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Abstract

Observational studies of human health and disease (basic, clinical and epidemiological) are vulnerable to
methodological problems -such as selection bias and confounding- that make causal inferences problematic. Gene-
disease associations are no exception, as they are commonly investigated using observational designs. A rich body
of knowledge exists in medicine and epidemiology on the assessment of causal relationships involving personal
and environmental causes of disease; it includes seminal causal criteria developed by Austin Bradford Hill and more
recently applied directed acyclic graphs (DAGs). However, such knowledge has seldom been applied to assess
causal relationships in clinical genetics and genomics, even in studies aimed at making inferences relevant for
human health. Conversely, incorporating genetic causal knowledge into clinical and epidemiological causal
reasoning is still a largely unexplored area.
As the contribution of genetics to the understanding of disease aetiology becomes more important, causal
assessment of genetic and genomic evidence becomes fundamental. The method we develop in this paper
provides a simple and rigorous first step towards this goal. The present paper is an example of integrative research,
i.e., research that integrates knowledge, data, methods, techniques, and reasoning from multiple disciplines,
approaches and levels of analysis to generate knowledge that no discipline alone may achieve.

Introduction
Observational studies of human health and disease

(basic, clinical and epidemiological) are vulnerable to

methodological problems -such as selection bias and

confounding- that make causal inferences problematic.

Gene-disease associations are no exception, as they are

commonly investigated using observational designs.

However, as compared to studies of environmental

exposures, in genetic studies it is less likely that selec-

tion of subjects (e.g., cases and controls in a case-con-

trol study) is affected by genetic variants. Confounding

is also less likely, with the exception of linkage disequili-

brium (i.e., the attribution of a genetic effect to a speci-

fic gene rather than to an adjacent one) and population

stratification (when cases and controls are drawn from

different ethnic populations). There is in fact some

empirical evidence suggesting that gene-disease associa-

tions are less prone to confounding (e.g., by socio-eco-

nomic status) than associations between genes and

environmental and lifestyle variables [1]. There are some

well known methodological challenges in interpreting

the causal significance of gene-disease associations; they

include epistasis, linkage disequilibrium, and gene-envir-

onment interactions (GEI) [2].

A rich body of knowledge exists in medicine and epi-

demiology on assessment of causal relationships invol-

ving personal and environmental causes of disease; it

includes seminal causal criteria developed by Austin

Bradford Hill and more recently applied directed acyclic

graphs (DAGs). Perhaps unsurprisingly, such knowledge

has seldom been applied to assess causal relationships in

clinical genetics and genomics, even when studies aimed
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at making inferences relevant for human health. Conver-

sely, incorporating genetic causal knowledge into clinical

and epidemiological causal reasoning is still a largely

unexplored task.

In this paper, we first state our main aim; secondly, we

propose applications of Hill’s criteria to genetic pro-

blems and genetic epidemiology; thirdly, we use graphi-

cal methods to formulate and assess causal hypotheses

involving genes; finally, we use a case study of Parkin-

son’s disease to apply the combined Hill / DAGs

approach to untangling the underlying GEIs.

Aim of the paper
The main aim of this paper is to propose a conceptual

framework to assess causal relationships in clinical

genomics and, particularly, for evaluating the etiopatho-

genic significance of gene-disease associations and gene-

environment interactions; i.e., a framework to assess the

validity and significance of such environment-host-gene

relationships in the etiology of human diseases. The fra-

mework includes a two-step approach that combines the

causal criteria of Austin Bradford Hill with graphical

models such as directed acyclic graphs (DAGs). The

approach we propose thus helps, first, to untangle the

web of interactions amongst several exposures and char-

acteristics (environmental, clinical and genetic) and a

disease. Once these relationships have been specified,

they are analyzed using criteria to assess causality that

have long been used in clinical and epidemiological

research. More generally, the present paper is an exam-

ple of integrative research, i.e., research that integrates

knowledge, data, methods, techniques, and reasoning

from multiple disciplines, approaches and levels of ana-

lysis to generate knowledge that no discipline alone may

achieve [3].

Applying causal guidelines to genetic studies
For several decades, guidelines to assess causality have

been a powerful tool in clinical and epidemiological

research, as well as in the professional practice of medi-

cine and epidemiology outside academia [4-7]. Causal

guidelines usually include a series of criteria that help

assess which observed associations are potentially causal.

They were introduced initially by Bradford-Hill in the

debate about the role of smoking in the aetiology of

lung cancer; given the issue, they were meant for obser-

vational studies only, but many of the criteria can be

applied to clinical trials and other experimental studies

as well [8]. Although Hill did not have genetic epide-

miology in mind at the time, today his criteria remain

relevant to causal assessment in this field and, as we will

show, to many areas of human genetics as well.

Hill’s approach is based on nine criteria: 1) Strength of

association; 2) Consistency; 3) Specificity of association;

4) Temporality; 5) Biological gradient (dose-response

relationship); 6) Biological plausibility; 7) Coherence; 8)

Experimental evidence (e.g. reproducibility in animal

models); and 9) Analogy. Statistical significance was not

listed but discussed separately by Hill [8].

One major criticism leveled at Hill’s approach is that

it considers one causal factor at a time and is not

intended to tackle complex relationships and interac-

tions, such as those encountered in modern molecular

medicine and genomics, which deal with chains of med-

iators and not only directly acting exposures. However,

even complex situations can often be decomposed into

simpler constituents, and in such case Hill’s criteria can

be applied fruitfully. This is a main motivation behind

the present work.

In 2006, a Human Genome Epidemiology Network

(HuGENet) workshop in Venice was devoted to the

development of standardized criteria for the assessment

of the credibility of cumulative evidence on gene-disease

associations. This led to synopses on various topics in

genetic epidemiology; e.g., on DNA repair [9], and on

Parkinson’s disease [10]. Briefly, according to the Venice

guidelines [2] each gene-disease association is graded on

the basis of the amount of evidence, replication, and

protection from bias. These guidelines contributed to

modifying the approach to genetic inferences using

Hill’s criteria that we adopt here.

Main theoretical issues underlying the application of

Hill’s criteria in genetics and genomics are shown in

Appendix 1 [11-29]; below we will show how these cri-

teria can be applied to an example of gene-environment

interaction. Interactions here are defined as “the interde-

pendent operation of two or more causes to produce,

prevent, or control an effect” [2].

In summary, Hill’s causal criteria and related logical

tools that have long been applied fruitfully to clinical

and epidemiological research may also be applied pro-

ductively to research in genetics. However, genetic

research has fundamental differences from clinical and

epidemiological research. For example, in genetics con-

founding can be the consequence of events that may

not be directly addressed at the other levels, including

haplotype blocks, allelic heterogeneity, overdominance,

and epistasis [15]. Selection bias is more easily measur-

able in genomic studies, because we have the null

hypothesis represented by Hardy-Weinberg equilibrium

(HWE); i.e., we expect independent assortment of alleles

in the population, whereas a similar reasoning cannot be

applied to daily life exposures. Hardy-Weinberg equili-

brium is based on assumptions of population genetics

related to the lack of selection, inbreeding, migration;

departure from HWE can thus point towards the possi-

bility of gross bias (such as genotyping errors or selec-

tion bias).
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Explicit guidelines for causal assessment are more

popular in clinical and epidemiological research than in

genetics [3,30]. The reasons for that have seldom been

addressed. They are probably related to the different

nature of the objects, factors, mechanisms and processes

that we study at each level. However, genetic guidelines

on causality do exist and, in fact, have interesting simila-

rities with Hill’s criteria: (a) linkage to a particular

region of the human genome (LOD>3); (b) one or more

independent mutations that are concordant with disease

status in affected families (specificity, strength of asso-

ciation); (c) defects that lead to macrochanges in the

protein (specificity, coherence); (d) putative mutations

that are not present in a sample from a control popula-

tion (specificity); or (e) presence of some other line of

biological evidence (including expression, knockout data,

etc.) [15]. Criteria (a), (b) and (c) refer to background

knowledge. But it is in particular criterion (e) that sup-

ports the causal association by conferring coherence

with previous knowledge [3,15].

