tool we created. We analyzed the correlation between the expert data
and the metric data. A number of the correlations we found were acknowledged
by the participants of our empirical study.






Chapter 6

Comparing Metric Sets for Model
Transformations

In Chapters 4 and 5, we defined metric sets for ASF+SDF and ATL respectively.
We also defined metric sets for the model transformation languages QVTO and
Xtend. In this chapter, we present a comparison of the metric sets we defined for
ASF+SDF, ATL, QVTO, and Xtend. We will address similarities among these
metric sets and we will also point out the differences among them.

6.1 Introduction

In Chapters 4 and 5, we defined metric sets for the model transformation languages
ASF+SDF and ATL respectively. For two other model transformation languages,
viz. Xtend and QVTO, we also defined metric sets and implemented tools to
automatically collect them [171]. In Section 1.1.2.3, we showed that all four model
transformation languages studied in this thesis have different characteristics.
However, they all are designed for a similar task, i.e., model transformation.
Therefore, it is to be expected that there is overlap between the metric sets. We
noted earlier that the metric sets for the different languages contain conceptually
similar metrics. In this section, we will address the similarities and we will also
point out the differences among the metrics sets we defined. We have divided
the overlapping metrics into six categories, viz., size metrics, function complexity
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metrics, modularity metrics, inheritance metrics, dependency metrics, consistency
metrics, and input/output metrics. For each of these categories, we describe which
metrics of all four languages fit that category. Finally, we discuss a number of
metrics that are language-specific. Again, we address in this chapter research
question RQ3.

RQ3s: How can metrics be used to assess the quality of model trans-
formations?

The remainder of this chapter is structured as follows. In Sections 6.2 to 6.8,
we describe the overlapping metrics. A number of language-specific metrics are
described in Section 6.9. Section 6.10 concludes this chapter. For related work,
the reader is, again, referred to Section 4.6.

6.2 Size Metrics

The first category contains metrics for measuring the size of a model transfor-
mation. The size of a model transformation is determined by the number of
transformation functions it comprises. All four languages have different types of
transformation functions. In ATL there are rules, in QVTO there are mappings,
in Xtend there are extensions, and in ASF+SDF there are transformation func-
tions. Table 6.1 shows the metrics we have defined for measuring the number of
transformation functions for each of the respective languages.

ATL QVTO Xtend ASF+SDF
#Rules #Mappings #Extensions #Transformation func-
tions
#Helpers #Helpers

Table 6.1 Size metrics

ATL, Xtend, and ASF+SDF have different types of transformation functions,
viz., ATL has matched rules, (unique) lazy matched rules, and called rules, Xtend
has expression extensions, create extensions, and Java extensions, and ASF+SDF
has non-traversal and traversal functions. We defined metrics for measuring the
number of transformation functions for each of these function types, however,
they are not shown in the table.

Besides the number of transformation functions, the size of a transformation
is also affected by the number of helper functions. Again, metrics have been
defined to measure the number of helper functions for each of the helper function
types there are in ATL and QVTO. Note that Xtend and ASF+SDF do not have
separate helper functions.
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Another metric applicable for measuring the size of a model transformations
is the number of modules it comprises. However, we decided to treat this metric
as a modularity metric (see Section 6.4).

6.3 Function Complexity Metrics

The complexity of a model transformation is affected by the complexity of its parts,
i.e., transformation and helper functions. The metrics we defined for measuring
the complexity of these functions for the various languages are shown in Table 6.2.

ATL
#Elements per input/
output pattern

QVTO Xtend ASF+SDF

#Parameters per called
rule/operation helper

#Parameters per map-
ping/ helper

#Parameters per exten-
sion

Function val-in

#Bindings per rule

#Operations on collec-
tions per rule/helper

#Operations on collec-
tions per mapping/
helper

#Operations on collec-
tions per extension

#Variables
helper

per rule/

#Variables per
ping/ helper

map-

#Local wvariables per
extension

Helper cyclomatic com-
plexity

Mapping/helper cyclo-
matic complexity

Extension
complexity

cyclomatic

Table 6.2 Function complexity metrics

The complexity of a transformation function is among others determined by
the number of (model) elements it takes as input and returns as output. In ATL
this is measured using the metrics number of elements per input pattern and
number of elements per output pattern. Called rules do not have an input pattern,
so the number of (model) elements a called rule takes as input is measured using
the metric number of parameters per called rule. Similarly, in QVTO this is
measured using the metric number of parameters per mapping. For input model
elements only in and inout parameters should be considered and for output model
elements only out and inout parameters. For Xtend and ASF4+SDF the number
of parameters of a transformation function is measured by the metrics number of
parameters per extension and function val-in respectively. Since transformation
functions in ASF4+SDF and also in Xtend can return only one output model
element, there is no metric for measuring this. The complexity of helper functions
for both ATL and QVTO can be measured using the metric number of parameters
per helper as well.

In the body of a transformation function, the assignment of transformed source
model elements to target model elements is performed. In ATL, target model
elements are typically assigned values using bindings. Therefore, the number of
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bindings per rule affects the complexity of a transformation rule in ATL. Since
model transformations often need to deal with collections, i.e., sets of model
elements, metrics have been defined to measure the number of operations on
collections separately. A well known complexity measure is McCabe’s cyclomatic
complexity [161]. It measures the number of decision points in a function. Since
transformation and helper functions also contain decision points, this metric
is applicable to model transformations as well. This metric is not defined for
ASF+SDF, since it has no constructs to explicitly define decision points. Although,
it can be argued that every equation and every condition is a decision point.
ATL, QVTO, and Xtend allow defining local variables in transformation and
helper functions. These are typically used to provide separation of concerns, i.e.,
to split a calculation in orderly parts. Therefore, the number of local variable
definitions affects the complexity of a transformation function as well.

6.4 Modularity Metrics

All four languages have support for structuring model transformations by packaging
transformation rules in modules, albeit that ATL has some restrictions on this.
Table 6.3 shows the metrics related to modularity.

