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Abstract

In medical studies, the monotone partial likelihood is frequently encountered in the analysis of 

time-to-event data using the Cox model. For example, with a binary covariate, the subjects can be 

classified into two groups. If the event of interest does not occur (zero event) for all the subjects in 

one of the groups, the resulting partial likelihood is monotone and consequently, the covariate 

effects are difficult to estimate. In this article, we develop both Bayesian and frequentist 

approaches using a data-dependent Jeffreys-type prior to handle the monotone partial likelihood 

problem. We first carry out an in-depth examination of the conditions of the monotone partial 

likelihood and then characterize sufficient and necessary conditions for the propriety of the 

Jeffreys-type prior. We further study several theoretical properties of the Jeffreys-type prior for the 

Cox model. In addition, we propose two variations of the Jeffreys-type prior: the shifted Jeffreys-

type prior and the Jeffreys-type prior based on the first risk set. An efficient Markov-chain Monte 

Carlo algorithm is developed to carry out posterior computation. We perform extensive 

simulations to examine the performance of parameter estimates and demonstrate the applicability 

of the proposed method by analyzing real data from the SEER prostate cancer study.
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1. Introduction

In medical studies involving time-to-event data, it is often the case that patients within at 

least one arm of the study will experience very few events. This could be due to the length of 
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the study, or due to the nature of the study itself. For instance, among the particular subset of 

SEER prostate cancer data we are interested in, no patients receive surgery treatment. If one 

wishes to analyze the surgery treatment effect of the time-to-event data in our motivating 

prostate cancer study, then the zero event in surgery treatment group will lead to the model 

identifiability issue. Such an identifiability issue is a well-known problem in the analysis of 

time-to-event data using the semiparametric proportional hazards model of Cox (1972). 

Standard analysis of the Cox proportional hazards model involves parameter estimation 

through maximization of the logarithm of the partial likelihood function. However, it is not 

uncommon for the partial likelihood to converge to a finite value while at least one 

parameter estimate goes to −∞ or +∞. This phenomenon is known as the monotone 

likelihood problem. Bryson and Johnson (1981) state that when estimating covariate 

parameters for the Cox proportional hazards model, there is a nonzero probability for any 

finite sample that the maximum partial likelihood estimate will be infinite. Heinze and 

Ploner (2002) further remark that the probability of monotone likelihood is “too high to be 

negligible,” thus necessitating solutions to the monotone likelihood problem. In the example 

of the SEER prostate cancer study, one might consider removing the surgery treatment 

covariate to eliminate the monotone likelihood problem. However, this may not be desirable 

since the surgery treatment effect is of great clinical interest. Based on a procedure by Firth 

(1993), Heinze and Schemper (2001) proposed a solution to the monotone partial likelihood 

problem by means of penalized maximum likelihood estimation. For a recent discussion on 

the role of penalization in logistic and survival regression, see Greenland and Mansournia 

(2015). However, many issues are still not well understood and need to be further studied 

from both practical and theoretical points of view. Although we mainly focus on the Cox 

proportional hazards model, the monotone likelihood problem may also exist under 

alternative models such as accelerated failure time models (Kalbfleisch and Prentice 2011), 

parametric hazards models, and so on.

In this article, we first examine the conditions that lead to the monotone partial likelihood 

problem and establish easy-to-check sufficient conditions for the survival data with binary 

baseline covariates. We then characterize the sufficient and necessary conditions for the 

existence and propriety of a data-dependent Jeffreys-type prior. Our conditions are certainly 

much weaker than those of Heinze and Schemper (2001, 116). In addition, we show that the 

Jeffreys-type prior has finite modes and thus the maximum partial likelihood estimate 

(MPLE) exists. We also compare the tail behavior between the Jeffreys-type prior and the 

multivariate t and normal distributions. We further develop two variations of the Jeffreys-

type prior: the shifted Jeffreys-type prior and the Jeffreys-type prior based on the first risk 

set. The shifted Jeffreys-type prior leads to less biased estimates (when compared to MPLE). 

The Jeffreys-type prior based on the first risk set has the same propriety conditions as and 

similar parameter estimates to the Jeffreys-type prior based on the whole data set. As 

demonstrated in both the simulation study and the real data analysis, the Jeffreys-type prior 

based on the first risk set leads to a substantial decrease in computing time over the prior 

based on the whole data set, especially when the sample size is large. The approach for 

constructing Jeffreys-type prior based on the first risk set is not only useful for survival data 

but also applicable for other types of data such as count data with excessive zeros and 

missing data. Finally, we propose a computationally less expensive but efficient localized 
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Metropolis algorithm, which avoids direct computation of the second derivative of the 

Jeffreys-type prior.

This article unfolds as follows. Section 2 presents a motivating case study where the MPLE 

is not identifiable. In section 3, we provide an in-depth investigation and characterization of 

monotone partial likelihoods as well as posterior propriety under improper uniform priors. In 

section 4, we obtain sufficient and necessary conditions for the propriety of the Jeffreys-type 

prior and propose the two variations of the Jeffreys-type prior. The computational 

development involving the localized Metropolis algorithm is given in section 5. An extensive 

simulation is carried out in section 6. Section 7 presents a detailed analysis of the motivating 

SEER prostate cancer data. We conclude the article with some discussion in section 8. 

Proofs are given in the appendix.

2. A motivating prostate cancer case study

We consider 1840 men who were subjects in the SEER prostate cancer data between 1973 to 

2013, and who have all of the three intermediate risk factors: clinical tumor stage is T2b or 

T2c, Gleason score equals 7, and prostate-specific antigen (PSA) level between 10 and 20 

ng/mL. Among those 1840 subjects, the total number of events due to prostate cancer is 8, 

and the total number of events due to other causes is 63. The covariates considered in our 

analysis are PSA, surgery treatment indicator (RP), radiation treatment only indicator (RT), 

African-American indicator (Black), year of diagnosed (Year_diag), and age (Age). The 

covariates RP, RT, and Black are binary covariates, taking value 0 or 1. We fit the cause-

specific hazards model described in section 3.1 to the SEER prostate cancer data, in which 

there are two causes of death, namely, prostate cancer and other causes. The resulting 

maximum partial likelihood estimates (MPLEs) are shown in Table 1. We see from Table 1 

that for RP, the MPLE (Est) and the standard error (SE) were −17.745 and 1680, 

respectively, for death due to prostate cancer. These results indicate that RP is not 

identifiable for the death caused by prostate cancer, which is due to the absence of events 

(prostate cancer death) in the “surgery treatment” group of patients. This case study 

motivates us to carry out further examination of monotone partial likelihoods. Note that in 

Table 1, Nc is the number of censored, Npc the number of prostate cancer deaths, and Noc the 

number of other cause deaths.

