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Abstract 

Propensity score matching provides an estimate of the effect of a “treatment” variable 

on an outcome variable that is largely free of bias arising from an association 

between treatment status and observable variables. However, matching methods are 

not robust against “hidden bias” arising from unobserved variables that 

simultaneously affect assignment to treatment and the outcome variable. One 

strategy for addressing this problem is the Rosenbaum bounds approach, which 

allows the analyst to determine how strongly an unmeasured confounding variable 

must affect selection into treatment in order to undermine the conclusions about 

causal effects from a matching analysis. Instrumental variables (IV) estimation 

provides an alternative strategy for the estimation of causal effects, but the method 

typically reduces the precision of the estimate and has an additional source of 

uncertainty that derives from the untestable nature of the assumptions of the IV 

approach. A method of assessing this additional uncertainty is proposed so that the 

total uncertainty of the IV approach can be compared with the Rosenbaum bounds 

approach to uncertainty using matching methods. Because the approaches rely on 

different information and different assumptions, they provide complementary 

information about causal relationships. The approach is illustrated via an analysis of 

the impact of unemployment insurance on the timing of reemployment, the post-

unemployment wage, and the probability of relocation, using data from several 

panels of the Survey of Income and Program Participation (SIPP). 

Zusammenfassung 

Propensity score matching ermöglicht die verzerrungsfreie Abschätzung der Kausal-

wirkung einer „treatment“-Variable auf eine Ergebnisvariable sofern Verzerrungen 

allein aus dem Zusammenhang zwischen Kausalfaktor und beobachteten Kovariaten 

resultieren. Matchingverfahren sind allerdings anfällig für Schätzverzerrungen auf-

grund von „hidden bias“ durch unbeobachtete Variablen, die sowohl die Zuweisung 

des Kausalfaktors als auch die Ergebnisvariable bestimmen. Im letzteren Fall besteht 

eine mögliche Strategie darin, mit Hilfe der Methode der sogenannten Rosenbaum-

schranken abzuschätzen, wie stark der Einfluss unbeobachteter Kovariaten auf die 

Zuweisung des Kausalstatus sein müsste, um die beabsichtigten Schlussfolgerungen 

im Hinblick auf den interessierenden kausalen Effekt qualitativ zu verändern. Instru-

mentalvariablenschätzer (IV) wären ein zweites Verfahren, um in dieser Situation 

kausale Effekte abschätzen zu können, allerdings führt das Verfahren in der Regel 

zu wenig präzisen Schätzungen und beinhaltet in der Anwendung zusätzliche Unsi-

cherheiten aufgrund der empirisch nicht testbaren Annahmen des IV-Ansatzes. In 

diesem Aufsatz wird eine Methode zur Abschätzung dieser Unsicherheiten vorge-

schlagen, wodurch die potentiellen Verzerrungen innerhalb einer IV-Schätzung mit 

den durch die Rosenbaumschranken abgeschätzten Verzerrungen innerhalb eines 

entsprechenden Matchingansatzes verglichen werden können. Da diesen Verfahren 



 

jeweils unterschiedliche Informationsgrundlage sowie unterschiedliche Annahmen 

zugrunde liegen, erbringen sie komplementäre Informationen über den Gehalt kau-

saler Beziehungen. Wir illustrieren die vorgeschlagene Vorgehensweise anhand ei-

ner Analyse des kausalen Effekts der Arbeitslosenversicherung auf die Dauer der 

Arbeitslosigkeit, den Lohn bei Wiederbeschäftigung sowie der Wahrscheinlichkeit 

geographischer Mobilität auf der Basis von Daten des amerikanischen Survey of 

Income and Program Participation (SIPP). 
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1 

1 Introduction 

In recent years, the “counterfactual” approach to causal analysis has made important inroads into 

statistical and econometric work on causal inference (e.g. Holland 1986, Rosenbaum 2002; 

Heckman, LaLonde and Smith 2000), and has entered sociological research through a series of 

papers that articulate the major differences between this new approach and the standard 

regression approach to causal inference (Sobel 1995, 1996; Winship and Morgan 1999). 

Arguably the empirical strategy from the new causal analysis literature that has attracted the 

greatest attention is the method of matching, and specifically the propensity score approach to the 

method of matching. Propensity score matching is a method that arguably improves on the ability 

of regression to generate accurate causal estimates by virtue of its nonparametric approach to the 

balancing of covariates between the “treatment” and the “control” group, which removes bias due 

to observable variables.  

However, matching methods are not robust against “hidden bias” arising from the 

existence of unobserved variables that simultaneously affect assignment to treatment and the 

outcome variable. One strategy for addressing this problem is the Rosenbaum bounds approach, 

which allows the analyst to determine how strongly an unmeasured confounding variable must 

affect selection into treatment in order to undermine the implications of a matching analysis. 

Instrumental variables estimation provides an alternative strategy for consistent estimation of 

causal effects, but the method typically reduces the precision of the estimate and has an 

additional source of uncertainty that derives from the untestable assumptions of the instrumental 

variables (IV) approach.  

This paper makes two principal contributions to the new literature on causal analysis. 

First, we discuss and implement two versions of the Rosenbaum bounds strategy for assessing the 

potential impact of hidden bias. Second, we formalize the uncertainty in IV estimation for an 

important subset of IV estimators in a manner that is parallel to the approach used by 

Rosenbaum. Because the IV and Rosenbaum approaches rely on different information and 

different assumptions, they provide complementary information about the potential causal 

relationship between the treatment and outcome variables in question. To illustrate the approach, 

we compare the utility of these alternative strategies for estimating the impact of unemployment 

insurance on three outcomes: the timing of reemployment, the post-unemployment wage, and the 

probability of relocation. STATA code for computing these sensitivity analyses is available on 

the referenced website.1 
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2 Estimation of Causal Effects in the Presence of 

Heterogeneity 

The counterfactual concept of causality is increasingly familiar to social scientists, and so we 

develop here only the concepts that are needed in our subsequent development of the topic of bias 

assessment. The standard regression framework makes the implicit assumption that causal effects 

are constant in the population. Population heterogeneity of causal effects is typically addressed in 

the standard approach via the inclusion of interaction effects, which are intended to capture the 

systematic variation of an effect with the value of some other observable variable. Whether or not 

such interactions are included, however, the standard regression approach implicitly assumes that 

causal effects are constant either in the population or within a subpopulation defined by the 

interaction variables. While regression estimates are sometimes informally treated as averages of 

heterogeneous causal effects, the definition of an average causal effect has been made much more 

precise in the recent statistical literature on causal estimation.  

In a series of papers, a set of researchers including Heckman and coauthors (Heckman and 

Vytlacil 2002), and Angrist and coauthors (Imbens and Angrist 1994; Angrist, Imbens, and Rubin 

1996; Angrist and Krueger 2001) have distinguished several distinct causal effects, including (a) 

the average treatment effect (ATE), (b) the average treatment effect for the treated (ATT),2 and 

(c) the local average treatment effect (LATE), which is defined with respect to some specific 

instrumental variable. While the literature does not use the terminology, we think it useful for 

present purposes to distinguish further between “unconditional” and “conditional” average 

treatment effects, and unconditional and conditional average treatment effects for the treated. By 

“unconditional average treatment effect,” we mean the average effect of the treatment in the 

population. By “conditional average treatment effect,” we mean the average effect of the 

treatment for some subpopulation that can be defined by observable variables. The unconditional 

and conditional ATT can be similarly defined. We use the modifiers “conditional” and 

“unconditional” in the text below to distinguish the two sets of estimators; when ATT or ATE are 

unmodified, we are referring to the conditional ATT or ATE.3 How these quantities differ 

depends upon the specific mechanism that generates the heterogeneity in responses to treatment.  

Using the terminology from Heckman (1997), one can write the following nonparametric 

model for the treatment effect. 

 
0 0 0

1 1 1

( )

( )

i i i

i i i

Y X U

Y X U

µ
µ

= +
= +

, (1) 

where 0Y  and 1Y are the corresponding outcomes for unit “i” according to whether this 

unit receives the treatment ( 1)iD =  or not. Only one of these outcomes is observable for each 

unit. X corresponds to all observed covariates that have a structural effect on the outcome. The 
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effect of these variables on the outcome will generally depend on whether or not the unit is 

treated (i.e., 1 0( ) ( )X Xµ µ≠  in general). 0U  is the effect of unobservable variables if there is no 

treatment, and 1U  is the effect of unobservable variables if there is a treatment for each unit.  

Using this notation, one can distinguish the following quantities: 

1 0( | ) ( ) ( )E X X Xµ µ∆ = −   (2) 

1 0( ) [ ( ) ( )] ( ( )) ( | ) ( )
XX

E X X d P X E X p Xµ µ∆ = − ≈ ∆∑∫  (3) 

1 0 1 0( | , 1) ( ) ( ) ( | , 1)E X D X X E U U X Dµ µ∆ = = − + − =  (4) 

1 0 1 0

1 0

( | 1) [ ( ) ( ) ( | , 1)] ( ( ))

( | , 1) ( | , 1) ( )

X

X

E D X X E U U X D d P X

E X D E U U X D p X

µ µ∆ = = − + − =

≈ ∆ = + − =

∫

∑
    (5) 

Here ( | )E X∆  is the average treatment effect, conditional on X, ( )E ∆  is the unconditional 

average treatment effect, ( | , 1)E X D∆ =  is the average treatment effect on the treated, 

conditional on X, and ( | 1)E D∆ =  is the average treatment effect on the treated, unconditional 

on X. These equations imply that the effect of the treatment will typically vary from person to 

person, because of inter-personal variation in X. They further imply that the treatment will vary 

from person to person because of the effects of unobservable variables in 0U  and 1U . 

As Heckman has further shown, one can rewrite the two equations in (1) in either of the 

following ways:  

( ) ( ){ }0 0 1 0( ) |Y X D E X U D U Uµ= + ∆ + + −    (6) 

and 

( ) ( ){ }0 0 1 0 1 0( ) | , 1 | , 1Y X E X D U D U U E U U X Dµ= + ∆ = + + − − − =    (7) 

These equations make clear the distinction between the ATE and the ATT. These equations also 

demonstrate the conditions under which the ATE equals the ATT, and the conditions under 

which estimators for these two quantities will be consistent. The ATE = ATT when  

1 0( | 1) 0E U U D− = =  

i.e., when the impact of unobserved variables on outcomes is expected to be the same regardless 

of whether the units are treated, conditional on the units themselves being treated. This condition 

would be violated whenever individuals have private knowledge of these potential outcomes, and 
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are more likely to choose to be treated when the comparison of the “return” to these unmeasured 

variables is more favorable in the state of being treated. The condition is satisfied if the 

unmeasured variables have the same impact in either state, or when there is no relationship 

between differences in these potential effects and the assignment process. 

