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A statistical downscaling known for producing station-scale climate information from GCM out-
put was preferred to evaluate the impacts of climate change within the Mount Makiling forest
watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water bal-
ance assessment of climate change impacts based on two scenarios (A1B and A2) from CGCM3
experiment. The annual precipitation change was estimated to be 0.1–9.3% increase for A1B sce-
nario, and −3.3 to 3.3% decrease/increase for the A2 scenario. Difference in the mean temperature
between the present and the 2080s were predicted to be 0.6–2.2◦C and 0.6–3.0◦C under A1B and
A2 scenarios, respectively. The water balance showed that 42% of precipitation is converted into
evaporation, 48% into streamflow, and 10% into deep seepage loss. The impacts of climate change
on water balance reflected dramatic fluctuations in hydrologic events leading to high evaporation
losses, and decrease in streamflow, while groundwater flow appeared unaffected. A study on the
changes in monthly water balance provided insights into the hydrologic changes within the forest
watershed system which can be used in mitigating the effects of climate change.

1. Introduction

Changes in climate regime can influence the
natural processes of a watershed ecosystem (Band
et al 1996; IPCC 2001a) and have long-term
implications on economic and ecological processes
(USEPA 2004). Nowadays, consensus is that the
average global surface temperature has increased
by as much as 0.74◦C during the 20th Century
(UNEP 2007; IPCC 2007) and the average
sea level has risen approximately to 15–20 cm
during the last century (IPCC 2001b; USEPA
2004). Although climate change can occur nat-
urally, population growth and fossil fuel burn-
ing plus high deforestation rate (FAO 2007)
have accelerated the increase of greenhouse gases

(carbon dioxide, methane, nitrous oxide, and chlo-
rofluorocarbons) in the atmosphere that trap
heat and warm the earth system (USEPA
2004).

Increasingly reliable regional climate change
projections are now available for many regions of
the world due to advances in modelling and under-
standing of the physical processes of the climate
system (Christensen et al 2007). Currently, the
Data Distribution Centre of the Intergovernmen-
tal Panel on Climate Change (IPCC) provides link
to data of various Global Climate Models (GCM)
on related scenarios for impact assessments. How-
ever, the predicted climate changes for the selected
years will depend greatly on the model and scenario
selected.
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In this study, the newly registered Third
Generation Coupled Global Climate Model
(CGCM3) (Flato 2005) is considered because of
its capability in producing station-scale climate
information from GCM-scale output, and it can
generate daily weather data ignoring only the leap
years. Essentially, the CGCM3 model generates
sufficient scenario datasets that can be utilized as
input data required by the hydrologic model at
the catchment scale level.

The CGCM3 is a Canadian model, a member
ensemble and part of the IPCC Fourth Assessment
Report (AR4). The model incorporates four experi-
ments with two scenarios for statistical down-
scaling approach. The Canadian Climate Change
Scenarios Network provides datasets that can
be used as predictors for statistical downscaling.
The CGCM3 model data are an improvement on
previous models, mainly updated through intro-
ductions to the atmospheric component, which
include new treatment of water vapour trans-
port, and cumulus parameterization (Flato 2005).
Because of this experiment, more changes of
local climate will have significant impact on the
hydrological regimes and modelling.

In spite of extensive research on the specific
impacts of climate change, research and informa-
tion on the impacts of climate change on water-
shed systems remain in their early years (Marshall
and Randhir 2007). Hundreds of studies of the
potential effects of climate change on river flows
have been published in scientific journals, and
many more studies have been presented in inter-
nal reports. Most studies are for Europe, North
America and Australia, with a small number of
studies for Asia (Bates et al 2008). For instance,
Fowler et al (2007) recently wrote a review on
advances in downscaling techniques for hydro-
logic modelling that covered an extensive range
of the strengths and weaknesses of downscaling
methods for different climatic variables in differ-
ent regions and seasons. The investigation featured
geographical distribution of statistical downscal-
ing studies and methods employed but did not
mention the use of statistical downscaling tools
in Asia. Nonetheless, some studies have utilized
statistical downscaling approaches, including those
of Anandhi et al (2008) in Malaprabha reser-
voir in Karnataka state of India, Asokan and
Dutta (2008) in Mahanadi river basin in India;
Ghosh and Mujumdar (2008) with relevance vector
machine approach in Mahanadi river basin in
India; Tripathi et al (2006) with support vector
machine in India; Karamouz et al (2007) in Iran;
Chen et al (2006) in subtropical region in China;
and Wilby et al (1998) in Suwa Lake, Japan.

In hydrologic modelling, many researchers have
discussed the use and application of different

hydrologic models such as water balance, regres-
sion analysis, energy budget and other empirical
models (Tabios 1978; Arnell 1999; Vogel et al 1999;
Fleming and Neary 2004; Young 2006; Bari and
Smettem 2006). The application of a typical hydro-
logic model requires calibration and parameter fit-
ting for a given site. Applications of BROOK90
model, used in this study, have been demonstrated
in grassland (Federer 2002), temperate evergreen
and deciduous forests (Federer 2002), monocul-
ture conifer stands into mixed or pure deciduous
(Armbruster et al 2004), cultivated land (Wahren
et al 2007), silver fir-beech forest (Vilhar et al
2006), mixed Norway spruce and European beech
(Jost et al 2005), and mixed coniferous forest
(Combalicer et al 2008) with satisfactory perfor-
mance. The model might also be applicable in
tropics after adjusting sensitive parameters to local
conditions. In the Philippines, in particular, appli-
cation of the BROOK90 model remains valuable
for watershed management research in view of limi-
ted researches and published reports dealing with
hydrology of the forest watershed (Environmental
Forestry Program 2002).

The Mount Makiling forest reserve is a well-
studied and well-researched ecosystem (Bantayan
2001). Most of the previous investigations were
on water quality and sediment characteristics
(Pasa 1997), hydrometeorological characterization
(Cruz 1982; Saplaco and Aquino 1991), micro-
climate profile (Saplaco 1983), canopy hydro-
logy (Palis 1991), forest land use change on
agricultural production (Anunciado 1993), land
capability classification and land use suitability
assessment (Pudasaini 1993), land use modelling
(Bantayan and Bishop 1998), socio-economic vari-
ables of land use changes (Vallesteros 2002), carbon
stocks assessment (Lasco et al 2004), ecosystem
structure and function (Lee 2006), and stand struc-
ture, soil respiration and properties (Bae 2008).
Hence, it is timely to study hydrologic behaviours
of Mt. Makiling forest watershed in response to
climate change.

