
University of South Florida University of South Florida 

Scholar Commons Scholar Commons 

Marine Science Faculty Publications College of Marine Science 

9-11-2014 

Assessing Climate Variability Effects on Dengue Incidence in San Assessing Climate Variability Effects on Dengue Incidence in San 

Juan, Puerto Rico Juan, Puerto Rico 

Pablo Méndez-Lázaro 
University of Puerto Rico 

Frank E. Muller-Karger 
University of South Florida, carib@usf.edu 

Daniel Otis 
University of South Florida 

Matthew J McCarthy 
University of South Florida 

Marisol Peña-Orellana 
University of Puerto Rico 

Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub 

 Part of the Marine Biology Commons 

Scholar Commons Citation Scholar Commons Citation 
Méndez-Lázaro, Pablo; Muller-Karger, Frank E.; Otis, Daniel; McCarthy, Matthew J; and Peña-Orellana, 
Marisol, "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico" (2014). 
Marine Science Faculty Publications. 223. 
https://scholarcommons.usf.edu/msc_facpub/223 

This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has 
been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar 
Commons. For more information, please contact scholarcommons@usf.edu. 

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/msc_facpub
https://scholarcommons.usf.edu/marine
https://scholarcommons.usf.edu/msc_facpub?utm_source=scholarcommons.usf.edu%2Fmsc_facpub%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarcommons.usf.edu%2Fmsc_facpub%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/msc_facpub/223?utm_source=scholarcommons.usf.edu%2Fmsc_facpub%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


Int. J. Environ. Res. Public Health 2014, 11, 9409-9428; doi:10.3390/ijerph110909409 

 

International Journal of 

Environmental Research and 

Public Health 
ISSN 1660-4601 

www.mdpi.com/journal/ijerph 

Article 

Assessing Climate Variability Effects on Dengue Incidence in 

San Juan, Puerto Rico 

Pablo Méndez-Lázaro 
1,
*, Frank E. Muller-Karger 

2
, Daniel Otis

 2
, Matthew J. McCarthy 

2
  

and Marisol Peña-Orellana 
3
 

1
 Environmental Health Department, Graduate School of Public Health, University of Puerto Rico, 

Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico 
2
 Institute for Marine Remote Sensing, College of Marine Science, University of South Florida,  

140 7th Ave. South, St. Petersburg, FL 33701, USA; E-Mails: carib@usf.edu (F.E.M.-K.); 

dotis@mail.usf.edu (D.O.); mjm8@mail.usf.edu (M.J.M.) 
3
 Center for Public Health Preparedness, Graduate School of Public Health, University of Puerto Rico, 

Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico;  

E-Mail: marisol.pena@upr.edu 

* Author to whom correspondence should be addressed; E-Mail: pablo.mendez1@upr.edu; 

Tel.: +1-787-758-2525 (ext. 2928); Fax: +1-787-296-2572. 

Received: 19 June 2014; in revised form: 27 August 2014 / Accepted: 1 September 2014 /  

Published: 11 September 2014 

 

Abstract: We test the hypothesis that climate and environmental conditions are becoming 

favorable for dengue transmission in San Juan, Puerto Rico. Sea Level Pressure (SLP),  

Mean Sea Level (MSL), Wind, Sea Surface Temperature (SST), Air Surface Temperature 

(AST), Rainfall, and confirmed dengue cases were analyzed. We evaluated the dengue 

incidence and environmental data with Principal Component Analysis, Pearson correlation 

coefficient, Mann-Kendall trend test and logistic regressions. Results indicated that dry 

days are increasing and wet days are decreasing. MSL is increasing, posing higher risk of 

dengue as the perimeter of the San Juan Bay estuary expands and shorelines move inland. 