The statistical problem that needs to be solved in any specific scientific study is the 

construction of an estimator for some well-defined average causal effect. As noted above, 

standard regression frameworks do not rigorously define any notion of an average treatment 

effect. An alternative approach, namely the random coefficients statistical framework (which 

includes multilevel models estimated by such programs as HLM or MLn) overcomes this 

limitation; the estimated coefficients of a random coefficients model estimates in principle the 

mean of the population distributions of the causal effect of interest. But several of the 

assumptions that underlie the random effects estimator are very strong. One strong assumption is 

that the precise form of the effect of potentially confounding variables on the dependent variable 

has been captured by the model specification. A second strong assumption is that the model 

specification correctly extrapolates to areas of the population distribution that are not well 

“supported” by the sample of treated units. The invalidity of either of these assumptions biases 

the estimate of the population average causal effect. 

Matching methods, of which propensity score matching is an important subset, are 

attractive because they do not rely for their validity on either of these two assumptions. Matching 

methods focus attention on a specific causal effect of interest, and treat all variables other than 

the treatment variable as potentially confounding variables. In the matching approach, the 

influence of confounding variables is reduced by the method of covariate balance, i.e., by 

matching the potentially confounding covariates of the cases that experienced the treatment with 

cases that did not experience the treatment. A perfect matching (whether on the individual 

covariates or on the propensity score) eliminates any relationship between the covariates and 

assignment to the treatment, and hence eliminates the possibility of bias from these variables. 

However, matching methods still have an important limitation that they share with 

random coefficients regression. Both methods require that the assignment to treatment be 

“ignorable” given the observed covariates (Rubin 1978). In other words, they require that, 

conditional on the observed covariates, the process by which units are selected into treatment be 

unrelated to unmeasured variables that affect the outcome variable. In light of the distinction 

between causal effects made above, the assumption of ignorability can be further explained as 

follows. Conditional on X and assuming that the assignment process was independent of 0U , 

matching methods estimate what we referred to earlier as the conditional ATT.4 Conditional on X 

and assuming that the assignment process was independent of both 0U  and 1U , then the 

ATT=ATE and matching methods would consistently estimate the conditional ATE, which 

would equal the conditional ATT. Assuming that the assignment mechanism is independent of 

both 0U  and 1U , then the estimated causal effect obtained from the application of matching 
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methods to the entire matched sample is a consistent estimator for the unconditional ATT. An 

estimate of the unconditional ATE effect can be obtained via a re-weighting of the heterogeneous 

treatment effects estimated at different levels of X or (equivalently) at different values of the 

propensity score. If the assignment mechanism is only independent of 0U , then the estimated 

causal effect obtained from the application of matching methods to the entire matched sample is a 

consistent estimator for the unconditional ATT, but a reweighting of the data would not in 

general give the unconditional ATE. 

The assumption of ignorability is very strong. In the typical analysis of data that is non-

experimentally collected, the assignment mechanism will not be independent of 0U  or 1U . Under 

these circumstances, the estimate obtained from matching methods will be biased. The question 

for empirical research then becomes an assessment of the utility of the matching estimator in the 

presence of this bias and its performance against alternative estimators that explicitly attempt to 

correct for this bias. Two complementary strategies are discussed and compared in the next 

section of this paper, namely the use of Rosenbaum bounds and the use of instrumental variables 

estimators with sensitivity analysis for the validity of the instruments. 

3 Bias Correction and Bias Assessment using Matching 

Methods and IV Estimation  

Because social science data is typically “observational” in character (i.e., the data are not 

collected via an experiment), the process by which individuals are assigned or assign themselves 

to treatment is not typically ignorable, and the treatment variable is typically endogenous. 

Perhaps the most common strategy for dealing with this problem in the social sciences is the 

method of instrumental variables (IV) estimation. Less well-known is the Angrist, Imbens and 

Rubins (1996) interpretation of this estimate as the “local average treatment effect.” Their 

reinterpretation follows directly from the recognition that the treatment effect is typically 

heterogeneous in the population even after observable variables are controlled. 

As Angrist and colleagues have shown, the standard interpretation of the IV estimation as 

an estimator for the treatment effect only applies under the unrealistic case when the treatment 

effect is constant within the population, which further implies that the conditional ATE equals the 

unconditional ATE, the conditional ATT and the unconditional ATT. In the more realistic case 

shown in equation (1), and under a set of additional assumptions,5 the IV estimator estimates the 

“local average treatment effect,” or “LATE,” which is the average effect of the treatment for the 

subsample of the population which is induced by a specific change in the value of the IV to select 

themselves into treatment. 
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The LATE estimator, whose asymptotic distribution and variance is described in Imbens 

and Angrist (1994), is defined with respect to a specific IV. The presumption is that the analyst 

can model the process of assignment to treatment as a function of an IV (referred to here as Z). 

IV estimation requires that the assignment mechanism, conditional on Z, is ignorable. By this is 

meant that Z affects assignment to the treatment D, and that, after controlling for X, Z is not 

related to any unobservable factors that affect the outcome. Angrist, Imbens and Rubin (1996) 

have shown that the LATE estimator can be conceptualized as the ratio of two matching 

estimators. The numerator gives an estimate of the impact of a change in the IV on the outcome, 

while the denominator gives an estimate of the impact of a change in the IV on the probability of 

treatment. 

An IV with only two possible values generates a single LATE estimator. An IV with 

multiple values can generate multiple LATE estimators, each of which is defined with respect to 

a specific change in the value of the IV. If the domain of the IV consists of a discrete set of 

values, and if the IV has a monotonic relationship to the probability of treatment (one of the 

conditions for the IV estimator to be a LATE), then the standard IV estimator equals a weighted 

combination of LATE estimators defined with respect to each successive increase in the value of 

the IV (Imbens and Angrist 1994). Monotonicity is satisfied when the natural metric of the IV 

has a monotonic relationship to the probability of selection into treatment. Monotonicity is also 

satisfied if each discrete point of the IV is scored as equal to the propensity score (i.e., the 

probability of selection into treatment).  

The properties of the IV/LATE estimator define the uncertainty contained in the LATE 

for the causal effect that it estimates. The most obvious source of uncertainty is contained in the 

confidence interval of the LATE estimator. Because the LATE is a ratio of two matching 

estimators (for the effect of Z on Y and for the effect of Z on D), its variance is generally larger 

than is the variance of the matching estimator for the effect of D on Y. However, the estimated 

confidence interval is only one component of this uncertainty. The LATE estimator relies for its 

consistency on the assumption that the assignment mechanism (based on Z) is ignorable (i.e., that 

Z is uncorrelated with unmeasured factors that affect Y, after conditioning on observable 

variables). Uncertainty about the validity of this assumption implies additional uncertainty about 

the true causal effect beyond that contained in the estimated confidence interval. Uncertainty 

about the validity of other assumptions (such as SUTVA and monotonicity) must also be 

evaluated in any specific application before the estimate can be interpreted as a LATE or (even 

more strongly) as an ATE or ATT estimator (Angrist, Imbens, and Rubin 1996; Angrist 2003). 

An alternative approach to the assessment of uncertainty in causal estimation has recently 

been suggested by Rosenbaum (2002). Rosenbaum’s approach does not rely on the search for 

variables that putatively satisfy the assumption for IV estimation of the LATE, ATE, or ATT. 

Instead, his approach begins with estimating the ATT using matching methods based on the 

strong assumption of ignorable assignment, conditional on X. In the second step, one postulates 

the existence of a confounding variable W, which affects the odds of being assigned to the 
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treatment (i.e., the odds that D=1), conditional on X. In the trivial case where W is uninformative 

about D, then the assignment process is random and the Rosenbaum bounds equal the 

significance level estimated by the matching estimator. As the potential impact of W on D 

(expressed in terms of odds ratios) is assumed to be stronger, the confidence interval on the 

estimated effect becomes wider, and the significance level of the test of the null hypothesis of no 

effect of D on Y increases (i.e., the p-value goes up). Third, for each assumed level of association 

between W and D, one determines the end points on the bounds for the significance level of the 

test of the null hypothesis for the case where W’s effect on the outcome is so strong that 

knowledge of W would perfectly predict which of a pair of matched cases would have the higher 

response regardless of which case received the treatment. Uncertainty about the true effect of the 

treatment is therefore expressible in two dimensions of uncertainty, i.e., (1) the confidence 

interval on the estimated treatment effect (or equivalently, the significance level of the test of the 

null hypothesis of no effect), which is wider (the p-value is large) as the assumed relationship 

between W and D grows stronger, and (2) uncertainty about how big is the relationship of W and 

D under the assumption that W has a strong effect on Y (i.e., W can determine with high 

probability the relative outcomes of matched cases). We describe his procedure more fully in 

appendix A.6  

In typical applications of the IV approach, the analyst assumes that the proposed Z 

satisfies the required assumptions and asserts that the IV estimator is superior to an OLS or a 

matching approach because it has taken account of the endogeneity arising from W. Because 

typical applications assume away one of the major uncertainties inherent to the approach (namely 

the uncertainty about the validity of Z as an instrument), one might refer to these typical 

approaches as “naïve” IV estimation. The Rosenbaum bounds approach provides an alternative 

approach to the endogeneity problem by making explicit the extent to which the assumptions 

underlying “naïve” applications of the matching estimator fall short. If Z is a valid instrument, 

the IV estimator based on this Z provides more precise information about the effect of D on Y to 

the extent that the confidence interval of the IV estimator is tighter than the (widened) confidence 

interval of the matching estimator given by the Rosenbaum bounds under reasonable guesses 
about the impact of W on selection, i.e., reasonable guesses about γ in equation (12) or about 

Γ in equation (13) of Appendix A. If, however, the bounds of what we have termed the naïve IV 
estimator are wide relative to the Rosenbaum bounds, given reasonable values of γ , then IV with 

the specific Z in question provides less information about the effect of D on Y than do matching 

methods even if Z is a valid instrument (making the IV estimator consistent) and even if the 

matching estimator is biased by a nonignorable treatment assignment process.  

