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1. INTRODUCTION

The concept of diversity arises in several disciplines (Pielou, 1975), however, in this pa-
per it is discussed with reference to the ecological framework.
Since rates of habitat and species destruction continue to rise, the need of conserving bio-
diversity has become increasingly imperative during the last decade (Nagendra, 2001).
In light of this new requirement, the first problem that arises is to define and quantify a
complex concept such as biodiversity. Although many diversity indices have been pro-
posed, nowadays there is not yet a universally accepted measure.
In this paper we emphasize the multidimensional aspect of diversity and the consequent
inadequacy of the classical diversity indices which capture only one aspect of it. The
classical indices, in fact, represent diversity as a single statistic in which the number of
species and the evenness are confounded, providing a reductive and contradictory vision
of it. For this reason, Patil and Taillie (1979, 1982) have proposed to quantify diversity
by means of diversity profiles.
A diversity profile is a non-negative and convex curve which expresses diversity as a
function of the relative abundance vector.
As a result, Gattone and Di Battista (2009) proposed an alternative way of understanding
biological diversity through the classical functional data analysis (FDA). In this way, di-
versity profile is not simply a sequence of observations, but a function in a fixed domain
and it is possible to analyze the intrinsic structure of the data rather than their explicit
form.
In successive works, the authors have addressed the problem of estimate functional statis-
tics of the same functional form of the data highlighting that, with the classical func-
tional approach, it is not always possible to achieve this result (Di Battista et al., 2010).
For this reason they propose to adopt a parametric FDA approach which, under suitable
assumptions, allows us to use the parameter space in order to transport the statistics of
the parameters to the functional space.
The paper is organized as follows: in Section 2 we present a review of the fundamen-
tal measures of diversity with an emphasis on the limits of classical indices. The use of
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FDA to deal with diversity profiles is described in Section 3; while in Section 4 we focus
on the parametric FDA setting and on the functional statistics. Moreover, in Section
5 we present a case study carried out in the province of Florence, using the biodiver-
sity of epiphytic lichens. In this application the diversity of biological populations is
studied through some methods discussed in the paper with particular attention to the
parametric FDA approach. Especially we propose a classification of diversity profiles in
a parametric functional setting.

2. ECOLOGICAL DIVERSITY MEASURES

Diversity is considered a wealth of mankind. For this reason, it must be analyzed and
quantified to make possible its protection. Diversity is related to the apportionment of
some quantity into a number of categories (Patil and Taillie, 1979). In particular, in an
ecological framework, the diversity concept relies on the variety of living organisms in
a delineated study area (Pielou, 1975).
Since in recent years the attention in environmental protection is increasing, the pre-
serving of ecological communities diversity becomes one of the fundamental objectives
of environmental policy. In this context, the arising problem is to define a broad and
complex concept such as biodiversity and to measure it by proper indices. As a conse-
quence, a huge number of diversity indices have been developed to quantify and to assess
the biological health of a given community (Gove et al., 1994). However, there is no uni-
versally accepted biodiversity measure. Traditional indices, such as species richness, the
Shannon index (Shannon, 1948), and the Simpson index (Simpson, 1949), characterize
diversity through the number of different species (species richness) and the distribution
of the number of organism per species (species evenness).
Several studies (Gattone and Di Battista, 2009; Gove et al., 1994; Patil and Taillie, 1979)
have highlighted the inadequacy of the classical diversity indices. In fact, the latter incor-
porates a particular degree of sensitivity to rare and common species but, especially, they
represent diversity as a single statistic omitting the multidimensionality of the ecological
system. As a result, measures of diversity may lead to different ordering of communities
according to the selected index of diversity. Indeed, ecological diversity is a multidimen-
sional concept accounting for both species richness and species evenness, and the use of
a single index greatly reduces the complexity of the ecological systems (Gattone and Di
Battista, 2009).
In order to overcome the inappropriateness of a single index, Patil and Taillie (1979,
1982) have proposed to quantify diversity by means of diversity profiles, allowing all di-
versity measures to be encompassed into a single diversity spectrum. A diversity profile
is a non-negative and convex curve which expresses diversity as a function of the relative
abundance vector. In particular the authors proposed a general class of diversity indices
by defining species diversity as the average species rarity within the community. Let us
suppose that the ecological population is made up of N units and it is partitioned into s
species. Let Ni be the abundance of the i-th species (i = 1,2, .., s); hence N = (N1, ...,Ns )

