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Abstract

In medical studies, the monotone partial likelihood is frequently encountered in the analysis of
time-to-event data using the Cox model. For example, with a binary covariate, the subjects can be
classified into two groups. If the event of interest does not occur (zero event) for all the subjects in
one of the groups, the resulting partial likelihood is monotone and consequently, the covariate
effects are difficult to estimate. In this article, we develop both Bayesian and frequentist
approaches using a data-dependent Jeffreys-type prior to handle the monotone partial likelihood
problem. We first carry out an in-depth examination of the conditions of the monotone partial
likelihood and then characterize sufficient and necessary conditions for the propriety of the
Jeffreys-type prior. We further study several theoretical properties of the Jeffreys-type prior for the
Cox model. In addition, we propose two variations of the Jeffreys-type prior: the shifted Jeffreys-
type prior and the Jeffreys-type prior based on the first risk set. An efficient Markov-chain Monte
Carlo algorithm is developed to carry out posterior computation. We perform extensive
simulations to examine the performance of parameter estimates and demonstrate the applicability
of the proposed method by analyzing real data from the SEER prostate cancer study.
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1. Introduction

In medical studies involving time-to-event data, it is often the case that patients within at
least one arm of the study will experience very few events. This could be due to the length of
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the study, or due to the nature of the study itself. For instance, among the particular subset of
SEER prostate cancer data we are interested in, no patients receive surgery treatment. If one
wishes to analyze the surgery treatment effect of the time-to-event data in our motivating
prostate cancer study, then the zero event in surgery treatment group will lead to the model
identifiability issue. Such an identifiability issue is a well-known problem in the analysis of
time-to-event data using the semiparametric proportional hazards model of Cox (1972).
Standard analysis of the Cox proportional hazards model involves parameter estimation
through maximization of the logarithm of the partial likelihood function. However, it is not
uncommon for the partial likelihood to converge to a finite value while at least one
parameter estimate goes to —oo or +co. This phenomenon is known as the monotone
likelihood problem. Bryson and Johnson (1981) state that when estimating covariate
parameters for the Cox proportional hazards model, there is a nonzero probability for any
finite sample that the maximum partial likelihood estimate will be infinite. Heinze and
Ploner (2002) further remark that the probability of monotone likelihood is “too high to be
negligible,” thus necessitating solutions to the monotone likelihood problem. In the example
of the SEER prostate cancer study, one might consider removing the surgery treatment
covariate to eliminate the monotone likelihood problem. However, this may not be desirable
since the surgery treatment effect is of great clinical interest. Based on a procedure by Firth
(1993), Heinze and Schemper (2001) proposed a solution to the monotone partial likelihood
problem by means of penalized maximum likelihood estimation. For a recent discussion on
the role of penalization in logistic and survival regression, see Greenland and Mansournia
(2015). However, many issues are still not well understood and need to be further studied
from both practical and theoretical points of view. Although we mainly focus on the Cox
proportional hazards model, the monotone likelihood problem may also exist under
alternative models such as accelerated failure time models (Kalbfleisch and Prentice 2011),
parametric hazards models, and so on.

In this article, we first examine the conditions that lead to the monotone partial likelihood
problem and establish easy-to-check sufficient conditions for the survival data with binary
baseline covariates. We then characterize the sufficient and necessary conditions for the
existence and propriety of a data-dependent Jeffreys-type prior. Our conditions are certainly
much weaker than those of Heinze and Schemper (2001, 116). In addition, we show that the
Jeffreys-type prior has finite modes and thus the maximum partial likelihood estimate
(MPLE) exists. We also compare the tail behavior between the Jeffreys-type prior and the
multivariate #and normal distributions. We further develop two variations of the Jeffreys-
type prior: the shifted Jeffreys-type prior and the Jeffreys-type prior based on the first risk
set. The shifted Jeffreys-type prior leads to less biased estimates (when compared to MPLE).
The Jeffreys-type prior based on the first risk set has the same propriety conditions as and
similar parameter estimates to the Jeffreys-type prior based on the whole data set. As
demonstrated in both the simulation study and the real data analysis, the Jeffreys-type prior
based on the first risk set leads to a substantial decrease in computing time over the prior
based on the whole data set, especially when the sample size is large. The approach for
constructing Jeffreys-type prior based on the first risk set is not only useful for survival data
but also applicable for other types of data such as count data with excessive zeros and
missing data. Finally, we propose a computationally less expensive but efficient localized
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Metropolis algorithm, which avoids direct computation of the second derivative of the
Jeffreys-type prior.