In practice of course, the analyst does not know with certainty whether Z is a valid 
instrument any more than the analyst knows the value of γ with certainty. To increase the 

information content of IV estimation, we suggest that the uncertainty about Z be formalized and 

the impacts of this uncertainty computed in a fashion parallel to that used in the Rosenbaum 

bounds approach. Because the uncertainty embedded in IV estimation is distinct from the 
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uncertainty embedded in the matching approach, the use of both methods simultaneously can 

increase the overall information available to the analyst about the effect of D on Y. 

Establishing bounds on the IV estimator to reflect uncertainty about the validity of Z as an 

instrumental variable is most easily done by conceptualizing the bias as a form of omitted 

variable bias. While the omitted variable approach to bias in IV estimation is quite general, we 

develop the approach in this paper for the special (but quite frequent) case where Z is a “grouping 

variable.” A grouping variable, which can also be described as a “macro-variable,” is any 

variable that divides the sample into a set of disjoint groups. Since potential instrumental 

variables are often grouping variables, this special case is highly relevant to many empirical 

applications. One well-known example of a grouping variable comes from approaches to 

estimating the effect of military service on career outcomes during the Vietnam war era that use 

sample member’s draft lottery numbers as instrumental variables (Angrist, Imbens and Rubin 

1996; Moffitt 1996b). Studies of the effects of a social policy on outcomes often use geographic 

location as a grouping instrumental variable in cases where the policy has not been implemented 

everywhere (thus creating a “natural experiment”). In the case of the draft lottery number, the 

value of the IV could be the lottery number itself if this was monotonically related to the 

probability of military service. For community residence, the IV could be scored as the 

probability of selection into treatment for the particular community, or it could consist of a set of 

dummy variables for community of residence. For the grouping variable to be a valid IV, it must 

be the case that one’s group location affects the probability of treatment, but that group location 

itself does not affect the outcome, and is not related to unmeasured variables that affect the 

outcome variable, 

As Moffitt (1996a, 1996b) has shown, IV estimation using a grouping variable as the IV 

variable is identical to a regression of group means for the outcome variable on the treatment 

variable. To be precise, let us assume that we condition on observed covariates, or equivalently 

on the propensity score P(X). For each value of X or of P(X), we specify that 

0

0

( ) ( )

( ) ( ( ))

i i i i

i i i

y X D X

X D P X

µ δ ε
µ δ ε

= + +
= + +

 

where ( )Xδ  is the coefficient of the treatment variable, and P(X) is the propensity score. 

Assume that there is some instrumental variable Z that classifies the individual units into J groups 
(we will give examples later). Then the IV estimator for ( )Xδ  is equivalent to regressing the 

average y within each of the J groups of all observations with the same value of X, or 

equivalently, the same P(X), i.e.,  

( ( )) ( ( )) * ( ( )) ( ( )j j L jy P X D P X P X P Xδ ε= +  (8) 
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If J=2, then Lδ  is the LATE and the ˆ
Lδ estimated by OLS on the aggregate data is an estimate of 

the LATE. If J is greater than 2, then ˆ
Lδ is the weighted LATE estimator of Imbens and Angrist 

(1994). 

With this framework, we are now in a position to address the question of IV bias. The 

most common assumed reason for the failure of the IV assumptions concerns the failure of what 

Angrist, Imbens and Rubin (1996) refer to as the exclusion assumption, namely, the assumption 

that Z has no structural effect on y, and that the value of y is independent of Z, given D and X. 

This assumption is violated when Z is correlated with ε . When Z is a grouping variable, the 

failure of the exclusion assumption implies that (given X) the average value of ε  varies across 

the J groups. We write this failure in terms of a group level characteristic jW , so that we can 

write 

 
j j jW vε γ= +

 ,
 (9) 

where v is assumed to be independent of D. Under this formulation, the bias of the IV estimator 

can expressed in terms of the standard formula for omitted variable bias, namely 

( | ( ))L LE P Xδ δ αγ= +
)

    (10) 

where α is the slope parameter from a regression of W on D . 

Given this formulation, it now becomes possible to express the additional uncertainty of 
the LATE estimator in terms of assumptions about the size of the effect of W on y and about the 

effect of W on D . By combining plausible guesses about the size of the effect of W on y  in the 

aggregate equation (8) and in the regression of W on D , one can conduct the same type of 

sensitivity analysis on the IV estimator that one can do on the matching estimator with the 

Rosenbaum bounds approach. 

For both theoretical and practical reasons, we typically do not assume that the treatment 

effect varies with all observed covariates. A “main effects” version of the above model would 

include X as a set of covariates in the model. Then the aggregation version of IV is obtained in 

three steps. In the first step, one obtains the residual of y from a regression of y on the X 

variables. In the second step, one obtains the residual of D from a regression of D on the X 

variables. In the third step, one computes the mean y-residual within each of the J groups, and 

regresses that on the mean D-residual within each of the J groups. The result is the IV estimator 

of y on D when grouping variable Z is the instrumental variable. Given this formulation, bias in 

the IV estimator can be expressed in terms of the omitted group-level characteristic W as above. 
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In summary, both IV and the Rosenbaum bounds methods approach can be used to 

address possible bias in OLS or matching estimators. Both approaches necessarily widen the 

confidence interval around the estimate of the causal effect. With the Rosenbaum bounds 

sensitivity analysis for the matching estimator, the two additional sources of uncertainty are first 

the amount of bias in the treatment assignment, and second, the impact of this bias on the bounds 

for the treatment effect. With the IV estimator, the two additional sources of uncertainty are first 

the wider confidence interval on the IV estimator relative to the OLS or matching estimator, and 

second the potential bias in the IV estimate due to a failure of the assumptions underlying this 

estimator.7 We have described the procedure proposed by Rosenbaum to measure uncertainty 

with the matching estimator and have proposed a parallel procedure based on the assumption that 

the IV estimator in question is a grouping variable and that the major uncertainty concerns the 

validity of the exclusion assumption. The difference between the two procedures is that the 

Rosenbaum approach provides an assessment of the uncertainty in the ATT, where the ATT is 

either unconditional or conditional depending upon whether the matching is done across the 

entire sample of treated individuals or on a subsample defined with respect to X. The IV 

sensitivity analysis provides an assessment of the uncertainty of the IV estimator, which equals 

the LATE or the weighted LATE8 under a set of additional assumptions such as monotonicity, 

and which equals the ATT or the ATE under even stronger assumptions. 

In the next section, we compare the information provided by these two approaches an 

empirical illustration. Our illustration concerns the behavioral effects of unemployment 

insurance, i.e. the consequences of welfare state institutions providing financial resources to 

compensate workers’ earnings losses during unemployment spells. We examine three kinds of 

behavioral responses to unemployment benefits: the first concerns the effect of receiving 

unemployment benefits on the duration of unemployment. The second concerns the effect of 

receiving unemployment benefits on the post-unemployment wage. The third concerns the effect 

of receiving unemployment benefits on the probability of moving to a different state within 

roughly 18 months following the onset of unemployment. These examples are chosen to illustrate 

the methods both for continuous and discrete outcomes. The standard predictions (cf. Mortensen 

1986)) are that unemployment benefits prolongs unemployment duration, increase post-

unemployment wages and reduce the likelihood that workers are regionally mobile, and so these 

predictions constitute the working hypotheses for our illustration. 

4 An Empirical Analysis: The Effects of Unemployment 

Benefits 

We test the three hypotheses using data on employment histories and geographical mobility for a 

sample of previously employed workers in the combined 1984, 1986, 1988, 1990, 1992 and 1993 

panels of the Survey of Income and Program Participation (SIPP).9 With a 12-year observation 
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window from January 1984 to December 1995, these combined SIPP panels yield a sample of 

24,100 unemployment spells experienced by 21,551 workers. We measure unemployment 

duration as the probability that an individual exited unemployment within the first three months 

of an unemployment spell, where the exit could occur either through entering a job or leaving the 

labor force entirely. We use the log of the change in gross real wages between a workers’ last job 

immediately prior to the unemployment spell and first job after leaving unemployment as the 

second outcome variable.10 We measure regional mobility as the probability that an individual 

lived in a different state 18 months after the onset of the unemployment spell. 

The treatment variable is the receipt of unemployment benefits. To estimate the effect of 

the receipt of benefits on the three outcomes, we first use propensity score matching, where we 

contrast individuals who received benefits at any time during the unemployment spell with 

observationally similar individuals who did not receive benefits. We estimate the effects of 

benefit status on outcomes. Our second strategy allows for the possibility that individual benefit 

status is endogenous to the outcomes of interest, and looks for plausible exogenous instruments 

for individual benefit status in order to estimate the causal effects of unemployment benefit status 

on the outcomes via IV estimators. Endogeneity would occur if some of the factors that influence 

receipt of benefits also affect the duration of unemployment, the wage change following return to 

work, or geographic mobility.  

One plausible instrumental variable strategy is to control for characteristics of the labor 

market, which likely would affect unemployment duration, wage change, and geographical 

mobility, and to use state-level variation in UI systems as the instrument. State-level UI coverage 

would qualify as an instrument if (1) an individual’s state location was random, or at least 

unrelated to the outcome variables, conditional on X, (2) state-level UI coverage affected the 

probability of an individual’s receiving unemployment insurance, and (3) the effect of state UI 

coverage on outcomes occurs only through the effect of an individual’s UI coverage on 

outcomes. If the monotonicity assumption was also true (i.e., no individual would be more likely 

to receive unemployment insurance by virtue of a lowering of UI coverage in the state of 

residence), then the use of state-level UI as an instrument would produce a set of LATE estimates 

across the spectrum of observed variation in state UI coverage.11 

The ability of state-level UI coverage to meet the above conditions clearly depends upon 

the comprehensiveness of X. In general, one would expect that state location is not random and 

not ignorable with respect to the outcomes. But state location becomes ignorable if all factors 

aside from UI that determine state location which are related to the outcome variables are in X. 

Assumption (2) is clearly satisfied. Condition (3) in this case amounts to the SUTVA, i.e., it 

implies that treatment or lack of treatment of others in the state has no impact on an individual’s 

outcome apart from that individual’s own treatment status. The monotonicity assumption implies 

that changes in UI coverage occur only through mechanisms that equally affect all unemployed in 

the state. If, for example, a state raised UI coverage by tightening one eligibility rule while 

loosening another, then the monotonicity assumption would be violated. Because the validity of 
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state UI coverage as an instrument depends upon the comprehensiveness of the information in X, 

we consider state UI coverage to be a typical (and typically imperfect) instrumental variable for 

unemployment insurance. 