This study investigated and evaluated the
climate change anomalies and trends in the study
area using a well-recognized statistical downscal-
ing approach. In addition, BROOK90 model was
used to determine the current water balance, and
simulated water balance fluxes in response to two
climate change scenarios.

2. Data used and methodology

2.1 The study area

The rainforest of the Makiling Forest Reserve
(MFR) is the southern part of Metro Manila,
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Figure 1. Location of the study site and monitoring stations within the Mt. Makiling forest reserve, Philippines.

Luzon Island, Philippines (figure 1). The forest
reserve geographically radiates to coordinates of
14◦08′14′′ north latitude and 121◦11′33′′ east longi-
tude. The MFR is only about 42.44 km2 and under
the jurisdiction of the University of the Philip-
pines – Los Baños (UPLB). The forest reserve is
classified as a national park and it is a critical
watershed for power generation (Vallesteros 2002).

There are more than 60 perennial and inter-
mittent streams with a total length of around
89 km within MFR. The drainage pattern of the
Mt. Makiling is radial in appearance which is typi-
cal of volcanic landforms. Most tributaries in the
area drain to the Laguna de Bay – the Philippine’s
largest lake. The experimental site is situated
within the Molawin forest watershed, a landscape
unit with fully vegetated areas, and covering about
3.77 km2.

The topography of Mt. Makiling is generally
rugged with elevation ranging from 40 to 1100
meters above sea level (m asl). About 70% of the
total area has an elevation of more than 400 m asl.
The areas at lower elevations have gentle slopes and
therefore suitable for farming and settlement. The
soils of Mt. Makiling belong to four series (Lipa,

Macolod, Gulugod and Makiling) and are generally
fertile. Clay loam is the dominant soil texture in
the study site.

The favourable soil and climate makes the forest
reserve a rich museum of valuable plant species.
The vegetation of Mt. Makiling is a gradient from
a parang vegetation at the base, to a typical
tall forest on the lower elevations, to a crooked,
stunted mossy forest at its three peaks (Fernando
et al 2004). The forest reserve contains at least
225 families and 2038 species of vascular plants
(Pancho 1983) and may serve well as a represen-
tative of the Philippine mixed hardwood vegeta-
tion. The botanic gardens harbour many exotic and
locally introduced species of plants, which add up
to the floral diversity in the area.

The MFR has an annual mean temperature
ranging from 25.9◦C to 29.3◦C with hottest tem-
perature during the months of April to July while
coldest during December to February. The cli-
mate is determined primarily by the east and
west monsoons and by the movement of inter-
tropical convergence zone. The average annual
rainfall recorded at the nearest national weather
station (800 m downstream of the monitoring site)



268 E A Combalicer et al

ranged from 1645 mm to 2299 mm for the past five
years.

2.2 Downscaling process

The general theory, limitations and practice of
downscaling have been discussed in detail in
a number of papers (Khan et al 2006; Fowler
et al 2007; Wilby and Dawson 2007; Ghosh
and Mujumdar 2008). Downscaling methodologies
can be broadly classified into four main types
(Wilby and Dawson 2007; Ghosh and Mujumdar
2008): dynamical climate modelling, synoptic
weather typing, stochastic weather generation and
transfer-function approaches. Dynamical down-
scaling involves the nesting of a higher resolution
Regional Climate Model (RCM) within a coarser
resolution GCM. The RCM uses the GCM to
define time-varying atmospheric boundary condi-
tions around a finite domain, within which the
physical dynamics of the atmosphere are modelled
using horizontal grid spacing of 20–50 km. Weather
typing approaches involve grouping local, meteoro-
logical data in relation to prevailing patterns of
atmospheric circulation. Climate change scenarios
are constructed, either by re-sampling from the
observed data distributions (conditional on the cir-
culation patterns produced by a GCM), or by
generating synthetic sequences of weather pat-
terns and then re-sampling from the observed
data. Weather generators are statistical models of
observed sequences of weather variables. They can
also be regarded as complex random number gener-
ators, the output of which resembles daily weather
data at a particular location (Katz and Parlange
1996). The most popular approach of downscaling
is the use of transfer function which is a regres-
sion based downscaling method (Wilby et al 2004;
Tripathi et al 2006).

Statistical downscaling approaches have recently
emerged as a means of relating large-scale
atmospheric predictor variables to local or station
scale meteorological series, which could be used as
input to hydrological models (Dibike and Coulibaly
2005; Bates et al 2008). Basically, regression-based
downscaling methods rely on direct quantitative
relationship between the local scale climate vari-
able (predictand) and the variables containing
the larger scale climate information (predictors)
through some form of regression functions (Karl
et al 1990).

Individual downscaling schemes differ according
to the choice of mathematical transfer func-
tion, predictor variables or statistical fitting
procedure. Linear and nonlinear regressions, arti-
ficial neural networks, canonical correlation and
principal component analysis have been used to
derive predictor–predictand relationships (Conway

et al 1996; Schubert and Henderson-Sellers 1997).
Lately, Diaz-Nieto and Wilby (2005), and Wilby
and Dawson (2007) enlisted the advantages of the
statistical downscaling method to obtain station–
scale climate information from GCM–scale output
as:

• computationally cheap,
• readily transferable from one watershed to

another,
• allows using ensembles of climate scenarios,
• permits risk/uncertainty analyses, and
• applicable to ‘exotic’ predictands such as air

quality and wave heights.

However, the model often explains only a fraction
of the observed climate variability especially when
the predictand is precipitation.

In this study, Statistical Downscaling Model
(SDSM) was used to downscale hydrologic vari-
ables. Technical details, including model validation
and usage, are described by Wilby et al (2001) and
Wilby and Dawson (2007). The SDSM has been
widely used for the generation of multiple climatic
variables in hydrological impact assessment. SDSM
simulates climatic variables only at single site
(Fowler et al 2007) which was suitable for our study
area.

