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Abstract:  There is increasing emphasis on active transportation, such 

as walking, in transportation planning as a sustainable form of mobil-

ity and in public health as a means of achieving recommended physical 

activity and better health outcomes. A research focus is the influence of 

the built environment on walking, with the ultimate goal of identify-

ing environmental modifications that invite more walking. A key issue 

is determining the spatial units for walkability measures so that they 

reflect potential walking behavior. This paper develops methods for 

assessing walkability within individual activity spaces: the geographic 

region accessible to an individual during a given walking trip. Based 

on objective walkability measures of the street blocks, we use three 

summary measures for walkability within activity spaces: i) the average 

walkability score across block segments, ii) the standard deviation, and 

iii) the network autocorrelation. We assess the method using data from 

an empirical study of built environment walkability and walking be-

havior in Salt Lake City, Utah. We visualize these activity-space sum-

mary measures to compare walkability among individuals’ trips within 

their neighborhoods. We also compare summary measures for activity 

spaces versus Census block groups, with the result that they agree less 

than half of the time. 

1 Introduction

�e analysis of the built environment for the suitability and attractiveness of walking has expanded con-
siderably in the past decade in the �elds of geography, psychology, public health, and urban planning 
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(Brownson et al. 2009). Urban planners are interested in walking as a means of reducing vehicle miles 
traveled, greenhouse gas emissions, and sprawl (Ewing and Handy 2009). Public health researchers are 
interested in walking because it can ful�ll the US government’s recommended daily amount of exercise, 
reduce obesity, and �ght chronic diseases (Gebel et al. 2011). Encouraging more walking trips and more 
time spent walking are bene�cial societal goals of interest to a wide range of policy makers (Sallis et al. 
2004; Brown et al. 2013). 

A recent emphasis in walkability research and policy is the in�uence of the built environment 
(Agrawal et al. 2008; Sallis et al. 2004). Although socioeconomic characteristics and individual prefer-
ences are signi�cant in�uences, the built environment also has a signi�cant in�uence on peoples’ choices 
to walk (Lee and Moudon 2006). Built environment characteristics are also often a more tractable 
intervention than changing personal characteristics and attitudes (Cerin et al. 2007a). A key research 
question is how to assess a built environment’s conduciveness for walking, also known as walkability. 

Assessments of the built environment for walking are typically at two levels of geographic aggrega-
tion. At a disaggregate level, instruments such as the Irvine Minnesota Index (IMI) measure walkability 
for individual street block faces, or both sides of the street between intersections (Boarnet et al. 2006; 
Day et al. 2006). However, how to combine these individual segments into regions that are relevant to 
walking behavior is a question that needs attention. In contrast, it is common to use Census geography, 
such as block groups, to assess walkability. However, this coarse and arbitrary geographic delineation is 
likely to mask �ne-grained spatial variation in walkability that can a�ect walking behavior (Day et al. 
2006). �is is another manifestation of the modi�able areal unit problem (MAUP) in spatial analysis: 
Arbitrary aggregation and zoning systems lead to inaccurate results (e.g., Yamada et al. 2012). 

�is paper develops methods to summarize built environment attributes using spatially aggregated 
units that are relevant to walking behavior. We use the concept of individual activity spaces or the 
spatial region accessible to an individual during a given trip as the basis for summarizing walkability. 
We �rst estimate individual activity spaces within the street network. �ese regions comprise the set of 
potential network paths between known trip endpoints and a travel time budget. Based on block-level 
composite walkability dimensions derived from �eld-collected IMI street block data, we calculate three 
walkability summary measures within each activity space: i) the average score representing the general 
level of walkability within the activity space; ii) the standard deviation score representing the variation 
in walkability in the activity space; and iii) the network autocorrelation score representing the spatial 
coherence of walkability: How spatially clustered are network links (i.e., block segments) with high or 
low walkability? �ese three pieces of information combine to provide a comprehensive picture of walk-
ability. Activity spaces with high average walkability, low variation and high positive network autocor-
relation are best for walking, since these o�er uniformly good environments with spatial coherence that 
allow the formation of highly walkable routes from individual blocks. Conversely, activity spaces with 
low average walkability, low variation, and negative spatial autocorrelation are worst for walking since 
they are uniformly bad and do not allow for any uniformly high walkable routes. �e three measures 
can be visualized and mapped to compare and explore walkability for representative individuals within 
a built environment. We illustrate our method using IMI-derived data from an empirical study of built 
environment walkability and walking behavior in a selection of neighborhoods in Salt Lake City, Utah. 
Furthermore, we compare the activity space measures to spatial aggregation of the same IMI data at the 
US Census block group-level to assess the di�erent portrayals of walkability provided by behaviorally 
relevant versus arti�cial regions.