This article unfolds as follows. Section 2 presents a mativating case study where the MPLE
is not identifiable. In section 3, we provide an in-depth investigation and characterization of
monotone partial likelihoods as well as posterior propriety under improper uniform priors. In
section 4, we obtain sufficient and necessary conditions for the propriety of the Jeffreys-type
prior and propose the two variations of the Jeffreys-type prior. The computational
development involving the localized Metropolis algorithm is given in section 5. An extensive
simulation is carried out in section 6. Section 7 presents a detailed analysis of the motivating
SEER prostate cancer data. We conclude the article with some discussion in section 8.
Proofs are given in the appendix.

2. A motivating prostate cancer case study

We consider 1840 men who were subjects in the SEER prostate cancer data between 1973 to
2013, and who have all of the three intermediate risk factors: clinical tumor stage is T2b or
T2c, Gleason score equals 7, and prostate-specific antigen (PSA) level between 10 and 20
ng/mL. Among those 1840 subjects, the total number of events due to prostate cancer is 8,
and the total number of events due to other causes is 63. The covariates considered in our
analysis are PSA, surgery treatment indicator (RP), radiation treatment only indicator (RT),
African-American indicator (Black), year of diagnosed (Year_diag), and age (Age). The
covariates RP, RT, and Black are binary covariates, taking value 0 or 1. We fit the cause-
specific hazards model described in section 3.1 to the SEER prostate cancer data, in which
there are two causes of death, namely, prostate cancer and other causes. The resulting
maximum partial likelihood estimates (MPLES) are shown in Table 1. We see from Table 1
that for RP, the MPLE (Est) and the standard error (SE) were —17.745 and 1680,
respectively, for death due to prostate cancer. These results indicate that RP is not
identifiable for the death caused by prostate cancer, which is due to the absence of events
(prostate cancer death) in the “surgery treatment” group of patients. This case study
motivates us to carry out further examination of monotone partial likelihoods. Note that in
Table 1, A is the number of censored, NVj.the number of prostate cancer deaths, and N, the
number of other cause deaths.

3. Monotone partial likelihood and posterior propriety

In this section, we first introduce the Cox model and the cause-specific hazards model. We
then provide the conditions under which the maximum partial likelihood estimator of the
regression coefficients exists. Two examples are given to demonstrate the necessity of those
two conditions.

3.1. The Cox proportional hazards model and the cause-specific hazards model

Let y;denote the minimum of the censoring time C;and the survival time 7; and let x;=
(Xit, - x,-p)’ be the p x 1 vector of covariates associated with y;for the ih subject. Denote
by g= (B, ..., ,Bp)’ the p x 1 vector of regression coefficients. Also, ;= 1{7;= y;} is the
failure indicator for /=1, ..., n, where nis the total number of observations and ®.(8) ={/ . y;
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> f} is the set of subjects at risk at time ¢ Then the partial likelihood of Cox (1975) is given
by

n exp (x';4
L1249 =11 ') )

21| Zje gy o0 (x'6)

where Yo0s={(Vj; 6j X)) : i=1, ..., i} is the observed right censored data. As usual, we
assume throughout this article that 8 does not include an intercept, since the intercept cannot
be estimated in the Cox partial likelihood, and that, given x;, 7;and C;are independent.
Maximization of the partial likelihood function leads to the MPLE of g.

A generalization of the Cox model is the cause-specific hazards model, which was discussed
in Gaynor et al. (1993) and Ge and Chen (2012). For j=1, ..., J, the cause-specific hazard
function for cause /is defined by /ic{(f) = limp,oPr(z< Kt+ At 5= JiT= HIAL The overall

survival function is St) = Pr (T > t) = exp {—Z;: 1jf)hcj(u)du}. Let Bjand /igp(?) be the

vector of regression coefficients without an intercept and the cause-specific baseline hazard
function at time #for cause j, respectively. Assume the Cox proportional hazards structure
for Aic(9), that is, Ac{8x) = hcp(d) exp(x’,B/). The likelihood function is

J n 1{5.=j
LC(‘B’hCO | Qobs) = 1 H {hcj()(yi) exXp (xi/ﬂj)} ! exp { — cho(yl') exp (xi'ﬁj)}’

j= i=1

Yi
where 8= (B, ..., B7) ,hay = (e -, hicp) Hejobp) = éhcjo(u)du forj=1, ..., Jand

1{6, = j}is the indicator function for fin{0, 1, ..., J}, with O denoting a censored
observation. Assume there are no ties among the event times. The conditional probability
that an individual dies from cause jat time y;given one death in the risk set A(y)) is given by

Pr (individual dies at ¥ dueto cause j | one death at yl.) = 1{5i =j}

o=

Pr (individual dies at Vi due to cause j | survival prior to yl.) {h CjO(yi) exp (x’l.ﬁj)