2.2.1 Predictors

Predictors are large-scale climate variables
used by statistical downscaling tools to gene-
rate local variables or predictands (observed
fields). The variables from CGCM3 were down-
loaded from the data access integration website
(http://loki.ouranos.ca/DAI/DAI-e.html). The
predictor variables were supplied on a grid box
by grid box basis in a zip file. Subdirectories were
created during the unzipping process and these
subdirectories contained the predictors needed
to run SDSM. The directory contained 40 years
of daily predictor data, derived from the NCEP
reanalyses, and normalized over the 1961–1990
period. These data were interpolated to the same
grid as CGCM3 (Gaussian grid) before the nor-
malization. Another directory contained 100 years
of daily GCM predictor data, normalized over the
1961–1990 period, and covering the future period
2001–2100 of the Special Report on Emissions
Scenarios (SRES) A2 and A1B scenarios.

The Mt. Makiling forest reserve area is registered
within the grid box 33X–21Y. On the global
CGCM3 grid, the box number in the X direction
referred to longitude, and the box number in the Y
direction related to latitude for correspondence
between box numbering and longitude–latitude
coordinates. The model grid is uniform along
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Figure 2. The SDSM downscaling process and the generation of the daily synthetic weather time series for hydrologic
modelling based on two scenarios.

the longitude with size of 3.75◦ and nearly uniform
along the Gaussian latitude (approximately 3.75◦).

The variables simulated from the third version
of the Canadian Centre for Climate Modeling and
Analysis (CCCma) Coupled Global Climate Model
(Flato and Boer 2001; Flato 2005) at a grid point
(12.99◦N latitude, 120◦E longitude) were used as
predictors. Datasets were extracted at daily time
step for A1B and A2 scenarios. According to IPCC
SRES A1B and A2 are non-mitigated scenarios
driven mainly by increases in anthropogenic green-
house gas concentration (IPCC 2007). These
scenarios cover a wide range of key future charac-
teristics which refer to the driving forces, such
as population growth, economic development,
and technological change. In particular, the A1B
describes a future world of very rapid economic
growth, low population growth, and the rapid
introduction of new and more efficient technolo-
gies. On the contrary, the A2 scenario depicts
a very heterogeneous world with low economic
development, high population growth, and low
technological change when compared to A1B
scenario.

2.2.2 Predictands

Daily precipitation, and maximum and minimum
temperature data were chosen as predictand vari-
ables for the downscaling. Forty years (1961–2000)
of historical records of predictands were avail-
able at UPLB National Agrometeorological Station
(NAS) and were used for calibrating and validating
downscaling model. Observed daily data of the
large-scale predictor variables in place for current
climate were obtained from the National Centers
for Environmental Prediction (NCEP) reanalysis
datasets on the given grid box.

2.2.3 Calibration and validation of
the SDSM

In SDSM, identifying empirical relationships
between gridded predictors and single site predic-
tands is often the most time-consuming process
(figure 2). The most relevant predictor variables
for downscaling were identified using correlation
analysis and scatter plots (between the predic-
tors and the predictand variables). Predictors with
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high correlation were selected based on the analysis
output for 12 months. The strength of individual
predictors varies from month to month. However,
the final choice was made by considering whether
the identified variables and their relationships are
physically meaningful in the study site. Eventu-
ally, the screened predictors were used for the cali-
bration process that constructs downscaling model
using multiple regressions.

The observed daily data of large-scale pre-
dictor variables representing the current climate
condition (1961–2000) derived from the NCEP
reanalysis dataset were used to investigate the per-
centage of variance explained by each predictand–
predictor pairs. Two sets of weather data series
were prepared. Data series from 1961–1990
were used for calibration, while the remaining
10 years (1991–2000) were used to assess validation
performance.

2.2.4 Scenario generation based on
CGCM3 predictors

Predictands of the two CGCM3 scenarios were
generated using the SDSM program as seen in
figure 2. In particular, the scenario generator oper-
ation in the SDSM program produced ensembles
of synthetic daily weather series given atmospheric
predictor variables from CGCM3 experiment.
Daily time series datasets were synthesized using
independent predictors withheld from model cali-
bration for each scenario. The representative time
series of present and future climate conditions
was produced from the mean ensemble. Thirty
ensembles were considered for simulating each sce-
nario. Four distinct periods, namely: the present
(2001–2010), the 2020s (covering a 30-year period
between 2011 and 2040), the 2050s (2041–2070),
and the 2080s (2071–2100) were used for pattern
and trend analysis.

2.3 Hydrologic modelling

2.3.1 The BROOK90 model

The BROOK90 model (Federer 2002) was used for
simulating water balance fluxes. The model simu-
lates the precipitation–evaporation–streamflow–
ground water flow for a point scale stand at
a daily time-step. The BROOK90 model calcu-
lates evaporation with the Shuttleworth–Wallace
equation (Shuttleworth and Wallace 1985), an
improvement of the Penman–Monteith equation as
well as the temporal and quantitative flow mech-
anisms within a catchment. The soil–water char-
acteristics were defined using a modified approach
of the Brooks and Corey (1964), Saxton et al

(1986), and Saxton and Rawls (2006) from 11,
10 and 12 classified textural classes, respectively.
The water movement through the soil is simulated
using the Darcy–Richards equation. It considers
water stored as intercepted rain, intercepted snow,
snow on the ground, soil water from one to many
layers, and groundwater. Likewise, evaporation is
the sum of five components: evaporation of inter-
cepted rain and snow, snow and soil evaporation,
and transpiration.

On the other hand, streamflow is generated using
the following simplified processes: storm flow by
source area flow and delayed flow from vertical
or downslope soil drainage and first-order ground-
water storage. Further details are provided in the
BROOK90 documentation manual (Federer 2002;
Federer et al 2003).

In BROOK90 model, the water balance is
expressed as follows:

P = EVAP + FLOW + SEEP, (1)

where P is the precipitation (mm), EVAP is the
evaporation (mm), FLOW is the corresponding
simulated total streamflow (mm) derived from sur-
face flow and the ground water flow, and SEEP is
the deep seepage loss from ground water (mm).

The deep seepage loss from the ground water is
calculated out as follows:

SEEP = GWAT × GSC × GSP, (2)

where GWAT is the groundwater storage below soil
layers, GSC is the fraction of groundwater stor-
age that is transferred to ground water flow and
deep seepage (SEEP) daily, and GSP is the frac-
tion of ground water discharge produced by GSC
that goes to deep seepage and is not added to
streamflow.