Warming is evident with both SST and AST. Maximum and minimum air surface 

temperature extremes have increased. Between 1992 and 2011, dengue transmission 

increased by a factor of 3.4 (95% CI: 1.9–6.1) for each 1 °C increase in SST. For the period 

2007–2011 alone, dengue incidence reached a factor of 5.2 (95% CI: 1.9–13.9) for each 1 °C 

increase in SST. Teenagers are consistently the age group that suffers the most infections 
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in San Juan. Results help understand possible impacts of different climate change scenarios 

in planning for social adaptation and public health interventions. 

Keywords: climate change; extreme weather; dengue transmission; San Juan, Puerto Rico 

 

1. Introduction 

Relationships between vector-borne infectious disease and the environmental conditions of a 

particular region are well documented [1–7]. Meanwhile, much of modern society now recognizes that it 

has been subjected to changing environmental conditions since the last half of the 19th century [8]. 

Around the world, many parameters including air and ocean temperatures, wind, precipitation,  

and associated river discharge are showing secular trends as well as increased variability from year to 

year [9–14]. Such shifts and associated extreme events are likely to have an influence on the 

epidemiology of vector-borne diseases [3]. 

Rising average temperatures can lead to the expansion of the geographic range of many vectors,  

to decreasing extrinsic incubation periods of many pathogens, and to an increased rate of contact of 

mosquitoes (such as Aedes aegypti and Aedes albopictus) with prey including humans [4,5]. Mean Sea 

Level also influences the density of salinity-tolerant vector mosquitoes along the coast. Sea level rise 

could lead to the adaptation of freshwater vectors to breed in brackish and saline waters [15]. 

Numerical simulations point to an acceleration of the hydrologic cycle in a warmer climate,  

a phenomenon which may in part explain the higher frequency of extreme events observed over the 

course of the past few decades [8]. The impacts of these changes on humans are compounded by 

demographic, social, and economic factors [16,17]. Thus, it is necessary to examine how 

environmental patterns may be shifting in areas that may be increasingly prone to vector-borne 

infectious diseases. Johansson et al. [18] and Moore et al. [1] present evidence that the abundance and 

the transmission potential of Aedes aegypti in Puerto Rico are influenced by temperature and 

precipitation. Some investigators have suggested that regional climate conditions and sea level rise can 

also influence dengue outbreaks [19,20]. Significant correlations have already been found between sea 

surface temperature and dengue cases in coastal areas of Mexico and in New Caledonia [4,7,21]. 

In this paper, we examine the time history of confirmed dengue fever cases in the city of San Juan, 

Puerto Rico, as an urban example of a tropical island environment that is experiencing rapid 

environmental and socio-economic changes. At present, there is no effective vaccine or therapy to 

counter the symptoms of dengue. Much effort is thus placed on disease prevention, including vector 

control strategies and health education. However, such efforts have had mixed success [22,23].  

In Puerto Rico, large epidemics have recurred every 3–5 years (epidemics are defined as three or more 

suspected dengue infections reported per 1000 individuals for two consecutive weeks) [22].  

Among the most recent are the epidemics of 2007, when 10,576 suspected cases were reported, and of 

2010 with 26,776 suspected cases [24]. These events highlight the need to define areas at risk,  

and understanding factors that affect timing of the disease to plan for better and more effective  

control interventions.  
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We test the hypothesis that conditions are becoming increasingly favorable for dengue transmission 

in San Juan, Puerto Rico, and that this pattern is representative of potential expansion of dengue virus 

on the island. We address questions of vulnerability, exposure, and adaptation to effects of climate 

change. Our results help to define better strategies for improving public health interventions for dengue 

in Puerto Rico. 

2. Study Area 

Puerto Rico is an island located in the northern-central Caribbean Sea (17.92°N–18.52°N, 

65.62°W–67.28°W). The municipality of San Juan, located in the northeast sector of the island,  

is the capital in Puerto Rico and an urban coastal area (Figure 1). San Juan has a subtropical humid 

climate; with an annual average rainfall of ~1800 mm. Easterly trade winds prevail most of the  

year over the island, with local winds influenced by the diurnal heating cycle. A sea breeze is  

observed along the north, south, and west coastal sections [25]. Average air temperatures range  

from 22–28 °C [9,26]. 