Pr (one death at ¥ due to cause j | survival prior to yl.) 1 {5[. =j}

Zl e !%(yi) hch(yi) exp (x/lﬁj)]

15, = j)

exp (6 )
Zl e !%(yi) exp (x,lﬂj)

The partial likelihood function is thus given by multiplying the conditional probabilities over
all deaths and causes, resulting in
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T T { exp (X)) , | v

Lp(ﬂ | gobs) = H H Zle A, €xp (xllﬁj)

j=1i=1

3.2. Conditions for the existence of MPLE and posterior propriety

Here we only focus on the conditions of the existence of MPLE for the Cox model in Eq.
(1), since the generalization to the cause-specific model is straightforward. Define X™ to be

X*=[5x;—x):j € Ry, i=1,...n]". (3)

Let k;denote the number of subjects in R(y)) and K = 37 _ | k.. Then X" isa K x pmatrix.

The necessary and sufficient conditions established in Chen et al. (2006) for propriety of the
posterior when an improper uniform prior is assumed for g are given by

Cl. The matrix X is of full column rank and 4
C2. There exists a positive vector v such that X* v = 0.

A positive vector v means that each component of v is positive. Condition C2 can be checked
by solving a linear programming problem (Roy and Hobert 2007, Appendix A).

Under the frequentist point of view, Chen et al. (2009) established that the MPLE of g exists
if conditions C1 and C2 are satisfied. Moreover, if C1 is satisfied, then C2 is a necessary
condition for the existence of the MPLE for 8. We can also consider the identifiability of the
MPLE problem from a Bayesian point of view. Kalbfleisch (1978) and Sinha et al. (2003)
showed that the partial likelihood in Eq. (1) can be obtained as a limiting case of the
marginal posterior of S with continuous time survival data under a gamma process prior for
the cumulative baseline hazard function Hy(-) using the likelihood function

n 5.
LB hg | D) = H {ho(y) exp (x;,f)} "exp { — Z;L 1 Ho)) exp (x;5)}
i=1
If we treat the partial likelihood L(8%qps) in Eg. (1) as the likelihood function, the posterior
distribution for g is then given by

0.
i

exp (x';0)
Zj e gg(y,') exp (xljﬁ) ’

7P| Do) * LB Do) =2 [ | (5)

i=1
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where () denotes the prior distribution for 8. Taking 7z(8) o 1, the existence of the MPLE
is thus equivalent to the propriety of the posterior distribution (5). Chen et al. (2006) proved
that with () o 1, the posterior distribution (5) is proper if and only if C1 and C2 are
satisfied. Actually, when C1 and C2 are satisfied for a subset of the data, conditions C1 and

C2in Eq. (4) will automatically be satisfied. Assume X is a K x psubmatrix of X", where

p< Ks;< K. The conditions for Xj are stated as follows:

Cl’. Thematrix X : is of full column rank and (6)

C2’.  Thereexists a positive vector v such that X :’v =0.

Theorem 3.2.1—C1” and C2’ are sufficient for C1 and C2.

Here we consider a simple example that does not satisfy C1 and C2, and thus the MPLE of 8
does not exist.

Example 1—Take a data set with /7= 3 observations, p = 2 covariates, x; = (0, 1)’, X, = (1,
0)',x3=(0,1)", §=(1,0,0)", 1<y, and y1<y3. In this case, R.(}4) ={1, 2, 3} and X" in
Eq. (3) has rows (0, 0), (1,-1), and (0, 0), so that rank(X™) = 1 and condition C1 in Eq. (4)
breaks down. The partial likelihood in Eq. (1) is given by L (8% ops) = exp(Bo){exp(B1) + 2
exp(B2)}- The maximum of L {(f%ps) is attained when gy = B, ——00.

3.3. Survival data with binary covariates

Binary covariates are quite common in survival analysis. Therefore, it is of great interest to
study the minimum requirement for binary covariates data such that both C1 and C2 hold.
Let )1, denote the rearranged y;in ascending order associated with x(, and &, for /=1, ...,
n. Denote the index for the first event jy as min(/€{1, ..., 7} &) = 1). We know that 7= fy
+ pin order to satisfy C1 (see the proof of Theorem 4.3.1 in the appendix). Specifically, for
binary covariates data, the minimum sample size required for both CLand C2isn=f+ p
+ 1 with at least two events. In addition, each covariate in X, should not take monotone
values across the n observations, for example, 1, ..., 1,0, ..., 0.