In this study, ground water flow (GWFL) was
assumed to be a first order reservoir as:

GWFL = GWAT × GSC × (1 − GSP). (3)

2.3.2 Data collection

The water level and flow velocity were measured
using a rectangular flume constructed in the
area. The float-operated shaft encoder level sensor
and logger was installed in the monitoring
station to obtain water level, and a digital flow
probe was used to measure flow velocity. The
measurements during the wet seasons were used
to develop stream-discharge relationship in the
watershed.
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Table 1. Canopy parameter values of the BROOK90 model calibrated in the watershed.

Parameters Description Range of values Final value Source

ALB Albedo (f) 0.1–0.3 0.25 Ito and Oikawa (2002)

ALBSN Surface reflectivity without
and with snow on the
ground (f)

0.1–0.9 0.10 Ito and Oikawa (2002)

KSNVP Multiplier to reduce snow
evaporation, arbitrary (f)

0.2–2.0 0.3 Federer (2002)

Z0G Ground surface roughness
(m)

≥ 0.001 0.02 Oh (1999)

MAXHT Maximum canopy height for
the year (m)

> 0.01 35 Direct measurement

MAXLAI Maximum projected LAI for
the year (m2/m2)

> 0.00001 5.31 Derived from Landsat
ETM+ 2002 scene

MXRTLN Maximum length of fine
roots per unit ground area
(m/m2)

1700–11000 4000 Federer (2002)

MXKPL Maximum plant conductivity
(mm d−1 Mpa−1)

5–30 15 Federer et al (1996);
Federer (2002)

FXYLEM Fraction of the internal plant
resistance to water flow that
is in the xylem (f)

0–0.99 0.5 Federer (2002)

CS Ratio of projected stem area
index (SAI) to HEIGHT (f)

≥ 0 0.035 Federer (2002)

PSICR Minimum plant leaf water
potential (Mpa)

−1.5 to −3.0 −2.0 Federer (2002)

GLMAX Maximum leaf conductance
(cm/s)

0.2–2.0 0.53 Federer et al (1996)

LWIDTH Average leaf width (m) > 0.01 0.10 Direct observation and
assumption

CR Extinction coefficient for
photosynthetically-active
radiation in the canopy (f)

0.5–0.7 0.6 Federer et al (1996)

2.3.3 Calibration and parameters estimation

BROOK90 is a parameter rich model which
includes location, flows, canopy, soil, fixed and
initial values. The model is site specific and has
given values for its initialization run. In this study,
the main concentration of the calibration and para-
meter fittings is focused on the canopy, soil, loca-
tion and flow parameter variables that conform to
the appropriate local conditions of a forest water-
shed. Inputs of climatic variables such as daily
precipitation and maximum and minimum tem-
peratures are required, and daily solar radiation,
vapour pressure, and wind speed are desirable in
the model. Daily average streamflow is also pro-
vided as a primary input variable which evalu-
ated the performance efficiency of the BROOK90
model. Two datasets were prepared for the cali-
bration (2004–2006) combining a final set of para-
meter values and extended for the duration of the
validation (2007–2008).

In flow parameter variables evaluation, the
morphological characteristics of the watershed

were considered. These variables include fast flow
components as the sum of flow components, source
area flow, bypass flow, and downslope flow in
the hydrologic BROOK90 model. In essence, flow
variables were greatly associated with stream-
flow, hydrograph pattern (Brierly and Fryirs
2005), drainage shape and rainfall characteristics
(Ramirez 2000).

The values of the different canopy variables
were taken from published documents, land satel-
lite imageries and field observations (table 1).
The vegetation index using Landsat Enhance
Thematic Mapper plus (ETM+) imageries taken
in 2002 was utilized to determine the degree
of the vigour and density of vegetation at
the surface. In addition, the Normalized Differ-
ence Vegetation Index (NDVI), an index that
provides a standardized method of comparing vege-
tation greenness among satellite imageries, was
considered in correlating the overall maximum leaf
area index (LAI) for the entire watershed. The
LAI is one of the most important and sensitive
parameters in the BROOK90 model, which is
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quite impossible to estimate it in the field with
complex vegetation. In effect, vegetation index
dynamics in time are correlated with the LAI
and other functional variables (Wang et al 2005).
The NDVI-LAI relationship for broadleaf canopies
has been described in detail by Pullen (2000).
Combalicer et al (2008) provide further details of
the BROOK90 model sensitivity, parameter esti-
mations and optimization under the small forested
watershed.

The soil water parameter values were derived
from a modification of the Campbell (1974) expres-
sions with the near-saturation interpolation of
Clapp and Hornberger (1978). Soil water para-
meter values were primarily based on the actual
textural classes, organic matter, and bulk den-
sity. Soil samples were collected in the watershed
from varying soil depths. All required information,
such as the matric potential, volumetric water con-
tent, matric porosity, negative slope of the log
and hydraulic conductivity for the modelling and
simulation, were computed from samples using the
Saxton and Rawls (2006) approach.

2.4 Model evaluation criteria

The coefficient of determination (R2), Nash–
Sutcliffe coefficient (E) (Nash and Sutcliffe 1970),
root mean square error (RMSE), and mean
absolute relative error (MARE) were used to mea-
sure the performance of the SDSM approach and
the BROOK90 model. In general, R2 value is an
indicator of the strength of relationship between
the observed and simulated values. E indicates how
well the plot of observed versus simulated value fits
the 1:1 line. If the values of R2 and E are less than
or very close to zero, prediction of the modelling
system is considered unacceptable or poor. If the
values of R2 and E are close to one, then prediction
of the modelling system is near perfect (Li et al
2006). Similarly, the MARE indicates the model’s
ability to predict the values of a given predictand.
The definition of this statistics is:

MARE =
n∑

i=1

|X ′
i/Xi − 1|/n, (4)

where Xi is ith observation, X ′
i is the ith simula-

tion value, and n denotes the total number of data
points (observations) in the record. Lower values
of MARE and RMSE are preferred.