Figure 1. Puerto Rico and location of the municipality of San Juan. 

 

3. Methods 

3.1. Data Collection 

A long time-series of observations are necessary to evaluate variation and trends in oceanographic 

and meteorological conditions over scales ranging from daily to multidecadal [27,28]. To assess the 

relationship between environmental parameters and the frequency of occurrence of dengue fever in the 

municipality of San Juan, we examined various daily and monthly data for the variables listed in  
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Table 1. These environmental parameters are important in defining the most suitable conditions and 

the habitat of the vectors that transmit the dengue fever virus [1–5]. Specifically, we examined daily 

surface air temperature (maximum and minimum), precipitation, sea level pressure, and wind speed 

data. These observations were obtained from the NOAA-National Climatic Data Center [29].  

Since coastal flooding and brackish waters also represent potential habitat for the mosquitoes, we 

processed hourly mean sea level (MSL) observations (data for San Juan station obtained from the 

University of Hawaii Sea Level Center/National Oceanographic Data Center, Honolulu, HI, USA.  

The MSL data were processed to monthly mean values to minimize the effect of tides on an analysis of 

longer-term variations. Monthly Mean Sea Surface Temperature (SST) was computed based on daily 

satellite-based observations using the NOAA Advanced Very High Resolution (AVHRR) Pathfinder 

SST product (version 5.2), using a set of 4 × 4 pixels (i.e., an area of approximately 256 km
2
 located 

immediately off the coast of San Juan. Numbers of confirmed dengue fever cases were obtained from 

the Dengue Branch of the Center for Disease Control and Prevention (CDC) in San Juan.  

These records were assembled by the CDC and the Puerto Rico Department of Health (PRDH) Passive 

Dengue Surveillance System (PDSS). 

Table 1. Database and periods studied. 

Variable  Period Time Step 

Dengue Cases 1992–2011 Daily 

Rainfall 1899–2011 Daily 

Air Surface Temperature 1899–2011 Daily 

Sea Surface Temperature 1981–2012 Monthly 

Sea Level Pressure 1978–2012 Daily 

Wind Speed 1978–2012 Daily 

Mean Sea Level 1978–2012 Daily 

 

The International Expert Team on Climate Change Detection and Indices (ETCCDI) recommend  

27 indices for monitoring changes in extreme environmental conditions [13,30,31]. We derived seven 

of the ETCCDI indices based on temperature and six indices based on rainfall for this study (Table 2). 

Frequency of extreme occurrences in MSL (non-tidal), Wind, SLP, SST, and dengue were derived as 

maxima and percentiles [32–34]. Monthly and annual averages, amplitudes, and anomalies of these 

variables were also examined. 

3.2. Data Analysis 

We examined variability and trends in a number of parameters. Principal component analysis 

(PCA) was used to summarize possible relationships between all variables in years where all data were 

available (1992–2011) [35–37]. The PCA helps to determine the amount of the total variance that can 

be explained by combinations of particular factors. Logistic regression was used to explore the 

threshold value of the predictors established by the PCA and bivariate analysis [35,38,39]. To examine 

whether there was an association between the number of dengue cases and the various environmental 

parameters, we calculated cross-correlation coefficients. The Pearson correlation coefficient was used 

to evaluate the strength of such correlation. The Mann-Kendall (MK) test was used to test for the 
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significance of time series trends [40–42]. The null hypothesis (H0) meant that there was no trend  

in the series.  

Table 2. The Extreme Temperature and Precipitation Indices. 