�e next section of the paper reviews related research, which includes the de�nition and measure-
ment of walkability. Section 3 describes the methods employed, which include generating activity spaces 
by using network potential path areas and the spatial autocorrelation measurement with Moran’s I. Sec-
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tion 4 comprises scatterplots of the summary measures and maps of walkability quadrant groups and 
comparison to block group measures. �e �nal section concludes with a discussion of the results and 
methods, limitations, and future research. 

2 Literature review

2.1 Walkability measurement

Walkability is the attractiveness and suitability of the built environment for walking. Walkability mea-
surement is primarily concerned with quantifying the physical aspects of the built environment that 
may impact walking behavior (Saelens, Sallis, and Frank 2003). Walkability measurement can also con-
sider indirect built environment attributes, such as the perception of the built environment, which may 
have bene�cial or detrimental impacts on walking (Brown et al. 2007). Measurement of built environ-
ment factors may include walking facilities, such as the presence and quality of sidewalks and crosswalks, 
number of vehicle travel lanes, and adjacent land-use types and density (Moudon and Lee 2003). In-
direct built environment factors may include the presence of other pedestrians or perceptions of safety 
from tra�c or crime (Moudon and Lee 2003). Walkability measures often involve objective, subjective, 
or a mix of objective and subjective data. Objective measurements use direct �eld observations often 
called a walkability audit, or indirect methods such as the evaluation of secondary data using geographic 
information system (GIS) techniques. Subjective measurements can involve direct interviews or surveys 
with pedestrians or potential pedestrians in a study area or indirect methods such as the evaluation of 
built environment attributes related to perceptual response, such as design qualities (Ewing et al. 2006).
 
Walkability Measures. Issues in walkability measurement include indicator selection, spatial scale, and 
trip purpose. Walkability assessments within a built environment can di�er based on the de�nitions and 
types of measurements used to measure both walking and walkability attributes (Moudon et al. 2006; 
Cerin et al. 2007b). For example, a commonly used land-use-mix indicator, the entropy index, does 
not consider speci�c types of land uses, only the variation between classes such as residential, industrial, 
commercial, and recreation (e.g., Schlossberg 2006; Purciel et al. 2009). �erefore, di�erent land-use 
types may lead to the same land-use-mix score, masking the e�ect of speci�c land-use types on walking 
variability (Brown et al. 2009; Yamada et al. 2012). Finally, the selection of the walking outcome mea-
surement, such as a subset of total walking based on a speci�c trip purpose or trips that meet a minimum 
physical activity threshold, can a�ect the results of the relationship, both its signi�cance and strength, 
between walking and the built environment (Alfonzo 2005).

Two commonly used levels of spatial aggregation for walkability assessment are street block-level 
and area-level. Block-level measures are very �ne-grained in characterizing the built environment related 
to walking. Block-level measures are usually calculated with an on-site walkability audit, though the 
use of Google street view has been explored (Rundle et al. 2011). An example of the use of an audit is 
to assess the e�ects of living on a more walkable block on other activities, such as light rail transit use 
(Werner, Brown, and Gallimore 2010). Although Werner, Brown, and Gallimore (2010) found a re-
lationship between living on a walkable block and riding light rail, the study was limited because only 
one block was evaluated rather than the entire route to the train station. Gallimore, Brown, and Werner 
(2011) included all relevant street block segments in its estimates of the walkability of children’s routes 
from home to school. �is improved precision by weighting walkability scores by block length and by 
providing more comprehensive walkability assessment of the entire route. 

In contrast to segment-based walkability scores for block faces, calculation of area-level measures 
uses GIS data or through participant’s reported neighborhood perceptions. Area-level measures of walk-



