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Abstract Characterising cellulose nanofibre (CNF)

morphology has been identified as a grand challenge

for the nanocellulose research field. Direct techniques

for CNF morphology characterisation exhibit various

difficulties related to the material network structure

and equipment cost, while indirect techniques that

investigate fibre-light interaction, fibre-solvent inter-

action, fibre-fibre interaction, or specific fibre surface

area involve relatively facile methods but may be

more unreliable. Nanopaper mechanical testing is a

prevalent metric for assessing fibre-fibre interaction,

but is an off-line, time-consuming, and destructive

methodology. In this study, an optical fibre morphol-

ogy analyser (MorFi, Techpap) was employed as an

on-line, high throughput, fast turnaround tool to assess

micro/nanofibre pulp morphology and predict the

properties of nanopaper material. Correlation analysis

identified fibre content and fibre kink properties as

most correlated with nanopaper strength and

toughness, while fibre width and coarseness were

most inversely correlated with nanopaper perfor-

mance. Principal component analysis (PCA) was

employed to visualise interdependent morphological

and mechanical data. Subsequently, two data driven

statistical models—multiple linear regression (MLR)

and machine learning based support vector regression

(SVR)—were established to predict nanopaper prop-

erties from fibre morphology data, with SVR gener-

ating a more accurate prediction across all nanopaper

properties (NRMSE = 0.13–0.33) compared to the

MLR model (NRMSE = 0.33–0.51). This study high-

lights that statistical methods are useful to disentangle

and visualise interdependent morphological data from

an on-line fibre analysis device, while regression

models are also capable of predicting paper mechan-

ical properties from CNF samples even though these

devices do not operate at nanoscale resolution.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10570-021-04405-5.

J. Pennells (&) � C. Chaléat � D. J. Martin
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Introduction

Characterising CNF morphology has been identified

as a grand challenge for nanocellulose research (Moon

et al. 2011). Across various nanocellulose applica-

tions, it is an important parameter for assessment of

product quality, quality control, and material safety

(Campano et al. 2020). Fibre morphology encom-

passes the average fibre dimensions (length, width),

the relative size distribution of fibre dimensions

throughout the sample, fibre aspect ratio, fibre surface

area, the degree of fibrillation and branching, fibre

hydrodynamic volume (rigidity), and fibre shape

(kink, curl, curvature). Subsequently, nanofibre mor-

phology influences the effective nanofibre surface

area, fibre-fibre and fibre-solvent interaction, net

surface charge, gel point or networking concentration,

and therefore the product quality in terms of its

mechanical properties, rheological and colloidal

behaviour, hydrophilicity, optical properties, electri-

cal conductivity, film permeability, and material

reactivity (Li et al. 2021). Fibre morphology has a

well-established impact on the mechanical properties

of paper, such that fibre length strongly affects paper

strength, whereas fibre width decreases fibre flexibility

and conformability, which has a negative impact on

paper strength (Seth 1995; Larsson et al. 2018). Fine

content improves the strength, smoothness, and optical

properties of the final paper (Moral et al. 2010;

Motamedian et al. 2019), while decreasing the free-

ness of the pulp (Dienes et al. 2005).
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Analysing cellulose nanofibre morphology

Measuring fibre morphology has been a difficult task

in nanocellulose research and development, primarily

due to nanocellulose materials existing over a range of

length scales, from poorly fibrillated millimetric scale

cellulose bundles to micron scale cellulose microfibres

(CMF), and down to nanoscale fibrillated cellulose

nanofibres (Tanaka et al. 2012; Chinga-Carrasco

2013). This length scale range introduces a challenge

for capturing a representative, bulk analysis of fibre

morphology. Other challenges for characterising CNF

morphology include the interconnected network struc-

ture of the material, and the difficulty of observing

nanofibres in their native, aqueous suspended state

(Haapala et al. 2013).

Many tools have been proposed to address the

challenge of CNF morphology characterisation,

including both direct observational measurement of

fibres such as SEM, TEM, and AFM (Krishnamachari

et al. 2011; Campano et al. 2020), or indirect

measurement of related metrics that are known to be

influenced by nanofibre morphology, such as light

transmittance and scattering (Chinga-Carrasco 2013;

Moser et al. 2015; Shimizu et al. 2016), freeness or

drainage time (Dienes et al. 2005), fractionation

(Madani et al. 2011; Tanaka et al. 2012), crystallinity

(Qing et al. 2013), gel point (Varanasi et al. 2013;

Sanchez-Salvador et al. 2020), rheology (Li et al.

2015; Yuan et al. 2021), and specific fibre surface area

(Pääkko et al. 2007; Saito et al. 2007).