Directed acyclic graphs as tools to clarify
associations and complex causal relationships
Directed acyclic graphs (DAGs) have a long tradition in

science. They are a rigorous way of visualising complex

systems, clarifying ideas, complementing the formulation

of hypotheses, and guiding quantitative analyses. There

has been much debate on the exact nature and roles of

DAGs in the biomedical literature. The most widespread

approach in the health sciences is the causal DAG

approach promoted by Greenland, Robins, Hernán and

colleagues [31-33], and the equivalent mathematical fra-

mework of counterfactuals [34]. In causal DAG

approaches, the directed edges in a DAG represent cau-

sal relationships. Whilst the causal DAG framework is

appealing and intuitive, we wish to draw attention to an

alternative approach to causal inference, the Decision

Theoretic Framework (DTF), which is based on a for-

mal treatment of conditional independences (a non-

graphical version of the ‘d-separation criteria’) [35].

Appendix 2 provides additional details on statistics and

assumptions underlying the DTF [36-38]. This

approach has recently become increasingly popular in

epidemiology, in particular to assess the role of genes

as instrumental variables for causal inference [39]. DTF

retains the advantages of the causal DAG approach but

overcomes some of its limitations. In particular, as

DTF uses DAGs to describe the relationships between

variables, it retains the capacity of DAGs to clearly and

formally visualise complex systems. In contrast to the

causal DAG approach where all directed edges are

assumed to represent causal relationships, DTF takes a

more conservative view where the edges represent sta-

tistical associations (and the lack of edges represents

independence). Causality in DTF is viewed as external

knowledge that can be added to the DAGs and allows

some of the edges to be interpreted as causal. There

are three reasons for this conservative viewpoint. The

first is that it entails fewer assumptions about the exis-

tence and direction of causal relationships between

variables. The second is that it is not necessary to

include all possible causes or covariates in a DAG, only

the variables of interest, making DTF more flexible

than the causal DAG approach. The third is that when

we perform a statistical analysis of observational data,

we obtain measures of association (not causation)

between variables. We explain this concept in more

detail below.

A main problem when making causal inferences in

clinical and epidemiological research is that most data

are observational. This is also true for a substantial part

of basic biomedical research. It is certainly an issue in

human genetics, where there is usually no randomiza-

tion (except in circumstances where Mendelian rando-

mization can be applied [1,3,39,40]), and knowledge of

the genetic pathways is tenuous or incomplete. In such

circumstances we must be careful to distinguish causal

relationships from associations resulting from unob-

served biases or chance.

DAGs can still be used to make causal inference, but

the causal element is an external assumption that needs

to be explicitly incorporated into the DAG rather than

implicit in the direction of an edge. We use a DAG to

visualise complex associations, but when we only have

observational data at our disposal, we must find other

ways to assess a) whether a particular association is cau-

sal and not due to confounding or other bias, and b)

what the direction of this association is.

The problem of inferring causality from observational

data in the presence of unobserved confounding is sim-

ply described in the DAGs in Figure 1.

In the DAG on the left hand side X is the putative

cause -e.g., a particular environmental exposure such as

urban pollution-, Y is the disease outcome under inves-

tigation, and U a set of confounders, many of which will

typically be unobserved. Epidemiologists are interested

in the existence, direction and strength of the X-Y asso-

ciation and whether this can be considered causal.

(They are not necessarily interested in whether the

other relationships in the DAG are causal). However,

they are often unable to capture all this information

from observational studies due to the presence of unob-

served confounders U. Even when there is no direct

association -i.e., there is no edge between X and Y as in

the DAG on the right hand side of the Figure 1-, the

presence of U (this time as a common parent) will result

in a statistical association between the two. Again, the

question is, how do we distinguish a causal association
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from a statistical association when only observational

data are available?

One way to answer this question is by incorporating

prior knowledge in Hill’s scheme (or similar criteria)

with DAGs to determine which edges can be considered

causal. This is the approach we propose in this paper

and that we describe in detail below. Another way of

introducing causality is by adding so called intervention

or randomisation variables to a DAG and to the corre-

sponding probability statements. A more detailed

description of such variables is given in Appendix 2. As

a thorough explanation is beyond the scope of this

paper we refer the interested reader to Dawid [41],

Didelez [42], Geneletti [43], and Lauritzen [44].

For the remainder of this paper, the DAGs we use can

be viewed as heuristic tools to understand gene-environ-

ment relationships.

Parkinson’s disease: pesticides, and gene-
environment interactions
In order to illustrate our methods, we present a case

study based on Parkinson’s disease. First we present a

short description of the disease and a summary litera-

ture review of its genetic component; we focus in parti-

cular on a recently identified genetic form. Second, we

use graphical methods to propose and assess hypotheses

on how the risk factors might interact. Third, we apply

Hill’s criteria to each of the hypothesised associations to

assess causality in light of the available evidence.

Parkinson’s disease is the most common neurodegen-

erative disorder after Alzheimer’s disease, affecting 16-

19 new individuals per 100,000 persons each year in

developed countries [45]. Characterized by bradykinesia,

resting tremor, rigidity and postural instability, it is also

one of the most common late-life movement disorders.

The pathological characteristic of the disease is a selec-

tive loss of pigmented neurons, most prominently in the

substantia nigra (one of the brain basal ganglia) accom-

panied by a characteristic a-synuclein-positive inclusion

Figure 1 DAG demonstrating the ideas of confounding. A: U is
an unobserved confounder for the association between X and Y
and X is a cause of Y. B: U is an unobserved confounder for the
association between X and Y but X is not a cause of Y. From purely
observational data these two situations cannot be separated.

Figure 2 Three DAGs exhibiting the same conditional

independence but with different causal interpretations.

Figure 3 DAG with a randomisation node R. R indicates

whether X is randomised or allowed to arise naturally. A: U is a
confounder. B: U is a mediator. Randomisation allows us to
distinguish between these situations.
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bodies in neurons (Lewy bodies) [45]. While the causes

of Parkinson’s disease remain unknown, significant pro-

gress is being made in elucidating genetic and environ-

mental risk factors and the neurodegenerative process

underlying the disease. Appendix 3 summaries the key

evidences to date on environmental and genetic risk fac-

tors for Parkinson’s disease [46-49].

A deletion of the DJ-1 gene in a Dutch family and a

mutation conferring a functionally inactive form in an

Italian family associated with early onset PD were first

observed in 2001 [50], and confirmed in 2003 [51] (as is

convention, we use italics to indicate the gene and non-

italics to indicate the protein; thus, DJ-1 means the

gene, and DJ-1 means the protein). DJ-1 is involved in

many cell processes including oncogenic transformation,

gene expression and chaperon activity, and it mediates

oxidative stress responses [52]. A recent meta-analysis

of the association between pesticides and Parkinson’s

disease [53] concludes that the epidemiologic evidence

suggests a fairly consistent association between exposure

to pesticides and risk of developing Parkinson’s disease.

In particular, among the herbicides, paraquat has been

found to be most strongly associated with the risk of

the disease (with odds ratios ranging from 1.25 to 3.22).

Toxicological evidence suggests that both paraquat and

rotenone exert a neurotoxic action that might play a

role in the etiopathogenic process of Parkinson’s disease.