190 JOURNAL OF TRANSPORT AND LAND USE 9.1

ability can be coarse and obscure variation in the local built environment that may be crucial to in�u-
encing walking. Area-level measures also blur the �ne-grained phenomena of social/spatial interaction 
of neighbors, and areas analyzed do not generally correspond to residents’ de�nition of their neighbor-
hoods (Coulton et al. 2001). �e spatial units used in area-level measures are typically collected for other 
purposes, such as tax assessment or zoning, that often do not correspond to a geography relevant for the 
scale of walking behavior (Day et al. 2006). Parcel-level measures are an improvement over area-level 
measures (Lee, Moudon, and Courbois 2006). Parcels de�ne a study area of residents with similar built 
environment attributes. However, this method does not meet the intuitive criterion that a neighbor-
hood be spatially contiguous. In general, the parcel-level of detail is a useful scale for informing objec-
tive measures of the built environment; however, there are the same drawbacks as with other data not 
collected speci�cally for studying walking, such as inconsistent de�nitions and incompleteness (Leslie 
et al. 2007). A limitation to area-level measures is that de�nitions of spatial units and scale a�ect the 
analysis of the data, a widely recognized problem known as the modi�able areal unit problem (MAUP; 
Duncan et al. 2010). �is problem can be addressed by performing analyses at multiple scales with 
di�erent spatial unit con�gurations for research questions in which the appropriate analysis scale is not 
known (e.g., Yamada et al. 2012). MAUP can also be mitigated by de�ning spatial units and scales that 
are meaningful to the behavior or phenomenon under study (Brownson et al. 2009; Mitra and Buliung 
2012; Werner, Brown, and Gallimore 2010).

Walkability data collection: Field surveys and secondary data. Field audits by trained raters allow the 
collection of data that are speci�cally oriented toward walkability questions. A commonly used instru-
ment for �eld audits is the IMI. �e IMI consists of 162 unique elements thought to in�uence active liv-
ing (Day et al. 2006). �ese elements include physical features like the presence of driveways, sidewalks, 
street trees, and streetlights. �e result of the audit is a numeric walkability score for di�erent categories 
that gives a relative indication of how attractive a street block is for walking. �e collection of detailed 
and potentially correlated data is time and resource consuming. �e simpli�cation of the diverse nature 
of a block into a single score, or set of dimensions, can cause signi�cantly di�erent blocks to be clas-
si�ed as similar (Gallimore, Brown, and Werner 2011). Also the commonly used equally weighted, 
additive aggregation of items into dimensions assumes that attributes are compensatory—such as the 
high quality of a sidewalk compensates for the low quality of street lighting; this may not be the case 
for all attributes. �ese elements associated with walking have been validated against self-reported and 
accelerometer-measured physical activity measures (Boarnet et al. 2011). 

GIS-based measures of walkability use readily available secondary data in most cases and are there-
fore less expensive and quicker to determine, compared to �eld-based walkability audits. GIS-based 
measures attempt to characterize a neighborhood’s suitability for walking by using relevant data averaged 
over a neighborhood. In general, a small set of attributes are used, such as residential density, intersection 
density, land-use mix, and retail proximity (e.g., Gebel et al. 2011; Leslie et al. 2007; Lee, Moudon, and 
Courbois 2006). GIS-based walkability measures for neighborhoods are sensitive to spatial scale and 
the location of boundaries. �e common operational de�nition of neighborhoods coincides with ad-
ministrative geography, such as Census tracts (e.g., Cutts et al. 2009). Calculating walkability measures 
using this geography does not necessarily correspond to residents’ physical or perceived neighborhoods 
(Coulton et al. 2001; Moudon et al. 2006). One possible solution is to assess built environment attri-
butes in a bu�er around a resident’s home (e.g., Troped et al. 2010; Berke et al. 2007), or use a resident’s 
perceived neighborhood extent (e.g., Gebel et al. 2011). However, if these bu�er regions are not based 
on the resident’s behavior, the analysis still su�ers from artifacts associated with the MAUP. 
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2.2 Activity spaces and walkability assessment

As mentioned above, both street block-level and Census geography-level walkability assessments have 
drawbacks for walkability assessment; aggregation of block-level assessment is sensitive to aggregation 
method and area selected, but aggregating to arbitrary spatial units such as Census tracts may lead to 
arbitrary results. �e concept of activity spaces provides a more behaviorally relevant unit of analysis 
for walkability assessment. An activity space is the limited portion of an environment experienced by 
an individual over some time period such as daily, weekly, monthly, annually, or lifetime (Golledge and 
Stimson 1987).

One method for de�ning activity spaces is through individual space-time prisms, or the accessible 
region to an individual during a mobility episode (Hägerstrand 1970). A space-time prism for a trip is 
the collection of all possible paths between two geographic locations with corresponding departure and 
arrival times for the origin and destination, respectively. �e departure and arrival times de�ne a time 
budget or available time for that episode. Time budgets can be derived empirically from activity data col-
lected through behavioral surveys, diaries or technologies based on GPS receivers or mobile phones (Ahas, 
Miller, and Witlox 2014). �ey can also be used as an input parameter as part of scenario modeling.