To be specific, when p =1, we should have at least two events with one in each arm (i.e., X
=0 or x;) = 1) and an additional observation after the second event time in which the
covariate takes the same value as in the observation corresponding to the first event.
Otherwise, x(, takes monotone values. For example, if for the first two events the values are
Xa) = 1and x) =0, the following observation (can be either censored or an event) should
have x(3) = X(1) = 1. Thus, we have 77= fp + 2 and both C1 and C2 hold. Similarly, for p> 2,
we should have at least two events followed by some observations without a monotone
pattern for each covariate and n= fy + p+ 1. Furthermore, if the number of events is exactly
two, the two events should be in two completely opposite arms (i.e., x and 1 - x, where 1 =
(1, ..., 1)), as shown in Figures 1a and 1b, where the black vertices refer to the covariates of
the two events and the red vertices indicate the covariates of the subsequent observations
(can be either censored or not). For example, in Figure 1b, if X(1) = (0, 0, 0) corresponds to
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an event and there are only two events, the other event must occur in the arm x(p) = (1, 1, 1)
in order to satisfy both conditions C1 and C2.

4. Characterization and variation of Jeffreys-type prior

We begin presenting the Jeffreys-type prior in the context of the penalized maximum
likelihood estimation method. Based on a procedure by Firth (1993), Heinze and Schemper
(2001) proposed a solution to the monotone likelihood problem by means of penalized
maximum partial likelihood estimation. Heinze and Ploner (2002) and Ploner and Heinze
(2010) developed SAS, SPLUS, and R programs for inference in the Cox model using the
penalized likelihood function. The MPLE of gis a solution of the score equations U(f) = 0,
where U(B) = 0L (8 %qns)/0B. Heinze and Schemper (2001) suggested a modification of the
score function. The estimate B* is obtained as the solution of the equations U*() = 0, where

-1 0

VB = 2L (8| Do) + 1trace[l(ﬁ) ﬂuﬂ)} @

apr

with I (8) denoting the negated Hessian matrix. From Eq. (1) we compute

2
19) = ~ 557 108 (L, (B | D)} ®)

where

Wij. = exp (xj_’/})/ Z exp (xl,/})
i i 1eq0)

and

Al' = Al(ﬂ) = Z Wij. Z Wil.(le. - xl‘)}{ Z Wimi(xji - xmi) 9

. | 1 1 1
J; € %) l; € R0 m, € R(y;)

The modified score function in Eq. (1) arises from the penalized likelihood function
LB Do) = LB Do) | 1) 1172, where || denotes determinant. While Heinze and

Schemper (2001) did not study the case of the cause-specific hazards model, we may
similarly consider a modified score function arising from
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L;(/} | Dope) = Lp(ﬂ | D) 1 1D |”2, where from Eq. (2), for j=1, ..., J we compute

n

2
7] .
16)= - .95, log {L,(B | D)} = ,-=Z 1 1{6; = j}A;» where

A..= w.

ii= ik.j Wi (X = Xp)
J k € R() il il K i

) Wi (%g = %, )}, With
m, € Ay, i i i

I, €RG)

Wi j= €Xp (xk.'ﬁj)/ Z exp (xl,ﬁj). It can be seen that the negated Hessian matrix I (8) is
i L IERY)

block diagonal with blocks (1), ..., 1 (8. We discuss the Bayesian formulation of this

problem with the Jeffreys-type prior in the next section. For the sake of space, our

presentation covers only the Coxmodel.

4.1. Bayesian formulation

Recall that the posterior distribution for S is given by Eq. (5). If we take

2By | IB) 1 (10)

in Eq. (5), the proposal by Heinze and Schemper (2001) has a Bayesian interpretation under
the Jeffreys-type prior for S. They also noted that the penalty function |I ()2 in the
penalized likelihood function of the Cox model, which is

LB Do) = LBl D) 1 1) 1172, is exactly the Jeffreys-type prior. Since the negated

Hessian matrix /(8) depends on the survival time y;via the risk set ®()), the prior in Eq.
(10) is data-dependent. Thus, the construction of the Jeffreys-type prior is based on a
heuristic rule rather than a formal one. Similarly, the penalty function of the cause-specific

J
hazards model is also the Jeffreys-type prior (8) o« [I(B)*2, with | 1(5)| = [ ‘I([)’j)‘. In
i=1

Theorem 4.1.1, we characterize when this choice of prior will exist and be proper.

Theorem 4.1.1—Consider the prior distribution m(B) in Eq. (10) with|(B) as inEq. (8). If
condition C1 inEq. (4) holds, then r(B) exists and is proper. Otherwise, n(f) does not exist
—that is, the negated Hessian matrix | (B) is singular for all B.

Example 1 (Revisited)—Omitting the first index, we compute wq = ug = 62/(€PL + 26%2)
and ws = éP1/(€PL + 26P2. From Eqs. (8) and (9), I() = A, =«

11 _11] where x= 2wy us.