3. Monotone partial likelihood and posterior propriety

In this section, we first introduce the Cox model and the cause-specific hazards model. We 

then provide the conditions under which the maximum partial likelihood estimator of the 

regression coefficients exists. Two examples are given to demonstrate the necessity of those 

two conditions.

3.1. The Cox proportional hazards model and the cause-specific hazards model

Let yi denote the minimum of the censoring time Ci and the survival time Ti, and let xi = 

(xi1, …, xip)′ be the p × 1 vector of covariates associated with yi for the ith subject. Denote 

by β = (β1, …, βp)′ the p × 1 vector of regression coefficients. Also, δi = 1{Ti = yi} is the 

failure indicator for i = 1, …, n, where n is the total number of observations and ℛ(t) ={i : yi 
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≥ t} is the set of subjects at risk at time t. Then the partial likelihood of Cox (1975) is given 

by

Lp(β ∣ 𝒟obs) = ∏
i = 1

n exp x′iβ
∑ j ∈ ℛ(yi)

exp x′ jβ

δi

, (1)

where obs={(yi, δi, xi) : i = 1, …, n} is the observed right censored data. As usual, we 

assume throughout this article that β does not include an intercept, since the intercept cannot 

be estimated in the Cox partial likelihood, and that, given xi, Ti and Ci are independent. 

Maximization of the partial likelihood function leads to the MPLE of β.

A generalization of the Cox model is the cause-specific hazards model, which was discussed 

in Gaynor et al. (1993) and Ge and Chen (2012). For j = 1, …, J, the cause-specific hazard 

function for cause j is defined by hCj(t) = limΔt→0Pr(t ≤ T〈t + Δt, δ = j|T ≥ t)/Δt. The overall 

survival function is S(t) = Pr (T > t) = exp −∑ j = 1
J ∫ 0

t hC j(u)du . Let βj and hCj0(t) be the 

vector of regression coefficients without an intercept and the cause-specific baseline hazard 

function at time t for cause j, respectively. Assume the Cox proportional hazards structure 

for hCj(t), that is, hCj(t|x) = hCj0(t) exp(x′βj). The likelihood function is 

LC(β, hC0 ∣ 𝒟obs) = ∏
j = 1

J
∏
i = 1

n
{hC j0(yi) exp (xi′β j)}

1{δi = j}
exp { − HC j0(yi) exp (xi′β j)}, 

where β = (β1′, …, βJ′)′, hC0 = (hC10, …, hCJ0)′, HC j0(yi) = ∫
0

yi
hC j0(u)du for j = 1, …, J and 

1{δi = j}is the indicator function for j in{0, 1, …, J}, with 0 denoting a censored 

observation. Assume there are no ties among the event times. The conditional probability 

that an individual dies from cause j at time yi given one death in the risk set R(yi) is given by

Pr (individual dies at yi due to cause j ∣ one death at yi) = 1{δi = j}

Pr (individual dies at yi due to cause j ∣ survival prior to yi)
Pr (one death at yi due to cause j ∣ survival prior to yi)

=
hC j0(yi) exp (x′iβ j)

1 δi = j

∑l ∈ ℛ(yi)
hc j0(yi) exp (x′lβ j)

1{δi = j}

=
exp (x′iβ j)

∑l ∈ ℛ(yi)
exp (x′lβ j)

1{δi = j}

.

The partial likelihood function is thus given by multiplying the conditional probabilities over 

all deaths and causes, resulting in
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Lp(β ∣ 𝒟obs) = ∏
j = 1

J
∏
i = 1

n exp (x′iβ j)
∑l ∈ ℛ(yi)

exp (x′lβ j)

1{δi = j}

. (2)

3.2. Conditions for the existence of MPLE and posterior propriety

Here we only focus on the conditions of the existence of MPLE for the Cox model in Eq. 

(1), since the generalization to the cause-specific model is straightforward. Define X* to be

X∗ = [δi(x j − xi): j ∈ ℛ(yi), i = 1, …, n]′ . (3)

Let ki denote the number of subjects in R(yi) and K = ∑i = 1
n ki. Then X* is a K × p matrix. 

The necessary and sufficient conditions established in Chen et al. (2006) for propriety of the 

posterior when an improper uniform prior is assumed for β are given by

C1. The matrix X∗ is of full column rank and
C2. There exists a positive vector v such that X∗′v = 0 .

(4)

A positive vector v means that each component of v is positive. Condition C2 can be checked 

by solving a linear programming problem (Roy and Hobert 2007, Appendix A).

Under the frequentist point of view, Chen et al. (2009) established that the MPLE of β exists 

if conditions C1 and C2 are satisfied. Moreover, if C1 is satisfied, then C2 is a necessary 

condition for the existence of the MPLE for β. We can also consider the identifiability of the 

MPLE problem from a Bayesian point of view. Kalbfleisch (1978) and Sinha et al. (2003) 

showed that the partial likelihood in Eq. (1) can be obtained as a limiting case of the 

marginal posterior of β with continuous time survival data under a gamma process prior for 

the cumulative baseline hazard function H0(·) using the likelihood function 

L(β, h0 ∣ 𝒟obs) = ∏
i = 1

n
{h0(yi) exp (xi′β)}

δi exp { − ∑ j = 1
n H0(y j) exp (x j′β)}.