ID Indicator Name Indicator Dentitions Units 

TN10p Cool nights 
Percentage of time when daily  

min temperature < 10th percentile 
% 

TX10p Cool days 
Percentage of time when daily  

max temperature < 10th percentile 
% 

TN90p Warm nights 
Percentage of time when daily  

min temperature > 90th Percentile 
% 

TX90p Warm days 
Percentage of time when daily  

max temperature > 90th percentile 
% 

WSDI 
Warm spell duration 

indicator 

Annual count when at least six consecutive days of  

max temperature > 90th percentile 
days 

CSDIN Cold spell duration indicator 
Annual count when at least six consecutive days of  

min temperature < 10th percentile 
days 

CSDIX Cold spell duration indicator 
Annual count when at least six consecutive days of  

max temperature < 10th percentile 
days 

PRCPTOT 
Annual total  

wet-day precipitation 
Annual total precipitation from days ≥ 1 mm mm 

R10 
Number of heavy 

precipitation days 
Annual count when precipitation ≥ 10 mm days 

R20 
Number of very heavy 

precipitation days 
Annual count when precipitation ≥ 20 mm days 

CDD Consecutive dry days 
Maximum number of consecutive days when  

precipitation < 1 mm 
days 

CWD Consecutive wet days 
Maximum number of consecutive days when  

precipitation ≥ 1 mm 
days 

R95p Very wet days Annual total precipitation from days > 95th percentile mm 

R99p Extremely wet days Annual total precipitation from days > 99th percentile mm 

4. Results and Discussion  

4.1. Oceanographic and Meteorological Trends (1899–2011) 

Precipitation in San Juan since 1899 (Figure 2) shows marked wet (1948–1952, 2003–2006;  

2009–2011) and dry periods (e.g., 1971–1977, 1982–1984, 1990–1995). A slight (not significant) 

downward trend in precipitation (−0.95 mm/year) is observed over the 1899–2011 period,  

primarily driven by the higher number of dry years observed in this region between about 1950 and the 

late 1990s. There has been a marked rise in positive annual and daily rainfall anomalies since the 1990s 

(Figure 2). Numbers of dry days are increasing (especially in January, February, March and June) while 

wet days show a significant decreasing trend (Figure 2). These results agree with regional trends and 

climate projections for the Caribbean Region [13]. 

A significant positive trend was observed in annual mean maximum and minimum air temperatures, 

as well as in seasonal minimum and maximum temperature extremes (Figure 3). The entire Caribbean 

region warmed significantly over the period 1961–2009 [13,43]. The annual percentage of warm days 
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and nights, analyzed through the TX90p and TN90p indices, has significantly increased. Our results 

are also consistent with trends observed over parts of northern South America, where nighttime 

(minimum) temperature indices show the largest rates of warming [44]. Daytime (maximum) 

temperature indices also show warming over much of South America, but at lower rates. 

Figure 2. Upper Panel: Annual rainfall anomaly (blue bars) and moving average  

(red broken line). Lower Left: Anomalies for dry days (blue bars) and moving average  

(red line); Lower Right: Anomalies for wet days (blue bars) and moving average (red line); 

1899–2011.  

 

 

Figure 3. Upper Panel: Time series of annual average minimum and average maximum air 

surface temperature. Middle: Seasonal Trends in annual average minimum and maximum air 

temperature. DJF indicates December-January-February and JJA indicates June-July-August. 

Lower Left: Consecutive days > 90th percentile Tmin (25 °C). Lower Right: TN90p  

(San Juan 1899–2011). 
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Figure 3. Cont. 

 

 

There was a significant increasing trend with the number of days per year when SLP records were 

<10th percentile. The minimum values for SLP occurred between August and November. These are 

months of high tropical cyclone activity in the Caribbean Sea and the North Atlantic. Maximum SLP 

showed a significant downward trend, suggesting that SLP amplitude is diminishing over time  

(Table 3). This is consistent with the displacement of the Intertropical Convergence Zone (ITCZ) away 

from the equator toward the northern subtropics and possibly the effects of a stronger subtropical jet on 

the northern Caribbean Sea [45–48]. 