Both direct and indirect fibre morphology charac-

terisation exhibit difficulties. Direct nanofibre charac-

terisation enables high resolution visualization of

individual particles or aggregates at multiple magni-

fication levels, but is limited in its ability to analyse a

representative sample of the material in a timely

manner and for fibres across multiple length scales

(Legland and Beaugrand 2013). While the resolution

of TEM can analyse fibre width down to a few

nanometres, SEM is only capable of analysing fibre

width greater than 100 nm (Kangas et al. 2014). In

addition, the three-dimensional structure and bulk

morphology of the sample is disrupted during the

drying step required for sample preparation (Peng

et al. 2012; Silva et al. 2021). Meanwhile, indirect

characterisation involves measuring a derived prop-

erty of the nanofibre system, such as the fibre-light

interaction (DLS, UV–vis transmittance), fibre-

solvent interaction (rheology, sedimentation beha-

viour, water retention capacity), fibre-fibre interaction

(nanopaper mechanical properties), or specific surface

area (SANS, SAXS, DSC, BET adsorption, solvent

relaxation NMR, conductimetric titration). Typically,

calculations or models are employed to infer fibre

morphology characteristics. These tools generally

involve more simple methods of nanofibre character-

isation but are often unreliable due to potential

inaccuracy and lack of generalisation in the models

inferring nanofibre properties. This issue is empha-

sised in the nanocellulose field, where different

biomass sources and processing methodologies can

produce material ranging widely in terms of fibre

morphology and mechanical properties.

As nanocellulose materials become increasingly

commercial, there is strong incentive to shift from

laboratory scale characterisation methods of fibre

morphology to scalable, fully automated, on-line

characterisation systems that are capable of assessing

thousands of fibre elements over a relatively short time

period (Legland and Beaugrand 2013; Balea et al.

2021).

Fibre analysis tools in nanocellulose literature

Optical fibre analysis devices are a potential solution

for this characterisation challenge. These tools have

the potential to provide high throughput, fast turn-

around analysis of micro and nanofibre pulp morphol-

ogy. Commercial fibre analysis devices have

previously been compared with varying results

depending on their fibre analysis algorithm (Guay

et al. 2005; Turunen et al. 2005; Hirn and Bauer 2006).

One such commercial fibre analysis device is the

MorFi (Techpap, France), which has been selected as

the fibre analysis system for this study. Although

MorFi is designed to analyse fibres in the size range

produced within the pulp and paper industry, many

studies have been conducted with MorFi as an indirect

nanofibre characterisation tool, as shown in Table 1.

Typically, MorFi is used to add another facet of

characterisation for CNF pulp, but the fact that it

cannot detect nano-scale fibre dimensions is rarely

taken into account (Espinosa et al. 2020). Alterna-

tively, MorFi has also been used as a quality control

tool to inform when sufficient mechanical processing

has been applied to the sample to reach a desired

morphology setpoint. Less commonly, MorFi been
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used to conduct detailed characterisation of the

nanofibre pulp morphology (Lacerda et al. 2013; Rol

et al. 2018), and integrating results with additional

characterisation methods to assess emergent relation-

ships (Rol et al. 2019; Espinosa et al. 2020). This style

of investigation is valuable, because information

obtained at the fibre population level can greatly aid

process development strategies and product quality

monitoring (Haapala et al. 2013).

Predicting nanopaper quality

Nanopaper fabrication and testing is one of the

predominant methods to characterise cellulose nanofi-

bre quality. It is well established that nanopaper

mechanical performance is correlated to the degree of

fibrillation and nano-scale morphology of CNF pulp.

Although nanopaper fabrication and testing is a

relatively facile method for CNF characterisation

(TAPPI 2006), it is necessarily off-line, time-consum-

ing, and destructive (Aguado et al. 2016). In addition,

nanopaper mechanical characterisation can suffer

from low precision due to defects introduced during

the sample cutting procedure (Hervy et al. 2017). As

such, a model that is capable of predicting nanopaper

performance based off of predictor variables, such as

fibre morphology data, is advantageous for CNF

research and development (Garcı́a-Gonzalo et al.

2016). In addition, conventional CNF characterisation

typically involves off-line measurement techniques

performed in a laboratory setting, which generally

require high capital investment, highly qualified

personnel for device operation, and involve complex

and time-consuming post-processing and analysis of

data (Balea et al. 2021). Alternatively, a fibre

morphology analysis device could be employed as

an on-line quality control tool for continuous CNF

processing, with its simple operation, fast analysis,

and low cost encouraging the commercialisation of

CNF products (Aguado et al. 2016). While the

integration of fibre analysis tools with pulp and paper

production would greatly benefit CNF commerciali-

sation, it has only been addressed in a handful of

previous studies (Pande and Roy 1998; Oluwafemi

and Sotannde 2007; Lin et al. 2014; Nasser et al. 2015;

Aguado et al. 2016). To address this gap in the

literature, this study investigates the relationships

between fibre morphology and nanopaper properties

for a broad sample population consisting of different

varieties and sections of sorghum biomass–a globally

important agricultural crop (Borrell et al. 2021) –

processed under 3 different energy levels. A statistical

methodology has been undertaken, including correla-

tion analysis, principal component analysis, and

regression modelling, to assess the relationships

between fibre morphology parameters and nanopaper

mechanical properties, and to predict nanopaper

performance from fibre morphology data.