If we treat the partial likelihood Lp(β| obs) in Eq. (1) as the likelihood function, the posterior 

distribution for β is then given by

π(β ∣ 𝒟obs) ∝ π(β)Lp(β ∣ 𝒟obs) = π(β) ∏
i = 1

n exp (x′iβ)
∑ j ∈ ℛ (yi) exp (x′ jβ)

δi
, (5)
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where π(β) denotes the prior distribution for β. Taking π(β) ∝ 1, the existence of the MPLE 

is thus equivalent to the propriety of the posterior distribution (5). Chen et al. (2006) proved 

that with π(β) ∝ 1, the posterior distribution (5) is proper if and only if C1 and C2 are 

satisfied. Actually, when C1 and C2 are satisfied for a subset of the data, conditions C1 and 

C2 in Eq. (4) will automatically be satisfied. Assume Xs
∗ is a Ks × p submatrix of X*, where 

p < Ks < K. The conditions for Xs
∗ are stated as follows:

C1′ . The matrix Xs
∗ is of full column rank and

C2′ . There exists a positive vector v such that Xs
∗′v = 0 .

(6)

Theorem 3.2.1—C1′ and C2′ are sufficient for C1 and C2.

Here we consider a simple example that does not satisfy C1 and C2, and thus the MPLE of β 
does not exist.

Example 1—Take a data set with n = 3 observations, p = 2 covariates, x1 = (0, 1)′, x2 = (1, 

0)′, x3 = (0, 1)′, δ = (1, 0, 0)′, y1<y2, and y1<y3. In this case, ℛ(y1) ={1, 2, 3} and X* in 

Eq. (3) has rows (0, 0), (1,−1), and (0, 0), so that rank(X*) = 1 and condition C1 in Eq. (4) 

breaks down. The partial likelihood in Eq. (1) is given by Lp(β| obs) = exp(β2)/{exp(β1) + 2 

exp(β2)}. The maximum of Lp(β| obs) is attained when β1 − β2 →−∞.

3.3. Survival data with binary covariates

Binary covariates are quite common in survival analysis. Therefore, it is of great interest to 

study the minimum requirement for binary covariates data such that both C1 and C2 hold. 

Let y(i) denote the rearranged yi in ascending order associated with x(i) and δ(i), for i = 1, …, 

n. Denote the index for the first event i0 as min(i ∈{1, …, n}: δ(i) = 1). We know that n ≥ i0 

+ p in order to satisfy C1 (see the proof of Theorem 4.3.1 in the appendix). Specifically, for 

binary covariates data, the minimum sample size required for both C1 and C2 is n = i0 + p 
+ 1 with at least two events. In addition, each covariate in x(i) should not take monotone 

values across the n observations, for example, 1, …, 1, 0, …, 0.

To be specific, when p = 1, we should have at least two events with one in each arm (i.e., x(i) 

= 0 or x(i) = 1) and an additional observation after the second event time in which the 

covariate takes the same value as in the observation corresponding to the first event. 

Otherwise, x(i) takes monotone values. For example, if for the first two events the values are 

x(1) = 1 and x(2) = 0, the following observation (can be either censored or an event) should 

have x(3) = x(1) = 1. Thus, we have n = i0 + 2 and both C1 and C2 hold. Similarly, for p ≥ 2, 

we should have at least two events followed by some observations without a monotone 

pattern for each covariate and n ≥ i0 + p + 1. Furthermore, if the number of events is exactly 

two, the two events should be in two completely opposite arms (i.e., x and 1 − x, where 1 = 

(1, …, 1)′), as shown in Figures 1a and 1b, where the black vertices refer to the covariates of 

the two events and the red vertices indicate the covariates of the subsequent observations 

(can be either censored or not). For example, in Figure 1b, if x(1) = (0, 0, 0) corresponds to 
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an event and there are only two events, the other event must occur in the arm x(2) = (1, 1, 1) 

in order to satisfy both conditions C1 and C2.

4. Characterization and variation of Jeffreys-type prior

We begin presenting the Jeffreys-type prior in the context of the penalized maximum 

likelihood estimation method. Based on a procedure by Firth (1993), Heinze and Schemper 

(2001) proposed a solution to the monotone likelihood problem by means of penalized 

maximum partial likelihood estimation. Heinze and Ploner (2002) and Ploner and Heinze 

(2010) developed SAS, SPLUS, and R programs for inference in the Cox model using the 

penalized likelihood function. The MPLE of β is a solution of the score equations U(β) = 0, 

where U(β) = ∂Lp(β| obs)/∂β. Heinze and Schemper (2001) suggested a modification of the 

score function. The estimate β̂* is obtained as the solution of the equations U*(β) = 0, where

U∗(β) = ∂
∂β Lp(β ∣ 𝒟obs) + 1

2trace I(β)−1 ∂
∂β I(β) , (7)

with I(β) denoting the negated Hessian matrix. From Eq. (1) we compute

I(β) = − ∂2

∂β∂β′ log {Lp(β ∣ 𝒟obs)}

= ∑
i = 1

n
δi ∑

ji ∈ ℛ(yi)
wi ji

x ji
x ji

′ − ∑
ji ∈ ℛ(yi)

wi ji
x ji

∑
mi ∈ ℛ(yi)

wimi
xmi

′ = ∑
i = 1

n
δiAi,

(8)

where

wi ji
= exp (x ji

′β)/ ∑
l ∈ ℛ(yi)

exp (xl′β)

and

Ai = Ai(β) = ∑
ji ∈ ℛ(yi)

wi ji
∑

li ∈ ℛ(yi)
wili

(x ji
− xli

)}{ ∑
mi ∈ ℛ(yi)

wimi
(x ji

− xmi
) ′ . (9)

The modified score function in Eq. (1) arises from the penalized likelihood function 

Lp
∗(β ∣ 𝒟obs) = Lp(β ∣ 𝒟obs) ∣ I(β) ∣1/2, where |·| denotes determinant. While Heinze and 

Schemper (2001) did not study the case of the cause-specific hazards model, we may 

similarly consider a modified score function arising from 
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Lp
∗(β ∣ 𝒟obs) = Lp(β ∣ 𝒟obs) ∣ I(β) ∣1/2, where from Eq. (2), for j = 1, …, J, we compute 

I(β j) = − ∂2
∂β j∂β j′

log {Lp(β ∣ 𝒟obs)} = ∑
i = 1

n
1{δi = j}Ai j, where 

Ai j = ∑
ki ∈ ℛ(yi)

wiki j ∑
li ∈ R(yi)

wili j(xki
− xli

) { ∑
mi ∈ ℛ(yi)

wimi j(xki
− xmi

)}′, with 

wiki j = exp (xki
′β j)/ ∑

l ∈ ℛ(yi)
exp (xl′β j). It can be seen that the negated Hessian matrix I(β) is 

block diagonal with blocks I(β1), …, I(βJ). We discuss the Bayesian formulation of this 

problem with the Jeffreys-type prior in the next section. For the sake of space, our 

presentation covers only the Coxmodel.