Higher MSL values in San Juan Bay occurred between August and October. The timing of the 

extreme (maximum annual MSL) also occurred during this period. Sea-level extremes (90th percentile) 

rose by up to 1.5 mm/year. in the San Juan Bay area (Figure 4), in line with previously estimated Sea 

Level Rise from NOAA (1.65 mm/year.). Clearly, higher sea level extremes occur superimposed on a 
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SST values are also increasing in the Caribbean Sea [43], especially between June and December. 

Extreme high SSTs in the period 1981–2012 were normally more frequent in September, October,  
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Average wind speed decreased between 1978 and 2012, while wind direction amplitude increased. 
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Surface Temperature and Sea Surface Temperature increased, Minimum Air Surface Temperature in 

San Juan decreased, primarily at night. The concurrent slightly long-term trend of decreasing 

precipitation led us to conclude that this night-time cooling was likely due to an increase in the 
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in moisture in the lee of the mountains of the Cordillera Central (i.e., the northern coast). When winds 

blow from the Northeast, higher humidity typically occurs along the north side of the island.  

Table 3. Ocean and meteorological Mann-Kendall trend analysis. Positive ―S‖ indicates a 

positive trend. Negative ―S‖ values indicate negative trends. If p < 0.05, the slope is 

significantly different from zero. 

ID S p-value (Two-Tailed) Test Interpretation 

CWD −195 0.63 Accept H0 

CDD 516 0.20 Accept H0 

#Days > 1 mm −1382 0.001 Reject H0 

Max Consecutive days > 90th (13 mm) −169 0.66 Accept H0 

Max Consecutive days R10 mm 66 0.86 Accept H0 

#Days < 1 mm 1403 0.001 Reject H0 

R10 −676 0.09 Accept H0 

R20 −407 0.31 Accept H0 

Max Consecutive days > 95th (22.1 mm) −412 0.26 Accept H0 

Max Consecutive days> R20 mm −119 0.75 Accept H0 

Max Consecutive days > 99th (49.8 mm) −74 0.82 Accept H0 

#Days > 99th (49.8 mm) 168 0.67 Accept H0 

#Days > 95th (22.1 mm) −544 0.18 Accept H0 

TN10p −1167 0.002 Reject H0 

TX10p −1313 0.001 Reject H0 

TN90p 3102 0.0001 Reject H0 

TX90p 3535 0.0001 Reject H0 

WSDI 3109 0.0001 Reject H0 

CSDIX −1263 0.001 Reject H0 

CSDIN −1124 0.003 Reject H0 

SLP Annual Max −310 0.0001 Reject H0 

SLP Annual Min 36 0.591 Accept H0 

SLP Annual Average −184 0.004 Reject H0 

SLP #Days < 10th percentile 146 0.014 Reject H0 

SLP Monthly Max −1816 0.0001 Reject H0 

MSL Max 242 0.0001 Reject H0 

MSL Min 212 0.002 Reject H0 

MSL Average 225 0.001 Reject H0 

SST Annual Max 219 0.0001 Reject H0 

SST Annual Min 99 0.09 Accept H0 

Wind Speed Annual Average −81 0.238 Accept H0 

Wind Speed Annual Max −255 0.0001 Reject H0 
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Figure 4. Upper Panel: Annual Maximum and Minimum Mean Sea Level.  

Middle: Seasonal Mean Sea Level (DJF-December, January and February; JJA-June,  

July and August). Lower Left: Maximum Annual Mean Sea Level trends. Lower Right: 

Mean Sea Level annual 90th percentile per decade. 

 

 

 

Figure 5. Top Panel: Seasonal Sea Surface Temperature trends (AVHRR Pathfinder v5.2 SST, 

extracted in a 4x4 km
2
 area in the Atlantic Ocean immediately off San Juan 1981–2012). 

Lower Panel: Number of days showing extremely high SST (above the 90th percentile:  

29 °C, and 95th percentile: 29.4 °C).  