′

denotes the abundance vector, while p = (p1, ..., ps )
′ represents the relative abundance

vector with pi = Ni/
∑s

i=1 Ni , such that 0≤ pi ≤ 1 and
∑N

i=1 pi = 1. Given a commu-
nity C = {s ; p1, .., ps } and defining R(i ,p) as a measure of the rarity for the i-th species,



Assessing biodiversity profile 71

the average rarity of species in the community is given by:

△(p) =
s∑

i=1

pi R(i ;p) (1)

Patil and Taillie (1979, 1982) discuss two types of rarity measures: dichotomous-type
and rank-type. In the first case the rarity of the i-th species depends only on its own
relative abundance pi ; thus rarity is denoted by R(pi ).

A general formulation of R(pi ) is R(pi ) = 1− p
β
i
/β so that we get theβ diversity profile

for community C as:

△β =
s∑

i=1

(1− p
β
i
)

β
pi =

1−
∑s

i=1 p
β+1

i

β
β≥−1 (2)

where the value of β denotes the relative importance of richness and evenness. The
restriction thatβ≥−1 assures that△β has certain desirable properties (Patil and Taillie,

1979, 1982). The plot of△β versusβ provides the diversity profile which is a decreasing

and convex curve.
Some of the most frequently used indices of diversity are special cases of equation (2); in
fact for β= −1 we get the richness index, for limβ→0 the Shannon diversity index and

for β= 1 the Simpson index.
In the case of rank-type measures, however, species rarity depends only on its rank and
community diversity is given as △ =

∑s
i=1 R(i)p#

i where p# is the vector of relative

abundances ranked in descending order (p#
1 ≥ ....≥ p#

s ) and the rarity of the i-th species
is given by R(i) = {r (i)} where {r (i)} represents the rank of pi in the sequence (p#

1 ≥
....≥ p#

s ).
A diversity approach has been developed by Patil and Taillie (1979, 1982) using a rank-
type rarity measure of type R(i) = 1 if i > l and R(i) = 0 if i ≤ l , for 1≤ l ≤ s . In this
case the right-hand tail sum family of diversity indices is obtained:

Tl =
s∑

i=l+1

p(i)# l = 0,1, ...., s (3)

where T0 = 1 and Ts = 0.
The plot of the (l ,Tl ) pairs for each community gives rise to the intrinsic diversity pro-
files which make possible to compare diversity among communities.
According to Patil and Taillie (1982) a community C is intrinsically more diverse than
C’, if C’ leads to C through a finite sequence of operations:

• transferring abundance from more to less abundant species without reversing the
rank-order of the species;

• transferring abundances to a new species;

• relabeling species (i.e., permuting the components of the abundance vector).
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We can generalize the formulation of a parametric family of diversity indices as:

Px : x ∈ℜm (4)

where Px are various diversity measures obtained by varying x in the domainℜm . The
curve which joins the (x, Px ) pairs for x ∈ℜm gives us the diversity profile. It depicts in
a single picture simultaneous values of diversity measures with varying sensitivities to
the rare and abundant species as a function of the parameter x (Gattone and Di Battista,
2009).

3. FUNCTIONAL DIVERSITY PROFILES

In order to consider the multidimensional aspect of biodiversity, Gattone and Di Bat-
tista (2009) suggested to explain the diversity profiles through functional data analysis
(FDA). As pointed out by Ramsay and Silverman (2005), FDA refers to the analysis of
information on functions or curves in a fixed domain. In this setting, the functional
datum is regarded as a single entity, instead of sequences of observations; hence this ap-
proach focuses on the characteristics of the functions rather than on the simple data.
The classical FDA approach assumes the existence of certain smooth functions f(·)which
generate the observations. However, in the real case of study, functional data are often
observed as a sequence of point data, then the function denoted by y = f (x) reduces to
a record of discrete observations that we can label by the T pairs (xt , yt ) where x ∈ ℜ
and yt is the values of the function computed at the point xt , t = 1, ...,T . Thus, the first
task in a functional data analysis is to convert the discrete measures values, y j1, ..., y j T ,