We can create a more realistic and relevant activity space through the concept of a network time 
prism. �is is a space-time prism constrained by the geometry, connectivity, and speeds of a transporta-
tion network (Kuijpers and Othman 2009; Miller 1999). �e network activity space for a speci�c trip is 
the selection of all the traversable street blocks that meet the time, speed, and connectivity requirements, 
based on the network time prism. Figure 1 illustrates an activity space based on a network time prism 
de�ned by the potential routes for a trip from home to a park given a time budget of 12 minutes.

Figure 1:  Example of a network activity space highlighting accessible street blocks for a walking trip 
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An activity space delineates the feasible street network region to assess the walkability dimensions for a 
particular trip. �is ensures that only the relevant and potential blocks for a walking trip will be included 
in the summary of the built environment. �is is meaningful for measuring the in�uence of the built 
environment on walking, since only the physical features that may be encountered on the speci�c trip 
are assessed, addressing the concern of arbitrary spatial units. �is is also more comprehensive than only 
looking at attributes of the street block the individual lives on, one route, or areal generalizations of the 
built environment. �is method is scaled to the level of the behavior under study: the pedestrian walking 
environment for a speci�c trip.

2.3 Spatial dependency and walkability assessment

Spatial dependency is the concept that the observed values of a given variable are related to the observed 
values of the same variable at proximal locations (Getis 2007). �is violates the common statistical as-
sumption of independence among observations. In walkability research, capturing spatial dependency 
controls for spatial e�ects when estimating the relationship between walking and the built environment 
(Lee and Moudon 2006). In contrast, the present research treats spatial autocorrelation, a measurement 
of spatial dependency, as an explanatory factor. We use spatial autocorrelation as a measure of the spatial 
coherence of an activity space. Spatial coherence is similar to the urban design quality of coherence that 
captures the visual order and sense of consistency of the built environment (Ewing et al. 2006). We em-
ploy a statistical test to quantify the degree of spatial autocorrelation at the global level. Global statistics 
provide a single test statistic to describe the degree of the overall spatial autocorrelation and a p value to 
show if the autocorrelation is greater than would be expected by chance. A positive spatial autocorrela-
tion index value indicates similar attribute values, either high or low, are clustered; an insigni�cant index 
value close to 0 indicates that the attribute pattern is indistinguishable from a random spatial process; 
and a negative index value indicates dissimilar attributes are arranged in close proximity.

Network autocorrelation statistics analyze dependency among attributes distributed within a net-
work (Peeters and �omas 2009; Black 1998). Rather than measuring dependency based on spatial dis-
tance, these statistics use connectivity among links in the network. �is is more appropriate for phenom-
ena such as walkability that are conditioned by a street network rather than planar (continuous) space.

3 Methodology

3.1 Overview

�e methods in this paper provide a basis for assessing walkability within street network-based activity 
spaces. Figure 2 provides a summary of the work�ow. We �rst estimate individual activity spaces within 
a street network based on the shortest path between known trip endpoints and an assumed time budget 
for travel. Using the street block walkability scores (such as a single walkability attribute or a composite 
dimension), we estimate summary and network autocorrelation statistics for each activity space. We plot 
and map these activity space summary measures to compare the walkability of the built environment of 
these spaces within the study area.
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Figure 2:  Work�ow for the construction and analysis of activity space walkability

We estimate three summary measures for walkability within each activity space: i) the average walkabil-
ity score indicating the general level of walkability within the activity space; ii) the standard deviation in-
dicating the variation in walkability across segments, and; iii) the network autocorrelation indicating the 
spatial coherence of walkability within the activity space. Figure 3 provides a conceptual framework for 
these activity space summary measures. Quadrant I is the most desirable, since it has an above-average 
mean score and a below-average standard deviation, implying that it is an overall high level of walk-
ability. If the spatial autocorrelation index is positive, then the walkability in this region also has spatial 
coherence; this is also bene�cial. Quadrant II indicates a high-average walkability and a high standard 
deviation. �is is the second most desirable situation because although there is a high average level of 
walkability there is also more variability than Quadrant I, meaning there are some less walkable blocks. 
If spatial autocorrelation is positive, there is spatial coherence involving high and low walkability regions. 
�is is more desirable than a negative spatial autocorrelation index indicating low spatial coherence: a 
checkerboard-like pattern of high and low walkability blocks. 