Experimental methodology

Materials

Sodium hydroxide (NaOH, pellets, 98% purity) was

purchased from Chem Supply, Australia. Reverse

Table 1 Literature publications involving MorFi for CNF characterisation

Publication type Number of

publications

Description

Characterisation 104 General characterisation of nanofibre pulp morphology

Setpoint measurement 11 Fibre morphology used to determine when a refining setpoint has been reached

Commentary 4 Commentary about the use of MorFi as a fibre analysis tool

Review 3 Comparative review of different fibre analysis tools

Detailed

characterisation

2 Detailed characterisation of nanofibre pulp morphology

Integrated

characterisation

2 Characterisation of nanofibre pulp morphology, Integrated with other nanofibre

characterisation tools

Methodology 1 Discussion around the methodology for conducting MorFi analysis
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osmosis (RO) purified water was used throughout

experimentation. Sorghum biomass was grown under

adequate nutrient and water input conditions at The

University of Queensland’s research farm at the

Gatton campus near Brisbane, QLD from seeds

provided by the QLD Department of Agriculture and

Fisheries (DAF). Sorghum biomass included four

varieties (Sugargraze, Yemen, GreenleafBMR, Grain-

grass) partitioned into four plant sections (Leaf,

Sheath, Stem\ 1 m, Stem[ 1 m).

Biomass preparation & CNF production

Biomass was cut into approximately 5 cm lengths,

washed three times in distilled water at 80 �C for

approximately 30 min, and subsequently dried in a

convection oven at * 55 �C for 3 days. Dried

biomass was ground using a Retsch SM300 mill

(Retsch GmbH, Germany) at 3000 rpm with a 1 mm

trapezoidal mesh screen. Oversized material was

separated from the ground biomass with a 0.71 mm

aperture sieve. Ground biomass was dispersed and

stirred overnight at * 350 rpm in deionised water at a

solid ratio of 1:20 (20 g of water for every 1 g of

ground biomass). Chemical pretreatment was per-

formed using a 2% NaOH solution (w/v) at 80 �C for

2 h, stirred at * 350 rpm. NaOH treated (delignified)

pulp was separated from the waste liquor through a

fine mesh sieve (53 lm aperture) and rinsed exten-

sively until the filtrate pHwas below 8. The delignified

pulp suspension was diluted to a setpoint of 0.5% (w/

v) using a Mettler Toledo moisture analyser.

High pressure homogenisation

High pressure homogenisation (HPH) was conducted

with a Niro-Soavi Panda Plus 2000 machine (GEA,

Italy). Samples were collected at three sequential

energy levels: Low energy (L) – 1 9 400 bar pass,

Medium energy (M) – 1 9 400 bar pass ? 1 9 700

bar pass, High energy (H) – 1 9 400 bar pass ? 1 9

700 bar pass ? 2 9 1100 bar passes.

Fibre morphology analysis

10 g of CNF suspension at 0.5% (w/v) was randomly

sampled and added to approximately 1 L of water for

fibre analysis using the MorFi Compact analyser

(Techpap, France) equipped with CCD video camera,

a high magnification optical flow cell and MorFi

R.10.07 automatic analysis software. According to the

default settings of the MorFi device, Fibres are

classified as elements with a length between 100 and

10 mm and a width between 5 and 75 lm, while Fine

elements have a length between 5 and 100 lm and a

width\ 5 lm. Material below the optical resolution

of this device (length\ 5 lm) were not captured in

the analysis. Four technical replicates were run for

each sample. The MorFi parameters are outlined in

Table 2.

Nanopaper mechanical properties

Nanopaper was prepared from CNF pulp according to

our previous work (Pennells et al. 2021), as described

in brief below. CNF pulp was dewatered and dried into

a nanopaper handsheet using an automatic Rapid

Köthen handsheet former (Xell, Austria) according to

the ISO 5269–2:2004 standard operating procedure

(International Organization for Standardization 2001).

First, the CNF suspension was dewatered under -

0.7 kPa vacuum until sufficiently dry, as assessed

with a P-2000 handheld moisture analyser (Delmhorst,

USA). Subsequently, the wet cake was dried under

vacuum at 110 �C for 20 min. Nanopaper handsheets

were conditioned in the laboratory (25 �C, 50–75%
RH) for at least 1 day prior to mechanical testing. Up

to eight rectangular nanopaper strips (L = 150 mm,

W = 15 mm) were cut out from each handsheet, and

up to two handsheets were prepared for each sample.

Tensile properties of each nanopaper strip were

measured using an Instron model 5543 universal

testing machine (Instron Pty Ltd., Melbourne, Aus-

tralia) equipped with a 500 N load cell. Tensile index

was calculated with Eq. 1, where rT
w is the tensile

index or specific tensile strength per unit weight in

Nm � g�1, UTS is the ultimate tensile strength in Pa,

and qn is the nanopaper density in kg �m�3.

rT
w ¼ UTS Pað Þ

qn
ð1Þ

Toughness was calculated as a numerical approx-

imation of the energy absorbed by the nanopaper strip,

according to Eq. 2, where UT is the toughness in

MJ �m�3, 0 is the zero-strain starting point, and εf is

the nanopaper failure strain.
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UT ¼ r
2f

0

f xð Þdx �
Xn

i¼2

1

2
xn � xn�1½ � f xnð Þ þ f xn�1ð Þ½ �

ð2Þ

Statistical methodology

Correlation analysis

Following the generation and compilation of fibre

morphology data, for which the four technical repli-

cates for each sample were calculated into a mean, two

Pearson’s correlation matrices were built to assess the

relationships between fibre morphology parameters

and nanopaper mechanical properties for all sorghum

varieties, sections, and energy levels. The two corre-

lation matrices included: (1) the correlation between

each fibre morphology parameter, and (2) the corre-

lation between each fibre morphology parameter and

each of the four nanopaper mechanical properties.