for each unit ( j = 1, ..., J ), to a functional form, f j (x), computable at any desired point

x ∈ ℜ. For this purpose, the basis function expansion technique allows us to represent
a function f(x) in terms of K known basis functions φk which are linearly independent
of each other (Ramsay and Silverman, 2005):

f(x) =
K∑

k=1

ckφk (x) (5)

where ck is the coefficient vector defining the linear combination, φk (x) is the vector of
basis functions and K represents the dimension of the expansion.
In particular, B-spline basis functions are the most used to represent functions. They are
piecewise polynomials constructed by dividing the interval of observation into subin-
tervals, with boundaries at points called break points. B-spline are generally applied to
non-periodic functional data because of their flexibility and easy implementation (Weg-
man and Wright, 1983).
Gattone and Di Battista (2009) have studied the diversity profile in the traditional non-
parametric FDA setting by using basis functions which have been suitably adapted in or-
der to respect the constraints of the functional diversity profiles (such as non-negativity,
decreasing monotonicity, and convexity).
Let us consider a biological population in a delineated study area which is partitioned
into J sub-areas ( j = 1, ..., J ). For each j-th environmental site we observe a relative abun-
dance vector, p = (p1, .., ps )

′. To quantify the diversity of the population the diversity
profile in (4) have been used.
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Classic FDA represents the diversity profile as a functional on the setℜm leading to the
non-parametric regression model:

P j x = f j (x)+ ε j x j = 1, ..., J ; (6)

where f j (x) is an arbitrary smooth function and ε denotes an unknown independent

zero-mean error term with variance σ2 (Gattone and Di Battista, 2009).

4. FUNCTIONAL STATISTICS IN PARAMETRIC FDA SETTING

In the functional setting, one of the main objectives is to define measures of synthesis
and variability of the phenomenon under study and to use the functional analysis to
obtain more information on the data such as derivative and so on. However, Di Battista
et al. (2010) emphasize that, with a standard FDA approach (Ramsay and Silverman,
2005), it is not possible to obtain summary statistics of the same functional form of the
observed data and this, obviously, leads to erroneous interpretations of the final func-
tional statistic. To overcome this problem, the authors suggest to adopt a parametric
FDA approach.
In fact, there are cases in which the observed functions are known in their explicit form
and fixed for each unit. Therefore a functional summary statistic should take into ac-
count this issue and should be a function of the same functional form of the observed
data. In the parametric FDA setting, the functional data observed for each unit belong
to a parametric family of functions, say S, with s real parameters, that is:

S = { f (θ; x)} (7)

where θ = (θ1,θ2, ...,θs )
′ represents a set of unknown parameters taking values in a

parameter space Θ while x ∈ℜm is the domain of the functions.
In this framework, functional data constitute a subset S of some Lp space, with 0< p >
∞ and with the usual Lp -norm, ‖ f ‖p (Rudin, 2006):

‖ f ‖p =
n∫

X

| f |p dµ
o 1

p

<∞ (8)

where X is an arbitrary measure space with a positive measure µ.
In particular, in this work every Lp space with p > 0 (Banach-space) has been considered.
A subset of functions, S, is a subspace if it is itself a vector space, that is, given two
functions f and g :

1. whenever f ∈ S and g ∈ S, then f + g ∈ S;

2. whenever f ∈ S and α is a scalar, then α f ∈ S.

In addition it is possible to define the Lp distance of two functions f and g as:

d ( f , g ) = ‖ f − g‖Lp =

∫

X

| f (x)− g (x)|p d x (9)
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In an ecological setting, S could be the family of△x diversity profiles (defined in (2) and
(4) and it is assumed that the biological population under study is fixed and has got a list
frame of s species. Thus, data are considered fixed (Thompson and Seber, 1996) and each
relative abundance vector can be assumed as a single parameter p j = (p j1, p j2, ....p j s ) =

θ j , so that p = θ.