 

R² = 0.321 R² = 0.123

1000

1200

1400

1600

1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011

m
m

Max Min

R² = 0.264 R² = 0.389

1000

1200

1400

1600

1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011

m
m

DJF JJA

1388

1403
1412

1360

1380

1400

1420

1440

1981-1990 1991-2000 2001-2010

m
m

1385

1417

1430

1360

1380

1400

1420

1440

1981-1990 1991-2000 2001-2010

m
m

R² = 0.178 R² = 0.076 R² = 0.498 R² = 0.437

23

26

29

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

°C

DJF MAM JJA SON



Int. J. Environ. Res. Public Health 2014, 11 9418 

 

 

Figure 5. Cont. 

 

4.2. Association between Dengue Fever and Ocean- and Meteorological Change (1992–2011) 

Dengue records collected since 1992 show that this disease has a seasonal periodicity in Puerto Rico 

(Figure 6). Three phases are normally observed during each period. A pre-epidemic phase occurs 

between February and May (i.e., weeks 10–20), with rising dengue cases (Figure 6). This is a time 

when seasonal air and ocean temperatures start to rise, when there is relatively abundant precipitation 

due to passage of winter cold fronts, and there is an increasing numbers of mosquitoes. Epidemics are 
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The Pearson correlation analysis showed that dengue cases were significantly associated with at 

least 5 variables (SST, AST, Rainfall, MSL, and SLP). The strongest association was with SST and 
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these parameters, dengue, and episodes of El Niño South Oscillation (ENSO) [18,21]. We did not find 

a relationship with ENSO either. 
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Figure 6. Upper: Monthly sea surface temperature (SST), minimum air surface 

temperature (Tmin) and monthly dengue cases (2000–2011). Middle: Weekly rainfall and 

dengue. Lower: Minimum air surface temperature and weekly dengue cases.  

 

 

 

 

Our results also show a link between dengue fever, rainfall, and changes in minimum air surface 
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seemed to have a small role to play in dengue occurrence (r = 0.33), maximum air surface temperature 

patterns didn’t seem to have a strong influence on dengue. Higher maximum temperatures tend to 
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development times [6,50,51]. Many researchers suggest that both Aedes aegypti and Aedes albopictus 

have excellent adaptation skills regarding rising temperatures and extreme conditions [52].  

Other scientists have found that higher temperatures produce significantly smaller adults since as 

temperatures increase, the mosquito development time is reduced [51,52].  
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Table 4. Monthly correlation matrix Pearson. 1992–2011. 

Periods Variables Dengue Cases SST SLP Rainfall Tmax Tmin MSL 

1992–2011 

Dengue Cases 1 0.36 −0.31 0.22 0.16 0.25 0.33 

SST 0.36 1 −0.63 0.48 0.63 0.72 0.74 

SLP −0.31 −0.63 1 −0.40 −0.36 −0.41 −0.59 

Rainfall 0.22 0.48 −0.39 1 0.19 0.38 0.29 

Tmax 0.16 0.63 −0.35 0.19 1 0.90 0.47 

Tmin 0.25 0.72 −0.41 0.38 0.90 1 0.53 

MSL 0.33 0.74 −0.59 0.29 0.47 0.53 1 

Note: Values in bold are different from 0 with a significance level alpha = 0.05. 

 

The correlation between SST and dengue incidence is high for San Juan. For example,  

monthly dengue transmission rates between 2000 and 2011 were 3.4 times higher (95% CI: 1.9–6.1) 

for each 1 °C increase in SST and 2.2 higher (95% CI: 1.3–3.5) for each 1 °C increase in Minimum Air 

Surface Temperature. These factors were further accelerated in the 2007-2011 period, with monthly  

dengue transmission being a factor of 5.2 higher (95% CI: 1.9–13.9) for 1 °C increases in Sea  

Surface Temperature. 