ATL QVTO Xtend ASF+SDF
#Units #Modules #Modules #Modules
#Imported units #Imported modules #Imported modules #Import declarations

per module

#Times a unit is im-| #Times a module is im-| #Times a module is im- | #Times a module is im-

ported ported ported ported
#Helpers per unit #Mappings/helpers #Extensions per mod-| #Functions per module
per module ule

Table 6.3 Modularity metrics

An indication of the modularity of a model transformation is the number of
modules/units in that transformation. Note that this metric gives an indication
of the size of a transformation as well and can therefore also be considered as
a size metric. Measuring the number of modules alone is not enough to assess
modularity. In a proper modular transformation, functionality should be well
spread over the modules it comprises. Therefore, we defined metrics that measure
the number of transformation and helper functions per module to determine
the balance of the modules that comprise a model transformation. When the
standard deviation of these metrics is high, the modules are not properly balanced.
This could be intentional, but it could also be an indicator that the division of
functions over modules should be reconsidered. Finally, in a proper modularized
transformation, similar to traditional software, coupling between modules should



6.5. Inheritance Metrics 109

be low [168]. Coupling can be measured using the import metrics, they can be used
to assess which modules rely heavily on other modules as well as which modules
is heavily relied on. However, the import metrics alone do not suffice for assessing
coupling between modules. When a module m imports another module mo, this
is no guarantee that transformation or helper functions in module m; rely on
transformation or helper functions in module mo, i.e., the import may be obsolete.
To acquire more insight in the coupling between modules, metrics that measure
the dependencies between functions in modules are required. These dependency
metrics are discussed in Section 6.6.

6.5 Inheritance Metrics

ATL and QVTO both have support for rule inheritance. The use of inheritance
may affect the quality of a model transformation in a similar way as it affects
object-oriented software [155]. A rule deeper in the rule inheritance tree may be
more fault-prone because it inherits a number of properties from its ancestors.
Moreover, in deep hierarchies it is often unclear from which rule a new rule should
inherit from. To acquire insights into the rule inheritance relations in ATL and
QVTO transformation, we defined the metrics shown in Table 6.4. QVTO has
different forms of inheritance, i.e., inherit, merge, and disjunct. We defined metrics
to measure all three forms.

ATL QVTO Xtend ASF+SDF
#Abstract rules # Abstract mappings
#Children per matched | #Mapping inherits

rule

#Rule inheritance | #Mapping merges
trees

Depth of rule inheri-| #Mapping disjuncts
tance tree

Width of rule inheri- | #Mappings per dis-

tance tree junct
#Overloaded helpers #Overloaded map-| #Overloaded exten- | #Signatures per func-
pings/helpers sions tion
#Mappings per map-| #Extensions per exten-| #Equations per func-
ping name (overload-| sion name (overload-| tion
ings) ings)
#Helpers per helper | #Helpers per helper
name (overloadings) name (overloadings)

Table 6.4 Inheritance metrics

Related to inheritance is overloading. Therefore, metrics regarding overloading
are also included in this category. All languages support overloading of functions,
except for ATL rules. For all four languages we defined metrics for measuring the
number of overloadings per overloaded function. For ATL, QVTO, and Xtend
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we also defined metrics for measuring the number of overloaded functions. This
could also be measured for ASF+SDF by measuring the number of transformation
functions that have more than one signature or equation.

6.6 Dependency Metrics

Transformation functions generally depend on other transformation functions.
To measure this dependency, we measure fan-in and fan-out of transformation
functions [134]. Fan-in of a transformation function is the number of times it is
invoked by other transformation functions. Fan-out of a transformation function
is the number of times it invokes other transformation functions. We consider fan-
in/fan-out metrics for four types of transformation elements, i.e., transformation
functions, helper functions, library functions, and modules. Since the fan-in and
fan-out metrics for modules are indicators for coupling between modules, they are
related to modularity as well. The metrics are shown in Table 6.5.

ATL QVTO Xtend ASF+SDF
#Calls to rules #Calls to mappings per | #Calls to extensions Function fan-in
mapping
#Calls from rules #Calls from mappings | #Calls from extensions | Function fan-out
per mapping
#Calls to helpers #Calls to helpers #Calls to extensions in | Module fan-in
other modules
#Calls from helpers #Calls from helpers #Calls from extensions | Module fan-out
in other modules
#Calls to helpers in | #Calls to map-| #Calls to extensions in
other units pings/helpers in the standard library

other modules

#Calls from helpers in | #Calls from map-
other units pings/helpers in
other modules

#Calls to built-in func-
tions

Table 6.5 Dependency metrics

6.7 Consistency Metrics

Metrics can be used to detect all kinds of inconsistencies in model transformations.
We consider inconsistencies such as code smells and style violations. The metrics
we defined for that purpose are shown in Table 6.6.

A typical inconsistency is an unused model transformation element. This can
be a helper function, a transformation function, or an entire module. On a smaller
scale there are parameters and local variables that may have been defined but are
unused. We have defined metrics to detect all of these unused elements.
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ATL QVTO Xtend ASF+SDF
#Unused units #Unused modules
#Unused rules #Unused mappings #Unused extensions
#Unused helpers #Unused helpers
#Unused input pattern
elements
#Unused parameters #Unused parameters #Unused parameters
#Unused local vari-| #Unused local vari-| ##Unused local vari-| #Unused variables per
ables ables ables module
#Types per variable | #Types per variable|#Types per variable | #Types per variable
name name name name
#Calls to println() #Calls to log () #Calls to logging ex-
pressions
#Calls to debug () #Calls to assert () #Calls to syserr ()

Table 6.6 Consistency metrics

All four languages allow definition of local variables. In ATL, QVTO, and
Xtend these are local to a transformation function, in ASF+SDF these are local
to a module. This means that a variable needs to be redefined if a variable of
the same type is to be used in other transformation functions. This may lead to
inconsistencies in variable naming, i.e., a variable name in one module can be
related to a different type in another function. To detect such inconsistencies we
defined metrics that measure the number of types per variable name.

A number of functions are available in all three languages that support logging
of some kind. Typically, this is used for debugging purposes. The occurrence of
calls to these functions may therefore indicate that the model transformation is
still under development.

6.8 Input/Output Metrics

The last category of metrics is aimed at providing insight in the context of the
transformation. They are shown in Table 6.7.