Starting from J functional data, f (θ1, x), ..., f (θJ , x), belonging to S, the aim is to find a

functional statistic, f̂ (θ, x) =H ( f (θ1, x), ...., f (θJ , x)), which is an element of S.

When S is a linear vectorial subspace in Lp , it is possible to express the functional statis-
tics as a straightforward statistics of the functions. For example, the functional mean
has been obtained as:

f (θ, x) =

∑J
j=1

f (θ j , x)

J
(10)

In this case f (θ, x) ∈ S because S is closed with respect to linear combinations.
However, in general the functional data constitute a subspace which is not a linear vec-
torial subspace of Lp , and the functional statistic in (10) does not necessarily lead to an
element belonging to S.
Inspired by mathematical tools, and assuming a monotonic dependence from the param-
eters, it is possible to use the parameter space in order to transport the statistics of the
parameters to the functional space. In particular it is assumed that:

1. the parameter space Θ is a convex subset of ℜs that is (θ1,θ2, ...,θJ )
′,

where θ j = (θ j1,θ j2, ...,θ j s ); α j i is a scalar with 0< α j i < 1 and
∑J

j=1
α j i = 1 for

each i = 1,2, ..., s ; then
∑J

j=1
α j iθ j i = θi ∈Θ for each i = 1,2, ...s ;

2. there is a bi-univocal correspondence between the family S and a convex parameter
spaceΘ, so that each functional datum f (θ, x) of S is unequivocally defined by the
parameter θ.

Under these assumptions, a functional statistic for the functional data is given by a suit-
able statistic of the parameters θ1, ...,θJ :

bθ = K(θ1, ...,θJ ) (11)

and the functional statistic will be an element of S with the statistic bθ as parameter.
We can define the function K(·) through the analogy criterion, thus, for the functional

mean, the function K(·) would be the mean of the parameters bθ = (θ1, ...,θ s ) where

θi =
∑J

j=1

pi j

J , for i = 1, ..., s .

The advantage of this approach is that it is possible to require for the functional mean
the same properties of the mean of the parameters.
The monotonic dependence assumption ensures the internality property of the func-

tional mean
�

f (θ1, x) ≤ f (θ, x) ≤ f (θJ , x)
�
. However, in many cases, this assumption

is too strong. To overcome this drawback we can introduce a weak monotonic depen-
dence; in fact if it is possible to define a finite partition of X : P = {Xi }, where:
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1.
⋃

i
Xi =X ;

2. Xi

⋂
Xk = ; if i 6= k;

3. for each Xi the monotonic dependence of the parameters and, accordingly, the
internality property of the mean are verified;

then the internality property of the mean is ensured in all the partition X . Therefore,
if S is a parametric functional space in which the functions satisfy the weak monotonic

dependence assumption, then f (θ, x) satisfies the weak internality property.
In order to consider a measure of functional variability, Di Battista et al. (2010) express
the r -th order algebraic deviation between the observed functional data f (θ j , x) and the

functional statistic f (θ, x) as:

v r
j (x) = | f (θ j , x)− f (θ, x)|r (12)

Then, the functional variability can be defined pointwise by the r -th functional moment
by placing r=2:

V r (x) =
1

J

J∑

j=1

v r
j (x) (13)

Defining the Lp distance of two functions as in (9), the function V r (x) has the following

property: if f (θ j , x) = f (θ, x) a.e., ∀ j = 1.2..., J then V r (x) = 0 a.e..