4.1. Bayesian formulation

Recall that the posterior distribution for β is given by Eq. (5). If we take

π(β) ∝ ∣ I(β) ∣1/2 (10)

in Eq. (5), the proposal by Heinze and Schemper (2001) has a Bayesian interpretation under 

the Jeffreys-type prior for β. They also noted that the penalty function |I(β)|1/2 in the 

penalized likelihood function of the Cox model, which is 

Lp
∗(β ∣ 𝒟obs) = Lp(β ∣ 𝒟obs) ∣ I(β) ∣1/2, is exactly the Jeffreys-type prior. Since the negated 

Hessian matrix I(β) depends on the survival time yi via the risk set ℛ(yi), the prior in Eq. 

(10) is data-dependent. Thus, the construction of the Jeffreys-type prior is based on a 

heuristic rule rather than a formal one. Similarly, the penalty function of the cause-specific 

hazards model is also the Jeffreys-type prior π(β) ∝ |I(β)|1/2, with ∣ I(β) ∣ = ∏
j = 1

J
I(β j) . In 

Theorem 4.1.1, we characterize when this choice of prior will exist and be proper.

Theorem 4.1.1—Consider the prior distribution π(β) in Eq. (10) with I(β) as in Eq. (8). If 
condition C1 in Eq. (4) holds, then π(β) exists and is proper. Otherwise, π(β) does not exist
—that is, the negated Hessian matrix I(β) is singular for all β.

Example 1 (Revisited)—Omitting the first index, we compute w1 = w3 = eβ2/(eβ1 + 2eβ2) 

and w2 = eβ1/(eβ1 + 2eβ2. From Eqs. (8) and (9), I(β) = A1 = κ
1 −1

−1 1 , where κ = 2w1w2. 

Because of that,|I(β)|=0, and π(β) does not exist.

Remark 4.1.1—Due to the result in Proposition A.2 (see appendix), each summand in Eq. 

(17) with |X̃
h| > 0 is bounded above by a unimodal and symmetric function around β = 0. 

Moreover, the upper bound is an integrable function. Hence, the prior distribution in Eq. (10) 

has finite modes.
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Corollary 4.1.1—If the Jeffreys-type prior in Eq. (10) has finite modes, then the partial 
posterior distribution in Eq. (5) also has finite modes, since the profile likelihood function in 
Eq. (1) is bounded above.

Theorem 4.2.1—Assume that the Jeffreys-type prior exists. Then the Jeffreys-type prior 
has lighter tails than a p-dimensional multivariate t distribution with ν degrees of freedom 
for ν > 0, and heavier tails than a p-dimensional multivariate normal distribution.

Remark 4.2.1—Heinze and Schemper (2001, 116) presented two sufficient conditions for 
the existence of finite estimates of β using Eq. (7). One of these conditions requires at least p 
distinct failure times. Our condition C2 in Eq. (4) is weaker, and is illustrated in Example 2.

Example 2—Take a data set with n =3 observations, p = 2 covariates, x1 = (0, 1)′, x2 = (1, 

0)′, x3 = (1, 1)′, δ = (1, 0, 0)′, y1 < y2, and y1 < y3. In this case, R(y1) ={1, 2, 3} and X* in 

Eq. (3) has rows (0, 0), (1, −1), and (1, 0), so that rank(X*) = 2 and condition C1 in Eq. (4) 

holds true. Omitting the first index, we compute w1 = eβ2/(eβ1 + eβ2 + eβ1+β2), w2 = eβ1/(eβ1 

+ eβ2 + eβ1+β2), and w3 = eβ1+β2/(eβ1 + eβ2 + eβ1+β2). From Eqs. (8) and (9), after some 

algebraic manipulations we obtain I(β) = A1 =
w1(1 − w1) −w1w2

−w1w2 w2(1 − w2) . Hence, |I(β)|= 

w1w2w3 = e2(β1+β2)/(eβ1 + eβ2 + eβ1+β2)3 and π(β) ∝ |I(β)|1/2 = eβ1+β2/(eβ1 + eβ2 + 

eβ1+β2)3/2. Using Eq. (1), we obtain Lp(β| obs) = w1 and it is easy to check that condition 

C2 in Eq. (4) is not satisfied in this case. The partial likelihood function has the monotone 

behavior portrayed in Figure 2a. The posterior distribution is such that π(β| obs) ∝ eβ1+2β2/

(eβ1 + eβ2 + eβ1+β2)5/2. Figure 2b shows the contour plots of the prior and posterior 

distributions of (β1, β2)′.

4.2. Shifted Jeffreys-type prior

It is very common to specify a prior distribution for regression coefficients centered at β = 0. 

Based on this idea, we introduce the shifted Jeffreys-type prior. Let βM be a mode of the 

prior in Eq. (10). By adding βM to β we get a shifted Jeffreys-type prior given by

πs(β) ∝ ∣ I(β + βM) ∣1/2, (11)

so that its mode is shifted to β = 0. Using πs(β), a different posterior πs(β| obs) is obtained 

from Eq. (5). Our simulation study in section 6 empirically suggests that the shifted Jeffreys-

type prior may potentially reduce biases in MPLEs and posterior estimates of the regression 

coefficients.