Principal component analysis

Principal component analysis (PCA) was performed

using the prcomp command of the R statistical

Table 2 MorFi output parameters and parameter descriptions

Code Parameter Unit Description

Fibre_n Number of analysed

fibres

– The total number of fibres analysed throughout the test

Fibre_cont Fibre content Millions/g of pulp The number of fibres (millions) per gram of sample analysed

Fibre_L Mean arithmetic length lm Arithmetic mean length of all fibres analysed

Fibre_L.L Mean length-weighted

length

lm Arithmetic mean length of all fibres analysed, weighted by fibre

length

Fibre_L3.L Mean cubic-length-

weighted length

lm Arithmetic mean length of all fibres analysed, weighted by the

cube of the fibre length

Fibre_A.L Mean area-weighted

length

lm Arithmetic mean length of all fibres analysed, weighted by fibre

area

Fibre_W Mean fibre width lm Arithmetic mean width of all fibres analysed

Fibre_coarse Mean fibre coarseness.

mg/m

mg/m Fiber mass per unit length

Fibre_kink.num Mean kink number – The number of fibres with small regions of very high curvature

(i.e. sharp bends) along the fiber

Fibre_kink.ang Mean kink angle The mean kink angle for fibres that are kinked

Fibre_kink.cont Kinked fibre content % The number percentage of fibres with a kinked structure

Fibre_curl Mean fibre curl index % Degree of nonstraightness of a fiber—or the ratio of total particle

length over the projected length

MF.index MacroFibrillation

index

% Percentage of microfibrils by area

Fibre_broken Broken fibre content % Number percentage of fibres with broken ends

Fine_n Number of analysed

fines

– The total number of fibres analysed throughout the test

Fine_cont Fine content Millions/g of pulp The number of fines (millions) per gram of sample analysed

Fine_cont.A Fine content % (in area) % Area of Fine Elements over all other elements

Fine_cont.L Fine content % (in length) % Length of Fine Elements over all other elements

Fine_cont.L.L Fine content % (in length-

weighted length)

% Length weighted length of Fine Elements over all other

elements

Fine_A Mean fine area lm2 Arithmetic mean fine area

Fine_L Mean fine length lm Arithmetic mean fine length
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software (R Core Team 2021) with RStudio v1.3.1056

in order to reduce the dimensionality of the fibre

morphology and nanopaper mechanical property data

sets. Normal data probability ellipses were fitted for

the different factors (variety, section, energy level)

based on the default normal probability of 68%

(Prager et al. 2020). The top two principal components

were selected for data visualisation.

Regression modelling

To predict nanopaper properties, the fibre morphology

parameters outputs were related to the nanopaper

properties using one of two data modelling options:

Multiple linear regression (MLR) or machine learning

based support vector regression (SVR) in MatLab

v.2021a using the libraries developed by Pedregosa

et al. (Pedregosa et al. 2011). The SVR hyperparam-

eters selected included the kernel function of 2nd

degree polynomial, the absolute value of the a
coefficient equal to the IQR/1.349, and e equal to

IQR/13.49, where IQR is the interquartile range. Each

of the SVR models was fivefold cross validated, with

the final correlation coefficient R2 corresponding to

the average of the five values calculated for each fold.

The accuracy of each model was assessed for each

nanopaper metric based on their R2 and root mean

squared error (RMSE) values. RMSE is the square root

of the mean of squared errors between the observed

and predicted values, as shown in Eq. 3

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i�1 Oi � Pið Þ
n

r
ð3Þ

where Oi and Pi represent the observed and predicted

values for each sample (of size n) (Ritter and Muñoz-

Carpena 2013). RMSE was normalised by the mean

value of each nanopaper metric.

Model validation

For model validation, an additional series of CNF

suspension was prepared through HPH processing

over an extended mechanical energy series. The

biomass sample used for this analysis was the

Sugargraze variety with all sections combined in

equal proportions. CNF pulp was prepared according

to the mechanical processing conditions outlined in

Table 3. Nanopaper handsheets were fabricated from

the prepared CNF pulp and tested in accordance with

the previously described experimental methodology.

A graphical overview of the experimental methodol-

ogy and statistical analysis employed in this study is

presented in the Graphical Abstract.

Table 3 Model validation

data set over an extended

HPH processing series

Energy Level Notation HPH Passes

Low-Low LL 200 bar

Low L 200 bar ? 400 bar

Low-Medium LM 200 bar ? 400 bar ? 550 bar

Medium M 200 bar ? 400 bar ? 550 bar ? 700 bar

Medium–High MH 200 bar ? 400 bar ? 550 bar ? 700 bar ? 1 9 1100 bar

High H 200 bar ? 400 bar ? 550 bar ? 700 bar ? 2 9 1100 bar

High-High HH 200 bar ? 400 bar ? 550 bar ? 700 bar ? 3 9 1100 bar
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Results

Fibre Morphology Correlations

Initially, a correlation matrix detailing the relationship

between each pair of fibre morphology parameters was

calculated, as displayed in Fig. 1. Using a significance

threshold of x� 0:7, a total of 27 of the 210 pairwise

correlations were considered significantly correlated.