Moreover, clinical symptoms of Parkinson’s disease have

been reproduced in rats by chronic administration of

paraquat [54]. Evidence from animal experiments shows

that knockout models of Drosophila Melanogaster (fruit

fly) lacking DJ-1 function, display a marked and selective

sensitivity to the environmental oxidative insults exerted

by both paraquat and rotenone [54]; this suggests that

there is an interaction between these toxicants and the

DJ-1 genotype [3]. On the basis of these data, it is sensi-

ble to hypothesise an interaction between DJ-1, exposure

to some pesticides, and risk of Parkinson’s disease in

humans as well. Using Hill’s criteria we can say that the

hypothesis has biological plausibility; also, testing the

hypothesis entails testing Hill’s criterion of analogy (i.e.,

testing that there are analogous causal mechanisms in

certain animal models and in humans). To test the

hypothesis, further investigation is needed in order to

estimate the effect of the interaction between DJ-1 and

exposure to specific pesticides in humans on the risk of

developing Parkinson’s disease. We can construct a logic

framework displaying (a) the association of paraquat (P)

with Parkinson’s disease (Y); (b) the association of DJ-1

with Parkinson’s diseases; and (c) the interaction of DJ-1

with exposure to paraquat. We can also assume the

existence of confounding between the exposure to para-

quat and the disease outcome (Cp), and between DJ-1

and disease outcome (Cd) (Figure 4). First we are going

to propose a graphical method to untangle the relation-

ship between these two risk factors and Parkinson’s dis-

ease; in a second step we will evaluate the associations

from a more strictly causal point of view.

Case study: the DJ-1 gene, exposure to paraquat
and risk of Parkinson’s disease
The process we describe in this section has two compo-

nents. The first uses DAGs as a visual tool to explore a

range of possible interaction scenarios. The second uses

DAGs as a formal tool to describe the formal depen-

dence among the variables in the problem. These two

components go hand in hand, as intuition about the

problem will generally guide the first whilst the second

will reflect information in the observed data as well as

considerations about what is biologically plausible. In a

second instance, which is beyond the scope of this

paper, the interaction quantitative effects can be esti-

mated. How the latter step is done will depend both on

the nature of the data available and crucially on the

model for interaction. We assume an additive interac-

tion model for simplicity; however, the DAGs work

equally well with a multiplicative model as they describe

associations rather than their exact mathematical nature.

We consider first the case study of gene-environment

interactions (GEI) involving risk of Parkinson’s disease,

Figure 4 DAG showing all possible one way relationships for

gene-environment interactions based on the observed

variables.

Geneletti et al. Emerging Themes in Epidemiology 2011, 8:5

http://www.ete-online.com/content/8/1/5

Page 5 of 18



the DJ-1 gene and exposure to paraquat described

above. To do this we use simplified versions of models

proposed by Khoury et al. [55] and Ottman [56]. Subse-

quently, we consider fruit fly experiments where the

associations between Parkinson’s, DJ-1 and paraquat

have been ascertained, and we present this as the ideal

situation to make causal inference. The approach we are

proposing can be also used to tackle a range of other

complex problems.

In order to look at possible GEI scenarios we need to

introduce some simple notation:

gene: DJ-1 = d* variant (deletion as in the Dutch

families or inactivity as in the Italian families); DJ-1 = d

wild type

pesticides: P = p* exposed; P = p unexposed

disease: Y = 1 with Parkinson’s disease; Y = 0 without

Parkinson’s disease

The crux of this approach is the introduction of an

interaction variable I. It is determined by the values of

the genetic and environmental exposure variables. In

simple terms, it acts like a switch and is turned “on”

when the parents (a parent P of another variable X has

an edge pointing into X, and X is a child of P) take on

some values, and “off” when the parents have other

values. In the current context this is typically the pre-

sence of the genetic exposure (i.e., the genetic variant)

and/or the environmental exposure that leads to an

increase in disease risk which turns the interaction “on”.

Thus, in addition to the above variables, we also define:

interaction: I = 1 ("on”) if there is an interaction and I

= 0 ("off”) if there isn’t. The exact nature of the interac-

tion depends on the contexts sketched below.

For the sake of simplicity, we assume that I is a

deterministic variable. What we mean by this is that

unlike the other variables in the problem, I is not ran-

dom. Once the value of its parents is known, then so is

the value of I. This might be considered unduly restric-

tive if there are other potential parents in the interac-

tion which are suspected but unobserved. It is possible

in these cases to view I as a random variable, where its

variability is associated with that of the unobserved

interactant. However, in the paper we focus on

the simplest case and thus we make the following

assumption:

1. DJ-1 and P are the only parents of the interaction

variable I. Another assumption that is generally

plausible, provided that the exposure does not mod-

ify the genetic structure (e.g., the exposure does not

cause somatic mutations) is that:

2. There is no a priori association between the gene

and the external exposure; this is represented by the

absence of a directed edge between DJ-1 and P in

the DAGs below.

Generally, this is a plausible assumption provided that

the exposure does not modify the genetic structure [57].

In this specific example, this assumption is likely to be

true. However, with other environmental exposures this

assumption does not hold. For example, the association

of some lifestyle factors with genotypes predisposing (or

causing) Parkinson’s disease is possible as the dopami-

nergic system is involved in rewarding mechanisms and

it is hypothesized to influence some seeking behaviours

and addiction (i.e., smoking or alcohol drinking) [58].

The idea of I as a variable to represent interaction is

similar to the sufficient component cause (SCC) vari-

ables in VanderWeele and Robins [59]. We feel however

that our approach presents a few advantages over the

SCC framework. As we do not need to incorporate all

the sufficient causes (we are not using a causal DAG),

the structure of our DAGs is less cumbersome. Also,

although for the sake of simplicity we have defined I in

terms of binary exposures, we can easily extend it if we

are considering multi-valued or continuous exposures.

The DAG in Figure 4 shows a complex situation we can

imagine, given assumptions 1 and 2, in which there is

confounding between both the exposure to paraquat

and the disease outcome (Cp) as well as confounding

between DJ-1 and the disease (Cd), and no other vari-

ables are postulated. Confounding between both expo-

sure to paraquat and the disease might be due, for

example, to the fact that people exposed to paraquat

may also be more likely to smoke, a factor that is nega-

tively associated with the risk of Parkinson’s disease

[60]. Confounding between DJ-1 and the disease might

be due to the involvement of the dopamine-mediated

rewarding system [58]. Any observational study -any

study of these issues in humans- is unlikely to observe

all potential confounders. Nevertheless, just to simplify

our model, we also assume that:

3. There are no further confounders between either

the gene and the outcome or the exposure and the

outcome. This is represented by the absence of addi-

tional variables and corresponding directed edges in

the DAGs below.

Now we turn our attention to looking at the case by

evaluating the plausibility of a few different GEI scenar-

ios. As mentioned above, these are loosely based on

Khoury et al. [55]. For each of the models that we con-

sider below, we present a more formal description in

Appendix 4.

Model I

Both exposure and genotype are required to increase

risk as in Figure 5. Here, if I is “on” then there is an

association between the disease and the genetic
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exposure and the environmental exposure to pesticides

when both are present. If on the other hand I is “off”

then there is no association -in other words, Parkin-

son’s is only associated with DJ-1 and paraquat expo-

sure through the interaction itself. This is an extreme

form of interaction that is unlikely to occur in the

pathogenesis of common diseases. Does this model

describe the relationship between DJ-1, exposure to

pesticides and Parkinson’s disease? For this to be the

case, all the Dutch and Italian families with the variant

DJ-1 and Parkinson’s would also have to have been

exposed to pesticides. Further, the incidence of Parkin-

son’s amongst the families with the gene variant would

have to be the same on average as that of those with-

out the gene variant (if unexposed to pesticides). Simi-

larly, those exposed to pesticides would have to have

the same incidence as those not exposed to the pesti-

cides without the DJ-1 variant. This is clearly not the

case.