2.5 Water balance fluxes to climate change

Datasets containing the synthetic daily records
under the two CGCM3 downscaled scenarios were
prepared as input for modelling the future water

balance of the Molawin forest watershed. In effect,
the BROOK90 model was repeatedly operated
using final parameter sets with assumptions that
the entire area would not significantly change
before the end of the century. The assumption for
sustained vegetative conditions of the study area
is realistic considering the proclamation guidelines
that the area is exclusively devoted for scientific
purposes and no further utilization will take place
in the future. However, the literature suggests that
doubling the atmospheric CO2 concentration leads
to a decrease in stomatal conductance of crops and
trees by about 24–40% (Morison 1987; Field et al
1995; Eckhardt and Ulbrich 2003) which induce
an average increase in leaf area by about 15–25%
(Pritchard et al 1999; Wand et al 1999). Based on
these suggestions, the stomatal conductance and
LAI in canopy variables were changed.

3. Results and discussion

3.1 Downscaling daily rainfall and temperature

3.1.1 Identifying predictors

The most appropriate combination of predictors
was selected by analysing output of all the 12
months. Table 2 presents the predictor variables
identified with monthly correlation between predic-
tand and predictors significant at 5% level. Results
suggest that seven out of 25 predictors namely
p−−f , p5th, p8−f , s500, p850, p500, and temp are
potentially useful for downscaling precipitation.
The relationship of the identified predictors with
precipitation varied monthly in which p8−f repre-
sented for January, April, and December, p−−f
in February and March, p5th in November, p850
in July and August, and s500 for May and June.
In case of downscaling maximum temperature, the
percentage of explained variance among predictors
was highest and significantly correlated with p−−f
in October to December, p5−z in May, p500 in June
to September, and temp from January to April.
Similarly, the minimum temperature as a predic-
tand responded significantly with shum and temp
predictors. The temp predictor has a better perfor-
mance for the period of April to June, while shum
dominated in the remaining months.

Monthly correlations between predictor variables
and each predictand (precipitation, Tmax, and Tmin)
have the strongest association once the influence
of all other predictors has been removed (table 3).
The precipitation correlation coefficients were rela-
tively lower compared to temperatures but signifi-
cantly associated with predictors except for the
month of March (p = 0.085). Other investigators
expressed the same observation in downscaling
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Table 2. List of predictors from NCEP and CGCM3 datasets and selected predictors (1961–1990)
with high monthly correlation corresponding to each of the predictand.

PredictandPredictors
No. code Description Precipitation Tmax Tmin

1 slpg Mean sea level pressure

2 p−−f 1000 hPa Wind speed x x

3 p−−u 1000 hPa U-component

4 p−−v 1000 hPa V-component

5 p−−z 1000 hPa Vorticity

6 p−th 1000 hPa Wind direction

7 p−zh 1000 hPa Divergence

8 p5−f 500 hPa Wind speed

9 p5−u 500 hPa U-component

10 p5−v 500 hPa V-component

11 p5−z 500 hPa Vorticity x

12 p500 500 hPa Geopotential x x

13 p5th 500 hPa Wind direction x

14 p5zh 500 hPa Divergence

15 p8−f 850 hPa Wind speed x

16 p8−u 850 hPa U-component

17 p8−v 850 hPa V-component

18 p8−z 850 hPa Vorticity

19 p850 850 hPa Geopotential x

20 p8th 850 hPa Wind direction

21 p8zh 850 hPa Divergence

22 s500 500 hPa Specific humidity x

23 s850 850 hPa Specific humidity

24 shum 1000 hPa Specific humidity x x

25 temp Temperature at 2m x x x

Table 3. Summary of the monthly partial correlations (r) for each predictand responding to
the identified NCEP predictors (1961–1990) in the site.

Precipitation Tmax Tmin

Month r p value r p value r p value

January 0.110 0.002 0.242 0.001 0.346 0.001

February 0.190 0.003 0.355 0.001 0.358 0.001

March 0.122 0.085 0.359 0.001 0.273 0.001

April 0.233 0.001 0.280 0.001 0.335 0.001

May 0.106 0.037 0.219 0.001 0.272 0.001

June 0.087 0.044 0.221 0.001 0.217 0.001

July 0.135 0.001 0.262 0.001 0.257 0.001

August 0.084 0.047 0.335 0.001 0.286 0.001

September 0.096 0.021 0.261 0.001 0.261 0.001

October 0.190 0.001 0.133 0.001 0.267 0.001

November 0.159 0.001 0.148 0.001 0.301 0.001

December 0.165 0.001 0.164 0.001 0.324 0.001

Annual 0.103 0.001 0.307 0.001 0.390 0.001

precipitation (Diaz-Nieto and Wilby 2005; Dibike
and Coulibaly 2005; Wilby and Dawson 2007).
In this respect, Khan et al (2006) specified the
transformation applied to the predictand in condi-
tional models. As in the case of daily precipitation,

it is modelled as a conditional process in
which local precipitation amounts are corre-
lated with the occurrence of wet-days, which in
turn is correlated with regional-scale atmospheric
variables.
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Table 4. The SDSM performance for downscaling precipitation and temperatures using NCEP and CGMC3 predictors
and observed predictands during calibration (1961–1990) and validation (1991–2000) periods.

Precipitation Tmax TminPerformance
criteria Calibration Validation Calibration Validation Calibration Validation

Predictors: NCEP

R2 0.94 0.89 1.00 0.97 1.00 0.98

E 0.90 0.89 1.00 0.77 1.00 0.87

RMSE 1.11 1.37 0.03 0.31 0.01 0.15

MARE 1.16 1.47 1.03 1.06 1.05 1.06

Predictors: CGCM3

R2 0.88 0.94 0.99 0.96 0.98 0.97

E 0.79 0.94 0.98 0.71 0.97 0.89

RMSE 1.51 1.01 0.20 0.37 0.14 0.21

MARE 1.15 1.40 1.03 1.06 1.04 1.06

Figure 3. Mean daily precipitation performance using the SDSM approach during (a) calibration (1961–1990) and
(b) validation (1991–2000) periods at the study site.

A wet day is defined as a day with nonzero
precipitation amount of 0.3 mm or more. As the
distribution of daily precipitation is skewed, a
fourth root transformation is applied to the origi-
nal series to convert it to a normal distribution,
and used it in regression analysis.

In contrast, temperatures are modelled as uncon-
ditional processes in SDSM, in which a direct
link is assumed between the large-scale predictors
and local scale predictand. No transformation is
applied to daily temperature data which are mostly
normally distributed (Wilby and Dawson 2007).