Because of that,|l (8)|=0, and () does not exist.
Remark 4.1.1—Due to the result in Proposition A.2 (see appendix), each summand in Eq.
(17) with |Xy| > 0 is bounded above by a unimodal and symmetric function around = 0.

Moreover, the upper bound is an integrable function. Hence, the prior distribution in Eq. (10)
has finite modes.
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Corollary 4.1.1—/f the Jeffreys-type prior in Eq. (10) has finite modes, then the partial
posterior distribution in Eq. (5) also has finite modes, since the profile likelihood function in
Eq. (1) /s bounded above.

Theorem 4.2.1—Assume that the Jeffreys-type prior exists. Then the Jeffreys-type prior
has lighter tails than a p-dimensional multivariate t distribution with v degrees of freedom
for v> 0, and heavier tails than a p-dimensional multivariate normal distribution.

Remark 4.2.1—Heinze and Schemper (2001, 116) presented two sufficient conditions for
the existence of finite estimates of B using Eq. (7). One of these conditions requires at least p
distinct failure times. Our condition C2 inEq. (4) is weaker, and is illustrated in Example 2.

Example 2—Take a data set with 77=3 observations, p = 2 covariates, X; = (0, 1), X = (1,
0),x3=(1,1)",6=(1,0,0)", 34 <y, and y; < ys. In this case, R()4) ={1, 2, 3} and X” in
Eq. (3) has rows (0, 0), (1, -1), and (1, 0), so that rank(X™) = 2 and condition C1 in Eq. (4)
holds true. Omitting the first index, we compute wy = 652/(6PL + %2 + eP1+B2) wp, = 6PL/(EPL
+ 672 + éP17B2) and wy = PLR2/(6PL + 652 + éPL7A2). From Eqgs. (8) and (9), after some

wl(l — Wl) —ww

algebraic manipulations we obtain 1(5) = A| = . Hence, [1(B)|=

—wiwy  wy(l —w,)
Wi was = BB + &2 + PLF2)3 and () o || (B)[L2 = eP1+B2/(ePL + P2 +
eP1*h2)3/2 Using Eq. (1), we obtain L(8%ops) = w4 and it is easy to check that condition
C2in Eq. (4) is not satisfied in this case. The partial likelihood function has the monotone
behavior portrayed in Figure 2a. The posterior distribution is such that (8% ps) & €°1+2£2/
(6°L + %2 + eP1+F2)5/2_ Figure 2b shows the contour plots of the prior and posterior
distributions of (81, ).

4.2. Shifted Jeffreys-type prior

It is very common to specify a prior distribution for regression coefficients centered at 8= 0.
Based on this idea, we introduce the shifted Jeffreys-type prior. Let S, be a mode of the
prior in Eg. (10). By adding By, to S we get a shifted Jeffreys-type prior given by

z (B« |IB+ By "2 (11)

so that its mode is shifted to 8= 0. Using rz{(f), a different posterior {8%qps) is Obtained
from Eq. (5). Our simulation study in section 6 empirically suggests that the shifted Jeffreys-
type prior may potentially reduce biases in MPLEs and posterior estimates of the regression
coefficients.

4.3. Jeffreys-type prior based on the first risk set

In section 3.2, we mention that C1” in Eq. (6) is a sufficient condition of C1 in Eq. (4).
However, C1 does not imply C1” unless the subset of the data corresponds to the first risk
set, which is the risk set corresponding to the first event defined in section 3.3. As in section
3.3, the data set is rearranged and /iy denotes the index of the first event, that is, §;=0, /=1,
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.y lp—1,and XZ‘ ) is the submatrix of X™ corresponding to the first risk set. The following
0

is the condition for C1”:

Cl1”. Thematrix X Ekio) is of full columnrank. (12)

Theorem 4.3.1—Condition C1 holds if and only if C1” holds.

Based on this finding, we propose a new variation of the Jeffreys-type prior that only
depends on the first risk set,

B 1A 11 (19

where

’

A, =2 ?/Z(yio)wio A2 ,%(yio)wiol(x I xﬂ” Yme .%(yio)wiom(x T Em]

0

Proposition 4.3.1— The Jeffreys-type prior based on the whole dataset exists and is proper
ifand only if w{P) inEq. (13) exists and is proper.

One benefit of the prior in Eq. (13) is the computing time. Using the first risk set to build the
prior saves computation time, especially for data sets with a large number of observations
and covariates. Furthermore, constructing the prior based on the first risk set will not lose
much information, which is verified by both the simulation study and the real data analysis
in sections 6 and 7.