Model II

The exposure to pesticides increases the risk of disease

but the presence of the gene variant alone does not

increase the risk of disease, although the variant further

increases the risk of disease in the exposed population

(Figure 6). In this model, I is switched on and off by P.

When P = p* (exposure to pesticides) I = 1, indicating

that the interaction is switched “on” and the presence of

the variant in DJ-1 and Parkinson’s is influential. When

P = p then I = 0 and whether DJ-1 is the variant or

wild-type form makes no difference to the outcome Y.

It is possible that in some cases exposure to P is protec-

tive; i.e., I would take the opposite value of P in a binary

situation. In more complex situations, the effect of P

might be such that only certain values of P result in

interactions and in these cases the values of I and P

would not be the same. In this instance, we have that Y

depends directly on exposure P; however, Y depends on

DJ-1 only through the interaction and the exposure

when this is present -i.e. when P = p*.

This model is also not a plausible description of the

relationship between the three variables based on the

evidence at hand, as it would mean that all the families

with the variant and Parkinson’s would have to also

have been exposed to pesticides.

Model III

Exposure to pesticides exacerbates the effect of the gene

variant but has no effect on persons with the normal

genotype. In this model, I is switched on and off by DJ-

1. The model does not provide either a plausible expla-

nation of the available evidence (Figure 7).

Figure 5 Both DJ-1 gene and pesticide exposure need to be

present to activate the interaction.
Figure 6 Pesticide has an effect but DJ-1 only has an effect if

pesticide exposure is present.

Figure 7 DJ-1 has an effect but pesticide only has an effect if

the gene mutation is present.
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Model IV

The environmental exposure and the gene variant both

have some effect of their own but together they further

modify the effect of the other. Here I is a function of

both P and DJ-1 and is defined as follows: I is “on” if

and only if both P and DJ-1 are “on” otherwise I is “off”.

Here there are also direct associations between P and Y

and DJ-1 and Y other than through I; this indicates that

there are effects of P on Y irrespective of DJ-1, and

effects of DJ-1 on Y irrespective of P. From the data we

cannot distinguish between DAGs A and B in Figure 8.

A core issue with these models is that I is essentially

unobservable in humans living under normal conditions;

these biological interactions can only be tested in animal

experiments. Thus, in humans we cannot disentangle

the two DAGs above apart without further information

(VanderWeele and Robins [61] provide some tests to

determine which individuals present Y only when the

interaction I is “on” provided there is no unmeasured

confounding). In order to be able to fully tell them

apart, an experiment can be conducted or the relative

risks can be compared (see Appendix 1).

In light of the evidence on Parkinson’s disease, we

have to favour one of the two models IV above the

other three, as it would appear that both the genetic

and the environmental exposure have separate (indepen-

dent) effects on the risk of Parkinson’s. However, from

the data on humans we cannot distinguish between the

two “type IV” models until we run a study to determine

the presence of an interaction. In the case of the Droso-

phila experiments (see section below) the interaction

model on the left-hand side provides a better explana-

tion, as flies with the mutation that have been exposed

demonstrate further sensitivity to exposure to pesticides

than those who do not have the mutation.

The example we have shown exemplifies, we think, a

common situation concerning the interaction between

metabolic genes and environmental exposures (e.g. ary-

lamines and NAT2, PAH and GSTM1 and many others)

but has the peculiarity that experiments in Drosophila

have been done (see below).

Experimental evidence: the case of the Drosophila

The DAGs above alone cannot be directly used for cau-

sal inference unless additional assumptions are made or

experiments conducted. The reason is the limited infor-

mation on potential confounders (and intermediate vari-

ables, etc.) that can influence the relationship between

the three observed variables. For the sake of making the

DAGs clear, we have assumed that there are no con-

founders; however this is unlikely to be the case in prac-

tice as Parkinson’s is a multifactorial disease. The

method we have proposed can however be extended to

include confounders and intermediate variables.

In the case of Drosophila the situation is simpler.

Meulener et al. [49] show that both exposure to pesti-

cides and the mutation of DJ-1 may be associated with

increased risk of neural degeneration. Further, the com-

bination of the two has also been demonstrated to

aggravate the condition, as the flies which had the DJ-1

gene knocked out exhibited a ten-fold increase in sensi-

tivity to paraquat (which would indicate a supra-multi-

plicative interaction).

As in this case both the genetic make-up and the

exposure status of the flies have been intervened upon

under controlled conditions, we can make causal infer-

ence based on this data by introducing randomisation

variables into our DAG. The DAG in Figure 9 is an aug-

mented DAG [38] that includes randomisation variables

Rp and Rd. These tell us whether P or DJ-1 are being

randomised or not and allow us to make inferences

about interventions and, hence, causality using DAGs.

For a more detailed discussion see Appendix 2.

The DAG in Figure 9 implied that for the Drosophila

at least we can state that exposure to pesticides causes

an increased risk of neural damage, as does the presence

of the mutated DJ-1 gene. Also as the combined pre-

sence of the mutation and paraquat further increases

the risk of neural damage, we can ascertain the presence

of an interaction. It should be noted that DAGs do not

specify or constrain the model of statistical interaction,

Figure 8 Both DJ-1 and the pesticide have an effect and there

is a possible interaction in A but not in.
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which can follow either an additive or a multiplicative

null hypothesis model.

In the case of humans, we cannot assume such rando-

misation variables exist (except in Mendelian randomi-

sation which, however, applies to gene variants only,

and not to exposure); thus, we cannot expand the DAG

in Figure 6. On the other hand, etiologic factors and

clinical phenotypes are usually more diverse in human

diseases than in animal models; inferences to human

diseases from relatively simple animal experiments have

well known limitations. An avenue for progress lies in

integrating DAGs with the inductive reasoning implicit

in Hill’s guidelines.

Application of causal guidelines to DJ-1 and exposure to

paraquat for Parkinson’s disease

Following the DAG approach, we established the rela-

tionship between genes and some environment expo-

sures in promoting Parkinson’s disease, and we

proposed different interaction models between DJ-1,

pesticides and Parkinson’s disease. In order to apply

Hill’s causal guidelines to the DAGs we are going to

work with (Figure 6A), we need to label each of the

edges. Throughout the rest of this section we use the

following labels:

• The edge between DJ-1 and Parkinson’s disease is

referred to as [edge 1],

• The edge between exposure to pesticides and Par-

kinson’s disease is referred to as [edge 2],

• The interaction between DJ-1 and the exposure to

pesticides in causing Parkinson’s disease is called

[edge 3].

Hill’s guidelines are discussed in a slightly different

order than in the original version and statistical signifi-

cance is omitted because it refers to the contingent

evaluation of each study and does not require a specific

discussion in relation to genomics.

(a) Strength of association. DJ-1 has been seen to

be lacking in Dutch families with Parkinson’s dis-

ease, and to be functionally inactive because of a

point mutation in the Italian families studied by

Bonifati and cols [51]. The deletion showed com-

plete cosegregation with the disease allele in the

Dutch family [51]; also in the Italian family the

homozygous mutation showed complete cosegrega-

tion with the disease haplotype, and absence from

large numbers of control chromosomes [62].