The number of days per year when precipitation is >10 mm/24 h also leads to higher number of 

consecutive days with dengue transmission (r = 0.35). No significant results were obtained with  

R20 (>20 mm/24 h), suggesting that excessive rainfall events have no incremental effect on dengue 

cases. Nevertheless, the number of wet days a year is a predictor for dengue. When more consecutive wet 

days occurred in a year, dengue incidence increased. Higher rainfall leads to an increase in breeding sites 

of the mosquito vector [50], which would contribute to the increase in dengue occurrence.  

The diversity and distribution of mosquitoes in Puerto Rico have not been studied extensively, and 

background literature on the ecology of these vectors is limited [53]. The observation of  

Aedes albopictus in San Juan, is recent, which suggests that this species is a relatively recent 

introduction to the island. As sea level rises, the boundaries of the estuary of San Juan Bay are moving 

inland. The strong correlation between dengue, MSL, and the high incidence of mosquitoes (now both 

Aedes aegypti and Aedes albopictus) in brackish environments [15,54–56], also suggest that the risk of 

dengue cases is increasing as the perimeter of the estuary expands. Therefore, even though there is still 

lack of concrete evidence that vectors are proliferating in brackish waters on the island, these findings 

encourage further research on vector ecology. There exist a substantial need in San Juan to study these 

vectors within the estuary’s boundaries given the possibility that brackish water-adapted Aedes aegypti 

and Aedes albopictus, may play an up till now unrecognized role in transmitting dengue and 

chikungunya in coastal urban areas [54]. Chikungunya virus was also detected in San Juan-Puerto Rico 

for the first time in 2014, with over 200 cases reported island-wide by the time of this writing in  

mid-2014 alone [57]. This presents a new and clear threat to public health concerning  

vector-borne diseases.  

There have been several years with epidemic dengue outbreaks in Puerto Rico, specifically 1994, 

1998, 2007 and 2010 [22–24,58–60]. In San Juan, 65% of the confirmed cases in 1994 were patients 

younger than 30 years old (Figure 7). The most affected age-group in 1998 were individuals  

10–14 years old (3.1 cases per 1000 individuals). In 2007, a total of 17,000 cases were reported  
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island-wide, with an incidence rate of 4.8/1000 individuals, predominantly in the 10–19 age group [58]. 

In many dengue-prone countries, young children bear the greatest burden of the disease; yet, a gradual 

shift in peak attack rate towards older age groups has also been noted [58]. In Puerto Rico,  

and especially in San Juan, teenagers still are consistently the age group that suffers the most infections.  

Figure 7. Comparison of age-specific dengue incidence rates per 1000 inhabitants in 

epidemic years (1994, 1998, 2007, and 2010) in San Juan. Upper Panel: Age-specific 

dengue incidence rates (age groups <24 years old and >60 years old). Lower Panel:  

Age-specific dengue incidence rates (all age groups).  

 

 

 

Of particular concern in Puerto Rico were the high numbers of patients observed in 2010  

(more than 12,000 confirmed dengue cases with 40 deaths) [24,58,59]. The 10–14 age group 

accounted for 23% of incidences (the age-specific incidence rate was 8.4/1000 inhabitants) followed 

by the 15–19 age group (7.1/1000 inhabitants). The third group was comprised of the 5–9 age group 

(5.1/1000 inhabitants), with 13% of the confirmed cases [24]. This has been the deadliest outbreak 

registered in Puerto Rico and in the United States thus far [24,60].  

All four dengue virus serotypes occurred during each of these epidemics, but usually one serotype 

seems to be dominant over the others. Exposure and infection by one dengue serotype leads to lifelong 

serotype-specific immunity and short term cross protection against another serotype [59]. For example, 
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in 1994 and 1998, dengue virus serotype 2 dominated in San Juan. During the 1998 dengue epidemic,  

type 3 virus also occurred frequently in Puerto Rico after an absence of 20 years [24]. In the 2007 

epidemic, nearly 70% of the cases in San Juan were confirmed as virus type 3. During the 2010 

outbreak, virus 1 dominated, followed by virus 4, with 48% and 20% respectively.  