Sensitivity Analysis via the Rosenbaum Bounds Method of Matching 
Estimators 

To obtain the propensity score matching estimator, we first use individual benefit status to form 

matched pairs of observationally similar workers who had received benefits during the 

unemployment spell (the treatment cases) and workers who did not (the controls). Matching was 

done on the individual propensity score of receiving benefits. The propensity score was 

operationalized as the predicted probability of receiving benefits estimated from a logistic 

regression of unemployment benefit status on pre-unemployment wage, education, labor force 

experience, tenure with previous employer, gender, race and other predictors. The coefficients 

from this model, which are presented in Table 1, show that the likelihood of receiving benefits 

rises with a worker’s previous wage, labor force experience, and tenure with the previous 

employer. 

 Table 1 about here 

Because unemployed workers who receive unemployment benefits typically had higher pre-

unemployment wages and more experience than the unemployed who do not receive benefits, a 

simple comparison of mean outcomes for sample members who do and who do not benefits is 

unlikely to yield accurate estimates of the causal effect of the receipt of unemployment benefits 

on outcomes. By forming matched pairs of observationally similar treatment and control cases, 

matching methods eliminate the confounding effects of observable variables. In our example, we 

use a stratified 1x1 random-order, nearest-neighbor caliper matching algorithm that matches 

treatment and control cases with similar propensity scores within the tolerance level (the caliper) 

for acceptable matches defined in terms of the empirical variance of the propensity score. Since 

we have rather large samples of unemployed workers from the SIPP, we can use a fairly strict 

caliper of w = 0.05, i.e. we can require a high degree of observational similarity between 

treatment and control cases in our analysis and still find matching control cases for our treatment 

cases. To further increase the comparability of treatment and control cases, we conducted a 

stratified matching by states and time period. Full details of the matching algorithm are given in 

Appendix B. 

Table 2 demonstrates how matching restricts the control sample in order to increase the 

similarity of the subsample of control cases that are directly compared with the treated cases in 

order to estimate the consequences of treatment.12 Table 2 presents the means for propensity 

scores and, in the case of the wage model, all other covariates before and after matching. In 

almost all cases, it is evident that sample differences in the raw data significantly exceed those in 
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the samples of matched cases. The process of matching thus creates a high degree of “covariate 

balance” between the treatment and control samples that are used in the estimation procedure. 

 Table 2 about here 

We use the standardized mean difference between treatment and control samples, i.e.  
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as a convenient way to quantify the bias between treatment and control samples (cf. Rosenbaum 

and Rubin 1985; Rubin 1991), where Tx and 2

Ts  are the sample mean and variance for the 

treatment subsample, and Cx and 2

Cs are the comparable statistics for the control subsample, and 

essentially provides a measure of the difference in means for each x in standard deviation units. 

By this measure, imbalance between treatment and control samples in terms of the propensity 

score amounts to more than 80% in the raw data for each of the three models (i.e., the difference 

in propensity scores for the unmatched treatment and control sample is over 80% as large as the 

standard deviation). This bias is reduced to levels well below 10% by the matching process, 

which amounts to more than a 90% reduction in bias for each of our outcome variables.  

An examination of covariate balance for the specific covariates in our analysis shows that 

propensity-score matching tends to put heavy emphasis on achieving covariate balance on the key 

predictors from the logit model, i.e. in terms of earnings, experience, tenure, gender and in the 

proportion of black workers in the two samples. In general, there will be a trade-off between the 

size of the bias reduction and the proportion of the treated cases that can be matched, with the 

size of the tradeoff depending upon the size of the treated and control samples. (see Appendix 

Table C for an illustration of this relationship). With the relatively large sample sizes of the SIPP 

data, we were able to match about 60% of the treatment cases using the stringent caliper of 0.05. 

Because propensity-score matching removes most of the bias attributable to observable 

covariates, we can use the difference in mean outcomes in the matched samples to obtain an 

estimate of the average treatment effect on the treated. Table 3 gives the estimates of the 

unconditional ATT of unemployment benefits based on the stratified propensity score matching, 

and compares these to standard OLS estimates.13 The first column of Table 3 gives mean 

outcomes among treatment cases (i.e. workers with benefits), while the second column gives the 

mean outcomes among all control cases in the sample. The difference between these two 

quantities is the “naïve” estimate of the unconditional average treatment effect, uncorrected for 

the possibly confounding effects of observed covariates. The third column shows the mean 

outcome among the set of matched controls. The average treatment effect of unemployment 
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benefits on the treated workers actually receiving benefits (the unconditional ATT) is given in 

column 4, and is simply the difference between columns 1 and 3. Finally, column 5 shows the 

OLS estimate for the effect of unemployment benefits on each of the three outcome variables. 

 Table 3 about here 

Table 3 shows that the estimated effect from propensity score matching supports all three 

hypotheses on the effects of unemployment benefits: Workers who had access to benefits achieve 

higher post-unemployment wages, exit unemployment less quickly and are less likely to move to 

another state. Compared to the naïve estimator, propensity-score matching resulted in larger 

estimated treatment effect estimates for all three outcomes. In the case of wage change, the naïve 

estimator would have given a result that not only had a different magnitude but even had a 

different sign than the propensity-score matching estimate. Compared to the OLS estimates of 

column 5, the matching estimates tend to be slightly more conservative (i.e. lower) and estimated 

less precisely (i.e. with larger standard errors). There can actually be two views on this latter 

aspect: on the one hand, the larger standard errors of matching estimates can be seen as a 

consequence of matching being a data-intensive technique that discards information contained in 

the non-matched cases. On the other hand, since matching is a non-parametric estimator based on 

samples that exhibit common support, the higher precision of OLS (or parametric methods more 

generally) can be seen as resulting from untested assumptions in terms of functional form, or, 

equivalently, the higher standard errors of the matching estimates relative to OLS convey the 

level of uncertainty of the estimate that can be achieved when one is unwilling to make the 

parametric assumptions of OLS. 

Propensity-score matching estimators are not consistent estimators for treatment effects if 

the assignment to treatment is endogenous, i.e., if unobserved variables that affect the assignment 

process are also related to the outcomes. In order to estimate the extent to which such "selection 

on unobservables" may bias our qualitative and quantitative inferences about the effects of 

unemployment benefits, we present the results from using Rosenbaum’s (2002) procedure for 

bounding the treatment effect estimates in Table 4. There we give the results of the p-value from 

Wilcoxon sign-rank tests for the averaged treatment effect on the treated while setting the level of 

hidden bias to a certain value Γ, which--as described in more detail in appendix A--reflects our 

assumption about unmeasured heterogeneity or endogeneity in treatment assignment expressed in 

terms of the odds ratio of differential treatment assignment due to an unobserved covariate. At 

each Γ we calculate a hypothetical significance level “p-critical”, which represents the bound on 

the significance level of the treatment effect in the case of endogenous self-selection into 

treatment status.14 By comparing the Rosenbaum bounds on treatment effects at different levels 

of Γ we can assess the strength such unmeasured influences would require in order that the 

estimated treatment effects from propensity score matching would have arisen purely through 

selection effects. 
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 Table 4 about here 

Table 4 shows that robustness to hidden bias varies considerably across the three outcome 

variables. The finding of a positive effect of UI on post-unemployment wages is the least robust 

to the possible presence of selection bias. The critical level of Γ at which we would have to 

question our conclusion of a positive effect is between 1.10 and 1.15, i.e. is attained if an 

unobserved covariate caused the odds ratio of treatment assignment to differ between treatment 

and control cases by a factor of about 1.15. For the regional mobility model it would require a 

hidden bias of Γ between 1.5 and 1.6 to render spurious the conclusion of a negative benefit 

effect on mobility. In the case of UI effects on unemployment duration, endogenous self-selection 

would have to attain values for Γ of between 2.2 and 2.3. 

It is important to recognize that these results are worst case scenarios. A value for Γ of 

1.15 does not mean that there is no true positive effect of UI on post-unemployment wages. This 

result means that the confidence interval for the post-unemployment wage effect would include 

zero if an unobserved variable caused the odds ratio of treatment assignment to differ between 

treatment an control groups by 1.15 and if this variable’s effect on post-unemployment wages was 

so strong as to almost perfectly determine whether the post-unemployment wage would be bigger 

for the treatment or the control case in each pair of matched cases in the data. In the case where 

a confounding variable had an equally strong effect on assignment but only a weak effect on the 

outcome variable, the confidence interval for post-unemployment wages would not contain zero. 

To repeat, the Rosenbaum bounds are in this sense a “worst-case” scenario. Nonetheless, they 

convey important information about the level of uncertainty contained in matching estimators by 

showing just how large the influence of a confounding variable must be to undermine the 

conclusions of a matching analysis. So for example, an unobserved variable that perfectly 

predicted the rank ordering of treatment or control cases in matched pairs and that had a Γ of 1.15 

would still not be powerful enough to produce the observed mean difference in unemployment 

duration for the treatment and the control case. If the confounding effects are only this large, the 

results of the matching analysis imply that receipt of benefits actually do increase unemployment 

duration. 

To illustrate the magnitude of hidden bias that would cause us to revise our findings of 

causal effects of unemployment benefits on these three variables, we equate the magnitude of 

hidden bias expressed by specific levels of Γ in terms of the equivalent effects of observed 

covariates for which we know the impact on assignment to treatment from our propensity score 

model. The critical level of Γ=1.15 is attained at a difference in log previous wages of more than 

0.2 (or more than two dollars per hour for the average worker), or at a difference of 2.7 years of 

experience, or at a difference of about two years of tenure with a worker’s previous employer. 

Hence, according to the bound estimates, we would have reason to doubt our finding of a causal 

effect of UI on post-unemployment earnings if we had reason to believe there was an outside 

(unobserved) covariate affecting treatment assignment of at least this magnitude that was 
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equivalent to the effect on assignment of $2 per hour, or 2.7 years of labor force experience, or 2 

years of tenure with the previous employer.  

The strength of hidden bias required to alter the qualitative conclusions about the effects 

of unemployment benefits on unemployment duration or regional mobility is in both instances 

greater than for the post-unemployment wages outcome. For example, the critical Γ of about 1.5 

in the case of regional mobility is equivalent to the measured net effect of being black instead of 

white (exp(b) = 1.48), or the effect of an additional 10 years of labor force experience, or the 

effect of over 90 months of tenure with the previous employer on assignment to treatment status. 