Although the function of the DJ-1 protein is

unknown, these data suggest a strong association

between the DJ-1 gene and the occurrence of Par-

kinson’s disease in certain families [edge 1]. To

establish the strength of the association between spe-

cific environmental factors and a disease is far more

complicated, mainly due to the quality of exposure

assessment, the latency period, and body concentra-

tions during the lifecourse. A meta-analysis of the

association of pesticides and Parkinson’s disease

points out that both pesticide exposure in general

and selective exposure to paraquat seem to be asso-

ciated with Parkinson’s disease, with odds ratios ran-

ging from 1.25 (95% C.I.: 0.34 - 4.36) to 3.22 (95%

C.I.: 2.41 to 4.31) [53] [edge 2]. With respect to the

interaction parameter, there is as yet no epidemiolo-

gical study that has tested whether there is an inter-

action between DJ-1 and pesticides; thus neither the

existence nor the strength of such an association are

known. However, knockout models of Drosophila

Melanogaster (fruit fly) lacking DJ-1 function, display

a marked and selective sensitivity to the environ-

mental oxidative insults exerted by both paraquat

and rotenone [49], suggesting an interaction between

these toxicants and the DJ-1 genotype [edge 3] in

animal models and, consequently, that in humans

the interaction between the chemicals and DJ-1 is

biologically plausible (as can be seen, Hill’s criteria

often “interact”, i.e., they are often related to each

other, as in this paragraph the strength of associa-

tion is related to the biological plausibility).

(b) Consistency of the association. After the first

variants described, different variants of the DJ-1

gene associated with the same Parkinson’s disease

phenotype have been found in patients of Ashkenazi

Jewish and Afro-Caribbean origins [63,64] [edge 1].

The association of paraquat and rotenone with Par-

kinson’s disease is more consistent in animals (in

which these two toxicants are often used to produce

animal models of the disease) [54] than in humans.

In environmental epidemiological studies in humans,

Figure 9 DAG representing the fruit-fly experiment where

interventions were performed both on the genetic make-up

and the pesticide exposure. The interaction can therefore be
identified.
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the association has been found substantially consis-

tent across studies, although some associations did

not reach statistical significance, mainly due to lim-

ited sample size. In a study in Taiwan, where para-

quat is routinely used in rice fields, a strong

association between paraquat exposure and Parkin-

son’s disease was found; the hazard increased by

more than six times in subjects exposed for more

than 20 years [64]. A dose-response curve with

length of exposure was also observed in plantation

workers in Hawaii [65], and British Columbia [66].

In a population-based case-control study in Calgary,

occupational herbicide use was the only significant

predictor of Parkinson’s disease in multivariable ana-

lysis [67]. However, in another population-based

case-control study in Washington, the odds ratio of

1.67 did not reach statistical significance (95% CI:

0.22-12.76) [68] [edge 2]. There is yet no evidence

from human studies to confirm the consistency of

GEIs in the causation of Parkinson’s disease [edge

3]. Furthermore, genes other than DJ-1 may be

involved in the etiopathogenic process, and so may

be exposures other than pesticides, and other GEIs.

Since environmental conditions vary substantially

across the globe, and the role of one gene, one expo-

sure or one GEI is often dependent on other genes,

exposures and GEIs, lack of consistency is to be

expected in studies conducted in different settings,

and in particular when studies focus only on a few

GEIs and overlook other interactions.

(c) Specificity of the association. The specificity of

the association between DJ-1 gene mutations and

Parkinson’s disease [edge 1] will be clearer once the

data on the pathological features of the DJ-1 patients

will be available (see Appendix 3). Chronic systemic

exposure to rotenone has been demonstrated to

cause highly selective nigrostriatal dopaminergic

degeneration associated with characteristic move-

ment disorders in rats [54] [edge 2]. Similarly, para-

quat caused a significant loss of nigral dopaminergic

neurons in mice compared to controls [69] [edge 2].

Once an appropriate epidemiological study is set up

aimed at studying GEIs in this context, results from

the pathological analysis of the sample subjects will

help to answer important questions regarding the

aetiological pathway of the disease [edge 3].

(d) Temporality. This criterion does not apply

directly to genotype, as it is determined at concep-

tion and it remains constant over time (see Appen-

dix 1) [edge 1]. However, temporality is crucial if we

go beyond genetic effects and consider epigenetic

mechanisms; e.g., gene regulation by environmental

factors [14,16-18]. This problem goes beyond the

present contribution, but is worth mentioning.

Concerning pesticides, temporality might be a con-

cern given that all studies on GEI in Parkinson’s dis-

ease are case-control studies, which are particularly

prone to selection bias, disease progression bias, and

so-called “reverse causality” [3,70,71]. In this case,

while it is unlikely that suffering from Parkinson’s

disease would have influenced past exposure to pes-

ticides or their metabolism, it could have influenced

recall. The observed dose-response relationship, with

20 years of exposure required [53], favours the exis-

tence of a true association, and is compatible with

disease characteristics of neurodegeneration, making

the temporality pattern suggestive of a causal role

[edge 2].

(e) Biological gradient. This criterion does not

apply since we are dealing with a recessive model of

inheritance. Nonetheless, a co-dominant model

should not be completely ruled out as a careful neu-

rological evaluation of heterozygote subjects might

point out some sub-clinical changes [edge 1]. A

dose-response relationship between toxicant expo-

sure and neural loss in animal experiments has been

observed [72]. In addition, several studies observed a

positive correlation with duration of exposure to,

and high dose of, herbicides and insecticides in

humans [53] [edge 2].

(f) Biological plausibility. Biological plausibility of

the DJ-1 mutation awaits the discovery and charac-

terisation of the encoded protein [edge 1]; the cap-

ability of some toxicants to induce a progressive

cellular loss in the substantia nigra and to be

responsible for a progressive clinical syndrome with

an intervening latent period has been hypothesized

[54] [edge 2]. It is, therefore, plausible that these two

factors may interact during the course of life produ-

cing Parkinson’s symptoms in genetically susceptible

individuals [edge 3].

(g) Coherence with previous knowledge. Confirma-

tion of the presence of different mutations on the

same DJ-1 gene in families with other background

origins but manifesting the same symptoms supports

the involvement of the gene in the disease [63,64]

[edge 1]. A role of herbicides in neurodegeneration

has also been studied with generally confirmatory

results [edge 2].

All these considerations taken together suggest that

there may be a potential interaction between exposure

to certain pesticides and the DJ-1 mutation in the risk

of developing Parkinson’s disease. However, as no stu-

dies on humans have yet been specifically conducted to

investigate this issue, we can use the evidence only as a

reason to further explore this interaction, perhaps by

conducting a more targeted study. As mentioned, it is
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likely that other factors (both genetic and environmen-

tal) also contribute to the final development of the

disease.

In the example above we have shown that the DAG

approach can be complemented by the use of Hill’s

guidelines when no experimental evidence can be

brought to bear on a particular gene-environment

interaction.

Conclusions
While medical and epidemiologic evidence is routinely

assessed to determine the causal nature of relationships

involving personal and environmental causes of disease,

genetic associations have so far not undergone similar

scrutiny. However, like epidemiologic studies, genetic

studies are also commonly based on observational stu-

dies, and may thus be affected by similar weaknesses. As

the contribution of genetics to the understanding of dis-

ease etiology becomes more important, causal assess-

ment of genetic and genomic evidence will become a

key issue [73].

We have explored two complementary ways to tackle

causality in gene-environment interactions. The applica-

tion of causal guidelines to genetics is not straightfor-

ward, and it becomes very complex, in particular, if one

wants to study gene-environment interactions, as we

have illustrated with Parkinson’s disease. Hill’s criteria

were developed to examine one factor at a time and

have seldom been applied to evaluate the causal nature

of complex relationships involving several exposures. On

the other hand, graphical approaches like DAGs are

effective in making potential causal networks explicit,

but are insufficient to establish the strength of evidence

(e.g., edges cannot be interpreted as causal without

some kind of additional external support). This seems to

be a general problem of causal networks, not only gene-

environment interactions.