3.1.2 Calibration and validation of SDSM

Table 4 shows the SDSM performance for
downscaling precipitation and temperatures. The
results indicated acceptable response of the model
between the observed and simulated (downscaled)
predictands such as precipitation, Tmax, and Tmin

based on NCEP and CGCM3 predictors in both
calibration and validation periods. The different
performance criteria showed consistent trend that
the model simulated the predictand values reason-
ably well. The RMSE and MARE constantly gave

low agreement between the observed and simu-
lated values during the calibration and valida-
tion periods. The calibration and validation results
among predictands have shown close relationship
with the observations, which indicated the ability
of selected NCEP predictors in generating the pre-
dictands for the CGCM3 scenarios of the study
site.

The mean daily precipitation (average of all
values), as shown in figure 3, ranged from 1.7 mm
to 12.9 mm (calibration) and 1.9 to 11.8 mm
(validation). The simulated mean daily precipita-
tion using NCEP and CGCM3 had insignificant
differences from the observed values, though lower
during both calibration and validation periods.
This condition can be attributed to the mean dry
spell length (average length of spell with precipi-
tation amounts less than the wet-day threshold of
0.3 mm/day) and mean wet spell length (average
length of spell with amounts greater than or equal
to the wet-day threshold of 0.3 mm/day), which
were consistently underestimated throughout the
year except in July’s wet spell.

In general, the simulation of dry and wet spells
was less successful because any attempt to increase
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Figure 4. The observed and NCEP and CGCM3 simulated (synthetic) Tmax and Tmin performance in terms of daily mean
for the study site: (a) Tmax calibration, (b) Tmax validation, (c) Tmin calibration, and (d) Tmin validation periods.

the length causes a considerable change in other
variables, which were initially well calibrated. This
may imply that the model still does not fully
capture the true persistence of the precipitation
occurrence process despite the inclusion of lagged
predictors.

In the case of downscaling temperatures, the
mean daily minimum temperature estimated
ranged from 20.9◦ to 24.1◦C, while the maximum
temperature ranged from 28.1◦ to 34.6◦C in the
site (figure 4). The chosen predictors from the
NCEP and CGCM3 indicated a reasonable agree-
ment between the observed and the simulated Tmax

and Tmin of the downscaling model. The SDSM pro-
vided insignificant differences in the predicted Tmax

and Tmin values in the given validation period in
both NCEP and CGCM3, which were presumed to
be associated by a shorter simulation periods.

3.1.3 Downscaling climate variables

The selected CGCM3 predictor variables in the
two given climate change scenarios were employed
in the downscaling process to generate the pre-
cipitation and temperature scenarios of the four
periods, namely: the present (2001–2010), the
2020s (2011–2040), the 2050s (2041–2070) and the
2080s (2071–2100).

Figure 5 shows the general trend of the
change anomalies in monthly precipitation
against the observed baseline period (1961–2000).

Change anomalies were estimated as the differ-
ence from current or future periodic monthly
average precipitation to the observed baseline
period monthly average precipitation values.
The A1B scenario showed an overall increasing
trend in the monthly precipitation particularly
in April–May (6.4–55.8 mm) and September–
November (10.0–87.9 mm), while consistently
decreasing trend was noted during the month
of August (1.8–16.3 mm). The variability of the
amount of precipitation is mainly attributed to
the shorter dry-spell length during dry seasons
(1.8–2.1 days).

In addition, an increasing trend for the wet-
spell length took place all throughout the year
by as much as 5.6 days a month, except from
June to August. The precipitation under the A2
scenario, the monthly precipitation pattern varied
for different periods. In particular, the monthly
precipitation fluctuated from month to month.

However, the most distinct changes were
predicted to be in the 2080s period where the
months of May, June, and August had indicated a
potential decrease of approximately 26–42% from
the baseline period precipitation, while noticeably
increased for the duration of October–November
(36–43%). Other periods closely followed the
trends and patterns when compared with the A1B
scenario in the study site. The fluctuating changes
in monthly precipitation for the A2 scenario are
probably due to the disparity of dry-spell length
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Figure 5. General trend of the change anomalies in monthly precipitation corresponding to A1B and A2 scenarios.

Figure 6. General trend of the change anomalies in temperature corresponding to two climate change scenarios at the
study site.

which was shortened from October to March (1.2 to
1.9 days) for all periods but most likely lengthened
from April (3.2 days) and May (2.0 days).

Similarly, the influence of wet-spell appeared to
be extremely higher throughout the 2080s than
in any other period especially from October to
December. Hence, there were pronounced seasonal
differences even with small increases in annual
precipitation around the site in the future.

In effect, the dry seasons tend to become drier,
while the wet seasons become wetter. The annual
precipitation change was estimated to be 0.1 to
9.3% increase for A1B scenario, and −3.3 to 3.3%
decrease/increase for the A2 scenario.

Figure 6 shows the change anomalies in the
mean temperature in future periods for both
scenarios. The A1B scenario estimated an increase
of +0.6◦C (the present condition) up to +2.2◦C
by the end of the century, while change anom-
alies in the A2 scenario predicted an increase of
+0.6 in present condition to +3.0◦C in the 2080s.
The results revealed identical patterns for both
scenarios but differences in temperature changes

between scenarios are larger from 2050s period
and onwards. The increase in local mean tem-
peratures is between +2.2◦ and +3.0◦C in 2100.
The changes in temperature were comparable to
the projected change estimated by CRU-WWF
(1999) in case of the A1 scenario (+1.8◦C) and
A2 scenario (+3.6◦C) within the southern part of
Luzon, Philippines.

Likewise, the result of SDSM simulation in tem-
perature time series was slightly lower to the
projected mean global warming temperature of
+2.65◦C for A1B scenario and +3.13◦C for scenario
A2 by 2100 (Meehl et al 2007).

3.2 Hydrologic modelling

3.2.1 Calibration and validation of BROOK90

The on-site measurements took place over vary-
ing periods between 2004 and 2008. The average
annual rainfall during the calibration was 1907 mm
and 1940 mm in the validation period. The period
between June to December was classified as a rainy
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Table 5. Performance of the BROOK90 model simula-
tions in a forest watershed.