Even more powerful unobserved variables must be at work to challenge our estimates of the 

effect of UI on unemployment duration, and – it is important to remember -- such hidden 

variables must be able to almost perfectly predict the relative outcomes of the matched treatment 

and control variables. The hidden bias required to change our conclusions about negative benefit 

effects on unemployment duration is certainly larger than any single effect that we estimated in 

our propensity score model – effectively, we would need two independent sources of bias in the 

order of 10 years of experience and 7 years of tenure working together to produce a level of Γ = 

1.5*1.5 = 2.25 that was of the order required to challenge our conclusion about the benefit effect 

on unemployment duration. 

Sensitivity Analysis of Bias in IV Estimation 

Next, we assess the potential information about causal effects in our empirical examples that can 

be obtained via instrumental variables estimation. In practice, finding credible instruments can be 

a daunting task, and researchers typically resort to past covariate values (in panel data settings) or 

use ‘natural experiments’ in terms of institutional differences across political units and over 

historical time (e.g. before and after some policy reform). We follow the latter practice here and 

use institutional variation in unemployment insurance (UI) systems across U.S. states as our 

instrument of individual benefit status. State variation in UI systems is a promising instrumental 

variable insofar as institutional differences are plausibly exogenous to individual labor market 

behavior (i.e. the average unemployed worker will not be able to adapt UI policies to his or her 

preferences). Also, there is wide variation in terms of benefit disqualification policies, search 

requirements, benefit levels and other aspects of state UI systems (cf. Vroman 1990, 2001; U.S. 

Department of Labor 2002) that might have substantial effects on whether or not a given worker 

with a given work record receives benefits during an unemployment spell.  

State of residence would qualify as an instrumental variable if state of residence had no 

direct impact on these outcomes, if state of residence had no correlation with unmeasured 

variables that affect these outcomes (the exclusion condition), and if state of residence was 

correlated with the treatment variable. The correlation between state of residence and the 

treatment variable is guaranteed by the fact that the proportion of unemployed receiving benefits 

varies by state. Because these outcome variables are generally affected by individual-level factors 
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such as age, education, prior work experience and family status, state of residence will be 

correlated with the error unless all individual-level variables that affect the outcomes and that 

vary by state are explicitly included in the model. Because the outcome variables will also be 

influenced by labor market conditions, state of residence will still be correlated with the error 

even after controlling for individual-level variables unless all pertinent characteristics of the labor 

market are also included explicitly as covariates in the analysis. 

Because information about the most important individual-level and labor market 

determinants of our three outcome variables are collected in surveys, state-level variation is a 

plausible instrumental variable. At the same time it is an imperfect instrument, because it is 

unlikely that all pertinent individual or labor market variables will be included in the survey or 

the model. Therefore, we use the procedure described above to perform a sensitivity analysis of 

the estimated treatment effects from IV estimation. If we conceptualize the IV estimation as an 

OLS regression of the residualized state-averaged outcome variable on the residualized state-

averaged treatment variable, then it becomes clear that the bias from IV regression can be 

conceptualized as an omitted state-level variable that captures the residual state-level effects of 

omitted individual and labor market variables on the state-level mean outcome variables. 

Before proceeding to IV estimation, we first discuss evidence for the plausibility of the 

claim that state-level variation can function as an instrumental variable. As a simple check for an 

association between state policies and workers’ treatment status, Figure 1 presents a scatterplot of 

worker coverage rates across the 45 states (or state clusters) distinguished in the SIPP data, 

additionally broken down by a more specific indicator of states’ good cause policies within the 

UI system (measured simply by the number of good causes for worker quits acknowledged in 

state UI regulations).15 The data are raw proportions of workers having received benefits at any 

point during an unemployment spell averaged across the 1984-1995 period, and hence not 

adjusted for any differences in the structure of work forces, labor markets or indeed the structure 

of unemployment across U.S. states. But even at that basic level, the data speak to significant 

variation in access to unemployment benefits across states, with coverage rates ranging from a 

low of some 25% in New Mexico, Georgia, Texas or Colorado up to some 50% in some of the 

New England states. While there might be numerous reasons for the observed variation across 

states, the overlaid line connecting the mean coverage rates within levels of state good cause 

policies certainly indicates some association between state policies and observed benefit levels. 

The relationship is neither fully linear nor perfect, yet it is evident that liberal state policies 

concerning benefit disqualification are positively related to the proportion of workers receiving 

benefits.16 

Figure 1 about here 

From this starting point, we can generate IV estimates of the effects of unemployment benefits on 

our three outcome measures. Table 5 presents three different treatment effect estimates, 

exploiting and derived from three different specifications of purportedly exogenous state-level 
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variation in individual benefit status. The first set of analyses (presented in the left column) \uses 

quintiles of aggregate coverage rates as the instrument. The second set of analyses use the full set 

of 45 state dummies distinguished in the SIPP data. The second measure obviously captures all 

aspects of the differences in institutional policies across states. The problem with this second 

measure, however, is that some subset of the 45 state dummy variables is necessarily correlated 

with any residual state-level differences in individual or labor market variables, and thus would 

not be a valid instrument. For that reason, the third set of analyses uses the above-mentioned 

indicator of states’ good cause policies as the most direct measure of institutional variation 

relevant to our question, though even this variable may fail to satisfy the exclusion restriction to 

the extent that the number of good cause policies is correlated with residual state-level individual 

or labor market variation. 

Our instrumental variables estimation was performed with the same set of individual level 

controls that were used in the estimation of the propensity score above (cf. Table 1) plus time-

varying local unemployment rates and year dummies as crude controls for labor market 

conditions. Arguably, these covariates capture some part of the potential endogeneity problems 

and hence promise to yield plausible estimates of the causal effect of unemployment benefits on 

our three outcome dimensions. The use of 3 alternative sets of instruments produces three distinct 

estimates of the effect of unemployment benefits for each of our three outcome variables. We 

present these alternative IV estimates in table 5. 

 Table 5 about here 

All three sets of instruments support the same substantive conclusions as the propensity score 

matching and the standard OLS analyses described before. In all IV analyses, we obtain clear 

evidence that unemployment benefits improve post-unemployment wages, prolong 

unemployment duration and lower the propensity of workers to relocate. Compared to both the 

matching and OLS results presented in Table 1 above, two features of the IV estimates seem 

noteworthy: first, the estimated magnitude of benefit effects considerably exceed those obtained 

from both matching and OLS. The IV estimates coincide best with matching and OLS estimates 

in case of unemployment duration, where the effects estimated by IV are in the order of doubling 

the respective matching and OLS ones. For both post-unemployment wages and the probability 

of relocation, IV results indicate much stronger benefit effects than either matching and OLS. 

Also,– as usually is the case since the inferential base is significantly more restricted – the 

standard errors of the IV estimates are also well above those from both OLS and propensity score 

matching. 

To perform the sensitivity analysis as described above for the IV case, we postulated the 

existence of an omitted state-level variable (which in principle includes state variation in omitted 

individual variables and state variation in omitted labor market variables). The formula for bias in 

equation (10) can be restated as the triple product of the effect of W on the outcome (γ) variable, 

the standard deviation of W, and the correlation between W and the group-mean residualized D 
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(r) divided by the standard deviation of group-mean residualized D. We estimate the impact of 

this bias by using a “benchmark” omitted variable that equals the difference (rather than the sum, 

because the predicted effects of its two components are opposite in sign) of the group mean of 

education (an influential observable individual variable) plus the state-level unemployment rate 

(an influential observable labor market variable). In effect, we assume that actual omitted 

variables are unlikely to have a confounding effect that would greatly exceed the confounding 

effect from failing to control for educational differences across states and from failing to control 

for differences in state-level unemployment rates.17 

There are two unknowns in the formula for omitted variable bias: the standard deviation 

of W and its effect on the outcome variable. To approximate the scale of W, we assume that it 

can be represented as the standard deviation of this combined variable and use the result as the 

scale of W. To provide reasonable guesses about the likely effect of such an omitted covariate W, 

we estimated the effect of the two components of the benchmark omitted variable on each of our 

three outcome variables. The results, which are shown in appendix D, suggest a maximum effect 

of |.003| for the log wage-change outcome, |.07| for the unemployment duration outcome, and 

|.075| for the regional mobility outcome. To be conservative, we assume that the effects of the 

omitted variable equal the largest bivariate effects of the different components. To approximate 

the correlation between omitted variables and the treatment variable, we computed the correlation 

in the aggregate analysis between each component of the benchmark omitted variable and the 

treatment variable, which is .035 in the case of years of education, and .227 in the case of the 

unemployment rate. 

We used the above results to generate a range for plausible values of γ (i.e., between |.01| 

and |.10|) and we display the sensitivity analysis for values of the correlation between W and D 

that extend from the high end of what we observe with our benchmark variables to very high 

correlations. For each outcome, we report results using the sign of γ that would (in combination 

with a positive correlation) produce an upward bias in the estimated effect of the treatment 

variable, which of course is the direction of bias that we are concerned about.18 

Table 6 reports the results of this sensitivity analysis that is in the same spirit as the 

sensitivity analysis using Rosenbaum bounds that was presented in table 4. For each combination 

of a specific outcome variable and a specific instrumental variable, we present a sensitivity 

analysis matrix, which shows the variation in the significance levels of the estimated effect of the 

treatment variable in the presence of bias generated by a combination of various values for γ and 

for the correlation between W and the group-mean residualized D (i.e., Corr(W,D)). To conserve 

space, we present results for two of our three candidate instrumental variables, namely high vs. 

low generosity states, and state policy concerning good cause exceptions 

 Table 6 about here 
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For the outcome of log wage change, the left panel (for the state benefit rate quintiles quintiles 

IV) shows that the effect of unemployment benefits on post-unemployment wage change remains 

statistically significant at the .05 level so long as the effect of the omitted variable on the outcome 

is below +0.10 and the correlation between the omitted variable and the treatment variable is less 

than .25. This is clearly the case for our two benchmark omitted variables (both of whom have a γ 
of less than +.01), and so we can conclude that our IV estimates are robust to endogeneity of the 

order that would be created by leaving variables as important education and the state 

unemployment rate out of the equation. The same conclusion in fact applies regardless of whether 

state benefit-rate quintiles or liberal good cause regulation is the instrumental variable. Note, 

however (see the right panel of table 6), that the liberal good cause regulation benchmark IV is 

more sensitive to the possibility of endogeneity bias, because the standard error of the IV 

estimate using this IV is about twice as large as when high/low generosity states is used to do the 

IV estimation (see table 5). 