5. EPIPHYTIC LICHEN BIODIVERSITY PROFILE: A CASE STUDY IN THE PROVINCE

OF FLORENCE

Diversity profiles and FDA approach have been applied to evaluate the diversity of epi-
phytic lichens, i.e. lichens which live on trees bark.
Lichens are composite organisms consisting of a fungus (the mycobiont) and a photosyn-
thetic partner (the photobiont) growing together in a symbiotic relationship. Lichens
are long-lived and slow-growing organisms, that present a good constancy of morphol-
ogy over time (Conti and Cecchetti, 2001). The vast majority of them shows a wide
range of tolerance to environmental extremes and, for this reason, they are able to
colonise habitats where few other macroscopic organisms can grow (Asta et al., 2002).
Nevertheless lichens are particularly sensitive to environmental stresses, especially with
regard to pollution, eutrophication and climate change (ANPA, 2001), because their
metabolism is directly dependent on gas exchange. Since lichens respond to phytotoxic
gases at cellular, individual and community level (Van Dobben et al., 2001), in the last
decades, biodiversity of epiphytic lichens has been considered a good indicator of air
pollution (Nimis et al., 1989; Giordani et al., 2002; Cristofolini et al., 2008). In particu-
lar, bioindication techniques are based on the observation of decreased richness of lichen
communities, in relation to increasing concentration of atmospheric pollutants (Cristo-
folini et al., 2008).
Generally lichen biodiversity studies are based on the analysis of the Lichen Diversity
Value (LDV) which is calculated as the sum of lichen frequencies in a sampling grid on
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a tree and, then, it is converted into naturality/alteration classes in order to define dif-
ferent zones of environmental quality (ANPA, 2001; Asta et al., 2002). However, as the
classic biodiversity indices, it is a scalar which can provide a narrow view of biodiver-
sity.
In this paper we consider epiphytic lichen biodiversity of Tuscany region, in central
Italy. Data on lichen abundance were collected by ARPAT (Regional Agency for En-
vironmental Protection of Tuscany) in partnership with SIRA (Regional Environment
Information System of Tuscany) following the standards suggested by Asta et al. (2002).
The survey lasted from 2003 to 2009 and involved 65 stations planned by the national
protocol. Further details on the data may be found in http://sira.arpat.toscana.it/sira/
biomonitoraggio/ucp.htm.
For practical purposes, here we consider an extract of the more general Tuscan lichen
data set; in particular we focus on the province of Florence for a total of 11 stations in-
volving 10 municipalities (because two stations fall in the municipality of Firenzuola).
Figure (1) shows the location of the sample units in the province and reports the legend
of the station codes which will be used again in following graphs.
Within each environmental site, the closest trees to the center of the station and con-

Figure 1 – Location of the 11 stations in the province of Florence.

forming to minimum standards (circumference > 60 cm; inclination of the bole < 10◦;
absence of damage and decorticated areas on the trunk) have been considered. In the
survey area, 34 trees have been collected, three for each site with the exception of San
Casciano in Val di Pesa with four trees. All the trees are Quercus except for a single tree
which is a Tilia sp. on the Barberino Val D’Elsa station.
For each tree, the abundance of every lichen species has been recorded using a sampling
grid consisting of a 10×50 cm ladder divided into five 10×10 cm quadrants. This lad-
der grid has been placed systematically on the North, East, South and West side of the
bole of each tree (four per tree), with the top edge 1.5 m above ground, as suggested by
Asta et al. (2002). Species frequency has been calculated for each tree as the number of
quadrants in which the species is present. Thus, the abundance vector of the i-th species
ranges from 0 to 20 for each tree.
In this application, for every j -th environmental site ( j = 1, .., 11) and for each i -th
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species (i = 1, .., 54), we consider an abundance vector, N j = (N j1, ..,N j s )
′, calculated as

the sum of the lichen frequencies found on every tree belonging to the plot.
A total of 54 epiphytic lichen species has been found on the 11 sampled plots. As shown
in Table (1), the most common species in the province are Physcia adscendens, Lepraria
incana and Lecidella elaochroma with a frequency of 374, 307 and 232 respectively. Fur-
thermore Physcia adscendens and Lecidella elaochroma are the only species present in all
sites. The rarest species, instead, belong to Caloplaca sp. with an abundance equal to 1.