4.3. Jeffreys-type prior based on the first risk set

In section 3.2, we mention that C1′ in Eq. (6) is a sufficient condition of C1 in Eq. (4). 

However, C1 does not imply C1′ unless the subset of the data corresponds to the first risk 

set, which is the risk set corresponding to the first event defined in section 3.3. As in section 

3.3, the data set is rearranged and i0 denotes the index of the first event, that is, δi = 0, i = 1, 
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…, i0 − 1, and X(i0)
∗  is the submatrix of X* corresponding to the first risk set. The following 

is the condition for C1′:

C1″ . The matrix X(i0)
∗ is of full column rank. (12)

Theorem 4.3.1—Condition C1 holds if and only if C1″ holds.

Based on this finding, we propose a new variation of the Jeffreys-type prior that only 

depends on the first risk set,

π f (β) ∝ ∣ Ai0
∣1/2, (13)

where

Ai0
= ∑ j ∈ ℛ(yi0

)wi0 j ∑l ∈ ℛ(yi0
)wi0l(x j − xl) ∑m ∈ ℛ(yi0

)wi0m(x j − xm) ′ .

Proposition 4.3.1—The Jeffreys-type prior based on the whole dataset exists and is proper 
if and only if πf(β) in Eq. (13) exists and is proper.

One benefit of the prior in Eq. (13) is the computing time. Using the first risk set to build the 

prior saves computation time, especially for data sets with a large number of observations 

and covariates. Furthermore, constructing the prior based on the first risk set will not lose 

much information, which is verified by both the simulation study and the real data analysis 

in sections 6 and 7.

5. Bayesian computation

According to Heinze and Schemper (2001, 116), when estimating the standard errors of the 

estimators obtained by solving U*(βr) = 0 in Eq. (8), r = 1, …, p, the negated Hessian matrix 

in (4.2) and the second derivative of the logarithm of the penalized likelihood function 

Lp
∗(β ∣ 𝒟obs) can be used, both evaluated at β = β̂*, where β̂* maximizes Lp

∗(β ∣ 𝒟obs). From 

their experience, the differences in the estimates are negligible. Based on this finding, in 

order to sample from the posterior distribution in Eq. (5) with π(β) in Eq. (10), πs(β) in Eq. 

(11), or πf(β) in Eq. (12), one may use the Metropolis–Hastings algorithm (Tierney 1994) to 

jointly sample β. This algorithm would work if a global proposal density based on β̂* and 

the available negated Hessian matrix and second derivative of the logarithm of the penalized 

likelihood function can be constructed so that it mimics the posterior based on the Jeffreys-

type prior. However, finding such a good proposal is very difficult. Another possible solution 

is to adapt the variance of a normal proposal in a Metropolis within Gibbs sampler by 
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controlling the acceptance rate of batches of the simulation (Roberts and Rosenthal 2009). 

Here we consider an adaptive localized Metropolis algorithm discussed in Chen et al. (2000) 

to sample each component of β in turn within the Gibbs sampling framework. The localized 

Metropolis algorithm requires the computation of the second derivative of the logarithm of 

the full conditional posterior distributions, which is a challenging task due to the highly 

demanding computation of the Jeffreys-type prior.

Let π(βj|β (−j), obs) denote the full conditional distribution of βj given β(−j), where β(−j) 

denotes β with the jth component deleted. To avoid direct computation of the second 

derivative of log π(βj|β(−j), obs), we first find the mode of π(βj|β(−j), obs) and then use a 

quadratic curve y = ax2 + bx + c to approximate log π(βj|β(−j), obs) around this mode. Since 

the localized Metropolis algorithm uses a normal proposal, the variance of this proposal can 

then be approximated by −1/(2a). This approach requires the evaluation of log π(βj|β(−j),

obs) at a few values of βj around its mode. This algorithm operates as follows: Step 1. Let βj 

be the current value; Step 2. Compute β̂j = argmaxβj log π(βj|β(−j), obs) and use a quadratic 

regression to compute a by approximating y = ax2 + bx + c to log π(βj|β(−j), obs) in the 

neighborhood of βĵ; Step 3. Draw β j
∗ from N(β j, − 1

2a); and Step 4. A move from βj to β j
∗ is 

made with probability α = min
π(β j

∗ ∣ β( − j), 𝒟obs)q(β j)

π(β j ∣ β( − j), 𝒟obs)q(β j
∗)

, 1 , where q(·) is the density function 

of N(β j, − 1
2a).

6. Simulation studies

In this section, we conduct a simulation study to assess the properties of estimators under 

different approaches. In the data generation, we first generate n = 100 independent 

xi1~Bernoulli(0.9) and xi2~Bernoulli(0.5). The failure times follow an exponential 

distribution with hazards 0.005 exp(β1xi1 + β2xi2), i = 1, …, n, where the true values of β1 

and β2 are 2.0 and −0.8. These values remain fixed throughout the 500 replications of the 

simulations. The failure times are subject to administrative censoring with duration set to 

5.0, and 30.0 in order to reach an average censoring rate around 90%, and 50%. The 

percentage of zero events corresponding to x1 = 0 amounts to 86.6%, and 43.8%, 

respectively, which lead to a monotone partial likelihood, and therefore the corresponding 

parameter β1 is not identifiable. We use the localized Metropolis algorithm to generate 

samples from the posterior distribution. After discarding the first 2000 iterations of the 

sampler, we used the next 10,000 iterations for each parameter. We compare the simulation 

results of the MPLE, shifted MPLE, Jeffreys-type prior, and shifted Jeffreys-type prior 

approaches using all data as well as only the first risk set to build our prior. The code was 

written in the FORTRAN language using IMSL subroutines with double precision.