Relationships of interest included the positive corre-

lation between fibre width (fibre_W), fibre coarseness

(fibre_coarse), fibre curl index (fibre_curl), macrofib-

rillation index (MF.index), and broken fibre content

(fibre_broken), the inverse correlation between these

parameters and fibre content (fibre_cont), and the

inverse correlation between kinked fibre content

(fibre_kink.cont) and mean fine area (fine_A) and

length (fine_L). Following the analysis of pairwise

correlations in Fig. 1, a correlation table was estab-

lished between each fibre morphology parameter and

each of the four nanopaper mechanical performance

metrics, as outlined in Table 4. Notable positive

correlations included fibre content (fibre_cont) for

tensile index and Young’s modulus (0.6 and 0.71,

respectively), the fine content (fine_cont) for Young’s

modulus (0.67), and all kink-related parameters for

toughness (0.6–0.66). Taking the average correlation

across all four nanopaper metrics, kinked fibre content

(fibre_kink.cont) and kink angle (fibre_kink.ang) have

the highest values (0.55 and 0.56, respectively),

indicating the strongest overall relationship to nanopa-

per performance out of all fibre morphology param-

eters. The most indicative fibre morphology parameter

Fig. 1 Fibre morphology parameter correlation matrix

Table 4 Pearson correlation values for each fibre morphology parameter across the four nanopaper metrics
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Fig. 2 Principal Component Analyses for: a the association between Nanopaper properties grouped by HPH energy level; and b the

association between fibre morphology parameters grouped by HPH energy level
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for a single nanopaper property was the inverse

correlation between Young’s modulus and mean fibre

width (-0.8). Other inverse correlations between fibre

morphology parameters and nanopaper properties

include fibre coarseness (fibre_coarse) for all nanopa-

per metrics besides strain at break (-0.51 to-0.8) and

mean fine length (fine_L) and mean fine area (fine_A)

for Young’s modulus (-0.69 and -0.71,

respectively).

Principal component analysis (PCA)

Following the correlation analysis, a series of PCAs

were run to visualise the grouping and variance of fibre

morphology data across the entire sample population

in a reduced dimensionality format. Initially, a PCA

was conducted on the nanopaper mechanical property

data across all biomass samples and energy levels

(Fig. 2a). The results from the nanopaper PCA

demonstrate that the increase in mechanical process-

ing energy from low to high shifted the data along the

first principal component, which explains 61.3% of the

overall variance. This shift was closely matched by the

shift in nanopaper density and Young’s modulus, and

to a lesser extent tensile index (TI), toughness and

strain at break. This confirms the existing notion that

energy level has a strong positive correlation with

these nanopaper material properties.

Subsequently, a PCA was conducted on the fibre

morphology data across all biomass samples and

energy levels (Fig. 2b). The results from the fibre

morphology PCA demonstrate the fibre morphology

parameters that are correlated and inversely correlated

with the mechanical processing energy (along PC1),

which are known to relate to the nanopaper properties

from Fig. 2a. Fibre kink properties and fibre content

are positively associated with processing energy, and

therefore nanopaper performance, while parameters

such as fibre width, broken fibre content, and fibre

coarseness are inversely associated with processing

energy and nanopaper performance. Fibre morphol-

ogy parameters that correlate to PC2 include the fine

number and the fine content weighted by area, length,

and length-weighted length, respectively. The vari-

ance in these parameters is more closely associated

with different plant sections, specifically the leaf

section, as demonstrated in the Supplementary Mate-

rial. The two first principal components for the fibre

morphology PCA explain 35.6% and 22.8% of the

total variance, respectively.

Nanopaper regression models

Prediction of nanopaper mechanical properties from

fibre morphology data was performed using two

regression modelling techniques: Multiple Linear

Regression (MLR) and Support Vector Regression

(SVR). For both regression models, fitting of the fibre

morphology parameters was assessed for each nanopa-

per metric based on their R2 and NRMSE values, as

seen in Table 5. Based on the MLR and SVR model

outputs, it can be concluded that the given MorFi data

best explains nanopaper performance in terms of

tensile index (NRMSE of 0.4 and 0.23, respectively)

and Young’s modulus (NRMSE of 0.33 and 0.13,

respectively). For the given dataset, both the MLR and

SVR model outputs demonstrate a high level of

accuracy for predicting nanopaper properties from

fibre morphology data across all four nanopaper

metrics (R2[ 0.88). A full overview of the MLR

and SVR regression coefficients and parameters are

provided in the Supplementary Material.

However, as the SVR model demonstrated the

higher accuracy for predicting nanopaper properties, it

was selected for further investigation in the subse-

quent analyses. Figure 3 portrays the measured and

SVR predicted nanopaper tensile index, which demon-

strates the high level of accuracy for this model for all

sorghum samples across difference varieties, sections,

and energy levels.