5. Bayesian computation

According to Heinze and Schemper (2001, 116), when estimating the standard errors of the
estimators obtained by solving U(8) = 0in Eq. (8), =1, ..., p, the negated Hessian matrix
in (4.2) and the second derivative of the logarithm of the penalized likelihood function

L3819 4) can be used, both evaluated at 5= B, where B° maximizes L5 1 D ). From

obs obs
their experience, the differences in the estimates are negligible. Based on this finding, in
order to sample from the posterior distribution in Eq. (5) with (8) in Eq. (10), () in Eq.
(11), or £ pP) in Eq. (12), one may use the Metropolis—Hastings algorithm (Tierney 1994) to
jointly sample g. This algorithm would work if a global proposal density based on ﬁ and
the available negated Hessian matrix and second derivative of the logarithm of the penalized
likelihood function can be constructed so that it mimics the posterior based on the Jeffreys-
type prior. However, finding such a good proposal is very difficult. Another possible solution
is to adapt the variance of a normal proposal in a Metropolis within Gibbs sampler by
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controlling the acceptance rate of batches of the simulation (Roberts and Rosenthal 2009).
Here we consider an adaptive localized Metropolis algorithm discussed in Chen et al. (2000)
to sample each component of gin turn within the Gibbs sampling framework. The localized
Metropolis algorithm requires the computation of the second derivative of the logarithm of
the full conditional posterior distributions, which is a challenging task due to the highly
demanding computation of the Jeffreys-type prior.

Let (B} (-j,Zobs) denote the full conditional distribution of B;given -, where §-)
denotes B with the fth component deleted. To avoid direct computation of the second
derivative of log (B8, % obs), We first find the mode of (8- ),Zons) and then use a
quadratic curve y= ax? + bx + cto approximate log (B} B(-j»Zobs) around this mode. Since
the localized Metropolis algorithm uses a normal proposal, the variance of this proposal can
then be approximated by —1/(24). This approach requires the evaluation of log (8- ,%
obs) at a few values of B;around its mode. This algorithm operates as follows: Step 1. Let 3;
be the current value; Step 2. Compute [3’/-: argmaxﬁjlog (B1B(-jZobs) and use a quadratic
regression to compute & by approximating y= ax? + bx+ cto log (BlB(-jPobs) in the

neighborhood of ,é/ Step 3. Draw ﬂj'. from N(ﬁj, - i); and Step 4. A move from g;to ﬁj is

2B NB(— iy Do)

=1 where ¢(*) is the density function
”(ﬂ] [ ﬂ( —jy gobs)q(ﬂj)

made with probability a = min .1

of N3, - 2ia).

6. Simulation studies

In this section, we conduct a simulation study to assess the properties of estimators under
different approaches. In the data generation, we first generate /7= 100 independent
xp~Bernoulli(0.9) and xp~Bernoulli(0.5). The failure times follow an exponential
distribution with hazards 0.005 exp(Bixa + Boxp), /=1, ..., n, where the true values of 8;
and S, are 2.0 and -0.8. These values remain fixed throughout the 500 replications of the
simulations. The failure times are subject to administrative censoring with duration set to
5.0, and 30.0 in order to reach an average censoring rate around 90%, and 50%. The
percentage of zero events corresponding to x; = 0 amounts to 86.6%, and 43.8%,
respectively, which lead to a monotone partial likelihood, and therefore the corresponding
parameter S, is not identifiable. We use the localized Metropolis algorithm to generate
samples from the posterior distribution. After discarding the first 2000 iterations of the
sampler, we used the next 10,000 iterations for each parameter. We compare the simulation
results of the MPLE, shifted MPLE, Jeffreys-type prior, and shifted Jeffreys-type prior
approaches using all data as well as only the first risk set to build our prior. The code was
written in the FORTRAN language using IMSL subroutines with double precision.

In Table 2 we report the true value of the parameter (True), the average of the MPLEs or of
the posterior medians (Est), the average of the standard errors or of the posterior standard
deviations (SE), the standard deviation of the estimates (SD), the root of the mean squared
error of the MPLEs or of the posterior medians (RMSE), and the coverage probability (CP)
of the Wald 95% asymptotic confidence interval (CI) or of the 95% highest posterior density
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(HPD) interval for each parameter. First, we note that SD, SE, and RMSE for S, are very
close to each other since it does not have the “zero event” issue, but they are different from
each other for the problematic parameter, that is, £;. The estimates are biased as was
expected when duration equals 5.0, with a high percentage of zero events (86.6%). As the
censoring duration becomes larger (duration sets to 30.0), the percentage of zero events
becomes smaller (43.8%), which makes the estimates more accurate. Moreover, under both
cases (duration sets to 5.0 or 30.0), Bayesian approaches perform better than the frequentist
approaches in terms of the coverage probabilities (closer to 95%). As exhibited in Table 2,
shifted approaches are more likely to provide more accurate estimates (closer to the true
values) for both B; and B, than the corresponding non-shifted approaches, and provide
different SE, and RMSE for the problematic parameter (3;) only.