Quadrant III is the third most desirable situation since it has low average walkability but high 
variance that allows for some higher walkability. Interpretation of spatial autocorrelation indices in this 
region is similar to Quadrant II. Quadrant IV is the least desirable situation. It has low average and low 
variance, meaning it is consistently poor for walking. �e positive spatial autocorrelation index in this 
region is similar to Quadrant III; however, because the mean score is below average, the clusters are more 
likely to be of low scores. �e negative spatial autocorrelation index is interpreted the same as the other 
regions.
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Figure 3:  Conceptual classi�cation of activity space summary measures (SA: spatial autocorrelation; +: positive spatial autocor-

relation index; -: negative spatial autocorrelation index)

3.2 Data

�e data for this project are from the Moving Across Places Study (MAPS) in Salt Lake City, Utah. �is 
project assesses walkability and walking behavior before and after a complete streets intervention that 
includes the construction of a new light rail line, new bicycle lanes, improved landscaping, and widened 
sidewalks. �e GIS street network is a dissolved version of the Salt Lake County street centerline data-
base. We attribute this network with IMI data collected for each block by trained research assistants. We 
use US Census block groups from the 2010 Census. �e MAPS study also involves collecting GPS and 
accelerometer data from several hundred participants for a minimum of 10 hours per day over at least 
three days both before and after the complete streets intervention.

�e data in this paper involve 577 walking trips within the study area. Figure 4 illustrates the dis-
tribution of the origins and destinations, geographically masked to preserve con�dentiality of the study 
participants using random point perturbation, with a minimum distance threshold to achieve a mini-
mum k-anonymity value of 20 (a participant is indistinguishable from at least 20 neighbors; Zimmer-
man, Armstrong, and Rushton 2010). Although we have GPS traces, we do not know the time budgets 
for these walking trips; these data were not collected. Obtaining data on time budgets requires measur-
ing the amount of time available for the travel and activity; this may be greater than the time spent on 
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an observed trip. Collecting these data requires behavioral survey questions that were not essential to the 
primary project objectives. �erefore, these were not included to manage the survey experience of par-
ticipants. We treat this as an input parameter and use a time budget of 150 percent of the shortest path. 
As mentioned above, time budgets can be manipulated as part of a scenario modeling process. We also 
assume an average adult walking speed of 1.09 meters/second to construct the activity spaces between 
the trip origins and destinations.

We use six previously de�ned walkability dimensions corresponding to aggregations of subsets of 
the 162 IMI elements. �ese dimensions are attractiveness (features that enhance the pleasure of walk-
ing), crime safety (high levels of outdoor lighting and well-maintained buildings, and the absence of 
incivilities or cues of danger from crime), density (number of people who could live in an area), diverse 
destinations (kinds of public buildings, shops, or services…and excludes unpleasant destinations), pe-
destrian access (ease of walking…and the absence of barriers to walking), and tra�c safety (how safe it 
is for pedestrians to cross the street). For a full description of these dimensions, see Werner, Brown, and 
Gallimore (2010). We normalized the IMI elements by removing variables with no variance, converting 
to z-scores and Winsorising these scores (limiting the extreme values) (Howell 2010). We constructed 
the composite dimensions from the z-scores using equal weights for each element. �e number of ele-
ments varies by dimension; for example, the attractiveness dimension has 25 elements, such as the pres-
ence of parks, co�ee shops, benches, and public art. Litter, gra�ti, and outdoor lighting are some of the 
elements that comprise the 11 items of the crime safety dimension (all items are available in Boarnet et 
al. 2006). 

Figure 4:  Study Area displaying 577 walking trip origins and destinations with generalized trip lines (the origins and destina-

tions are geographically masked, details in the text)
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3.3 Implementation

We implement these methods using open source Python scripting and the ArcPy package with ArcGIS 
ArcMap10.1. Data preparation requires creating a network dataset in ArcGIS from a road network 
feature class and attributing it with walkability scores. A network dataset de�nes the topological relation-
ships between streets in the study area to represent the actual street network connectivity. We edit this 
network to remove streets that are prohibited for pedestrians (such as interstate highways). �e addition 
of the IMI to the street network is straightforward; the scores are recorded at the street segment-level, so 
each observation is joined to the related segment in the street network. �e limitation of street network 
data as a basis for walkability is that some pedestrian paths (especially informal paths such as through 
alleys and �elds) may not be captured. Some sections of the network have been updated to include in-
formal paths evident from �eld observation, but the full extent of informal paths or their e�ect on the 
validity of street network-based analysis is not known.