Considering the impact of the mechanical energy

level on the accuracy of the regression model predic-

tions, Table 6 demonstrates that medium and high

energy samples had the lowest NRMSE values across

the majority of nanopaper metrics (excluding

Table 5 Fibre morphology to nanopaper prediction modelling

using MLR and SVR

Nanopaper Metrics MLR model SVR model

NRMSE R2 NRMSE R2

Tensile Index 0.4 0.89 0.23 0.99

Toughness 0.4 0.88 0.28 0.98

Strain at break 0.51 0.8 0.33 0.98

Young’s modulus 0.31 0.93 0.13 0.99
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toughness), indicating a higher fibre morphology to

nanopaper prediction capability when higher process-

ing energy was applied. For tensile index and Young’s

modulus, which were the metrics that the SVR model

most accurately predicted in the previous section, low

energy samples had the highest NRMSE across the

energy series, while the high energy samples for these

metrics were the most accurately predicted out of all

energy levels, nanopaper metrics, and model types.

Validation of model predictions

Following the high level of accuracy achieved for the

fibre morphology to nanopaper SVR model, experi-

mental data for an additional HPH validation series

was collected to test the fibre morphology to nanopa-

per model predictions within a new sample population.

The HPH validation series extended the processing

energy input for CNF production to range from a

minimum of one pass at 200 bar, to a maximum of 3

passes at 1100 bar. The validation series was per-

formed on an aggregated biomass sample of the

Sugargraze variety with all sections combined in equal

proportions. The predicted values for each of the four

nanopaper metrics, based on the HPH validation series

fibre morphology data and the previously established

SVR model, was compared to the actual mechanical

property results collected from HPH validation series

nanopaper samples, to test the degree of overfitting of

the initial SVR model. As seen in Table 7, the SVR

model is once again more accurate than the MLR

model for all nanopaper metrics besides tensile index,

with Young’s modulus again demonstrated as the most

accurate metric for the SVR model. However, the

accuracy of the validation series models was signif-

icantly lower than the original regression models, with

Fig. 3 Measured values of nanopaper tensile index (bars), values predicted by the SVRmodel (line), and the standard error of the SVR

model predictions (line shadow)

Table 6 Effect of

mechanical energy level on

fibre morphology to

nanopaper prediction model

accuracy

NRSME Nanopaper Metrics

Young’s Modulus Strain Tensile Index Toughness

Model MLR SVR MLR SVR MLR SVR MLR SVR

Low 1.49 0.80 2.57 0.93 2.18 0.63 1.23 0.53

Medium 1.19 0.48 1.43 0.97 1.16 0.56 1.71 0.87

High 0.67 0.44 2.15 0.87 1.35 0.44 2.35 0.79
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NRMSE values ranging from 4.1 to 7.5 times higher

across all nanopaper metrics for the validation series.

Discussion

Parameters influencing nanopaper properties

Influence of kinked fibres

The relationship between fibre kink and paper prop-

erties has rarely been described and has not been

extensively elucidated in the literature thus far

(Leopold and Thorpe 1968; Guangsheng et al. 2012;

Sood and Sharma 2021). For tissue paper applications,

the presence of kinked fibres increases material

porosity and surface roughness, but negatively

impacts the paper density and inter-fibre bond strength

(Morais et al. 2021). However, in the case of a

cellulose nanofibre system, fibre bundles that have

undergone partial microfibrillation through homogeni-

sation may be interpreted as fibre kinks due to

limitations in optical resolution, which would be

related with an increase in nanopaper strength. Alter-

natively, fibre kinks have previously been described as

deformations induced by mechanical stress rather than

by chemical pulping (Aguado et al. 2016). Therefore,

their association with nanopaper performance could

be related to the increasing energy applied to the fibre

bundles over the HPH processing series, which

induced fibre deformation.

Influence of fibre width and coarseness

Unsurprisingly, fibre width and coarseness are inver-

sely correlated with all facets of nanopaper perfor-

mance, such that less fibrillated materials with higher

average fibre width yields lower performing nanopa-

per. Fibres with a larger width decrease the degree of

fibre collapse during paper formation, impacting paper

density and strength, in addition to reducing water

retention properties (Morais et al. 2021). In addition,

the higher size and rigidity of coarse fibres decreases

the number of contact points and the bonding strength

between fibres. Correspondingly, the wet strength of

paper has previously been shown to be inversely

proportional to the square of the fibre coarseness (Seth

1995).

Influence of fibre content

In the context of a cellulose nanofibre suspension, fibre

content can be considered a proxy for the degree of

fibrillation, such that the higher the number of distinct

fibres present within a gram of material infers the

disintegration of larger aggregated fibre bundles into

smaller fibre structures. Fibre content only relates to

the detectable cellulose microfibres (CMF), as a

substantial fraction of the total fibre content has been

liberated into smaller nanofibres through mechanical

processing. Nanofibres that exist below the theoretical

detection limit of the MorFi device (Fine element

length\ 5 lm) are not accounted for in this param-

eter (Di Giuseppe et al. 2016). To take fibre content as

a reliable proxy for the degree of nanofibrillation, an

assumptionmust be made that the shift in micron-scale

fibre content with increased processing energy is

mirrored in magnitude by the shift in the nanofibre

content, which itself is unable to be measured directly

with precision and reliability.