ATL QVTO Xtend
#Input/output models #Input/output models
#Involved metamodels #Imported metamodels #Imported metamodels

#Imported metamodels per | #Imported metamodels per
module module

Table 6.7 Input/output metrics

For ASF+SDF we did not consider the input and output (meta)models of
the transformation. The number of metamodels involved in an ASF+SDF trans-
formation could, for example, be measured by measuring the number of SDF
modules that have no related ASF module that defines equations. However, it
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may be the case that a module defines both a metamodel and transformation
functions. In this case, by measuring the number of SDF modules that have no
related ASF module, an incorrect metric value would be calculated. Since, there
are more exceptions that need to be dealt with, decerning metamodels is too error
prone. Therefore, Table 6.7 does not contain metrics related to metamodels for
ASF+SDF. From the results of the empirical study presented in Section 5.5 can
be concluded that model transformations involving more models and metamodels
are more complex. Therefore we defined metrics that measure the number of
models and metamodels involved in a transformation.

6.9 Language-specific Metrics

All four languages have different characteristics. We defined metrics that measure
aspects of model transformations that are specific for each of the languages. Here,
we will address only a few of them.

In ATL, a transformation function can have multiple input and output model
elements. The metric rule complexity change measures the amount of output
model elements that are generated per input model element. The input pattern
of an ATL matched rule can be constrained using filter conditions. The metric
number of rules with a filter condition on the input pattern measures this. Using
such filter conditions a rule matches only on a subset of the model elements
defined by the input pattern.

In QVTO it is possible to define intermediate classes and properties. These
are used in the scope of the transformation only. These intermediate classes
and properties may be useful for splitting calculations. Therefore, we measure
the number of intermediate classes/properties. In QVTO and in ATL there
are constructs for explicit trace resolution. These constructs may affect the
understandability of a model transformation. Therefore, we defined metrics to
measure the number of trace resolution calls.

Xtend has support for aspect-oriented programming using so-called arounds.
We measure this using the metric number of arounds.

ASF+SDF is a combination of two languages, viz., ASF for term rewriting
and SDF for syntax definition. Therefore, there are a number of metrics related
to those activities that do not apply to model transformation in general. Alves
and Visser defined a number of metrics for language development with SDF [153].
In Section 4.6, we already noted that these metrics cannot be used for measuring
model transformations since the focus is different. There are also metrics specific
for ASF+SDF that are applicable to developing model transformations as well.
An example of this is the number of start-symbols. Also all metrics related to
equations and their conditions are specific to ASF+SDF (see Section 4.3).
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6.10 Conclusions

In Chapters 4 and 5, we defined metric sets for ASF+SDF and ATL respectively.
We also proposed metric sets for measuring model transformations developed
with QVTO and Xtend. All four model transformations we proposed metric sets
for serve a similar purpose, i.e., performing model transformation. Therefore,
conceptually similar metrics are defined for all of the languages. Since the
languages have different characteristics, metrics specific for each of the languages
are defined as well. In this chapter, we addressed similarities among these metric
sets and we also pointed out the differences among them. It is to be expected
that for other model transformation languages metric sets can be defined that
overlap with the metric sets presented in this chapter.






Chapter {

Visualization Techniques for Model
Transformations

An approach to increase the quality of software, is to support their development
and maintenance process by means of visualization techniques. Numerous such
techniques support the maintenance process of traditional software. However,
currently there are few visualization techniques available tailored towards analyzing
model transformations. We present two complementary visualization techniques
for analyzing model transformations. These techniques are mainly focused on
increasing the understanding of model transformations. The first technique can be
used to visualize the components of a model transformation and the dependencies
between them. The second technique can be used to visualize the relation between
a model transformation and the metamodels it is based on.

7.1 Introduction

In Chapters 4 and 5, we focused on assessing the quality of model transformations.
One of the reasons for assessing the quality of model transformations is that
model transformations of higher quality are, in principal, more maintainable. This
is important, since model transformations are becoming more prominent and
should not become the next maintenance nightmare. To facilitate a maintenance
process and also the remainder of a development trajectory, often visual analysis
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techniques are employed. Numerous such techniques exist for traditional software.
However, currently there are few visualization techniques available tailored towards
analyzing model transformations. Therefore, we address in this chapter research
question RQy.

RQ4: What visualization techniques can be employed to support the
development and maintenance process of model transformations?

The metrics we presented in Chapters 4 and 5 can be used to quickly acquire
insights into the characteristics of a model transformation. For a more in-depth
study, different techniques are required. Therefore, we present in this chapter
four complementary visualization techniques for analyzing model transforma-
tions. These techniques are mainly focused on facilitating model transformation
comprehension, since a significant proportion of the time required for mainte-
nance, debugging, and reusing tasks is spent on understanding [115]. The first
two visualization techniques are aimed at facilitating structure and dependency
analysis. These techniques can be used to make the relations between the differ-
ent components that comprise a model transformation explicit. Structure and
dependency analysis has already been employed for analyzing different kinds
of software artifacts. In this chapter, we show that it can be used for model
transformations as well. Since these visualization techniques focus on the internals
of a model transformation, they are related to internal quality (see Section 3.2).
The other two visualization techniques are aimed at metamodel coverage analysis.
Metamodel coverage analysis is the analysis of the relation between a model trans-
formation and the metamodels it is defined on. These visualization techniques
are specific for model transformations and therefore do not exist for traditional
software artifacts. Since these visualization techniques focus on the externals of a
model transformation, they are related to external quality. The visualization tech-
niques we propose are not specific for a particular model transformation language.
Some of the techniques may, however, be less applicable for certain languages.
For example, a language with only implicit invocations, such as typical graph
transformation languages, has no need for the dependency analysis technique.

The remainder of this chapter is structured as follows. In Section 7.2, we
discuss the four visualization techniques for model transformations. Section 7.3
describes the toolset we use for automating the analysis. In Section 7.4, we
demonstrate how the techniques can be applied in practice. Related work is
described in Section 7.5. Section 7.6 concludes this chapter.

7.2 \Visualization Techniques

In this section, the visualization techniques for analyzing model transformations
are described. The structure and dependency visualizations are described in Sec-
tion 7.2.1. The metamodel coverage visualizations are described in Section 7.2.2.
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7.2.1 Structure and Dependency Analysis

In this section, two visualizations are described aimed at making the relations
between the different parts that comprise a model transformation explicit.