For the unemployment duration outcome, γ was -.021 for the state unemployment rate, 

and the γ for education (.07) was positive, which means that its exclusion from the model would 

cause the IV estimate to understate the true effect of benefits on unemployment duration. As the 

left panel makes clear, the IV-estimated effect of unemployment benefits on unemployment 

duration remains statistically significant at the p < .001 level even for omitted variables whose 

values of γ are five times as large as that for the state unemployment rate and whose correlations 

with the treatment variable are similar. Based on the IV regression with our state benefit-rate 

quintiles IV, we would therefore conclude that unemployment benefits increase unemployment 

duration. Note, however, that we could not draw this conclusion with confidence when liberal 

good cause regulation was the candidate IV, because it is not robust to endogeneity bias on the 

scale produced by our benchmark omitted variables. 

Finally, we turn to the regional mobility outcome variable. Note that if the omitted 

variable had a positive effect (as education does on mobility – see appendix D) and was 

positively associated with the receipt of unemployment benefits, then the IV estimate would 

understate the true effects of benefits on regional mobility. As for the unemployment duration 

analysis, the potential problem arises from omitted variables that have the same pattern of effects 

as the state unemployment rate. The left panel of table 7 shows that a confounding omitted 

variable would have to have an effect on regional mobility that was three times as large as that of 

the state unemployment rate while having a correlation with unemployment benefits of 

commensurate size as the state unemployment rate in order to undermine the IV estimation result. 

Thus, we again see a basis for reasonable confidence that the IV estimated effect of benefits on 

regional mobility describes a true causal effect. 
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5 Comparing the Rosenbaum Bounds and IV Sensitivity 

Analyses 

The Rosenbaum bounds approach and IV estimation are complementary approaches, not 

competing ones. It is useful, therefore, to evaluate the different information they give about 

causal estimation in our specific example. In this case, both the Rosenbaum Bounds and the IV 

sensitivity analyses provided important information about the possible causal relationships 

between our example treatment and outcome variables. Even though propensity score matching 

by itself does not address the problem of endogeneity due to omitted confounding variables, the 

Rosenbaum bounds sensitivity analysis provided strong grounds for concluding that 

unemployment benefits do extend unemployment duration. The sensitivity analysis also provided 

a reasonably firm basis for concluding that unemployment benefits reduce inter-state mobility. 

Finally, the sensitivity analysis suggested strong caution in concluding that unemployment 

benefits increase post-unemployment wages, because the hypothesis test supporting this 

conclusion is undone even by moderately strong confounding variables so long as such 

confounding variables have a very strong impact on post-unemployment wages. 

IV regression with our three example instrumental variables supported the results of 

propensity score matching in yielding positive effects of unemployment benefits on all three 

outcomes. The sensitivity analyses show our IV estimates to be reasonably robust against the 

presence of bias due to W, although there are more indications of potential sensitivity in the case 

of the (more specific) instrument of states’ good cause policies than for the instrument using state 

benefit-rate quintiles, which represent the net impact of state unemployment policies and 

practices rather than the impact of a single regulation. Our inferences about the effect of 

unemployment benefits on unemployment duration are the most robust to endogeneity bias. For 

both post-unemployment wages and regional mobility, however, the sensitivity analyses indicate 

we might want to be cautious in our conclusions about benefit effects if we have reasons to 

believe in the presence of an omitted covariate W like years of education that was very strongly 

correlated with D and had about the impact (in absolute magnitude) of years of education on 

either outcome. In general, and as to be expected, our conclusions about the causal effect of 

interest become less secure the higher the correlation between W and D, and the stronger the 

partial effect of W on the outcome of interest. However, our inferences about causal effects are 

robust to omitted variables that have roughly both the same magnitude of effect on the outcome 

variable and correlation with the treatment variable that we observe in the two candidate omitted 

variables. The fact that the Rosenbaum bounds analysis also provides support for the existence of 

at least a causal effect on unemployment duration and on inter-state mobility only strengthens our 

conclusions in this respect. 

One important advantage of the Rosenbaum bounds approach is that the underlying 

estimator (the unconditional or conditional ATT) has a straightforward theoretical interpretation. 

As we discussed in the theoretical section of this paper, the IV estimates presented in our 
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empirical analysis do not have a straightforward structural interpretation if the effects vary across 

individuals. Under the assumptions noted above, the IV estimator is actually a weighted 

combination of LATEs, which does not have clear behavioral implications. In contrast, IV 

analysis using a policy-relevant binary IV (e.g., whether a state has three as opposed to two good 

cause exceptions in its unemployment insurance regulations) would provide useful causal 

information regarding the impact of policy change on change in post-unemployment wages, 

unemployment durations, and geographic mobility that would work through the impact of policy 

change on change in benefit coverage. A full analysis would therefore involve a separate 

computation of the IV estimate for each combination of observed covariate values and at each 

level of the instrumental variable. 

To be concrete, let us take the number of good causes as the proposed instrumental 

variable and suppose that the effect of unemployment benefits varies by age, which is an 

observable variable. The LATE could then be computed at different values of age and at different 

points along the observed variation in the number of good cause exemptions in state 

unemployment regulations. The result is a matrix of IV estimates, which provide estimates of the 

treatment effect for each combination of observed covariates and for a specific policy 

intervention which increases the number of good cause exceptions by a single unit. The point 

estimates and standard errors provide information about the extent of variation of the treatment 

effect along these two dimensions. Because of uncertainty about endogeneity bias for the IV 

estimates, the above sensitivity analysis could be performed for each element in this matrix of 

estimates. Because each sensitivity analysis produces a matrix similar to that in table 6, the 

overall result is a matrix of matrices. The sensitivity results determine whether the researcher can 

have reasonable confidence in the existence of a measurable change in the state’s mean value on 

the outcome variable from modifying the state’s number of good cause exemptions. They also 

determine whether the researcher can have reasonable confidence that the impact of changing 

state policies varies according to the current policy or according to age. 

If the variation in the estimation matrix is large relative to the variation in the sensitivity 

matrices, then the result provides useful information about heterogeneity in treatment estimates 

across individuals and across policy interventions. If the variation in the sensitivity matrices is 

large relative to the variation in the estimation matrix, then the estimation provides little 

information about the structure of variation in these estimates. It is possible to conclude that true 

causal effects exist and that we know something about how they vary across individuals or across 

policy interventions. Alternatively, we may conclude that true causal effects exist but that we 

lack sufficient information to understand their heterogeneity. Finally, the combination of point 

estimates and their standard errors along with the sensitivity analysis may lead one to conclude 

that there is not sufficient evidence to conclude that a causal effect exists, and a postiori, one can 

not draw any conclusions about heterogeneity in the causal effect. 

To keep this paper within reasonable scope, we do not estimate a full matrix of LATE 

estimations or perform a sensitivity analysis for each estimate within the estimation matrix that 



23 

would result from such a full analysis. Given the pattern of results in our Rosenbaum bounds 

analyses, one might well conclude that it is not necessary for our specific illustrative example to 

go through such a full set of analyses to draw the conclusion that unconditional average treatment 

effects on the treated do exist for all three outcome variables. If, however, one was interested in 

social policy, one might well want to know the impact of raising or lowering state coverage 

levels on the mean outcomes for all three outcome variables considered in this paper. In such a 

case, the full set of LATE analyses in conjunction with Rosenbaum bounds analysis of ATT 

computed at different values of the propensity score would definitely be warranted. 

6 Conclusion 

In non-experimental settings, the drawing of firm conclusions about the causal effect of one 

variable on another inherently involves uncertainty because of the possible confounding influence 

of other variables. Matching methods provide an effective strategy for controlling the 

confounding influence of observed variables. However, endogeneity bias is still possible from 

unobserved variables. Instrumental variable estimation can eliminate endogeneity bias under a set 

of assumptions that themselves are rather strong and impractical or impossible to verify in most 

real research settings. This paper has focused instead on strategies for assessing the size of the 

bias that might affect either matching or IV estimation. 

The Rosenbaum bounds approach can often provide reasonable confidence that a causal 

relationship between a treatment and an outcome variable exists even in the presence of potential 

confounding variables. The results of this paper support the advice that such analyses be 

routinely carried out in order to evaluate the robustness of estimates to the possibility of hidden 

bias. They also support the use of IV methods while at the same time demonstrating that IV 

estimation by itself is not a panacea for endogeneity bias. IV estimation does not necessarily 

provide more information about the “true” effect of a treatment on an outcome variable than is 

already present in methods such as OLS or matching, which do not explicitly adjust for 

endogeneity bias. Whether IV provides more or less information about causal effects depends 

upon how well the candidate instruments satisfy the assumptions underlying IV estimation and 

upon the width of the confidence intervals of the IV estimates. Because the analyst never knows 

whether the assumptions underlying IV estimation are valid, we suggest that more attention be 

paid to the sensitivity of IV estimation to omitted variables that would cause IV estimates to be 

biased. 

Our illustrative results demonstrated the usefulness of both Rosenbaum bounds sensitivity 

analysis and IV estimation sensitivity analysis in causal estimation. They also demonstrated that 

these two approaches cannot be given an in principle ranking in terms of their information 

content. In any real situation, the relative information content of the two approaches depends 
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upon the specific relationship being studied and the specific data available to the analyst. The real 

message of our results is that the two approaches are complimentary. Taken together, they 

provide more information about the causal processes in question than either method provides by 

itself. 

The information provided by both methods is, it must be emphasized, contingent. Because 

the potentially confounding variables are unmeasured, one does not know their impact on the 

assignment process in the context of matching, or their relationship with the treatment variable or 

the outcome variable in the context of IV estimation. It follows, therefore, that the approaches 

discussed in this paper require some knowledge of the substantive process being studied, so that 

one can benchmark the strength of omitted potentially confounding variables against observed 

variables. It seems reasonable to assume that many of the most powerful determinants of 

interesting outcome variables will indeed be measured, and therefore that one can with 

reasonable confidence guess at the potential impact of confounding variables. Whether these 

guesses are correct, of course, can only be tested via the gradual improvement in data collection, 

or via novel approaches such as the linking of experimental and nonexperimental data on some 

salient outcome (for example, Heckman et al. 1998). In the absence of such data, however, 

sensitivity analysis still provides an important tool for assessing the level of caution that one 

should use when interpreting the significance tests for causal effects that are produced with 

conventional estimators. To be able to formalize one’s uncertainty in terms of the probable range 

of confounding effects from unmeasured variables and the likelihood that conventional estimates 

of causality are robust to such confounding effects is to deepen one’s understanding about causal 

mechanisms. 
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Appendix A: The Rosenbaum Bounds Method 

We recapitulate the Rosenbaum bounds method (Rosenbaum 2002) of sensitivity analysis for the 

estimation of treatment effects using data on matched pairs. Rosenbaum developed this approach 

to assess the impact of hidden bias on the computation of test statistics from the family of sign-

score statistics, which are nonparametric tests that include Wilcoxon’s signed rank test and 

McNemar’s test. While Rosenbaum developed the theory for a more general case, we limit the 

discussion here to the case of matched pairs, which corresponds to the situation when propensity 

score analysis is used. 