Many confounders are present in this parameter–

firstly, a significant fraction of the nanofibre popula-

tion within the sample is hidden from detection

(Morais et al. 2021). In addition, with the increase in

mechanical processing, the content of micron-scale

CMF will firstly increase in number as cellulose

bundles are disrupted and partially fibrillated, but

subsequently decrease once they are sufficiently

fibrillated below the MorFi detection limit, creating

a non-linear trend with increasing mechanical energy.

In summary, it is impossible to know the true fibre

content (percentage of fibres between 100 and 10 mm

Table 7 MLR and SVR

model outputs for validation

energy series

Validation Series Outputs Nanopaper Metrics

Young’s Modulus Strain Tensile Index Toughness

MLR NRMSE 1.70 2.42 1.62 2.14

SVR NRMSE 0.81 1.86 1.72 1.95
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in length) or fine content of any sample using the

MorFi device. However, fibre content still appears to

be a promising proxy for the degree of nanofibrillation

due to the relatively strong correlation with nanopaper

mechanical properties, as demonstrated in Fig. 2a and

Table 4.

In a broad sense, this challenge of accurately

characterising the true nanofibre content of CNF pulp

is pervasive across nanocellulose research (Foster

et al. 2018). High resolution microscopy is unreliable

due to previously discussed drawbacks such as the

analysis of representative samples, the greater length

scale of CNF material than the observation window,

sufficient image quality, and the time-consuming post-

processing and analysis of images. Fractionation

methods such as mechanical screening (Tanaka et al.

2012), gravimetric centrifugation (Ahola et al. 2008),

and tube flow fractionation (Haapala et al. 2013) can

assess fibre size distribution over multiple length

scales, but are limited by their minimum size range for

analysis and time-consuming operation. Fractionation

and flow cytometry analyses are promising techniques

for population level analysis of fibre size distribution,

and have the potential to be used as a process quality

monitoring and development tool. However, they are

excluded from nano-scale particle analysis due to the

limited particle size recognition range (Haapala et al.

2013). The MorFi device fits in a similar category to

flow cytometry analysis as a potential on-line, high

throughput process quality tool for monitoring

micron-scale particles within CMFs or CNFs. While

optical fibre analysis does not provide true quantitative

information on the fibre dimensions and morphology

of the material, it may provide valuable insights into

the status of the micron scale sub-region of the

material at the population level, which can be used to

comparatively assess shifts in morphology across

different source materials or mechanical processing

levels.

Influence of random variation

Across the different facets of nanopaper performance,

fibre morphology parameters didn’t correlate as

strongly with nanopaper strain at break as they did

with other mechanical properties. A hypothesis to

explain this is the impact of non-fibre related factors

on the strain at break value. A number of microfrac-

tures are expected to be imparted to the edges of some

nanopaper strips during the sample cutting procedure,

which could be a random process or associated with

the biochemical composition and rigidity of the

nanopaper handsheet itself (Pennells et al. 2021). As

such, the number and size of microfractures imparted

to the nanopaper strip would disproportionately

impact the strain at break result for the tested

nanopaper strip.

PCA for population level fibre analysis

PCA has previously been employed to visualise and

assess the properties that influence fibre quality

(Legland and Beaugrand 2013; Garcı́a-Gonzalo et al.

2016; Desmaisons et al. 2017). In the case of

Desmaisons et al., a PCA methodology was employed

to reduce the number of relevant parameters required

for subsequent multivariate linear regression (Des-

maisons et al. 2017). In the case of Legland and

Beaugrand, a PCA methodology was employed to

identify highly correlated variables and variable

clusters within the fibre morphology data to eliminate

redundant variables. This methodology was extended

to identify groups of variables that cluster together to

generate a hierarchical clustering dendrogram that

delineated fibre morphology features based on size,

elongation, and tortuosity. This methodology allows

for the high resolution morphological characterisation

of a diverse fibre population (Legland and Beaugrand

2013). Lastly, in the case of Garcı́a-Gonzalo et al., a

PCA methodology was employed to cluster together

different paper properties and the effect of different

biomass sources on paper properties (Garcı́a-Gonzalo

et al. 2016).

In this study, PCA was employed to assess and

visualise fibre morphology and nanopaper properties

from a large population of CNF samples across

different biomass types and processing energy levels.

Each point represents an individual sample replicate

characterised by MorFi fibre morphology or nanopa-

per mechanical performance. The PCA ellipses rep-

resent the region defined by the 68% normal

probability (Prager et al. 2020). The normal probabil-

ity definition of the ellipse can be adjusted to generate

a more or less rigorous ellipse visualisation. Arrows

represent the fibre morphology parameters or nanopa-

per properties determined through CNF pulp and

nanopaper characterisation, respectively. The arrow

direction represents the correlation between the fibre
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morphology parameter/nanopaper properties and the

principal component, and the arrow length represents

the strength of the relationship between the parameter/

property and the principal component. The strength of

this methodology is the visualisation of an array of

fibre morphology data at the population level on a

single plot, with the elucidation of biomass and

processing factors that are associated with different

morphology parameters and nanopaper properties

through the grouping with probability ellipses.

Predicting nanopaper properties

The overarching goal of this publication is to analyse

whether fibre morphology generated from an optical

fibre analysis device can be used to predict the quality

of cellulose nanofibres in aqueous suspension, without

Fig. 4 Nanopaper mechanical properties predicted by the SVR model compared to measured values for: a Tensile index, b Toughness
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having to fabricate and test nanopaper samples.