The graphical approach is useful in particular for

clarifying complex causal pathways. We have applied it

to a simple example where the inner workings (i.e., the

detailed biological mechanisms in animal models) of

the interaction are not completely known. The

approach we propose uses the statistically formal

representation of DAG models. This is in contrast to

Weinberg’s paper [74] which, although invaluable in

highlighting the pros and cons of DAG models, does

not actually use DAGs, but heuristic diagrams not dis-

similar to those proposed by Ottman [56] and, over 35

years ago, Susser [75]. In the approach advocated by

VanderWeele and Robins [76], DAGs are considered

implicitly causal. We feel that this can be overly confi-

dent when the bases for inference are observational

studies, which is generally the case in human gene-

tic studies. Thus, we propose a more conservative

approach that involves assessing the causal properties

of each individual relationship.

A final caveat to interpreting DAGs involving genes as

causal is whether genetic variants can be considered

causes of diseases [30]; in a strict sense this issue is

unresolved. It is generally accepted that the causal nat-

ure of a relationship can be assured when interventions

(such as those performed in experiments) take place.

This is because controlled interventions usually (and

more easily) guarantee that the association investigated

is not confounded (but this is not an absolute rule).

VanderWeele and Robins [61,76] assume that genes can

be considered causes of diseases, without discussing the

implications or bringing additional information such as

Hill’s criteria into play; we believe that this is a strong

assumption: knowledge on the mechanisms that govern

the subclinical development and clinical course of com-

plex diseases is rather limited.

In summary, we believe that the DAG and causal cri-

teria-based approaches can complement one another, as

one helps to assess the strength of evidence, while the

other disentangles -in a visual but also formal way- the

role played by genes, environmental exposures, and

their interactions. The method we suggest can easily be

extended to more complex situations and in particular

to the understanding of gene-gene associations and

interaction. The problems we raise are likely to become

more relevant as genome-wide association studies pro-

vide new candidate genes for a variety of diseases, Men-

delian randomization is used to assess exposure-disease

associations, and gene-environment interactions are

further investigated in genetics and epigenetics.

Appendix 1 Using Austin Bradford Hill’s
guidelines in genetics and genomics
There are some general aspects to consider when tack-

ling cause-effect relationships in genetics. First, most

associations for individual genetic variants and common

chronic diseases have weak to modest effects. Empirical

findings show that even for fairly well established asso-

ciations, the effect sizes are weak to modest; i.e., relative

risks are usually under 2, and often between 1.2 and

1.6) [11]. Generally speaking, the stronger the associa-

tion between a risk factor and a disease, the more likely

it is that the association is causal, because confounding

and other biases are unlikely to explain it away. How-

ever, in genetics the penetrance of an individual genetic

variant associated with a disease depends on the interac-

tions of the variant with external exposures, the internal

environment, or other genetic variants. In spite of the

etiologic complexity of common diseases and the result-

ing weak effects of individual genetic variants, theoreti-

cal work suggests that the combination of as few as 20

common variants with weak to moderate effect sizes,
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when put together as a system of variants (or genomic

profiles), can account for a substantial attributable frac-

tion of the disease in the population [12]. On the other

hand, a large number of rare variants each contributing

(or causing) a strong disease risk may also be a plausible

explanation. The potential rarity of highly-penetrant var-

iants, the weakness of common associations, and the fre-

quency of complex gene-environment interactions pose

severe challenges to the statistical power to find mar-

ginal effects of single gene variants on risks for common

diseases. In fact, the strength of the association with the

gene (main effect) may be low while the gene-exposure

interaction is strong. This may be more convincing evi-

dence of the truly causal nature of the association, given

the available biological knowledge on environmental

influences on gene expression.

Consistency in genetic studies was traditionally poor

in the “candidate gene” era, with few associations con-

firmed in more than one study [13], but this has chan-

ged rapidly with genome-wide association studies

(GWAs). More than 600 stable replicated hits have been

reported in 2007 and 2008 from GWAs, due to an in-

built, strong process of replication of findings. One

advantage of GWAs is that they are published only if

the results are replicated in 3-4 or more independent

studies. As a result in genetic epidemiology there is now

a widely accepted requirement for “internal” consistency.

A similar approach would be invaluable in non-genetic

epidemiology but is currently not practiced. Poor repli-

cation for candidate genes is related to multiple factors,

including type 1 errors ("false positives”) and publication

bias, as well as to methodological issues as biases in the

selection of cases and controls, exposure assessment

errors, and confounding.

In addition, the expression of genes is so dependent

on the surrounding circumstances (other genes, internal

environment -e.g., immunological and nutritional status

[14]-, external physical environment, gene expression),

that the same main clinical effect of a gene variant is

difficult to capture in different studies conducted under

different conditions. In fact, such main effects may not

be identical in different studies that are conducted in

actual -sometimes, very different- human contexts; a

genuine heterogeneity of human genetic effects across

population groups -and individuals- is to be expected on

the basis of knowledge on how biological, clinical and

environmental processes jointly cause disease in

humans. An example of the influence of study design is

the investigation of gene-disease associations in founder

populations, in which the effect of a genetic variant is

likely to be higher than the average across all popula-

tions [15]. Another example is familial aggregation stu-

dies, where familial disease risks are influenced not only

by the genetic mutations or variants of interest, but also

by other genetic and epigenetic processes; if the latter

are overlooked, the penetrance of the former may be

overestimated [16-18].

To some extent it is reasonable to hope that genetic

associations are specific, thus facilitating causal infer-

ence. For example, 5-HTT variants have been associated

specifically with bipolar disorder, probably because of

the role of the gene in serotonin metabolism [19]. But

expectations of specificity may disregard biological

knowledge (e.g., on cofactors, multiple causes and

effects) that makes unspecificity more plausible. A

potential problem in the use of specificity as a criterion

for causality is that many genetic variants belong to

metabolic, inflammatory, homeostatic and other path-

ways that could influence multiple disease processes.

This is an extension of the concept of pleiotropy that

we see in single gene disorders. For example, MTHFR

variation involves folic acid and methylation pathways

that may have potential relevance to the genesis of

many disease outcomes, as birth defects, cardiovascular

disease and cancer [20]. The same is likely to be true

for DNA repair genes [21]. This issue has long been

observed in non genetic epidemiology in relation to

some common risk factors, such as socio-economic sta-

tus or cigarette smoking, which are associated with

many disease outcomes. The value of specificity

increases with increasing knowledge about the constitu-

ents of the exposure (e.g., PAHs and other carcinogens

for cigarette smoking), and of its biological or environ-

mental effects. For example, on the basis of functional

knowledge, only bladder cancer, and perhaps colon

cancer, may be expected to be associated with NAT2

variants [22-24]. Such postulated associations are biolo-

gically plausible because there is evidence that aromatic

amines or heterocyclic aromatic amines, which are

metabolised by NAT2, are involved in bladder or colon

carcinogenesis. Nevertheless, NAT2 associations are also

observed with breast and lung cancer and mesothelioma

[25,26], without evidence of biological plausibility. This

unexpected non-specificity may be true and due, for

instance, to a pleiotropic effect of the exposure; or the

apparent association with the outcome (in this case,

other than bladder cancer) may be confounded by yet

unknown factors. Similar situations are encountered in

clinical medicine and non genetic epidemiology; for

example, the early observation of an inverse association

between hormone replacement therapy (HRT) and mor-

tality due to accidents and violence, which was of the

same magnitude as that originally found for cardiovas-

cular mortality [27]. This prompted a debate on the cau-

sal nature of the association between HRT and

cardiovascular mortality, as no plausible biological rea-

son for the protective effect of HRT on violent death

could be argued.
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Temporality is also relevant to the study of the geno-

types; since gene variants are inherited and do not

change after conception, they precede the onset of dis-

ease indeed. In addition the temporal pattern with

which a particular variant/mutation manifests itself can

be relevant. In Huntington’s disease, for example, there

is the phenomenon of “anticipation” (younger age of dis-

ease onset in one generation than in the previous)

depending on the number of the repeated triplets in the

gene (which tend to increase in the offspring). For

acquired genetic alterations (e.g., somatic mutations)

temporality is also important; in persons living in nor-

mal conditions the timing of occurrence of the mutation

often cannot be observed directly. A collection of

archived specimens may help, as can knowledge on the

usual course of events gained from molecular pathology

studies. For epigenetic mechanisms temporality is even

more crucial, but it is beyond the purpose of this article

[14,16-18].