Test statistics in the family of sign score statistics have the form 

2
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where Z is the variable that registers which of each of the s pairs was treated, and r measures the 

outcome for each case in the S pairs. siZ equals 1 if a case is treated, and 0 otherwise. “c” is 

defined as follows: 
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Finally, sd  is the rank of 1 2| |s sr r−  with average ranks used for ties. Essentially, the product of 

the c and Z variables cause pairs to be selected where the outcome for the treatment was greater 

than the outcome for the control. The ranks of these cases are summed and compared to the 

distribution of the test statistic under the null hypothesis that the treatment has no effect. 

In the case where the assignment to treatment is not random, the above test statistic can be 

bounded. Rosenbaum proposes that one assume that there is an unmeasured variable u that affects 

the probability of receiving the treatment. If we let iπ be the probability that the ith unit receives 

the treatment, and X are the observed covariates that determine treatment and that also determine 

the outcome variable, then the following treatment assignment equation applies 
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Rosenbaum shows that this relationship implies the following bounds on the ratio of the odds that 

either of two cases which are matched on X (or alternatively on the propensity score P(X)) will 

receive the treatment 
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s s

π π
π π
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where s indexes the matched pair, s=1,…,S, and exp( )γΓ = . 

Under the assumption that a confounding variable U exists, equation (11) becomes the 

sum of S independent random variables where the sth variations equals sd with probability 
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Rosenbaum shows that for any specific γ , the null distribution of t(Z,r) is bounded by two known 

distributions for T + and T −  where 
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One can use these formulas to compute the significance level of the null hypothesis of no effect. 

For any specific Γ , one computes 

 ( ( )) / ( )T E T Var T+ +−  

and 

 ( ( )) / ( )T E T Var T− −−  

where T is the Wilcoxon signed rank statistic. These two values give bounds of the significance 

level of a one-sided test for no effect of the treatment. 

Under the assumption of an additive treatment effect, Rosenbaum (2002) also derives 

bounds on the Hodges-Lehmann point estimate of the treatment effect, enabling the researcher to 

frame the sensitivity analysis in the more common metric of an interval of point estimates rather 

than in terms of implied significance levels for the estimated treatment effect. To arrive at an 

interval of plausible point estimates given a specific bias level Γ , Rosenbaum defines the 

Hodges-Lehmann point estimate of the treatment effect 
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Though not generally known, the expectation of that signed rank statistic is bounded by the 

expectations of T+ and T- calculated at  
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as before. Since the bounds on the signed rank statistic are sharp, we can calculate an interval of 

point estimates consistent with these bounds by calculating the statistic at maxt t=  and mint t= . By 

similar reasoning, Rosenbaum also derives bounds for the confidence interval of the point 

estimate. 
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Appendix B – Stratified nearest neighbor matching 

1. We estimate a logistic regression for the observed treatment variable D (UI benefit 
status). The covariate vector X of the model includes a set of standard covariates that are 
thought to potentially affect both D and the outcome of interest Y. 

2. Based on the estimated logistic model, we compute the propensity score as the predicted 

probability of receiving benefits from 
( )

( )( )
ˆexp '

ˆ1 exp '

b X

b X+
. We also calculate the 

variance of the propensity score, and choose a caliper w that reflects the degree of similarity 
(measured in standard deviation units) required to form matches of treatment and control 
observations. 

3. From the estimated propensity score, we form 1x1 matches of treatment and control 
cases by stratified random-order nearest-neighbor matching as follows: 
(a)  Within state and time points defining the strata, randomly select a person i  
  from the treatment sample of workers with unemployment benefits. 
(b) Find all observations j in the control sample of workers without unemployment  
  benefits in that state at that particular time point that satisfy the condition  

  ( )ˆ ˆ ˆ' ' var 'j i ib Z b Z w b Z∈ ±  , i.e. whose propensity scores are sufficiently   

  similar to i, with the degree of similarity being determined by the width of  

  the confidence interval around ˆ ' ib Z . 

(c) If there is no observation j falling in the required interval, remove the  
  treatment case i from the sample. There is no adequate control case  
  available in the sample at the required level of observational similarity. 
(d) If there is one or more observations j falling in the required interval, form  
  a matched pair of cases between i and the observation j that exhibits the  

  smallest propensity score distance ˆ ˆ' 'i jb Z b Z− . (I.e. we refrain from  

  matching on additional covariates not included in Z in the following.)  
  Remove the matched pair from the sample of observations (i.e. we perform  
  matching without replacement of control cases). 
(e) Repeat steps (a)-(d) until no treated cases are left for matching within the  
  particular stratum, then repeat steps (a)-(d) for all strata defined by U.S. states  
  times four three-year time periods (1984-86, 1987-89, 1990-92, 1993-95). 
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Appendix C – Caliper size, sample sizes, overt and hidden 

bias in wage change models 

Caliper w 
N matches 
(% matched) 

| Bias | on 
propensity score 
(% reduction) 

Treatment 

effectδ  (s.e.)1) 
Critical level of 

Γ (hidden bias) 

 Standard nearest-neighbor matching 

0.500 5,040 
(93.8%) 

46.0 
(45.2%) 

+0.049 
(.039) 

1.05-1.10 

0.250 4,668 
(86.8%) 

35.8 
(57.3%) 

+0.087** 
(.013) 

1.15-1.20 

0.100 4,589 
(85.4%) 

33.4 
(60.2%) 

+0.084** 
(.015) 

1.10-1.15 

0.050 4,451 
(82.8%) 

29.4 
(64.9%) 

+0.079** 
(.018) 

1.10-1.15 

0.010 3,900 
(72.6%) 

12.5 
(85.1%) 

+0.071** 
(.024) 

1.10-1.15 

0.001 2,841 
(52.9%) 

24.2 
(71.1%) 

+0.028 
(.021) 

1.00 

 Nearest-neighbor matching stratified by state and time period 

0.500 5,008 
(93.2%) 

30.4 
(63.7%) 

+0.033 
(.020) 

1.00-1.05 

0.250 4,116 
(76.6%) 

13.1 
(84.3%) 

+0.094** 
(.022) 

1.15-1.20 

0.100 3,700 
(68.8%) 

11.6 
(86.2%) 

+0.086** 
(.029) 

1.15-1.20 

0.050 3,263 
(60.7%) 

6.7 
(92.0%) 

+0.072** 
(.025) 

1.10-1.15 

0.010 2,066 
(38.4%) 

1.2 
(98.6%) 

+0.055** 
(.027) 

1.05-1.10 

0.001 618 
(11.5%) 

0.1 
(99.9%) 

+0.016 
(.049) 

1.00 

Notes: 1 Bootstrap standard errors, N=100 replication samples. Statistical significance levels at ** p<.01 and * 
p<.05, respectively. 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Appendix D – Bivariate regressions results for group-level 

covariates 

 Log wage 
change 

Prob of 
Unemployment 
Exit|T<3mo. 

Regional  
mobility ( ),r X D  

Years of education -0.003 
(.024) 

0.070* 
(.031) 

0.075** 
(.025) 

0.035 

Unemployment rate -0.001 
(.004) 

-0.021** 
(.005) 

-0.013** 
(.004) 

0.227 

Notes: Results for regressions of state-level mean outcomes on the state-level mean covariate (standard errors in 
parentheses; significance levels at ** p<.01 and * p<.05); last column gives aggregate correlation between 
state-level covariate and state-level UI coverage rates. 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 1 – Logistic Regression Model for Receiving Unemployment Benefits, 
given Unemployment 

 

 Coefficient Standard 
Error 

Log previous wage 1.927** (.093) 

Log previous wage squared -0.288** (.017) 

Labor force experience (years) 0.092** (.004) 

Labor force experience squared (*100) -0.149** (.009) 

Tenure with previous employer (months) 0.007** (.001) 

Tenure with previous employer squared (*100) -0.002** (2.0e-4) 

Education (Reference Category: less than High School)   

- High School 0.197** (.039) 

- Some College 0.112** (.044) 

- B.A. / Associate degree -0.033 (.059) 

- M.A. and above -0.235** (.082) 

Female -0.164** (.029) 

Race (Reference Category: White)   

- Black -0.392** (.043) 

- Hispanic 0.131** (.046) 

- Other Non-White -0.007 (.078) 

Constant -4.140** (.120) 

   

N (unemployment spells) 26,284 

Log-likelihood -15,053.7 

Pseudo-R² 0.114 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 2 - Propensity Score Matching and Covariate Balance 

Variable Sample 
TreatedX  ControlsX  bias  

(%) 
% reduction 
in |bias| 

Wage change model  

(N=3,263 matched pairs) 

Unmatched 0.444 0.307 83.88  Propensity score 

Matched 0.361 0.370 6.68 92.0 

Unmatched 2.417 2.021 51.21  Ln previous wage 

Matched 2.204 2.242 4.98 90.3 

Unmatched 16.18 9.76 60.03  Labor force experience 
(years) 

Matched 12.37 12.55 1.78 97.0 

Unmatched 31.51 12.67 36.00  Tenure with previous 
employer (months) Matched 15.36 13.73 4.24 88.2 

Unmatched 12.56 12.49 3.73  Years of education 

Matched 12.56 12.67 5.73 -53.5 

Unmatched 0.346 0.444 19.84  Female 

Matched 0.412 0.409 0.50 97.5 

Unmatched 0.093 0.138 14.11  Black 

Matched 0.123 0.106 5.30 62.5 

Unmatched 0.117 0.106 3.63  Hispanic 

Matched 0.148 0.132 4.42 -21.8 

Unmatched 0.031 0.031 0.20  Other non-white 

Matched 0.037 0.037 0.49 -148.7 

Unemployment duration model  

(N=5,550 matched pairs) 

Unmatched 0.442 0.301 84.21  Propensity score 

Matched 0.362 0.370 5.75 93.2 

Regional mobility model  

(N=1,818 matched pairs) 

Unmatched 0.457 0.317 83.47  Propensity score 

Matched 0.355 0.364 6.75 91.9 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 3 – Treatment Effects of Unemployment Benefit Receipt, Matching 
Estimates 