Another interesting finding in Table 2 is that for the same approach, the results based on the
original Jeffreys type prior, which uses all data, and the first risk set prior were quite similar,
indicating that using the specific partial data will not lose much information. The first risk
set also has the advantage of computation time. For the censoring duration equal to 5.0, the
total computation time for all the four approaches using entire data was 1577.3 minutes on
an Intel i7-4770 processor machine with 16 GB of RAM memory using a GNU/Linux
operating system, while the computation time was almost half (936.91 minutes) if we just
used the first risk set, noticing that the difference in Table 2 increases when the number of
events increases.

7. Analysis of the SEER prostate cancer data

We can easily check that the SEER prostate cancer data satisfies condition C1”
(consequently condition C1). According to Theorem 4.1.1, Jeffreys-type prior has finite
modes and thus the posterior mode under the Bayesian formulation exists. Table 3 shows the
MPLEs or the posterior medians (Est), the standard errors or the posterior standard
deviations for the regression coefficients, the MPLEs or the posterior medians of the hazard
ratios (HR), and the 95% confidence intervals (Cl) or the 95% HPD intervals for HR under
MPLE, shifted MPLE, Jeffreys-type prior, and shifted Jeffreys-type prior approaches using
all the data as well as the first risk set.

Recall that there was no monotone likelihood issue for death due to other causes. Therefore,
the estimates computed by the shifted MPLE approach and the SAS procedure PHREG, as
shown in Table 1, were almost identical. For example, under the shifted MPLE using the all
data approach, ,é: (0.074, 1.049, —0.764, 0.207, -0.170, 0.569)". If we used the SAS
procedure PHREG, = (0.074, —1.082, -0.785, 0.198, —0.204, 0.575)". The estimates given
by the other approaches in Table 3 were also similar to the results in Table 1, which further
empirically confirms that the Jeffreys-type prior is noninformative and does not introduce
bias if the data do not have a monotone partial likelihood issue. However, the Jeffreys-type
prior does improve the estimates if the monotone problem exists. For death due to prostate
cancer, the covariate RP (Table 1) had a huge standard error, namely, SE = 1680, and was
thus not identifiable. The problematic covariate (RP) is now identifiable, and even
significant under all the four approaches in Table 3.
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Similar to the simulation study, the estimates obtained by using Jeffreys-type priors based on
the entire data set as well as the first risk set (17— fy = 1203 for prostate cancer death and 77—
fy = 1825 for other causes death) were very similar, especially for nonproblematic
covariates. For example, the estimates for prostate cancer death under shifted the Jeffreys-
type prior and first risk set shifted Jeffreystype prior were ,é: (0.211, —-4.156, —-0.996,
-0.683, - 0.323, -0.329)" and = (0.204, -4.314, -1.016, -0.676, -0.311, -0.337)’,
respectively. For the prostate cancer data, the computation times for all the four approaches
were 93.0 minutes if we used the entire data set for the prior and 39.3 minutes if we used the
first risk set for the prior. The computation gains are more obvious for the other causes death
data (830.0 minutes using entire dataset and 242.1 minutes using the first risk set), which
have more events than the prostate cancer death data. Thus, the first risk set approach was
more computationally efficient. SE for covariates with rare events (RP and Black) under
shifted approaches are different from SE under the corresponding nonshifted approaches,
while SE for other covariates are quite similar among all approaches, which is consistent
with the simulation results. For death due to the prostate cancer data, the coefficient of RP,
which is originally not identifiable, is now significant based on the 95% CI/HPD for HR
under all the four approaches. None of the other coefficients are significant within this group
of data. For death due to other causes, surgical treatment (RP), radiation only treatment
(RT), and age (Age) are all significant effects under the four approaches.