7.2.1.1 Structure Analysis

Most model transformation languages have support for structuring model trans-
formations by packaging transformation rules into modules [116]. We propose to
visualize the import graph of a model transformation, i.e., the modules comprising
the model transformations and their import relations. A (small) example of this
visualization is depicted in Figure 7.1. The model transformation that is visualized
here is described in Section 8.5.2.6. The arrows should be interpreted as imports
relations. Such a high-level overview can act as a guide for navigating the model
transformation, for instance during maintenance tasks. The visualization depicted
in Figure 7.1 shows only the import relation between a pair of modules. In the
remainder of this section, we will show another visualization where calls between
modules are visualized as well.

Lib/ModifyModel

Lib/Equality stdlib/cloning

.'

Figure 7.1 Structure visualization

7.2.1.2 Dependency Analysis

In Chapters 4 and 5, we discussed a number of metrics that can be used to
acquire insights into the dependency relation of modules and transformation
functions comprising a model transformation. These metrics measure the fan-in
and fan-out of modules and transformation functions. While these metrics provide
quick insights, they are merely numbers. Therefore, we propose another analysis
technique that makes the call relation between transformation functions visible.
For this purpose we use the tool ExTraVis [172]. A partial screen shot of the
tool displaying the call relation of an, in this case Xtend, model transformation is
depicted in Figure 7.2. The outer ring displays the modules that comprise the
transformation. The second ring displays the different kinds of transformation
function types per module. The inner ring displays the transformation functions
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that comprise the transformation grouped per function type. The circle in the
middle displays the calls that are being made between transformation functions.
Callers and callees are connected to each other by an edge. The caller is on the

green end of the edge, the callee is on the red end of the edge.

Module
Function type
Function
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Figure 7.2 Trace visualization

Visualization of dependency data has various useful applications in the de-
velopment and maintenance process of a model transformation. It may increase
the understanding of a model transformation since the way transformation func-
tions depend on each other and interact are made explicit. Also, undesired calls
between transformation functions can be identified just by looking at the visual
representation of the call graph. Similarly, transformation functions that are
never called, and which may therefore be obsolete, can easily be recognized. We
will show an example of this in Section 7.4.1. Metrics data can indicate whether
there are transformation functions with a high fan-in or fan-out value. Using
the visualization, fan-in/fan-out analysis can be performed in more detail. Not

only can it be observed that there are some transformation functions with high
fan-in/fan-out, the exact functions that cause this can be pointed out. Since the
visualization groups transformation functions per module, calls between modules
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can be examined as well. In this way, modules with low cohesion and high
coupling [173] can be revealed.

7.2.1.3 Dynamic Dependency Analysis

ExTraVis has the option to provide additional detail with the call relation, such as
for example the order and frequency of the calls. This feature could be exploited
to analyze the dynamics of a model transformation by adding runtime data to
the call relation. A declarative transformation language like ATL or QVTR
does not require explicit rule invocation. Therefore, this technique may be less
applicable for these languages. However, for imperative transformation languages
it can have similar additional benefits as for traditional programming languages,
such as feature location and feature comprehension. Since runtime data is input
dependent, in the case of model transformation input model dependent, feature
location may be useful for deriving characteristics of a possibly huge input model.

7.2.2 Metamodel Coverage Analysis

A model transformation is defined on the metamodel level, i.e., it transforms models
conforming to a source metamodel to models conforming to a target metamodel.
For some transformations it is required to transform all elements of the source
metamodel, e.g., in case of language migration, whereas for other transformations
it suffices to transform only a subset of the elements of the source metamodel,
e.g., in case of partial refinement. Similarly, some transformations generate model
elements for every metamodel element in the target metamodel, whereas other
transformations generate model elements for a subset of the metamodel elements
only. To acquire insight in the parts of the source and target metamodel that are
covered by a model transformation, we propose two visualization techniques for
coverage analysis.

7.2.2.1 Metamodel Coverage

Figure 7.3 shows an example of metamodel coverage visualization. The figure
shows a metamodel, where the metaclasses and references that are covered by
the transformation are colored grey. Attributes that are covered are underlined.
An input metamodel element is covered if it serves as input for a transformation
function in the transformation. An output metamodel element is covered if it
is generated as output by a transformation function in the transformation. The
metamodel elements that are considered in the coverage analysis are metaclasses,
attributes, and references. The name of a metaclass is postfixed with (a) when it
is an abstract metaclass.

Coverage analysis can be used to analyze the completeness of a transformation.
Using the visualization, it can be observed whether all the metamodel elements
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Figure 7.3 Metamodel coverage visualization

from the source model that should be transformed are in fact covered by the
transformation. Conversely, it can be observed whether all metamodel elements
from the target metamodel that should be generated are covered by the transfor-
mation. Of course the coverage visualization can also be used to detect metamodel
elements that should not be covered by a transformation. Coverage analysis can
also be used to facilitate the construction of test sets for model transformations.
It can be used to determine the model elements the test set should focus on.
Test sets do not have to contain model elements that are not covered by a model
transformation, since they will not be transformed anyway.

There may be several reasons why a particular metamodel element is not
covered by a transformation. First, coverage of a metamodel element may not be
required for the transformation task at hand. If the requirements of the transfor-
mation dictate that only part of the metamodel needs to be transformed, it is
not necessary that the remainder of the metamodel is covered by transformation
functions. Second, the transformation may be incomplete, e.g., a transformation
function for the metamodel element that is not covered has not yet been imple-
mented. Third, the metamodel element may be an abstract metaclass. Some
model transformation languages do not allow an abstract metaclass to be the input
of a transformation function since they cannot be instantiated. However, there are
transformation languages that do allow this. For example, in ATL it is possible
to use an abstract metaclass as input pattern of an abstract transformation rule
that can be extended to transform the non-abstract specializations of the abstract
metaclass. In this case, the abstract class is covered by the transformation, how-
ever, by a rule that will not be executed itself. Last, a bidirectional reference
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may have been used in one direction only. A bidirectional reference between two
metaclasses is a reference that is navigable from both metaclasses. It may have a
different name in each of the metaclasses. Two examples of this are depicted in
Figure 7.4. The references are navigable from metaclass Verter using the names
incoming and outgoing, and from metaclass Transition using the names target
and source respectively. In our visualization, we treat a bidirectional reference as
two distinct references (see Figure 7.3). In this way, it can be determined in which
direction the reference is used in the transformation. Therefore, it is possible that
the reference is not covered by the transformation in the other direction.

incoming

Vertex target | Transition

outgoing

source

Figure 7.4 Bidirectional references

7.2.2.2 Metamodel Coverage Relation

Projecting coverage on a metamodel diagram is one way of visualizing metamodel
coverage that may provide useful insights into a model transformation. It is
however impossible to trace the coverage back to the transformation, i.e., the
relation between a transformation element and the metamodel element it covers is
invisible in the diagram. Therefore, we introduce another coverage visualization
technique to overcome this matter. Figure 7.5 shows an example of a visualization
where the relation between a transformation element and the metamodel elements
it covers is made explicit. The model transformation that is visualized here is
described in Section 8.5.3.1. The visualization shown here is part of a screen shot
from the tool TreeComparer [174]. TreeComparer has originally been designed
for comparing hierarchically organized data sets. Therefore, the metamodels and
transformation are structured hierarchically in the image.