In genomics, the possibility of observing a dose-

response gradient depends on the model of genotype-

phenotype relationships. Even for a diallelic system at

one locus, there could be recessive, dominant or codo-

minant models. The biologic model for the action of

numerous alleles at different loci is more complex and

is essentially unknown for most common diseases. Only

if the genetic model is codominant can a dose-response

be observed. However, a different kind of dose-response

is observable if we consider the cumulative effect of

multiple genes or SNPs. Both the risk of lung cancer

and the levels of DNA damage can increase approxi-

mately linearly with an increasing number of “at risk”

gene variants [21,28]. Gene copy number variation can

lead to more complex dose-response relationships.

Quantitative continuous markers used in epigenetics

(promoter methylation) and transcriptomics (gene

expression) may be analyzed in search of dose-response

effects (linear or non-linear).

In genetics experimental evidence comes mainly from

animal studies in which knock-out organisms are used

in order to have a pure genetic disease model. This

directly tests the effect of the absence or presence of

specific genetic factors on the organism. Extrapolation

of the results of these experiments to humans is challen-

ging due to differences between humans and the knock-

out organisms in both the genetic make-up and the

potential types of gene-gene and gene-environment

interactions. Genetic experimental studies have also long

been known to reproduce disease phenotypes (e.g., in

mice) that are only a partial approximation of the com-

plex human disease; an example is the Super Oxide

Dismutase-1 (SOD1) mutated mouse model for Amyo-

trophic Lateral Sclerosis (ALS), which has different

motor characteristics than the human disease [29].

Appendix 2 The calculus of the Decision Theoretic
Framework (DTF)
The calculus of DTF

Conditional independence [12] is the tool DTF uses to

a) express how variables are associated and b) to under-

stand when it is possible to make inferences about cau-

sal associations from data that are observational. It is

best described as follows: consider 3 variables A, B and

C. Say that Pr(A,C|B) = Pr(A|B)Pr(C|B) (where Pr(.)

means probability of).

Then we can say that A is independent of C given B -

formally: A ┴┴C|B.
This means that if we know what B is, knowing what

A is gives us no further information on C; e.g., if we

want to know the genetic make up of Alfred (A), we

can gain some information by looking at his brother

Colin (C). If however, we can see their parents Barry

and Barbara (B), then knowing about Colin gives us no

further information on Alfred. This shows where the

“familial” terminology used in DAGs comes from.

Conditional independence is a non-graphical (and

non-causal) equivalent of the d-separation criteria used

in the causal DAG approach [11]. It forms the basis for

the formal treatment of DTF, and its manipulation

allows us to determine under what circumstances we

can equate the results of observation to those of experi-

ment [35,44].

The original role of DAGs in the statistical literature is

to encode statistical associations (described, for instance,

by Chi-squared tests). Thus, in DTF the lack of directed

edges in a DAG is viewed as conditional or marginal

independence between variables, not a lack of a causal

relationship. There are two problems with interpreting

DAGs encoding such associations as causal. The first

problem is that often there is more than one DAG repre-

senting the same set of conditional independences (see

example below). To determine which, if any of them, is

causal, we must use knowledge that is not inherent in

the data or the DAG (e.g., time ordering). The second

problem is that we often do not have data on all the vari-

ables that play a role (causal or otherwise) in the problem

we are considering. This means that the DAGs only tell

us about the relationships between the variables we have

observed, making a causal interpretation dangerous.
Consider the following simple example: A and B are

proteins produced in the body and C is a cancer

thought to be associated to the production of A and B.

It is possible to artificially increase the amount of B in

the system and we would eventually like to know

whether this could prevent the emergence of the cancer

C. However, at this point we do not know whether A or

B are produced by the presence of C or indeed whether

there is any natural ordering to the appearance of the

three variables. We obtain the conditional independence
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A┴┴C|B from data on a number of individuals in a case

control study investigating possible causes of C. This is

encoded by all three DAGs in the Figure 2. These three

DAGs only tell us one thing, namely that the cancer is

not directly associated to protein A (when we only con-

sider these three variables and the individuals in the

study). They do not tell us whether treating patients

with B will have a positive effect on the incidence of C

or indeed how A and B are associated. Thus, trying to

determine whether intake of B will act as a preventive

agent (i.e., whether B causes C) based only on current

knowledge and the DAGs is impossible. When we face a

problem that we do not understand fully, interpreting

one DAG or even one particular directed edge as causal

can be difficult.

Randomisation and interventions

One way of determining whether relationships depicted

in a DAG describing observational data are causal is to

relate it to an equivalent situation under intervention or

randomisation. It is generally accepted that the ideal for

causal inference is the randomised controlled trial

because confounding is eliminated or attenuated. It is

generally also accepted [36] that when we perform an

external intervention, such as randomisation on a sys-

tem in equilibrium, we can view the consequences as

causal. Thus, intervention is a formal way of asserting

cause-effect relationships.

In DTF we introduce randomisation as a variable R

(Figure 3). To clarify, consider the following example.

Assume that X is a binary variable that can be forced to

take on a particular value or “set”. It takes on two

values: “active” (X = a), or “baseline” (X = b). The ran-

domising variable R has the same settings as X as well

as the observational setting R= Ф (the empty set). When

R = a then X = a with no uncertainty (imagine forcing

X to take on this value, say by administering the treat-

ment to a compliant patient). Similarly, when R= b, X =

b with no uncertainty. Finally when R = Ф, X is allowed

to arise without intervention and can take on the values

a and b as in an observational study. For causal infer-

ence in DTF we want to estimate (usually the expected

value of) the outcome Y given that an intervention has

happened. For example, if we want to know which treat-

ment, active or baseline, is better for Y, we might look

at the difference in the expected value of Y given these

treatments: E(Y | R = a)- E(Y|R = b). This would then

be a measure of the causal effect of a vs b. In observa-

tional studies, we do not have E(Y|R = a) the interven-

tional expectation; rather, we have E(Y| X = a, R = Ф)

the observational expectation; similarly for b. The ques-

tion is, therefore, how to make an inference about the

former using the latter. One assumption that is often

made is that all observed confounders U are observed.

However, this is often not possible and other approaches

that simulate randomisation, such as the instrumental

variable approach known as Mendelian randomisation

[37] can be used. See Dawid [41], Didelez [42], and

Geneletti [43] for formal examples.

Introducing randomisation can also help us distin-

guish between intermediate variables and confounders,

as when X is randomised the association between X and

any confounders U is severed, whilst that with inter-

mediates is not (A and B in Figure 3). Statistically, if

after randomising X the distribution of U conditional on

X remains the same as before randomisation, then U is

a confounder rather than a mediating variable, as this

means that U is independent of X when it is rando-

mised. This corresponds precisely to the situation

described by the DAG in Figure 3A. If U depends on X

then we have that U is a mediator as in Figure 3B.

As also shown in Figure 3B, interventions are repre-

sented by decision nodes (square boxes) in augmented

DAGs [38], and these can be used to make some causal

inferences, as DAGs explicitly represent interventions.