Creating an activity space requires constructing a potential path tree from the street network. �e 
�rst step, given an origin, destination, and time budget, is to attribute the network with the total travel 
time from the origin to each of the nodes and then to the destination. Nodes not reachable within the 
given time budget are designated as 0. Next, we select the nodes with non-zero times to serve as the basis 
for the selection of the associated network links; these comprise the activity space. To calculate the spa-
tial autocorrelation statistic, we construct a spatial weights matrix. �e speci�c form for this application 
is an adjacency matrix where an element a

ij
=1 if the links i,j are connected; 0 otherwise. �e �nal step 

converts the adjacency matrix to a spatial weights matrix for use in the global Moran’s I tool in ArcGIS, 
with the weights row standardized. �e outputs of the tool are the desired test statistic and p-value; these 
are appended to a table summarizing the walkability dimension for each activity space.

�e assessment of the IMI data aggregated at the Census block group level requires a spatial selec-
tion of the street blocks that are within each block group and summarizing the walkability dimensions. 
�e spatial autocorrelation is calculated similarly as for the activity space, with the adjacency matrix 
generated from the street network that falls within each block group.

4 Results

4.1 Visualizing activity space summary measures

Figure 5 visualizes the six walkability dimensions for the activity spaces generated from the Salt Lake 
City dataset using the conceptual framework described above. In general, each dimension has many 
cases that exhibit signi�cant positive spatial autocorrelation at the p < 0.1 level but very few cases that 
exhibit signi�cant negative spatial autocorrelation. �e dimensions with the most sample points in 
Quadrant I are attractiveness, crime safety, and density. �ese dimensions are also evenly distributed 
across quadrants. Diverse destinations, pedestrian access, and tra�c safety dimensions are not as evenly 
distributed across the quadrants. �ere are very few activity spaces measured by the diverse destination 
dimension in Quadrant I. �is re�ects the homogeneity of the walking environment with respect to 
the activity spaces. Conversely, few activity spaces are classi�ed in Quadrant IV with respect to the pe-
destrian access dimension. �is suggests that the majority of walking trips in these neighborhoods have 
good walking infrastructure amenities with respect to potential walking paths.
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Figure 5:  Plots of standard deviations (SD) of walkability dimensions verse dimension means for activity spaces; spatial 

autocorrelation is indicated by legend

4.2 Mapping activity space summary measures

Figures 6-8 provide the maps of the results from Figure 5, with the activity spaces geographically located. 
�e points represent the geographic centers of the activity spaces for display simplicity. �eir colors 
indicate their quadrant. Uniform colored points indicate geographic clustering of the activity spaces 
classi�cations. For example, the attractiveness and crime safety dimensions (Figure 6) show clear spatial 
clustering, while density and tra�c safety (Figures 7 and 8, respectively) display more spatial heterogene-
ity. Another result of this method is that it highlights the varying extent of the spatial clustering, which 
is dependent on the speci�c dimension. Some dimensions have larger spatial areas of agreement than 
others. In the pedestrian access dimension (Figure 8), the spatial extent of the clustering covers a large 
area across neighborhoods (predominantly green points in much of the neighborhood). In contrast, 
crime safety has a similar variation around the mean score as pedestrian access (Figure 5), but the result-
ing spatial variation is quite di�erent. �e spatial variation of the values of the crime safety dimension 
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(Figure 6) exhibits smaller clusters of similar values than pedestrian access. Speci�cally, the activity spaces 
falling in Quadrant I of pedestrian access span a large, continuous portion of the study area.

�e interpretation of the Moran’s I is in conjunction with the quadrant classi�cation. For example, 
in Figure 6 the attractiveness map has positive Moran’s I overlaid on the di�erent quadrants, such that 
on top of Quadrant I the interpretation is that the activity space has high average attractiveness, low 
variation, and high coherence of the attractiveness dimension among neighboring street blocks. When 
the positive score of Moran’s I of an activity space is in Quadrant IV, it is interpreted as also being coher-
ent, but the coherence is describing the low average attractiveness and low variation.

Figure 6:  Attractiveness (left) and Crime Safety (right).  Moran’s I signi�cant at p < 0.1 

Figure 7:  Density (left) and Diverse Destinations (right). Moran’s I signi�cant at p < 0.1 
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Figure 8:  Pedestrian Access (left) and Tra�c Safety (right). Moran’s I signi�cant at p < 0.1

4.3 Comparing summary measure for activity space versus Census block groups

�e plots and maps above suggest that the summary measures can distinguish between di�erent types 
of walkability environments that correspond to regular geographic patterns. We now examine whether 
these measures are di�erent when de�ned for activity spaces versus abstract administrative units such as 
Census block groups. 