In the top part of the image, the metamodels are shown. The top row is
for grouping all metamodels together, it is labeled Metamodels. The second
row separates the input metamodels from the output metamodels. The input
metamodels are shown to the left, the output metamodels to the right. The
columns are labeled Input and Output respectively. The third row shows the
names of the metamodels as they are referred to in the transformation. In this case,
there is one input metamodel labeled MM_IN and one output metamodel labeled
MM_OUT. The fourth row shows the packages that are present in the metamodels,
in this case both the input and the output metamodel contain one package only,
viz., slco and promela respectively. The fifth row shows the metaclasses that
are present in the metamodels. In some cases, the columns are colored red and
they stretch to the sixth row as well. In these cases, the metaclass is not covered
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Figure 7.5 Metamodel coverage relation visualization

by the transformation. The TreeComparer tool supports many-to-one relations
only. In a model transformation the coverage relation is typically many-to-many.
Therefore, there is a dummy in the sixth row for every transformation rule that
covers a metaclass.

In the bottom part of the image, the model transformation is shown. The
bottom row is for grouping all the modules of the transformation, it is labeled
Transformation. The second row shows the modules that comprise the transfor-
mation. In this case, there is only one module, named slco2promela. The third
row is used for grouping the different kinds of transformation elements. In this
case, an ATL model is visualized. The transformation elements that are available
in ATL are helpers, matched rules, lazy matched rules, unique lazy matched rules,
and called rules. These are shown on the third row. The fourth row shows the
actual transformation elements.

There is a line between a transformation element and a metaclass if and only
if the metaclass is covered by the transformation element. Note that in this
visualization attributes and references are not considered.

TreeComparer has support for selecting a part of the metamodel elements,
transformation elements, or relations. In Figure 7.5, for example, a selection is
made of all the input and output metamodel elements covered by the lazy matched
rules of an ATL model transformation. The tool also allows zooming in on a
selection to get a more detailed view of that selection. This selection and zooming
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functionality enables detailed study of coverage of part of a transformation or
the involved metamodels. Highlighting the transformation functions that cover a
(group of ) metamodel element(s) facilitates navigation of a transformation, which
may increase the understanding of a transformation. Moreover, visualization of
the coverage of certain parts of a transformation can be used by developers to
determine whether the selected transformation functions cover the required parts
of the involved metamodels. In this way, coverage relation visualization helps in
finding errors during development.

Model transformations can be defined on multiple input or output metamodels.
It may be the case that another transformation has to be developed for one
of the involved metamodels. By selecting this metamodel, the transformation
functions that cover this metamodel are highlighted. In this way, coverage
relation visualization can be used to identify parts of a transformation eligible for
reuse. Similarly, when a metamodel is developed based on an existing one, this
visualization technique can be used to identify reusable transformation functions.

The visualization shows coverage of both the source and the target metamodel
element of a transformation function. In this way, the relation between source and
target metamodel elements is visualized. This relation can be used to predict the
effect of modifications to a source model on the corresponding target model when
the model transformation is applied to the modified source model. This is referred
to as impact analysis [175]. Impact analysis has a number of useful applications.
When a source model needs to be refactored for some reason, multiple alternative
refactorings may be applicable to achieve the same goal. Impact analysis can
be applied to determine which of the alternatives is least invasive for the target
model. In this case, impact analysis can also be used to facilitate determining the
parts of the target model that have to be retested to ensure its correctness.

Coverage relation analysis can also be used to assist in the process of co-
evolution of metamodel and transformation [176]. It can be used to determine
whether the changes to a metamodel affect the transformation, i.e., whether the
changes are breaking or non-breaking [177]. If the meta-classes that are covered
by a transformation do not change, there is no problem and the transformation
is still usable with the evolved metamodel. However, if there are meta-classes
that are covered by a transformation that do change or are removed, then the
transformation will have to evolve as well. The coverage relation visualization
technique can be used to determine which transformation functions are affected
by changed or removed meta-classes. In Section 7.4.2, we will elaborate a use case
where coverage analysis is used in the process of co-evolution of metamodel and
transformation.

Another application of the visualization is facilitating model traceability, i.e.,
tracing the source model elements that a target model element is generated
from. When an error manifests in a target model, e.g., a run-time error in an
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executable target model, this may be the result of an erroneous source model.
The visualization can be consulted to establish which source metamodel elements
are possible origins of a target metamodel element. This information can be used
to determine the source model elements that a target model element is generated
from. In this way, the visualization facilitates providing feedback of results from
analyzing a target model to a source model. Recall that the source model of a
model transformation is typically a domain-specific model. Application of this
visualization technique, therefore, makes implementing tools for a DSL, such as a
type checker or a simulator, less urgent, since the results of dedicated tools for
these purposes can easily be traced back to the source model. Note, however,
that this is merely a palliative and that tools specific for the source language are
always preferred.

The two coverage visualization techniques described in this section are com-
plementary rather than competing alternatives. The first coverage visualization
technique, i.e., where coverage is projected on a diagram representing an input or
output metamodel of a transformation has a familiar layout. Besides the coverage
of metaclasses, it also shows coverage of attributes and references. However,
there is no visible relation between a metamodel element and the transformation
element it is covered by. This shortcoming is solved by the coverage relation
visualization technique, where these relations are made explicit. However, this
visualization is less detailed. It only shows coverage of metaclasses.