Performance Calibration Validation
criteria (2004–2006) (2007–2008)

R2

Daily 0.67 0.81

Monthly 0.87 0.87

Seasonal

Dry season 0.85 0.82

Wet season 0.70 0.93

Annual – –

E

Daily 0.59 0.74

Monthly 0.87 0.81

Seasonal

Dry season 0.87 0.78

Wet season 0.17 0.86

Annual – –

RMSE

Daily 5.91 4.17

Monthly 24.67 18.25

Seasonal

Dry season 16.01 12.98

Wet season 34.75 36.88

Annual 26.2 –

MARE

Daily 0.02 0.04

Monthly 2.12 1.05

Seasonal

Dry season 3.80 0.14

Wet season 0.92 0.90

Annual 1.02 1.03

(wet) season with average monthly precipitation
values of greater than 150 mm during both calibra-
tion and validation. The average annual stream-
flow was lower during the calibration (899 mm)
than the validation (1131 mm) events with an aver-
age of about 947 mm per year during the five-year
observation period.

Table 5 shows the efficiency criteria that
described statistical measurements on how well a
model simulation fits the available observations.
The coefficient of determination (R2) values in dif-
ferent time scales were high for both periods, indi-
cating a good relationship between the measured
and simulated streamflows. Similarly, the simula-
tion showed positive Nash–Sutcliffe coefficients for
daily, monthly, and seasonal streamflows.

Conversely, the wet season performance dur-
ing the validation demonstrated a higher satis-
fying agreement than the calibration period.
This condition can be attributed to the under-
estimation of the model’s performance during
peak flows and overestimation during low flows.
It should be noted, with due consideration, that

the total precipitation in the site was lower during
the calibration period. Nash–Sutcliffe efficiency
indices implied a good and acceptable relationship
between the mean values of observed and simu-
lated streamflows. Hence, validation results for the
site indicated that the calibrated parameter values
were acceptable in predicting streamflow.

In case of the mean absolute relative errors
between the observed and simulated streamflows,
the calibration period performance was fairly well,
with only 0.02 on daily streamflow, 2.12 for
monthly flows, 3.80 for dry season flows, 0.92 for
wet season flows, and 1.02 for an annual stream-
flow. For the validation period, the mean absolute
relative error for total streamflow was 1.03 but
the seasonal performance was improved to 1.4 for
summer flows 0.9 for monsoon flows.

Similarly, a decrease in the root mean square
errors between the calibration and validation
periods was noted, indicating an improvement in
the performance of the model during validation.
This improvement is believed to be associated with
the continuous rains and early typhoon event dur-
ing the month of January in 2008. Overall, the
simulated streamflows during the dry season are
slightly overestimated, while the extreme stream-
flow peaks during the rest of the year were occa-
sionally underestimated for both calibration and
validation periods. This can be attributed to the
effects of ground water below the soil layers of
the model, which is mainly the source of stream-
flows in response to the simulation for the period
of low flows. Consequently, a small discrepancy
on an annual basis was distinguished in high flow
simulations throughout the observation periods.

3.2.2 The current water balance of the watershed

Figure 7 provides an overview of the annual average
water balance components of the Molawin tropical
forest watershed for eight years with climatic data.
The results are expressed in terms of the water
balance components given by equation (1).

On an annual basis, approximately 42.1% of the
precipitation (1853 mm) is converted into evapora-
tion, 48.1% into streamflow, and 9.9% as deep seep-
age loss. An average streamflow of 1853 mm was
estimated with the two peak flows that occurred
in July (110 mm) and November (149 mm), while
the lowest was recorded in April (17 mm). The out-
comes of the simulation were affected by the
increasing rate of surface and saturated ground
water flows.

In essence, a large portion of precipitation
became streamflow mainly through surface flow
(29.7%) and ground water flow (18.3%). The
total monthly evaporation losses were roughly
779 mm with highest in July (155 mm) and lowest
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Figure 7. The current water balance in the Molawin watershed based on 8-year climatic data.

in February (13 mm). The total seepage loss
was about 183 mm, which are fairly higher in
amounts during the months of November (22 mm),
December (34 mm), and January (25 mm), while
lower for the rest of the year.

The monthly water balance variations demon-
strated how evaporative losses greatly affect the
streamflow components of a forested watershed.
Evaporation losses were usually high from June to
October (>75mm) and low during the rest of the
year. In addition, the amount of evaporation was
higher than streamflow during April to September,
equivalent to 36–82% of the precipitation.

Basically, evaporation losses were mainly coming
from transpiration and evaporation from the inter-
cepted rain throughout the rainy season while
evaporation from the soil dominated during the dry
season. Results indicated that almost 13–65% of
the evaporation was caused by transpiration while
6–14% was released through evaporation from the
intercepted rain. Federer (2002) described that
in vegetated systems, evaporation was dominated
by transpiration which was controlled largely by
maximum leaf conductance when soil remains rea-
sonably wet. About 22–58% of the evaporation
losses was due to soil evaporation during the dry
season.

The simulated annual water balance compo-
nents over a given period in the forest vegetated
Molawin watershed were related to the previous
investigations. For instance, Cheng et al (2002)
reported the annual water balance components of
the four forested watersheds in Taiwan, in which
the water yield (streamflow) was estimated within
a range of 47–56% and 43–54% for evapotranspi-
ration, including the 18.7% interception loss and
24.7% transpiration. Klinge et al (2001) found a
forest total evapotranspiration of about 1350 mm
(45% of the precipitation) in a rain forest region

of eastern Amazon, Brazil. Lu and Tang (1995)
accounted 11.3% interception loss to precipitation
in the natural hardwood forest at central Taiwan.
Mun (1987) estimated forest evaporation losses of
49% of total rainfall in a large tropical rainforest
watershed in Malaysia. Calder et al (1986), for
his part, reported a total evapotranspiration of
1481 mm (52% of the gross rainfall) in West Java,
Indonesia.

3.3 Water balance fluxes in response
to climate change

Figure 8 presents the general trend of the two
CGCM3 key scenarios’ streamflow, evaporation
losses, and seepage under the tropical forest water-
shed condition. Given the present streamflow in
a watershed (891mm yr−1), there would be a
lot of extreme conditions as reflected in both
scenarios for the future. The estimated aver-
age periodic streamflows were about 757 mm (the
2020s), 832 mm (the 2050s), and 847 mm (the
2080s) for the A2 scenario and 811 mm (the 2020s),
878 mm (the 2050s), and 958 mm (the 2080s) in the
A1B scenario.