By introducing the randomisation/intervention variables

explicitly into the DAG, we can use conditional inde-

pendences to determine when it is possible to estimate

the causal effect (based R = a,b) from data that are

observational (based on R = Ф and X = a,b). Again, as a

detailed description of the formal DTF is beyond the

scope of this paper, we refer the interested reader to

previous work [41-44].42 43

Appendix 3 Parkinson’s disease: environmental
and genetic risk factors
Parkinson’s disease: environmental factors

Large epidemiological studies aimed at identifying risk

factors for Parkinson’s disease have suggested a role of

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (a

compound accidentally produced in the manufacture of

illegal drugs), of some pesticides, of certain metals and

of polychlorinated biphenyls [46]. On the other hand,

tea and coffee drinking, use of non-steroidal anti-inflam-

matory drugs, and high blood levels of uric acid have

been suggested to be protective for Parkinson’s disease

[46].

Parkinson’s disease: single gene disorders

To date, eleven monogenic forms have been identified

(with PARK1 to 11 gene acronyms); they will be selec-

tively discussed below (Table 1) [47]. However, mono-

genic forms of Parkinson’s explain no more than 20% of

the early-onset cases of the disease, and less than 3% of

the forms with onset in the old ages, a situation that is

common to many chronic diseases as breast cancer (e.g.,

role of BRCA1) or heart disease (e.g., Familial Hyperch-

olesterolemia). Most forms of the disease appear to be
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caused or at least influenced by complex interactions

between several genes, or between genes and environ-

mental factors.

The a-synuclein, encoded by the SNCA gene, is a pro-

tein with several functions in signal transduction and vesi-

cle trafficking; it is also a competitive inhibitor of an

enzyme involved in the L-Dopa biosynthesis. Three

known dominant mutations on the SNCA gene have been

identified in families affected by Parkinsonism with

dementia characterised pathologically by diffuse Lewy

bodies, mainly composed of a-synuclein. The identifica-

tion of these mutations contributes to the contention as to

whether the so-called Lewy body disorders (Parkinson’s

disease, Parkinsonism with dementia, and dementia with

Lewy bodies) represent a continuum or have to be consid-

ered as distinct diseases [47]. This is thus as well an excel-

lent example of a situation in which researchers try to

elucidate the causal relationships between a complex set

of genotypes and a rich spectrum of clinical phenotypes.

The LRRK gene encodes for a protein involved in

multiple functions; three dominant mutations are

known. Pathologically, the disease is characterised by a

typical Lewy body pattern consistent with the post mor-

tem diagnosis of Parkinson’s disease. However, some

cases with tau-positive pathology without Lewy bodies

have been observed even within the same family. The

pathway leading to one or the other condition is likely

to be influenced by genetic and/or environmental factors

that remain to be identified [47].

There are more than 50 known variants in the parkin

gene and their effect on the disease appears to be

recessive. Subjects with homozygous mutations leading

to complete loss of parkin expression are found to have

a selective loss of dopaminergic neurons in the sub-

stantia nigra and in the locus coeruleus without Lewy

bodies or neurofibrillar tangles. However, subjects with

compound heterozygous mutations (a diploid genotype

in which two copies of a gene carry different muta-

tions) may present pathologically with Lewy bodies or

neurofibrillar pathology. This behaviour can be due to

the fact that the outcome is mutation-specific: some

mutations can reduce rather than abolish the protein

activity affecting substrate specificity. Otherwise, these

two different outcomes can share the primary cause (as

for the LRRK case), which is subsequently influenced

by gene-gene and/or gene-environment interactions

[47].

For the last two recessive mutations, PINK-1 and DJ-

1 there is no pathological information available. The

protein encoded by PINK-1 gene is a mitochondrial

kinase that seems to be involved in protecting the cell

from mitochondrial dysfunction and stress-induced

apoptosis [47]. The protein encoded by DJ-1 gene also

is localised on mitochondria, but it seems to belong to

the chaperones family, induced by oxidative stress [48].

This protein has been demonstrated to be involved in

cell protection during oxidative stress. Intriguingly,

reduced DJ-1 expression in Drosophila melanogaster

results in susceptibility to oxidative stress and protea-

some inhibition, which leads to a selective sensitivity to

the environmental chemical agents paraquat and rote-

none [49].

Table 1 Main identified genes involved in Parkinsonism, with their biological, clinical and pathological main features

Gene
(locus)

Protein Function Inheritance Pathology Clinical phenotype

1SNCA
(PARK1/
4)

a-
synuclein

Signal transduction, membrane
vesicle trafficking, and cytoskeletal
dynamics

Dominant Diffuse Lewy bodies
(prominently nigral and
hippocampal neuronal loss)

Early onset progressive L-Dopa
responsive Parkinsonism, cognitive
decline, autonomic dysfunction and
dementia

LRRK2
(PARK8)

Dardarin Cytosolic kinase with several
functions (including substrate
binding, protein phosphorylation
and protein-protein interactions)

Dominant Predominantly Lewy bodies
disease (rare cases with
neurofibrillar tangels and/or
nigral neuronal loss

Parkinsonism consistent with sporadic
Parkinson’s Disease. Dystonia,
amyotrophy, gaze palsy and dementia
occasionally develop

PRKN
(PARK2)

Parkin E3 ligase (conjugating ubiquitine to
proteins to target them for
degradation by the proteasome)

Recessive (rare
“presudo-
dominant”
cases
reported)

Predominantly nigral neuronal
loss (compound heterozygotes
with Lewy bodies or tau
pathology are described)

Early onset Parkinsonism, often
presenting with dystopia, with diurnal
fluctuations. Typically responsive to very
low doses of L-Dopa

PINK1
(PARK6)

- Mitochondrial kinase Recessive Undetermined Early onset Parkinsonism, slowly
progressive and responsive to low
doses of L-Dopa

DJ-1
(PARK7)

- Oxidative stress signalling molecule
on mitochondria

Recessive Undetermined Slowly progressive early-onset
Parkinsonism occasionally with
psychiatric disturbances; rare
compound heterozygotes with
Parkinsonism and dementia or
amyotrophy are described
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Appendix 4 The gene-environment interactions
(GEI) models in formal termsº
Below is a more formal treatment of the GEI models we

consider in the main text. In addition to considering the

conditional independence statements we also look at the

observed relative risks as these can give us information

about the type of interaction we are dealing with. We

assume throughout that the interaction is synergistic

rather than antagonistic and also that the appropriate

monotonicity conditions between risks hold.

First the assumption of no dependence between geno-

type and exposure is given formally DJ - 1 ┴┴ P.

Relative risks are defined as follows:
Rpd

Rpd
denotes the risk of disease of P = p and DJ-1 = d,

relative to the risk given by P = p̄ and DJ = 1 = d̄.

Model I

In addition to the above assumption the Model I DAG

represents the following conditional independence

■ Y ┴┴ (DJ-1, P)| = 0 - this tells us that when either

the variant or the exposure are not present, the dis-

ease is not associated with the mutation or the

exposure.

In terms of relative risks this model implies that

Rpd

Rpd

> 1 and
Rpd̄

Rpd

=
Rp̄d

Rpd

= 1

Model II

In addition to the above assumptions we have:

• which says that P does not affect Y when

.

Rpd

Rpd

>

Rpd̄

Rpd

> 1 and
Rp̄d

Rpd

= 1

Model III

The formal assumptions are the complement of those in

Model II.

Model IV

Rpd

Rpd

> 1 and
Rpd̄

Rpd

> 1

There are no additional assumptions here. In this case

the only way to determine which model holds is to run

an experiment or an observational study to estimate the

effect of the interaction. In this scenario it is essential to

decide on the scale of the interaction, as this will deter-

mine whether an effect is found or not. In the case of

the fruit fly, there appeared to be an increase of risk of

neural damage on the log scale, indicating a multiplica-

tive model.
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