2010 was a year of a pan-American dengue outbreak. Over 1.7 million cases were reported across 

America and the Caribbean [61,62]. Two main factors may have enhanced virus transmission in the 

northern Caribbean Sea, one may have been low population immunity against the circulating serotype 

(types 1 and 4), as in the French West Indies [62], and climatic conditions. 2010 was one of the 

warmest years since 1850 in San Juan [63] and in the Caribbean Sea in general (SST 1 °C above the 

average between 1978–2012). It was also the wettest year on record since 1899 (788 mm above the 

average 1899–2011). 2010 also showed the second highest Mean Sea Level since 1978 (the maximum 

in our time series records was in 2012), the second highest mean Air Surface Temperature since 1899 

(the maximum was in 2009), and the lowest monthly average Sea Level Pressure (1978–2012).  

The oceanographic and climate conditions or the serotype profile are clearly not the only factors 

that define the temporal patterns or pathological ecology of dengue [64]. Other important factors 

include immunity and mobility of the population, socio-economic factors (inequality and poverty), 

public policy, implementation of surveillance systems, dengue control programs, deficient septic tanks 

conditions, among others, also play a role [35,50,38,64–67]. Our research primarily emphasizes the 

need for interdisciplinary collaboration to incorporate assessments of temporal patterns of dengue 

transmission, environmental information, and of climate change projections into the design of climate 

change adaptation programs, along with social data.  

5. Conclusions 

Our results show significant correlations between dengue fever occurrence in San Juan, Puerto Rico 

and a number of environmental indicators of climate change. While it is difficult to explain causality, 

these variables are known to each have various effects on both vector and dengue virus.  

These are similar variables that affect the ecology of the vector of new pathogens, such as the 

chikungunya virus. Clearly, environmental factors and climate conditions enhance or diminish the risk 

posed by social and economic factors such as urban planning, degree of sanitation, infrastructure that 

may affect mosquito habitat, and behavior of particular age groups.  

It is also important to evaluate short-term variability in the context of longer-term trends.  

As northern Puerto Rico experiences a long-term decrease in annual precipitation, short term increase 

in precipitation as observed since 2009 likely plays a role in the higher incidence of dengue fever 

observed in the municipality of San Juan. The occurrence of dengue fever shows strong correlation 

with various other environmental indicators of increased favorable habitat for the vector. Even though 

maximum and minimum air surface temperature extremes have increased over time in the region, 

dengue cases were more frequent during periods when more days with higher minimum air surface 

temperatures were observed. Previous studies suggest that consecutive days with higher temperature 

affect egg hatching, virus incubation, and mosquito larvae development. There was no correlation with 

maxima surface air temperature; however, there was a significant statistical relationship with SST. 

This reflects the tight coupling between the ecology of the island and oceanic conditions.  
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MSL was another variable related to dengue occurrence. Since historical MSL records show a clear 

increasing trend, this highlights the potential risk of new habitat created for the vector as the perimeter 

of San Juan Bay moves inland. Since MSL maxima are seasonal, coastal areas will be prone to 

increased flooding during the period which already shows the highest dengue incidences every year.  

This research shows the need for inter-disciplinary collaboration and to incorporate assessments of 

environmental changes over large temporal and spatial scales in efforts to understand patterns of 

dengue transmission. This effort puts the impacts of climate, demographic, and social change in 

context. The knowledge gained through such studies helps focus efforts in vector control, given the 

likely continuing changes expected in SST, AST and MSL as a result of climate change over the next 

few decades. This knowledge needs to be linked to demographic and socio-economic patterns to help 

in defining mitigating strategies. Additional research is needed to help understand patterns in other 

municipalities of Puerto Rico, and in other tropical islands and mainland locations.  
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