In particular, the early and late parts of
the 2020s period showed a higher streamflow in the
A1B scenario, while the A2 scenario predicted the
same periodic streamflows in the early years and
substantially lower values in the remaining years.

The estimated streamflows in the 2050s period
showed extreme streamflows events in watershed.
The A2 scenario more often responded to the
fluctuation in streamflows throughout the period
while the A1B scenario exhibited mostly average-
to-high flows during the middle part of the period.
The 2080s simulation resulted in most likely
extreme dry streamflows for many consecutive
years particularly in the A2 scenario.
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Figure 8. Water balance components responses and trends under the two CGCM3 scenarios.

For evaporation, the simulated fluctuations
confirmed an increasing trend in all periods but
the discrepancy of the two scenarios was more
obvious in the 2080s period. The average periodic
evaporation losses were calculated approximately
at 860 mm (the 2020s), 884 mm (the 2050s),
and 873 mm (the 2080s) for the A2 scenario, and
863 mm (the 2020s), 879 mm (the 2050s), and
849 mm (the 2080s) in the A1B scenario.

In addition, the evaporation rate relatively
increased over the periods by almost 12–14%
but appeared more evidently in the A2 scenario.
Consequently, an overall small increase in the
seepage losses was predicted at about 4–25%
for the A1B scenario and 3–11% under A2
scenario, but unevenly distributed within a
year in the watershed. In general, the seepage
response appeared quite stable in the given forest
watershed.

Figure 9 exhibits the monthly distribution of
the water balance fluxes and scenarios in different
periods. The 2020s period simulation shows dry
period from January to April and wet period start-
ing as early as May, low flows in January until
September, low evaporation losses from October
to April which remain high for the other months,

and stable seepage with peak loss occurring in
November. In the mid-century, there was a slight
increase in the amount of rainfall (2.9–5.5%),
but decrease in the total amount of streamflow
(1.5–6.6% decreased) and increase in evapora-
tion (12.8–13.5%) and seepage (8.7–12.6%) compo-
nents. Furthermore, simulations show increase in
May streamflow for both scenarios.

At the end of the period, it was predicted with
two reasonably different patterns typically in all
water balance components. The A1B scenario that
demonstrated an initial peak flow in May corre-
sponds to 37% increase over the current period
with minimal recession until September, and sig-
nificant increase from October until attaining
its maximum peak flows (192 mm) in November.
An increase in precipitation is attributed to
the increase of streamflows (8%), increase in
evaporation (9%), and increase in seepage (25%).

In contrast, the A2 scenario simulation of
streamflows dramatically decreased for almost
eight months and deeply increased starting
October with the peak flow in November. As a
result, the disproportionate distribution of stream-
flows was attributed to a decline in seepage that
occurred almost two times from April to October,
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Figure 9. General trend of the monthly water balance fluxes in different periods corresponding to two climate change
scenarios under the tropical forest watershed conditions. (a), (b), and (c) represent the 2020s, the 2050s, and the 2080s
periods under the A1B scenario, respectively. The opposite side (d), (e), and (f) show results for the 2020s, the 2050s, and
the 2080s periods of the A2 scenario, respectively.

while the major increase took place in November
to January.

The outcomes of the simulation conformed
to the IPCC AR4 report (Meehl et al 2007)
assessment that precipitation and evaporation
are generally projected to increase in the tropi-
cal Pacific. The intensity of precipitation events,
which will be concentrated during September to
November in the watershed, was anticipated to
increase mean precipitation for short periods of
time and then gradually fluctuate in recession
years.

The study estimated high evaporation rates,
which will be a major contributor to the loss of
water from the given forest watershed. An exami-
nation of the changes in monthly evaporation
rates provided an insight into the hydrologic
changes in the watershed system under two climate
change scenarios. Apparently, the tendency for
dry periods is longer, indicating a greater risk
of droughts in the watershed. Hence, changes in
evaporation rates under the two scenarios were
driven mainly by increasing temperature and
precipitation fluctuations.

4. Conclusions

The distribution of water balance components is a
primary concern for forests and their environment
in the future. In this study, water balance com-
ponents were evaluated in response to the plau-
sible climate change. The statistical downscaling
approach was utilized to derive finer and reliable
estimate of hydrologic variables using predictors
obtained from the CGCM3 experiment. The future
weather under two different scenarios was studied.
The hydrologic model was calibrated and validated
at a catchment scale. Hydrologic changes between
existing and future water balance components were
investigated using two climate scenarios.

The results demonstrated that the simulation
approach may give realistic estimates of water
balance in a forest watershed under tropical con-
ditions. The calibration of the BROOK90 model
was very distinct on two pronounced seasonal
variations.

The temporal distribution of water balance was
greatly affected by changing climate, which has
profound impacts on the hydrologic regimes even
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in the forested watershed. The hydrologic processes
in the study watershed are likely to be altered
under climate change. There is possibility for con-
centrated and extreme peak flow occurrences in the
months of November.

More intense hydrologic events, such as extreme
rainfalls, fluctuating streamflow magnitudes, and
increasing evaporation losses, are expected to occur
more frequently. This could place severe damage
on the sustainability of agricultural production,
onsite biodiversity, livelihood, and the environ-
ment in and around the watershed. The projected
impacts on the forest watershed hydrology should
serve as baseline information for mitigating effects
of climate change.

The present investigation is in a forest watershed
where potential impacts of the changing climate
on water balance will probably be more intense if
watershed undergoes large changes in land cover
and land use conditions. Hence, the study con-
cludes that future management strategies should
focus on controlling population growth, which has
direct association to anthropogenic factors thereby
avoiding possible adverse impacts of changing
climate on the site.

The study recommends the model and the
approach be adopted for grasslands and denuded
watersheds in multiple sites which could have dif-
ferent climate change impacts. In addition, the
ability of the model to capture the water balance
of the changing region needs to be improved taking
into consideration longer calibration and validation
periods since data monitoring is done continuously
at the site. The application of physically-based
hydrologic models as compared to the present
study is necessary to fully capture intense seasonal
variations and spatial influences. Finally, uncer-
tainties associated in using a single GCM and a
single-site need to be considered and are deferred
for future work.
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