In Table 2 we report the true value of the parameter (True), the average of the MPLEs or of 

the posterior medians (Est), the average of the standard errors or of the posterior standard 

deviations (SE), the standard deviation of the estimates (SD), the root of the mean squared 

error of the MPLEs or of the posterior medians (RMSE), and the coverage probability (CP) 

of the Wald 95% asymptotic confidence interval (CI) or of the 95% highest posterior density 

Wu et al. Page 11

J Stat Theory Pract. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(HPD) interval for each parameter. First, we note that SD, SE, and RMSE for β2 are very 

close to each other since it does not have the “zero event” issue, but they are different from 

each other for the problematic parameter, that is, β1. The estimates are biased as was 

expected when duration equals 5.0, with a high percentage of zero events (86.6%). As the 

censoring duration becomes larger (duration sets to 30.0), the percentage of zero events 

becomes smaller (43.8%), which makes the estimates more accurate. Moreover, under both 

cases (duration sets to 5.0 or 30.0), Bayesian approaches perform better than the frequentist 

approaches in terms of the coverage probabilities (closer to 95%). As exhibited in Table 2, 

shifted approaches are more likely to provide more accurate estimates (closer to the true 

values) for both β1 and β2 than the corresponding non-shifted approaches, and provide 

different SE, and RMSE for the problematic parameter (β1) only.

Another interesting finding in Table 2 is that for the same approach, the results based on the 

original Jeffreys type prior, which uses all data, and the first risk set prior were quite similar, 

indicating that using the specific partial data will not lose much information. The first risk 

set also has the advantage of computation time. For the censoring duration equal to 5.0, the 

total computation time for all the four approaches using entire data was 1577.3 minutes on 

an Intel i7-4770 processor machine with 16 GB of RAM memory using a GNU/Linux 

operating system, while the computation time was almost half (936.91 minutes) if we just 

used the first risk set, noticing that the difference in Table 2 increases when the number of 

events increases.

7. Analysis of the SEER prostate cancer data

We can easily check that the SEER prostate cancer data satisfies condition C1″ 
(consequently condition C1). According to Theorem 4.1.1, Jeffreys-type prior has finite 

modes and thus the posterior mode under the Bayesian formulation exists. Table 3 shows the 

MPLEs or the posterior medians (Est), the standard errors or the posterior standard 

deviations for the regression coefficients, the MPLEs or the posterior medians of the hazard 

ratios (HR), and the 95% confidence intervals (CI) or the 95% HPD intervals for HR under 

MPLE, shifted MPLE, Jeffreys-type prior, and shifted Jeffreys-type prior approaches using 

all the data as well as the first risk set.

Recall that there was no monotone likelihood issue for death due to other causes. Therefore, 

the estimates computed by the shifted MPLE approach and the SAS procedure PHREG, as 

shown in Table 1, were almost identical. For example, under the shifted MPLE using the all 

data approach, β̂ = (0.074, 1.049, −0.764, 0.207, −0.170, 0.569)′. If we used the SAS 

procedure PHREG, β̂ = (0.074, −1.082, −0.785, 0.198, −0.204, 0.575)′. The estimates given 

by the other approaches in Table 3 were also similar to the results in Table 1, which further 

empirically confirms that the Jeffreys-type prior is noninformative and does not introduce 

bias if the data do not have a monotone partial likelihood issue. However, the Jeffreys-type 

prior does improve the estimates if the monotone problem exists. For death due to prostate 

cancer, the covariate RP (Table 1) had a huge standard error, namely, SE = 1680, and was 

thus not identifiable. The problematic covariate (RP) is now identifiable, and even 

significant under all the four approaches in Table 3.
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Similar to the simulation study, the estimates obtained by using Jeffreys-type priors based on 

the entire data set as well as the first risk set (n − i0 = 1203 for prostate cancer death and n − 

i0 = 1825 for other causes death) were very similar, especially for nonproblematic 

covariates. For example, the estimates for prostate cancer death under shifted the Jeffreys-

type prior and first risk set shifted Jeffreystype prior were β̂ = (0.211, −4.156, −0.996, 

−0.683, − 0.323, −0.329)′ and β̂ = (0.204, −4.314, −1.016, −0.676, −0.311, −0.337)′, 

respectively. For the prostate cancer data, the computation times for all the four approaches 

were 93.0 minutes if we used the entire data set for the prior and 39.3 minutes if we used the 

first risk set for the prior. The computation gains are more obvious for the other causes death 

data (830.0 minutes using entire dataset and 242.1 minutes using the first risk set), which 

have more events than the prostate cancer death data. Thus, the first risk set approach was 

more computationally efficient. SE for covariates with rare events (RP and Black) under 

shifted approaches are different from SE under the corresponding nonshifted approaches, 

while SE for other covariates are quite similar among all approaches, which is consistent 

with the simulation results. For death due to the prostate cancer data, the coefficient of RP, 

which is originally not identifiable, is now significant based on the 95% CI/HPD for HR 

under all the four approaches. None of the other coefficients are significant within this group 

of data. For death due to other causes, surgical treatment (RP), radiation only treatment 

(RT), and age (Age) are all significant effects under the four approaches.

8. Discussion

In this article, we have thoroughly investigated the conditions of the monotone partial 

likelihood and developed equivalent sufficient and necessary conditions based on the first 

risk set. Under mild conditions, we have shown that the Jeffreys-type prior is proper and has 

finite modes. Moreover, it has lighter tails than a multivariate t distribution and heavier tails 

than a multivariate normal distribution. We have proposed two variations of the Jeffreys-type 

prior, namely, the Jeffreys-type prior based on the first risk set and the shifted Jeffreys-type 

prior. We emphasize that C1″ in (4.6) is an easy-to-check condition and plays a key role in 

the solution of the monotone likelihood problem. Future work includes a theoretical 

investigation of the unimodality of the Jeffreys-type prior and more proprieties of the prior 

based on the first risk set—for example, in the presence of time dependent covariates 

(Heinze and Dunkler 2008). We also need to further investigate additional properties of the 

two variations of Jeffreys-type prior. These two priors would lead to similar posterior 

estimates if lim||β||→∞|I(β)|/|Ai0| = c, where c is a constant. We also envision extending the 

Jeffreys-type prior to other models for competing risks data (for recent contributions and a 

literature overview, see Ge and Chen 2012; Beyersmann and Scheike 2013; Chen et al. 2013; 

Fine and Lindqvist 2014).
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Appendix: Proofs