Regard to the distribution of species within the sites, 31.5% of the species is present

Figure 2 – Distribution of the species within the sites: percentage of species present at each site.

only in one of them while only 3.7% is found in all sites (figure 2).
According to a preliminary descriptive analysis is evident the prevalence of rare species
both in terms of abundance both in terms of distribution between sites.
Initially lichen biodiversity has been evaluated through traditional diversity indices with
regard to the relative abundance vector p j = (p j1, ..., p j s )

′. As shown in Table (2), Sesto

Fiorentino presents the lowest diversity for all indices. On the other hand, Barberino
Val D’Elsa reflects the greatest diversity for both the Shannon and the Simpson index.
According to the richness index and lichen biodiversity index, San Casciano Val di Pesa
is the site with the higher biodiversity. The analysis of the classical diversity indices em-
phasizes their inadequacy, because they return a different ordering of sites according to
the particular aspect of diversity under consideration. It is also evident that LDV cap-
tures only one type of diversity, omitting the species composition and showing results
similar to the richness index.
To overcome these limits, theβ-profile expressed in equation (2) has been used to assess

lichen biodiversity. Figure (3) shows the curves obtained for each environmental site.
The analysis of the β-profile does not return a clear ordering between sites. However
it seems that the discrimination between them is mainly explained by species richness.
The study of certain β values confirms the results obtained by classical indices. In fact,
San Casciano in Val di Pesa shows a greater diversity in species richness (for β = −1);
while Sesto Fiorentino presents the lowest richness in species. Furthermore, forβ from
-0.3 to 0.4, Barberino Val D’Elsa reflects the most different profile.
In order to compare diversity between communities, the intrinsic diversity profile in (3)
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TABLE 1
Provincial abundance and distribution between sites for species.

Species Provincial total Min Max Number of sites
Physcia adscendens 374 10 50 11
Lepraria incana 307 0 65 9
Lecidella elaeochroma 233 4 40 11
Hyperphyscia adglutinata 167 0 30 9
Candelariella xanthostigma 161 0 43 10
Parmelia sulcata Taylor 150 0 51 8
Normandina pulchella 143 0 38 7
Candelaria concolor 140 0 52 9
Flavoparmelia caperata 136 0 43 7
Lecanora carpinea 128 0 45 8
Physconia grisea 95 0 26 9
Lecanora chlarotera Nyl. 92 0 22 8
Flavoparmelia soredians 87 0 45 3
Phaeophyscia orbicularis 87 0 18 7
Lecanora expallens Ach. 77 0 22 7
Physcia tenella 70 0 37 4
Punctelia subrudecta 63 0 16 8
Xanthoria parietina 62 0 33 6
Evernia prunastri 52 0 14 8
Pertusaria albescens 52 0 27 5
Physcia aipolia 51 0 20 4
Lecanora horiza 42 0 22 6
Leprocaulon microscopicum 39 0 11 6
Melanelia subaurifera 39 0 37 3
Parmotrema chinense 38 0 15 5
Parmelina pastillifera 33 0 15 4
Lepraria sp 29 0 15 2
Parmelia saxatilis 28 0 11 4
Catillaria nigroclavata 24 0 24 1
Parmelina tiliacea 22 0 13 3
Punctelia borreri 20 0 20 1
Ramalina fastigiata 19 0 14 3
Gyalecta 17 0 7 4
Pleurosticta acetabulum 13 0 8 3
Phaeophyscia chloantha 12 0 7 2
Physcia biziana 10 0 10 1
Pertusaria pertusa 10 0 9 2
Phaeophyscia hirsuta 8 0 8 1
Physconia distorta 7 0 4 2
Lecanora meridionalis H.Magn. 4 0 4 1
Parmelina quercina 4 0 4 1
Pertusaria amara 4 0 4 1
Collema sp 3 0 3 1
Crustose 3 0 3 1
Melanelia sp 3 0 2 2
Physconia venusta 3 0 3 1
Buellia schaereri De Not. 2 0 1 2
Opegrapha atra Pers. 2 0 2 1
Physcia stellaris 2 0 2 1
Phaeophyscia cernohorskyi 2 0 2 1
Physconia perisidiosa 2 0 2 1
Rinodina sp 2 0 2 1
Caloplaca cerina 1 0 1 1
Caloplaca sp 1 0 1 1
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TABLE 2
Classical diversity indices and LDV for the 11 stations.