7.3 Toolset

We have implemented a toolset such that the visualization techniques presented
in Section 7.2 can be applied automatically. The transformation languages we
have implemented the toolset for are ATL, QVTO, and Xtend. Figure 7.6 depicts
the extensible architecture of the toolset. In the first step, the code of a model
transformation is parsed, resulting in a model that represents the abstract syntax
tree (AST) of that transformation. This model can be represented in different
formats depending on the transformation language. For ATL and QVTO this is
an Ecore model, for Xtend the model is represented using POJOs!. In the second
step, the data required for the desired visualization technique is extracted from
the AST model and represented as another model. For ATL this extraction is
implemented as an ATL model transformation, for QVTO as a QVTO model
transformation, and for Xtend as a Java program. Note that for the coverage
visualization techniques, the source and target metamodel of the transformation
need to be provided as input as well. In the third and last step, the analysis model
is transformed into the input format of the tool used for the analysis. Typically,

1Plain Old Java Objects
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this step is performed using some form of pretty-printing. We used a combination
of Xpand templates and Java programs to perform the pretty printing.

Transformation Transformation Analysis Analysis tool

Parser Data extractor

code model / AST model Pretty printer

input file

Figure 7.6 Tool set architecture

The advantage of this architecture is that it is extensible. To enable the
visualization techniques for a new model transformation language, only the data
extractors have to be implemented. The pretty-printers can be reused. In principal,
also a parser needs to be implemented. However, a parser is typically provided
with the implementation of the language. When implementing a new analysis
technique, extractors need to be implemented for each of the languages as well as
a pretty-printer for that technique.

7.4 Case Studies

We describe our experiences with the visualization techniques in an ongoing MDE
project. In Chapter 8, we describe our experiences with the development of a DSL.
This language is accompanied with a set of model transformations, implemented
using Xtend and ATL, that can be used to refine models created with the language.
These model transformations are the subjects of our study.

7.4.1 Detecting Obsolete Transformation Elements

Metrics were extracted from one of the Xtend transformations using our metrics
extraction tool for Xtend (see Section 6). Table 7.1 shows an excerpt of the
generated metrics report.

Metric Value

# Modules 4

7# Extensions 94

# Uncalled Extensions 18

7# Uncalled Modules 2

Metric Min. | Max. | Mean | Median | Std. Dev.
# Extensions per Module 3 58 23,5 16,5 24,45
# Unique Extension Names per Module 2 40 17 13 17,17
Extension Fan In 0 14 2,63 1 3,44
Extension Fan Out 0 30 2,63 1 5,04
Module Fan In 0 48 12,25 0,5 23,84
Module Fan Out 0 49 12,25 0 24,5

Table 7.1 Excerpt of the metrics report
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The metrics indicate that the transformation contains eighteen extensions
(transformation functions) that are never called by other extensions. These
extensions are divided over two modules, since the metrics indicate that there are
two modules that contain extensions that are never called from other modules
and that there are no modules that contain no extensions. From a maintenance
perspective it is useful to determine which extensions and modules are uncalled,
such that the transformation can be adapted if required. For this purpose, the
dependency graph can be employed. The dependency graph of the transformation
is depicted in Figure 7.7.
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Figure 7.7 Using dependency analysis to detect obsolete transformation elements

The eighteen extensions that are never called can easily be recognized using
the ExTraVis tool. For illustratory purposes, they have been marked in the figure.
Note that some of these extensions do have incoming calls. These are recursive
calls, i.e., calls to itself, that are excluded when determining uncalled extensions.
Note that ExTraVis has an option to hide self calls. When zooming in to module
level with the ExTraVis tool (not shown here) it can easily be observed that the
modules named MergeObjects (left) and Clone (top) contain extensions that are
never called by extensions from different modules. From the import graph depicted
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in Figure 7.8 can be concluded that the transformation is built up hierarchically.
The MergeObjects module is the top module that only calls functions lower in
the import hierarchy. Since it does not receive calls from modules lower in the
hierarchy, the module is considered uncalled. As for the other uncalled module
and extensions, we presented our findings to the developer of the transformation.
He indicated that the Clone module is a leftover from an earlier version of the
transformation and that it can (and should) be removed. The CreationSLCO
module (right) is a module that is used by six other transformations as well. We
also analyzed these transformations. It turned out that four of the extensions in
the CreationSLCO are never called by any of these transformations. Also these
turned out to be obsolete and should be removed.

MergeObjects

Lib/CreationSLCO

Figure 7.8 Structure visualization

7.4.2 Metamodel and Transformation Co-evolution

During every iteration in the language development, the language evolves. This is
reflected in the metamodel. Since the refining model transformations are based
on that metamodel, they have to evolve as well. To identify the transformation
rules and helpers that are affected by the evolution, we employed the coverage
relation visualization technique described in Section 7.2.2.2.

Figure 7.9 shows the relation between the evolved metamodel on top and a
model transformation that needs to co-evolve on the bottom. On the top right,
there are a number of metaclasses that have no outgoing edges. This means
these metaclasses are not covered by any of the transformation functions or
helpers in the transformation. These metaclasses are all the metaclasses that
were added to the metamodel due to the evolution of the language. Since, in
this case, all metaclasses need to be covered by the transformation, it is easily
observed for which metaclasses transformation rules should be added. On the
bottom of the figure there are ten matched rules that have no outgoing edges.
Matched rules have to match on a metaclass. This implies that these matched
rules match on metaclasses that are not present in the metamodel. Therefore,
they are obsolete and may be removed from the transformation. After inspection
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of the transformation it turned out that these rules all match on metaclasses that
were removed from the metamodel due to the evolution of the language.
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Figure 7.9 Using coverage analysis for transformation co-evolution

Already in this example with a relatively small metamodel and ditto model
transformation, the coverage relation visualization turned out to be of great
help. We expect that it will prove even more beneficial in cases with larger
metamodels and model transformations. The danger with larger data sets is that
the visualization will become cluttered. However, TreeComparer was developed
for visualizing huge data sets.