 YT Raw YC Matched YC Yδ = ∆ 1 βOLS ² 

Ln wage change ³ 
(N=3,263 matched pairs) 

-0.044 
(0.957) 

-0.036 
(0.964) 

-0.116 
(0.891) 

+0.072** 
(.025) 

+0.073** 

(.012) 

Pr(exit | T≤3 months) 
(N=5,550 matched pairs) 

0.459 0.667 0.666 -0.207** 
(.014) 

-0.208** 
(.007) 

Pr(regional mobility) 
(N=1,818 matched pairs) 

0.029 0.061 0.056 -0.027** 
(.010) 

-0.033** 

(.005) 
      

Notes: 1 Bootstrap standard errors, N=100 replication samples.  
² Heteroskedasticity-consistent standard errors in parentheses.  
³ Exponentiated change scores in parentheses.  
Statistical significance levels at ** p<.01 and * p<.05, respectively. 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 4 – Rosenbaum Bounds for Unemployment Benefit Treatment Effects 

Hidden bias equivalents2  Γ p-critical1 

Ln prev. 
wage 

Experi-
ence Tenure 

1.00 <.0001 0 0 0 

1.05 0.001 0.077 0.90 8.06 

1.10 0.028 0.150 1.79 16.17 

1.15 0.206 0.228 2.69 24.36 

1.20 0.590 0.309 3.60 32.67 

Wage change model 
(N=3,263 matched pairs) 

1.25 0.892 0.395 4.55 41.44 

1.00 <.0001 0 0 0 

1.50 <.0001 1.177 9.86 93.25 

2.00 <.0001 - - - 

2.10 0.001 - - - 

2.20 0.028 - - - 

2.30 0.203 - - - 

2.40 0.580 - - - 

Unemployment duration model 
(N=5,550 matched pairs) 

2.50 0.883 - - - 

1.00 <.0001 0 0 0 

1.20 0.001 0.309 3.60 32.67 

1.40 0.016 0.711 7.55 69.87 

1.50 0.041 1.177 9.86 93.25 

1.60 0.085 - 12.79 180.37 

1.80 0.239 - - - 

Regional mobility model 
(N=1,818 matched pairs) 

2.00 0.453 - - - 

Notes: 1p-critical is p+ for wage change model, p- for unemployment duration and regional mobility models.  
2 Hidden bias equivalents are computed at the empirical mean of covariates. Due to the nonlinear 

specification of covariate effects, equivalents cannot be computed at all levels of Γ. 
Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 5 – IV Estimates of Unemployment Benefit Effects 

 Benefit status instrumented with 

 High vs. low 
generosity states 
(5 levels) 

State dummies 
(45 levels) 

State policy Z: Liberal good 
cause regulation 

Log wage change 
 

0.355** 
(.087) 

0.123* 
(.072) 

0.432** 
(.159) 

Unemployment duration 

Pr(exit|T<3) 
-0.475** 
(.057) 

-0.417** 
(.051) 

-0.345** 
(.100) 

Regional mobility 

Pr(state change|T<18) 
-0.116** 
(.037) 

-0.125** 
(.031) 

-0.222** 
(.064) 

Notes: Models include the same set of covariates as the one for estimating the propensity score (cf. Table 1 
above). 

Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Table 6 – Sensitivity Analysis for IV Estimates of Unemployment Benefit 
Effects 

Instrument High vs. low generosity states  
(5 levels) 

 State policy Z:  
Liberal good cause regulation 

 Corr(W,D)  Corr(W,D) 

 .25 .50 .80 .95  .25 .50 .80 .95 

γ(W) Log wage change 

+0.01 <.001 0.001 0.006 0.013  0.013 0.038 0.113 0.175 

+0.02 <.001 0.001 0.006 0.013  0.038 0.200 0.607 0.796 

+0.03 <.001 0.005 0.040 0.093  0.096 0.534 0.960 0.995 

+0.05 0.002 0.049 0.409 0.684  0.353 0.974 1.000 1.000 

+0.07 0.009 0.241 0.901 0.989  0.708 0.974 1.000 1.000 

+0.10 0.049 0.763 1.000 1.000  0.974 1.000 1.000 1.000 

γ(W) Unemployment duration 

-0.01 <.001 <.001 <.001 <.001  <.001 0.030 0.169 0.309 

-0.02 <.001 <.001 <.001 <.001  0.030 0.365 0.933 0.992 

-0.03 <.001 <.001 <.001 <.001  0.133 0.883 1.000 1.000 

-0.05 <.001 <.001 0.004 0.056  0.664 1.000 1.000 1.000 

-0.07 <.001 <.001 0.350 0.864  0.975 1.000 1.000 1.000 

-0.10 <.001 0.109 0.999 1.000  1.000 1.000 1.000 1.000 

γ(W) Regional mobility 

-0.01 0.004 0.015 0.062 0.109  0.005 0.040 0.237 0.420 

-0.02 0.015 0.130 0.544 0.767  0.040 0.488 0.979 0.999 

-0.03 0.050 0.462 0.961 0.996  0.187 0.954 1.000 1.000 

-0.05 0.270 0.975 1.000 1.000  0.796 1.000 1.000 1.000 

-0.07 0.663 1.000 1.000 1.000  0.994 1.000 1.000 1.000 

-0.10 0.975 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

          

Notes: Statistical significance levels for one-tailed tests. 
Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 
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Figure 1 – State variation in access to unemployment benefits, by good cause 
policy 

 

 

Notes: 1984-1995 average data; data unadjusted for differences in the structure of work forces between states. 
Source: Survey of Income and Program Participation, Panels 1984, 1986, 1988, 1990, 1992 and 1993. 

 
 
                                            
1 http://www.wz-berlin.de/ars/ab/staff/gangl.en.htm. 
2  These two quantities can differ because individuals who self-select themselves into treatment are typically 

not representative either of the entire population or of any subpopulation that can be defined with observable 

variables. 
3 The conditional ATE and ATT are still averages, because cases with identical X will not generally have 

identical values of 0U and 1U . 

4  That the matching estimator is an estimator in general for the ATT and not the ATE is easy to show. Imagine 

an experiment where the treatment is to press a button at which point an envelope is delivered to the subject 

via a mail slot. Imagine that the treatment is to be given the right to play a game with the assistant. Tickets to 

play the game are drawn at random. The price to play the game is $10. Before one plays, the assistant holds a 

card that says that your reward for playing the game is either $0 or $20 with probability .5 for each outcome. 

If everyone given a ticket plays the game, the ATE is 0. If only those who know they will receive $20 play 

the game, an averaging of actual rewards will give a consistent estimate of the ATT. The experimenter can 

only recover the ATE if she knows what the subjects know about their potential rewards from playing the 

game. 
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5  These assumptions are (1) Stable unit treatment values (SUTVA), (2) random assignment to treatment , (3) 

the exclusion restriction (the outcome is independent of the IV, given the treatment status, and (4) nonzero 

causal effect of the IV on the treatment status, and (5) monotonicity (the probability of treatment is at least as 

high for a high value of the IV as for a low value for all units in the population).  
6  We have developed a Stata ado file that can implement these bounds in the case of propensity score matching 

for matched 1x1 pairs. The file is available at http://www.wz-berlin.de/ars/ab/staff/gangl.en.htm. 
7  Note that the Rosenbaum bounds bound the ATT, while the IV method bounds the LATE estimator. See 

Angrist (2002?) for the situation where the LATE might match the ATE even in the case of heterogeneous 

treatment effects.  
8  When the IV has multiple values and when the assumptions of the LATE are satisfied, then the IV sensitivity 

procedure must be applied at different points along the distribution of the IV in order to estimate the 

sensitivity of the LATE estimate at these different values of the IV. 
9  These data are described in U.S. Bureau of the Census (1991). The analysis sample is the inflow from 

employment into unemployment, and hence excludes spells of both first-time entrants to the labor force and 

(mostly) women returning to the labor market after family-related career interruptions. 
10  All wage data have been deflated to 1990 prices. In addition, the analyses exclude hourly real wage data 

below 1 and above 100 dollars (in 1990 prices), which is approximately equivalent to cutting off the top 1% 

of the observed wage distribution. 
11  The SUTVA must also be true for the IV estimator to yield the LATE. 
12  In most empirical applications, only a minority of cases is treated, and so matching extracts the subset of 

control cases which “best” matches with the treatment cases by some criterion. In cases where a majority of 

cases are treated, a matching procedure would be implemented by first randomly selecting a subsample of 

treated cases and then these cases would be matched with the control cases. 
13  This implies that we present linear probability models (LPM) for unemployment duration and regional 

mobility. We do so since the LPM yields parameter estimates on the probability scale that can be directly 

compared to the matching estimates, whereas in depending on scale, marginal effects calculated from logit or 

probit models would seem to offer only imperfect substitutes for this particular purpose. 
14  Strictly speaking, Rosenbaum’s procedure addresses hidden bias in general, i.e. comprises situations of both 

positive and negative self-selection into treatment status. Since the estimated treatment effect will actually 

represent a conservative effect estimate in a situation of negative self-selection, it is the case of differential 

assignment in accordance with outcomes (i.e. positive self-selection) that is of primary theoretical interest. 

Consequently, we restrict our attention to bounds for positive self-selection in the following. 
15  A “good cause” is a reason for quitting a job that does not disqualify one from receiving unemployment 

compensation. Our measure is constructed from U.S. Department of Labor (2002: 5.4ff.) and refers to the 

number of acceptable reasons for quitting. The measure reflects state legislation as of January 1, 2002. Apart 

from the fact that our main purpose is to illustrate the sensitivity analysis procedure, our substantive 

justification for the use of this measure would be to assume a certain degree of stability in state variation in 

UI generosity over time. 
16  We focus on disqualification policies as the appropriate policy dimension because we defined receipt of 

benefits as having had benefits during any (i.e. at least one) month in unemployment. In consequence, 

workers disqualified for failure to comply with search requirements at some point during an unemployment 

spell would still be counted as having received benefits in our analyses. As we do not want to test for the 

effects of stringency of search requirements, but of having had access to benefits per se, we prefer a simpler 

and hopefully more robust time-constant measure, which at the same time permits a conservative hypothesis 
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test in the sense that we assume benefit effects to follow even from partial benefit receipt during an 

unemployment spell. 
17  In supplementary analyses, we also used each of these components separately as the benchmark omitted 

variable. The results are similar, but the most conservative analysis is obtained when the two components are 

used simultaneously as the benchmark omitted variable. 
18  Note that if the correlation were negative instead of positive, the sign of γ would be reversed. 
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