Figures 9-11 display the previous discussed activity space summary measures on top of block 
groups that are classi�ed in the same way for each dimension. While there is some agreement between 
the classi�cation of activity spaces and block groups with respect to the walkability classes de�ned above, 
there are notable areas of disagreement. �is underscores some of the problematic issues of using block 
groups as the spatial unit to summarize walkability dimensions. First, the mismatch of the classi�cation 
of activity spaces and block groups shows the e�ect of the arbitrariness of block group boundaries with 
regard to walking trips. For example, some activity spaces are classi�ed in Quadrant I of the attractive-
ness dimension (Figure 9) but fall in Quadrant III of the block group classi�cation. �ere are a few 
explanations for this mismatch. First, the walking trips may be in a small portion of blocks within the 
block group that allow it to be classi�ed as Quadrant I in the activity space, but the overall block group 
score is Quadrant III. �is pattern would be consistent with the idea that pedestrians seek out relatively 
more attractive routes within the area. Another explanation is that some of the trip is outside the block 
group, such as in adjacent block groups that have a higher quadrant classi�cation. Finally, the disagree-
ment between the classi�cations at the two di�erent spatial scales varies by the walkability dimension 
and the size of the block group.  
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Figure 9: Comparison of Attractiveness (left) and Crime Safety (right) activity spaces and block groups

Figure 10:  Comparison of Density (left) and Diverse Destinations (right) activity spaces and block groups
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Figure 11:  Comparison of Pedestrian Access (left) and Tra�c Safety (right) activity spaces and block groups

Figure 12 provides confusion matrices that summarize the agreement of the quadrant classi�cations of 
the activity spaces and the block groups. �e rows correspond to the activity space classi�cation while 
the columns correspond to block group classi�cation. Each matrix element is the number of classi�ca-
tions. Perfect agreement between activity space and block group classi�cation would be indicated by 
a matrix with non-zero elements along the diagonal and all zero elements in the o� diagonal. Higher 
numbers in the o� diagonal indicate more disagreement between the two levels of aggregation. �e row 
percentages are the number of activity spaces that are correctly classi�ed by the coincident block group 
quadrant. �e overall agreement is the sum of the diagonal over the total number of activity spaces. �e 
overall agreement ranges from 29 percent for the density dimension to 46 percent for the crime safety 
dimension, but there are large variations between quadrants within individual dimensions. For example, 
in the density dimension, 0 percent of the Quadrant II activity spaces agreed with the Quadrant II block 
groups, whereas 88 percent of Quadrant I in the same dimension agreed. �is suggests that activity 
spaces provide a di�erent portrayal of walkability than the Census block group geography.
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Figure 12:  Confusion matrices for activity spaces and the block groups with percent agreement between the Activity Space 

Quadrant classi�cation and the Block Group Quadrant classi�cation

5 Discussion and conclusion

5.1 Contributions

�is paper develops methods for summarizing built environment walkability measures within geogra-
phy regions that are non-arbitrary and behaviorally relevant. �is involves two contributions: 1) meth-
ods to succinctly compare and assess walkability variables or dimensions within de�ned geographic 
regions, and 2) the application of the concept of activity spaces as the geographic units for summarizing 
the built environment attributes.

�e �rst contribution is the use of three summary measures combined with a conceptual frame-
work that allows regions to be mapped into ordinal classes based on their distribution of walkability 
attributes. Average walkability summarizes the overall level of walkability, standard deviation captures 
the variation from that overall level, and spatial autocorrelation summarizes the spatial coherence of the 
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walkability distribution. �e spatial autocorrelation measure (i.e., Moran’s I) adds to these measures by 
statistically assessing the degree of walkability dimension clusters within activity spaces. Rather than 
treating autocorrelation as an e�ect to be controlled, we argue that this measure is useful to assess spa-
tial coherence across the activity space. �is coherence measure describes the spatial association of the 
walkability dimensions between blocks, which may better associate the walkability dimension measure-
ments with how they are experienced by pedestrians—as street blocks in the context of each other. �e 
framework provides an ordinal classi�cation based on these three measures, with regions displaying high 
average walkability, low standard deviation, and high spatial autocorrelation having the best walkability, 
and regions having low average, low standard deviation and negative spatial autocorrelation correspond-
ing to the worst walkability environment. 

�e second main contribution of this research is the construction of activity spaces as the basis 
for the spatial unit to summarize the walkability dimensions. �e activity spaces, in conjunction with 
the summary measures, provide a spatially detailed, yet simple classi�cation scheme to assess both the 
numeric and the spatial variability of the walkability dimensions. �e visualization of these classi�ca-
tions shows that there is some spatial regularity to these measures but also some heterogeneity. �is 
heterogeneity is due to di�erent trip lengths, which highlights how walkability is dependent on the trip 
taken, the con�guration of the street network, and the simpli�cation used for display. A longer trip may 
include more street blocks and a potentially more diverse environment, compared to a shorter trip. Also, 
a more connected street network allows the inclusion of more street blocks to access for a trip, which a 
network-based summary measure more accurately re�ects. �e quadrant-classi�ed points on the maps 
represent spatially extensive portions of the network; therefore, activity spaces that appear proximal may 
in fact have di�erent spatial con�gurations of street blocks.