7.5 Related Work

Anastasakis et al. recognize that the quality of model transformations is crucial
for the success of MDE [178]. Suitable validation and analysis techniques should
therefore be applied to them. They consider model transformations as a special
kind of models that can be subject to existing model analysis techniques. The
authors use Alloy, a textual declarative modeling language based on first-order
relational logic that is accompanied with a fully automated analysis tool. A model
transformation and its source and target metamodel are transformed into an Alloy
model and subsequently analyzed using the analysis tool. The analysis tool can
among others be used to simulate the model transformation and to check whether
certain assertions hold.
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Verification of metamodel coverage has been studied by others before. Wang et
al. see metamodel coverage as an aspect of validation and verification that should
be considered for model transformations [179]. They state that it is important
because it allows identification of the scope of a model transformation. They base
coverage on the core MOF structural constructs, viz., class, feature, inheritance,
and association. The coverage analysis we propose does not consider inheritance
coverage, although this can be derived from the coverage visualization. In the
paper, they present a prototype implementation for the Tefkat transformation
language [180].

McQuillan and Power address metamodel coverage in the context of testing
model transformations [181]. They base their coverage criteria on criteria for
coverage of UML class diagrams. The main difference between our approach and
the two aforementioned approaches is that we use visualization techniques to
present coverage instead of listing the (un)covered metamodel elements.

Also Planas et al. present a metamodel coverage technique, however for ATL
only [182]. Their technique is aimed at determining full coverage of a metamodel
by a set of ATL matched rules. They state that a set of ATL rules is source-
covering when all elements of the source metamodel may be navigated through
the execution of these rules. Similarly, they state that a set of ATL rules is
target-covering when all elements of the target metamodel may be created and
initialized through the execution of these rules. The result of their analysis is a yes
or no answer stating whether all source and target model elements are covered. In
their paper, they also present a technique for determining the weak executability
of an ATL rule. An ATL rule is weakly executable when it can be safely applied
without breaking the target metamodel integrity constraints.

Von Pilgrim et al. present a technique for visualizing chains of model transfor-
mations [183]. In this visualization, diagrammatic representations of models are
shown on two-dimensional planes in a three-dimensional space. Lines between
these planes connect source model elements to target model elements. This work
is related to our metamodel coverage visualization technique. The main difference
is that our visualization is based on the relation between transformation and meta-
models, whereas their visualization focuses on relations between models based on a
transformation. They do not visualize the model transformation themselves. If we
apply our visualization to models instead of metamodels, we can perform similar
traceability analyses. However, they are capable of visualizing transformation
chains, whereas our visualization is currently limited to one transformation only.
Since their visualization provides diagrammatic representations of models, this
may lead to scalability issues when huge models or long transformation chains
need to be analyzed.

Kister acknowledges that there is a strong need for techniques and method-
ologies that deal with developing model transformations because of their wide
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application area and the future importance of MDE. In [184], he presents an
approach to the validation of model transformations, focusing on termination and
confluence. These two properties together ensure that a model transformation
always generates a unique target model given a source model. Termination and
confluence are properties of fundamental importance in rewriting systems and
therefore also in rule-based model transformation languages. To ensure termina-
tion and confluence, a set of criteria is provided that has to be checked during
the development of a transformation. The author provides proofs for each of the
criteria.

7.6 Conclusions

We have addressed the necessity for analysis techniques for model transforma-
tions to, among others, assist in the maintenance process. In this chapter, we
proposed four such techniques. First, we proposed two different ways to visualize
dependencies between the components of a transformation. Second, we proposed
to analyze the coverage of the metamodels that a transformation is defined on by
means of two different visualizations. The proposed techniques complement each
other rather than being competing alternatives. A toolset has been implemented
to automate the visualization techniques.

We have actively used both visualization techniques in an MDE project. They
have shown to be of great assistance when dealing with evolution or maintenance
of model transformations. To reap the full benefits of the techniques, they should
be embedded in (existing) model transformation tools.



Chapter 3

Fine-grained Model Transformations

Traditionally, the state-space explosion problem in model checking is handled
by applying abstractions and simplifications to a verification model. We propose
a model-driven engineering approach that works the other way around. Instead
of abstracting from a concrete model, we propose to refine an abstract model to
concretize it. We propose to use fine-grained model transformations to enable
model checking of models that are as close to the implementation model as possible.
To demonstrate our approach we developed a DSL aimed at modeling the structure
and behavior of distributed communicating systems. We also implemented two
model transformations to different formalisms, viz., one for execution, and one for
model checking. The DSL and the formalisms for execution, and model checking
have different semantic characteristics. Therefore, we implemented a number of
fine-grained model transformations that bridge the semantic gaps between our
DSL and both formalisms. We describe in this chapter how the development and
evolution of the model transformation has been facilitated by the acquired insights
and developed techniques presented earlier in this thesis.

8.1 Introduction

In Chapter 1, we noted that one of the goals of MDE is to increase the quality
of software. Generating reliable code from models specified using a DSL is one
aspect of this. To increase the reliability of generated code, formal methods
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such as verification can be used. Model checking is an automated verification
technique that checks whether a formally specified property holds for a model of
a system [128]. An exhaustive state space search is performed by an automated
model checker to determine whether a property holds in a finite state model
of a system. Often, this state space is huge and model checking is no longer a
feasible approach for verification. Traditionally, abstractions and simplifications
are applied to the model to enable model checking in such cases [185-187]. We
propose an MDE approach to enable model checking that works the other way
around. Instead of starting with a large model and iteratively simplifying it, we
start with a small model and iteratively refine it.

In a typical MDE development process, domain-specific models are refined
using model transformations until a model is acquired with enough details to
implement a system [188]. To increase the reliability of the final system, model
checking can be employed. Because of the aforementioned state-space explosion
problem, model checking the final system may be infeasible. We propose to define
a model transformation that transforms the (refined) domain-specific models to
models suitable for model checking. Using this model transformation, model
checking can be applied to the domain-specific models in every stage of the
refinement process. While model checking the final system may be infeasible, this
approach enables verification of intermediate models close to the implementation.