Proof of Theorem 3.2.1—It is easy to prove that C1′ implies C1, since the column rank 

of a matrix is always greater than or equal to the column rank of any of its submatrices. Let 

Xs
∗ be a Ks × p submatrix of X* and let xsi

∗′ be a row vector of Xs
∗, i = 1, …, Ks. According to 

C2′, there exists a positive vector v such that ∑i = 1
Ks xsi

∗ vi = 0. Since the row vectors in X* are 

linear combinations of those in Xs
∗, according to condition C1′, X*′v* can be expressed as 

∑i = 1
Ks xsi

∗ vi
∗ + ∑ j = Ks + 1

K ∑i = 1
Ks ki j

xsi
∗ v j

∗. Let vi
∗ = vi − ∑ j = Ks + 1

K ki j
v j
∗, for i = 1, …, Ks, where 

0 < v j
∗ < mini ∈ {1, …, Ks} vi/∑ j = Ks + 1

K ∣ ki j
∣, for j = Ks) 1, …, K. Thus, we have X*′v* = 0 

and v* is a positive vector. Therefore, C2′ implies C2. In order to prove Theorem 4.1.1, we 

need to establish the following two propositions.

Proposition A.1

For Ai given in Eq. (9) and

Bi = Bi(β) = ∑
ji ∈ ℛ(yi)

wi ji
∑

li ∈ ℛ(yi)
wili

(x ji
− xli

)(x ji
− xli

)′, (14)

we have that Ai⪯Bi, meaning that Bi − Ai is a nonnegative definite matrix, i = 1, …, n.

Proof

For all a ∈ ℝp we can write

a′Aia = a′ ∑
ji

wi ji
∑
li

wili
2 (x ji

− xli
)(x ji

− xli
)′ + ∑

li < mi

wili
wimi

(x ji
− xli

)

(x ji
− xmi

)′ + ∑
li > mi

wili
wimi

(x ji
− xli

)(x ji
− xmi

)′ a

≤ ∑
ji

wi ji
∑
li

wili
2 a′(x ji

− xli
)(x ji

− xli
)′a + ∑

li < mi

wili
wimi

{a′(x ji
− xli

)(x ji
− xli

)′a + a′(x ji
− xmi

)(x ji
− xmi

)′a}

= ∑
ji

wi ji
∑
li

wili
a′(x ji

− xli
)(x ji

− xli
)′a = a′Bia .
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Therefore, a′(Ai − Bi)a ≤ 0, concluding the proof.

Proposition A.2

For ji and li ∈ ℛ(yi), we have wi ji
wili

≤ wi, ji, li
∗ , where wi, ji, li

∗  is given by

wi, ji, li
∗ =

exp {(xli
− x ji

)′β}

[1 + exp {(xli
− x ji

)′β}]2 . (15)

Proof

From the expression after Eq. (8), 

wi ji
wili

=
exp (x ji

′β)

∑
mi ∈ ℛ(yi)

exp (xmi
′β)

exp (xli
′β)

∑
mi ∈ ℛ(yi)

exp (xmi
′β)

≤
exp {(xli

− x ji
)′β}

[1 + exp {(xli
− x ji

)′β}]2
= wi, ji, li

∗ , as 

claimed in the proposition. We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1—Let Xi and wi denote, respectively, the ki
2 × p matrix with row 

xji′ − xli′ and the ki
2 × 1 vector with element wijiwili, for ji and li ∈ ℛ(yi). The matrix in Eq. 

(14) can be written as Bi = Xi′D(wi)Xi, where D(·) denotes a diagonal matrix.

The number of failures is denoted by n1. Without loss of generality, we assume δi = 1 for i = 

1, …, n1 ≤ n, so that I(β) = ∑i = 1
n1 Ai. Let X̃ and w̃ be, respectively, the K2 × p matrix and the 

K2 × 1 vector given by X̃ = [X1′, …, Xn1′]′ and w̃ = (wijiwili: ji and li ∈ ℛ(yi), i = 1, …, 

n1)′, where K2 = ∑i = 1
n1 ki

2. We define B̃ = X̃′D(w̃) X̃, noting that B∼ = ∑i = 1
n1 Bi. Since Bi, i = 

1, …, n1, are symmetric nonnegative definite matrices, then from Proposition A.1, we have 

that I(β) ≼ ∑i = 1
n1 Bi = B∼ and according to Zhang (1999, Theorem 6.8), |I(β)| ≤ |B̃|. Let w̃* be 

the K2 × 1 vector with elements wi, ji, li
∗  in Eq. (15). Using a determinant expansion (see, e.g., 

Ibrahim and Laud 1991) and Proposition A.2, we obtain

∣ I(β) ∣ ≤ ∑
h ∈ ℋ

∣ X∼h ∣2 ∏
k = 1

p
w∼ik

≤ ∑
h ∈ ℋ

∣ X∼h ∣2 ∏
k = 1

p
w∼ik

∗ , (16)

where ℋ = {(i1, …, ip): 1 ≤ i1 < ⋯< ip ≤ K2} and X̃
h is a p × p matrix with columns x̃i1, …, 

xĩp. Hence,

Wu et al. Page 16

J Stat Theory Pract. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



π(β) ∝ ∣ I(β) ∣1/2 ≤ ∑
h ∈ ℋ

∣ X∼h ∣ ∏
k = 1

p
(w∼ik

∗ )1/2
(17)

and if |X̃
h| = 0 for all h ∈ H, then π(β) does not exist

Under C1 in Eq. (4), there is an h ∈ H such that φh = X̃
h′β is a one-to-one transformation 

with Jacobian 1/|Xh̃|. Taking into account Eq. (15), we get 

∫
ℝp ∣ I(β) ∣1/2dβ ≤ ∑h ∈ ℋ : ∣ X∼h ∣ > 0∫

ℝp∏k = 1
p exp (φhk /2)

1 + exp (φhk)dφh. Since 

∫
− ∞

∞
exp (φhk /2)/{1 + exp (φhk)}dφhk = 2∫

0

∞
1/(1 + u2)du = π, for k = 1, …, p, we conclude that 

the prior distribution for β is proper, that is, ∫
ℝp

π(β) dβ < ∞.