Achieving this goal would provide substantial benefit

for industrial processing of nanocellulose, as this

would allow for the adoption of an on-line, fast

turnaround quality control tool and save time from the

fabrication and testing of nanopaper samples. This

goal was addressed by analysing fibre morphology and

nanopaper mechanical property data using two mod-

elling techniques: Multiple Linear Regression (MLR)

and Support Vector Regression (SVR). All fibre

morphology parameters generated by the MorFi

device were included in the MLR model, as no

additional effort is required to gather all data outputs

when running this fibre analysis. However, this

approach has the potential to lead to model overfitting,

which was assessed through model validation. Con-

sidering that the NRMSE values were 4.1 to 7.5 times

higher for the validation series over the original data

series, this indicates that the SVR model was some-

what overfit for the original sample population. The

inclusion of all fibre morphology parameters is a

potential explanation for the result, with the exclusion

of non-significant parameters expected to improve the

degree of model overfitting. Subsequent work will

investigate the adjusted R2 of the model as an indicator

of sufficient parameter inclusion. An additional factor

that may reduce model overfitting is further optimi-

sation of SVR hyperparameters.

Effect of energy level on nanopaper predictions

It is well established that the level of energy applied

during mechanical processing of biomass into CNFs

influences the fibre morphology and mechanical

properties of the resulting materials, as demonstrated

by PCA visualisation in Fig. 2. Therefore, it is

important to assess the effect of processing energy

level on the accuracy of nanopaper predicting models.

The results in Table 6 demonstrate that low energy

samples had the highest NRMSE values, which

indicated that the fibre morphology to nanopaper

prediction accuracy was lower for these samples. This

result was somewhat unexpected, considering that the

MorFi device is attuned to analysing micro-scale CMF

that are more likely to be present in higher proportions

at low energy conditions. The higher the mechanical

energy level, the more likely that microfibres are

deconstructed to nano-sized fibres that are outside the

detection limit of the device. On the other hand, the

nanopaper mechanical properties had a higher distri-

bution between biomass samples at low energy

conditions. Homogenisation at the high energy level

led to a more homogenised data distribution between

biomass samples, which allowed for a more accurate

prediction of nanopaper properties for the regression

models.

To visualise the accuracy of SVR model for the

validation series dataset and further assess the effect of

energy level on nanopaper predictions, measured

nanopaper values were compared to the SVR esti-

mated values for the data validation series (Fig. 4).

Firstly, these results demonstrate that the medium

processing energy region is most accurately predicted

in the validation series, while the samples at the low

and high energy extremes were less accurately

predicted. This relationship held for both tensile index

and toughness, the latter of which demonstrated a

lower prediction accuracy for medium energy samples

earlier in Table 6. This suggests that the applicability

of the model is lessened when the processing energy

conditions are broadened, indicating some degree of

overfitting to the specific processing energy conditions

of the initial dataset for the SVR model.

Conclusions

To address the challenges associated with scalable

CNF characterisation, this study investigated the

relationships between fibre morphology and nanopa-

per properties for a broad sample population of

sorghum biomass. Important fibre morphology param-

eters elucidated through correlation analysis included

the positive correlation between fibre content and fibre

kink with nanopaper properties, and the inverse

correlation between fibre width and coarseness with

nanopaper properties. Regression modelling of the

fibre morphology to predict nanopaper properties

demonstrated superior predictive power for the

machine learning based support vector (SVR) model.

The SVR model was further validated through the

replication data set over an extended processing

energy range, yielding a lower prediction accuracy

than the original dataset that implied some degree of

model overfitting. This study constitutes a platform for

future investigation targeted at predicting nanopaper

mechanical properties from the morphological prop-

erties of CNF pulp, with a focus on improving model
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generalisability. Ultimately, the development of more

accurate and generalisable models for the prediction of

nanopaper mechanical properties from morphological

data will enable scalable and expedient characterisa-

tion of CNF products in the future industrial setting.
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Aguado R, Moral A, López P et al (2016) Morphological

analysis of pulps from orange tree trimmings and its rela-

tion to mechanical properties. Meas J Int Meas Confed

93:319–326. https://doi.org/10.1016/j.measurement.2016.

06.063

Ahola S, Salmi J, Johansson LS et al (2008) Model films from

native cellulose nanofibrils. Preparation, swelling, and

surface interactions. Biomacromol 9:1273–1282. https://

doi.org/10.1021/bm701317k

Al-Gharrawi M, Ollier R, Wang J, Bousfield DW (2021) The

influence of barrier pigments in waterborne barrier coat-

ings on cellulose nanofiber layers. J Coatings Technol Res.

https://doi.org/10.1007/s11998-021-00482-0

Balea A, Blanco A, Delgado-Aguilar M et al (2021) Nanocel-

lulose characterization challenges. BioResources

16:4382–4410. https://doi.org/10.15376/biores.16.2.Balea

Borrell A, Oosterom E Van, George-Jaeggli B, et al (2021)

Sorghum. In: Crop physiology case histories for major

crops. Academic press, pp 196–221
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