In this chapter, we demonstrate this approach using a DSL for modeling
systems consisting of concurrent, communicating objects. This DSL has an in-
tuitive graphical syntax to model the structure and behavior of a system. It
offers constructs such as synchronous communication over lossless channels to
enable development of concise models. To execute models, we implemented a
chain of transformations that transform models specified using our DSL to NQC,
a restricted version of C [189]. The semantic properties of this implementation
platform differ from those of our DSL, i.e., some construct that are available in our
DSL have no direct counterparts on the implementation platform. For instance,
NQC does not offer constructs such as synchronous communication and lossless
channels. Instead, communication is asynchronous and takes place over a lossy
channel. To enable transformation from our DSL to the implementation platform,
the semantic gaps between the two platforms need to be bridged. Therefore, we
added a number of constructs to our DSL and implemented a number of transfor-
mations that can be used to stepwise refine models to align the semantic properties
of the DSL with the implementation platform. These transformations replace the
constructs in a model that are not offered by the implementation platform by
constructs that it does offer. The observable behavior of the models should be
preserved by the model transformations. A final transformation transforms the
resulting model to executable code.
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To enable model checking of the (intermediate) domain-specific models, we
also implemented a model transformation from our DSL to Promela, the input
language for the model checker Spin [190]. Our first experiments showed that
verification of the models generated by the refining transformations using Spin was
infeasible due to state-space explosion. We concluded that the change induced on
the models by the transformations was too large, i.e., the model transformations
were too coarse-grained. Therefore, we split up the coarse-grained transformations
into more fine-grained ones. The impact of such a fine-grained transformation
on a model is smaller, i.e., the model does not change as drastically. This is
reflected in the increase of the state-space size that is searched by Spin. Using
this approach, intermediate models generated by the fine-grained transformations
can be model checked almost all the way up to the models that can be executed,
because the state space stays within reasonable bounds.

The design decisions we took during implementation of the model transfor-
mations have been influenced by the insights we acquired from the research
presented earlier in this thesis. For instance, we chose to bridge the platform
gaps one at the time instead of all at once from start, since this leads to smaller
model transformations, which, in principal, should be more understandable and
modifiable (see sections 4.5 and 5.5). Usage of the DSL and development of the
model transformations produced new insights that lead to evolution of the DSL.
Evolution of the DSL implies that the model transformations based on it have
to evolve as well. This co-evolution process was supported by the visualization
techniques presented in Chapter 7. This leads to the following research question.

RQs: How can the acquired insights and developed techniques be
applied to facilitate the development and maintenance of model trans-
formations?

The remainder of this chapter is structures as follows. Our approach to enable
model checking of models as close to the implementation model as possible is
discussed in Section 8.2. In Section 8.3, we introduce SLCO, the DSL we used for
our experiments. The languages we used for execution and for model checking,
viz., NQC and Promela respectively, are discussed in Section 8.4. Section 8.5
describes the transformations for refining models created using the DSL as well as
transformations for transforming them to different formalisms. The experiments
we conducted are presented in Section 8.6. Related work is described in Section 8.7.
Section 8.8 concludes this chapter.

8.2 Exploring the Boundaries of Model Verification

Our goal is to generate reliable code from models specified using a DSL. To
increase the reliability of generated code, formal methods such as verification
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can be used. To ensure that the same model is verified and executed, models
specified using the DSL should automatically be transformed to models suitable
for these purposes. In this way, these models do not have to be created by hand.
Such transformations thus enable the use of formal methods without having to
create models suitable for that purpose separately. This has the advantage that
engineers do not have to learn the syntax and semantics of different languages.
Moreover, manual transformation is a slow and error-prone task.

Often, the DSL and the implementation platform have different semantic
characteristics. Therefore, the semantic gap between the two formalisms needs
to be bridged (see Chapter 2). We propose to use model transformations to
refine a DSL model in such a way that the semantic properties of the DSL and
the implementation platform are aligned. In this way, an abstract DSL model
becomes concrete and transformation from the refined (concrete) DSL model to
the implementation model is merely a syntactical transformation.

To enable verification of a DSL model, a transformation from the DSL to a
formalism for verification, e.g., a model checking formalism, should be implemented.
Using this transformation, it is possible to verify whether both the abstract and the
concrete DSL models fulfill their requirements. From the experiments presented in
Section 8.6, we concluded that verification of an abstract model poses no problems.
However, verification of a concrete model is infeasible. The verification takes too
much time and needs too many resources.

The transformations used to refine the abstract DSL models produce interme-
diate models. These models can also be transformed to a verification formalism.
By verifying the intermediate DSL models, it is possible to verify models that
are more concrete. This approach is schematically depicted in the top half of
Figure 8.1. The check marks indicate models that can be verified, whereas the
crosses indicate models that cannot be verified. Our experiments, which are
presented in Section 8.6, showed that it is possible to verify some of the in-
termediate models. However, the most concrete model that can be verified is
still not concrete enough. The reason for that is that the change induced on
the models by the transformations is too large, i.e., the transformations are too
coarse-grained. Therefore, we propose to use more fine-grained transformations
to enable verification of more concrete models. This can be achieved by splitting
existing transformations into smaller parts. In this way, more intermediate models
are generated that can be verified. This approach is schematically depicted in the
bottom half of Figure 8.1. Using this approach, it is possible to verify models that
are closer to the concrete model. By replacing the coarse-grained transformations
Tys and Ty, from Figure 8.1 by the more fine-grained transformations Ttyg, Tuni,
T, Tiimes Tews Tmerge, and Ty, for instance, the state space of the intermediate
model M., can be explored, instead of that of the less concrete model M,s. The
aforementioned transformations are explained in Sections 8.5.1 and 8.5.2. The
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example shown in Figure 8.1 is an illustration of one of the experiments presented
in Section 8.6. In different cases, the transformation steps as well as which of
them can be verified will vary.
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Figure 8.1 Verification of intermediate models

The most concrete model that can be model checked may still not be close
enough to the implementation model. An attempt can be made to split the
transformations into even smaller parts. If this is not possible, another possibility
may be to perform partial refinement, i.e., to apply the model transformation
to part of the model only. To obtain a complete target model, the remainder of
the source model should be copied to the target model. Obviously, the model
should be fitted for partial refinement for this technique to be applicable. Since
the refinement, in this case, is applied to a small part of the model, this will
most likely result in models that give rise to smaller state spaces. Using partial
refinement, the boundaries of what can be verified using model checking can be
explored even further.

Using fine-grained transformations has some positive side-effects. The change
induced on a model by a fine-grained transformation is smaller than the change
induced on it by a coarse-grained one, i.e., fine-grained model transformations
affect a smaller part of the model. Therefore, it is to be expected that fine-grained
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