Municipalities Code △Ric h △S h △Si LDV
Firenzuola 1 338 19 2.65 0.91 92.33
Firenzuola 2 339 19 2.57 0.90 84.67
Barberino di Mugello 349 17 2.52 0.90 102.00
Vicchio 350 21 2.65 0.91 92.67
San Godenzo 351 19 2.42 0.88 97.67
Sesto Fiorentino 360 14 2.32 0.88 63.33
Pontassieve 361 17 2.68 0.92 82.33
Montespertoli 371 26 2.81 0.92 91.00
San Casciano in Val di Pesa 372 29 2.90 0.93 118.25
Incisa in Val D’Arno 373 22 2.68 0.91 93.00
Barberino Val D’Elsa 3851 26 2.93 0.94 112.00

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

Beta

B
et

a 
P

ro
fil

e

 

 
Firenzuola1
Firenzuola2
Barberino di Mugello
Vicchio
San Godenzo
Sesto Fiorentino
Pontassieve
Montespertoli
San Casciano in Val di Pesa
Incisa in Val D ’Arno
Barberino Val D ’Elsa

Figure 3 – β-profiles (△β) for the 11 sites in the province of Florence.

has been applied. Figure (4) displays the intrinsic profiles for each environmental site,
with species abundances on the abscissa. Since the profiles cross each other, it is not
possible to distinguish a site with greater diversity. Where possible, it could be carry
on with a pairwise comparison. However, to get an overview of the study area, we pro-
ceeded to identify groups among sites on the basis of the abundances. For this purpose
parametric FDA approach has been applied on account of the limitations highlighted by
Di Battista et al. (2010), with reference to the classical FDA. In this setting, it is possible
to define functional groups applying clustering algorithms on the parameters instead of
on the functions themselves. In particular, agglomerative Ward’s hierarchical clustering
method (Ward, 1963) has been implemented using Euclidean distance as dissimilarity
measure among observations. As shown by the dendrogram in Figure (5), it is possible
to recognize two groups for a distance of 0.35.
The first group is composed of seven sites: Firenzuola2, Pontassieve, Vicchio, Barberino
di Mugello, Montespertoli, Barberino Val D’Elsa and Sesto Fiorentino. The second
group, instead, includes only four sites: San Casciano in Val di Pesa, Incisa in Val D’Arno,
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Figure 4 – Intrinsic profiles (Tl ) for the 11 sites in the province of Florence.
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Figure 5 – Dendrogram for Ward’s
method applied to the 11 sites.

Figure 6 – Clusters spatial distribution in the province
of Florence.

Firenzuola and San Godenzo. The first cluster involves 45 species with a nonzero abun-
dance vector, while the second 38. The spatial distribution of the groups in the province
area does not show a clear spatial pattern (Figure 6).
Figure (7) displays the intrinsic profiles distinguishing among sites of the first (in red)
and second group (in blue).
In order to highlight the specificity of a single group respect to the entire area, the func-

tional mean profile has been estimated. Following the parametric functional approach,
it is possible to calculate the mean of the relative abundance vector for each group and
for the entire study area on the parameters rather than on the functions. Since the num-
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Figure 7 – Tl for sites belonging to cluster 1 (in red) and cluster 2 (in blue).

ber of lichen species is fixed (s = 54), the same number of lichens has been considered
for each site by assuming an abundance equal to zero for species that were not present
in the specific site. This assumption allows us to remove the possibility that the species
observed in each site may be different. For this purpose it points out that the biodiver-
sity decreases when the dominance of some species increases, while it increases when the
equitability of the species distribution and the species richness increase. Since all species
for each site have been considered, the effect of the diversity has been amplified and this
allows us to highlight differences between clusters. Starting from these considerations,

three mean vectors have been estimated. In particular, θ = (θ1, ...,θ s ) represents the

mean vector of the entire study area, where θi =
1
J

∑J
j=1

pi j for i = 1, ..., s . Whereas,

defining by G the number of groups (g = 1, ...,G), with G = 2, two mean vectors, θ1