Comparison of the activity space summary measures with block group summary measures indi-
cates some agreement, as well as a great deal of disagreement. �is disagreement is visible spatially from 
the maps and summarized overall by the confusion matrices. �is underscores that the block group 
summary measures do not describe the walkability of their residents very well and mask considerable 
variation. �is is based on many factors, but the chief among them is the substantial mismatch be-
tween the spatial extent of block groups and of walking trips. �is method seeks to address this spatial 
mismatch by providing a more relevant spatial extent to assess walkability, compared to the convenient 
block group-level spatial unit. 

5.2 Limitations

In subsequent research we will explore ways to distinguish robust versus borderline members of each 
quadrant. �e classi�cation of scores into quadrants is relative to what is being measured in the study 
area. �erefore, what is relatively good in this study area may not appeal to residents from di�erent 
neighborhoods. One way to address this is the inclusion of travel activity data that assess the suitability 
of the built environment for active transportation (e.g., Jacques and El-Geneidy 2014). A limitation of 
this approach is that the global spatial autocorrelation statistic obscures local clusters and provides an av-
eraged measure of coherence. Additionally, a minimum of 30 spatial units are recommended for validity 
of the spatial autocorrelation index estimate, which shorter trips or trips in areas with longer blocks may 
not likely meet. �is is one reason the majority of activity spaces have an insigni�cant spatial autocor-
relation index. �e estimation of time budgets for activity space generation is a constant percentage of 
total time; whereas the time budget may vary based on the length of the trip (i.e., longer trips may have 
a larger percentage and shorter trips a smaller percentage). Speci�c routes through the activity spaces and 
explicit barriers to walkability are not included in this research, but will be explored in future research. 
�e classi�cation of activity spaces into the conceptual quadrants is still sensitive to outliers, despite the 
Winsorization of the elements.
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5.3 Applications and future reasearch

One application of the activity space method is to add insight into the spatial scale to measure built 
environment attributes and possibly inform future collection of built environment data. For example, 
the pedestrian access dimension may be adequately measured at a more coarse scale, due to the observed 
larger spatial extent of clusters, but the diverse destinations dimension may require a �ne-grained mea-
sure, since the observed clusters are much smaller. �is needs further exploration and may addition-
ally depend on trip purpose and resident perceptions. We recognize the limited availability and costly 
collection of highly detailed, street block-level data. However, in the absence of such data, the activity 
space method may still be used to generate a more spatially relevant unit to summarize walkability. �is 
may be done with either increasingly available mobile travel data, or synthesized from potential trips in 
the neighborhood. Either way, the basis of the activity space on the street network will insure that only 
the relevant streets for the walking trip are included. Fusion of this activity space with additional data 
sources may employ dasymmetric methods for areal data (e.g., Zandbergen 2011), or use of parcel or 
street network attributes to estimate built environment walkability.  

Future research with this methodology will compare the potential advantage of the explanatory 
power of the e�ect of the built environment on walking behavior at the spatial unit of the activity space 
over the block group. �e degree that the overestimation or underestimation of the walkability dimen-
sions for residents within block groups a�ect analysis results needs further exploration and will be tested 
in future research. Additionally, there is need to explore other aggregation types to construct walkability 
dimensions and to specify di�erential weights of individual elements or dimensions for use in assessing 
the e�ect of the built environment on di�erent walking trip purposes. For example, weights may re�ect 
di�erent perceptions based on social types, such as socioeconomic and age groups (Manaugh and El-
Geneidy 2011). �is research shows that di�erences occur between walkability dimensions for speci�c 
trips and between neighbors, when assessing the three summary measures of average, standard deviation, 
and spatial coherence of activity spaces. �e inclusion of di�erent weights within activity spaces to re�ect 
perceptions for a particular trip is essential to understanding a more complete relationship between the 
built environment and walking.

�e methods described in this research address a key criticism of assessing the built environment 
and walking. Speci�cally, the activity space methods address the MAUP problem that exists in walk-
ability research. Additionally, the three summary measures provide a comprehensible assessment of the 
large multi-attribute measures of walkability such as the IMI.
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