Proof of Theorem 4.2.1—Let tν(β|β0, Σ0) denote the density function of a p-dimensional 

multivariate t distribution with location vector β0, scale matrix Σ0, and ν degrees of 

freedom, which is given by

tν(β ∣ β0, ∑0) =
Γ(ν + p

2 )

Γ(ν/2)(νπ)p/2 1 + 1
ν (β − β0)′∑0

−1(β − β0)
−(ν + p)/2

.

The tail condition in the proposition is represented by lim||β||→∞|I(β)|1/2/tν(β|β0, Σ0) = 0, for 

all ν > 0. It is equivalent to lim‖β‖ ∞ ∣ I(β) ∣1/2 1 + (β − β0)′∑0
−1(β − β0)/ν = 0, for all ν > 

0. Recall from Eq. (16) that ∣ I(β) ∣ ≤ ∑h ∈ H ∣ X∼h ∣2∏k = 1
p w∼ik

∗ , and from Eq. (15), 

w∼ik
∗ ≤ exp ( − x∼hk′β), where x̃hk′ is the kth row of X̃

h. Therefore,

0 ≤ lim‖β‖ ∞ ∣ I(β) ∣1/2{1 + 1
ν (β − β0)′∑0

−1(β − β0)}

≤ lim‖β‖ ∞ ∑
h ∈ H

∣ X∼h ∣2 ∏
k = 1

p
exp ( − x∼hk′β)}

1/2
{1 + 1

ν (β − β0)′∑0
−1(β − β0)} = 0,

and consequently we have lim||β||→∞ I(β)|1/2/tν(β|β0, Σ0) = 0.

Let φ(β|β0, Σ0) be the probability density function of the p-dimensional normal distribution, 

where Σ0 is a p × p positive definite matrix, which is given by 

φ(β β0, ∑0) = (2π)− p/2 ∑0
−1/2 exp − (β − β0)′∑0

−1(β − β0)/2 . The tail condition in the 

proposition is represented by lim||β||→∞ |I(β)|1/2/φ(β|β0, Σ0) =∞. It is equivalent to 

lim‖β‖ ∞ ∣ I(β) ∣ exp (β − β0)′∑0
−1(β − β0) = ∞.
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Without loss of generality, we assume there are no ties for each component of xji, where ji ∈ 
R(yi). Since |I(β)| ≥ |Ai0|, with Ai0 as in Eq. (13), we need to prove only for Ai0. We further 

take i0 = 1 for simplicity. For p = 1, A1 = Σj1∈R(y1) w1j1{Σl1∈R(y1) w1l1 (xj1 − xl1)}2 and 

∑0 = σ0
2. Recall that w1j1 = exp(xj1β)/Σl∈R(y1) exp(xl1β). Note that

lim
β + ∞ w1 j1

=
1, if xj1

= max {xl1
: l1 ∈ R(y1)},

0, otherwise.
(18)

Let j0 be such that w1j0 = min{w1j1: j1 ∈ R(y1)} and j* be such that xj* = max{xj1: j1 ∈ 
R(y1)}. Thus, we have

lim
β + ∞ A1 exp {(β − β0)2/σ0

2}

≥ lim
β + ∞ w1 j0

exp {(β − β0)2/σ0
2} lim

β + ∞ ∑
j1 ∈ ℛ(y1)

∑
l1 ∈ ℛ(y1)

w1l1
(x j1

− xl1
)

2

= lim
β + ∞

exp {(β − β0)2/σ0
2}

∑l1 ∈ ℛ(y1) exp {(xl1
− x j0

)β} ∑
j1 ∈ ℛ(y1)

(x j1
− x

j∗
)2 = ∞ .

Similarly, we can prove that limβ − ∞ A1 exp {(β − β0)2/σ0
2} = ∞ using − β and − xj1 to 

replace β and xj1 in A1

For p > 1, let β = rdk, where r ∈ ℝ and dk is the kth unit vector in the canonical basis of ℝp. 

It suffices to show that for any dk, limr ∞ ∣ A1 ∣ exp {(r dk − β0)′∑0
−1(rdk − β0)} = ∞. Let 

jk
∗ be such that x

jk
∗ = max {x j1, k: j1 ∈ R(y1)} . Similar to the case when p = 1, 

limr + ∞ ∣ A1 ∣ exp {(rdk − β0)′∑0
−1(rdk − β0)} ≥ limr + ∞ w1 j0

exp {(rdk − β0)′∑0
−1(rdk

− β0)} ∑ j1 ∈ ℛ(y1) (x j1
− x

jk
∗)(x j1

− x
jk
∗)′ = ∞

. 

Therefore, lim||β||→∞ A1|1/2/φ(β|β0, Σ0) = ∞.

Proof of Theorem 4.3.1—The matrix X* is given by 

X∗ 0, ⋯, 0, (X(i0)
∗ )′, ⋯, δ(n − 1)(x(n) − x(n − 1)), 0 ′, where X(i0)

∗  is the (n − i0) × p submatrix 

generated by the first risk set with rows 0′, (x(i0+1) − x(i0))′, …, (x(n) − x(i0))′. Notice that all 

the rows above X(i0)
∗  are 0′ since δ(i) = 0, i = 1, …, i0 − 1. The remaining row vectors are 
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simply linear combinations of the row vectors in X(i0)
∗ . Thus, the matrix X* is of full column 

rank p if and only if X(i0)
∗  is of full column rank. This also implies that n ≥ i0 + p.

Proof of Proposition 4.3.1—Using only the risk set R(y(i0)), the proof follows steps 

similar to those found in the proof of Theorem 4.1.1 after replacing I(β) by Ai0 given in Eq. 

(13).
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Figure 1. 
Illustration of C1 and C2 when there are exactly two events.
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Figure 2. 
Example 2: (a) partial likelihood function for (β1, β2)′; (b) contour plots of the prior (gray) 

and posterior (blue) distributions for (β1, β2)′.
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