and θ2 have been obtained, where θi j =
1
Jg

∑Jg

j=1
for g = 1, ...,G and i = 1, ..., s . There-

after, using these estimates, the mean intrinsic profile for cluster one, cluster two and for
the entire area has been built (Figure 8) applying the equation (3) to the mean vectors,
after having sorted their elements in descending order.
Since the intrinsic profile requires a descending sort of the relative abundance vector,

a different parameter ordering from site to site has been obtained. This condition com-
promises the possibility to trace a general ordering of the mean abundance vector of the
entire area. Accordingly the assumption of monotonic dependence from the parameters
would seem fail, together with the internality properties of the functional mean.
Indeed, the internality property of the functional mean profile is ensured within the sub-
space S of Lp constituted by the functional data. In fact, the functional mean profile lies
between the upper and lower bound. The upper bound represents the maximum diver-
sity which occurs when all of the observed species present the same relative abundance
value (pi = 1/s for i = 1, ..., s). On the contrary the lower limit denotes a situation of
maximum dominance, that is, when there is only one species within a community.
Figure (8) shows that the mean profile of the entire area is more diverse from that of the
single groups, and this is clearly due to the increasing equitability, given that the richness
is fixed. Focusing on the analysis of the two groups, also in this case, it is not possible to
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Figure 8 – Mean Tl for cluster 1 (in red), cluster 2 (in blue) and for the entire area (in black).

distinguish an ordering among the profiles since they continue to cross each other.
This is probably due to the uniformity of the study area, which leads to the impossibility
of identifying homogeneous site groups. To verify this, we proceeded with the analysis
of the functional variability measures, decomposing the functional total variance into
the within and between components:

V arT (x) =V arB (x)+V arB (x) (14)

In particular, the functional within variability, V arW (x), has been calculated as:

V arW (x) =
G∑

g=1

V 2
g (x)

Jg

J
(15)

where:

V 2
g (x) =

1

Jg

Jg∑

j=1

�
f (θi g , x)− f (θ g , x)

�2
(16)

represents the functional variance of the g-th group (g = 1, ...,G).
Finally, the functional between variability, V arB (x), has been computed as:

V arB (x) =
Jg

J

G∑

g=1

�
f (θg , x)− f (θ, x)

�2
(17)

Figure (9) displays the single functional variances of the two groups (V 2
1 (x) in red and

V 2
2 (x) in blue) together with the functional within variability (V arW (x) in black) and

shows less variability in the second group than in the first. Since the horizontal axis
represents the species permutations according to a descending ordering of the relative
abundance vector, it is not possible to establish which species is more variable than the
others. Therefore the functional variances should be interpreted according to the mag-
nitude of the area under the variability curve. Figure (10) shows that the functional
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and functional within variability.
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Figure 10 – Measures of variability: within, be-
tween and total functional variability.

between variability (in red) is very low while the functional within variability (in black)
is almost equal to the total functional variability (in blue). This confirms the impossi-
bility of classifying the sites of the study area considering only the abundance vector.
Since the profiles are not comparable and it is not possible to distinguish exhaustive
groups, the best way to study the diversity in the province of Florence is through the
mean profile and the functional variability of the entire area. This application has iden-
tified homogeneity among the sites in terms of diversity. This could be due to the fact
that a single province has been analyzed. In fact, more considerations could be obtained
increasing the spectrum of the area by considering the entire Tuscany region.
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SUMMARY

Assessing biodiversity profile through FDA

The past few years have highlighted the need to protect diversity in its broader concept and, in
particular, with reference to the ecological context for environmental protection. In this context,
the problem of the definition and the measurement of diversity becomes fundamental. This pa-
per provides a general picture of the main biodiversity indices proposed in literature and shows
their limits in favor of diversity profiles. Since the diversity profile is a curve which expresses the
diversity as a function of the relative abundance vector, it may be studied through the functional
approach. In particular, we point out the advantages of the parametric FDA which, under suitable
assumptions, allow us to obtain summary statistics of the same functional form of the observed
data. Diversity profiles and parametric FDA approach have been applied to evaluate the diversity
of epiphytic lichens in the province of Florence, providing an alternative way of understanding
the biological diversity.