8. Discussion

In this article, we have thoroughly investigated the conditions of the monotone partial
likelihood and developed equivalent sufficient and necessary conditions based on the first
risk set. Under mild conditions, we have shown that the Jeffreys-type prior is proper and has
finite modes. Moreover, it has lighter tails than a multivariate ¢distribution and heavier tails
than a multivariate normal distribution. We have proposed two variations of the Jeffreys-type
prior, namely, the Jeffreys-type prior based on the first risk set and the shifted Jeffreys-type
prior. We emphasize that C1” in (4.6) is an easy-to-check condition and plays a key role in
the solution of the monotone likelihood problem. Future work includes a theoretical
investigation of the unimodality of the Jeffreys-type prior and more proprieties of the prior
based on the first risk set—for example, in the presence of time dependent covariates
(Heinze and Dunkler 2008). We also need to further investigate additional properties of the
two variations of Jeffreys-type prior. These two priors would lead to similar posterior
estimates if lim) g1 ool (B)I/|Ajg| = ¢, Where cis a constant. We also envision extending the
Jeffreys-type prior to other models for competing risks data (for recent contributions and a
literature overview, see Ge and Chen 2012; Beyersmann and Scheike 2013; Chen et al. 2013;
Fine and Lindqvist 2014).
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Proofs

Proof of Theorem 3.2.1—It is easy to prove that C1” implies C1, since the column rank
of a matrix is always greater than or equal to the column rank of any of its submatrices. Let

X* be a K x psubmatrix of X* and let x;“ be a row vector of X7, /=1, ..., K5 According to
l

C2’, there exists a positive vector v such that 2 x*v. = 0. Since the row vectors in X* are

—lst

*/ *

linear combinations of those in X , according to condition C1, X™'v" can be expressed as
K
N _ K
Yilx S l+21_K +121_1k1x v Letv =v, —2 ~ K, +1klv fori=1, ..., K, where
0 <vj < min; (oK) vi/zszqH i | for j= K9 1, ..., K. Thus, we have X*'v* =0

and v” is a positive vector. Therefore, C2” implies C2. In order to prove Theorem 4.1.1, we
need to establish the following two propositions.

Proposition A.1

Proof

For Aj given inEq. (9) and

B=BpH= D w, I wy(x; —x)(x; —x,), (14)
. l . l l 1 1 l
J;€ER0G) ey

we have that A =B meaning that B;— A;is a nonnegative definite matrix, /=1, ..., n.
For all a € R” we can write

a/Al.a =a’

2 ,
2wt Xowy Gy =X =) Y wy e (6 = xp)
PR VA i Ji Lo <m,

. l
l

i l>m

(x X, ) + Z WlW (x —xl)(x -x )’

ZWU

ZWIZa(x - (x —x)a+ Z Wy Wi

l<m

{fa'(x. —x;)x. —x;)a+a'(x. -x_)x.—-x_)a}
i TET T L B

= sz‘ji ;

Zwil a’(xj —-x )(xj X )a
7 - i i i i
i

= a’Bl.a.
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Therefore, a’(A;— B))a< 0, concluding the proof.

Proposition A.2

For j;and I; € R.(y)), we have wyiwy < wi
‘1 1

N L
ijily where Wy o, Is given by

exp {(x, —x;)'6)

*

wii = / . (15)
P 4 exp {(x, —x;) BT
4 4
Proof
From the expression after Eq. (8),
exp (x; ') exp (x; ') exp ((x; —x;)'f}
WiiWi, = —— —— < =W 1,8
i Z exp (x, 'f) Z exp (xmi A [+ exp (G =x; BN it
l

m; € %(yi) t m; € %(yl.) i

claimed in the proposition. We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1—Let X,;and w,denote, respectively, the kf x p matrix with row

X

i~ x,l-’ and the kl.2 x 1 vector with element w;;w;;, for j;and /;€ ®()}). The matrix in Eq.

(14) can be written as B;= X;7D(w )X, where D(:) denotes a diagonal matrix.

The number of failures is denoted by 7. Without loss of generality, we assume &;=1 for /=
1, ..., m < n,so that I(§) = 2?1:1

K x 1 vector given by X = [Xy, ..., Xp, 1" and o= (wyw; jiand € R(y), =1, ...,

A,. Let X and wbe, respectively, the K, x pmatrix and the

m)’, where K, = 271: (k2. We define B'= X'D(w) X, noting that B = 271: \B,. Since B, /=
1, ..., m, are symmetric nonnegative definite matrices, then from Proposition A.1, we have
that 1(p) < 271= \B; = B and according to Zhang (1999, Theorem 6.8), |1 (8)| < |B]. Let w" be

the Ky x 1 vector with elements w;"j ;. In Eq. (15). Using a determinant expansion (see, e.g.,
et

Ibrahim and Laud 1991) and Proposition A.2, we obtain

s 2 ~ S 27 ~
P < Y IX 0] # < X, " [T#;, s

hex k=1 hex k=1

where & = {(#, ..., [p): 1< h << jp< Ko} and X isap x p matrix with columns Ry «ees
X,-p. Hence,
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~ )4
qpo 11017 < Y AR @' an
k=1

he X

and if [X;) = 0 for all HE€ H, then () does not exist

Under C1 in Eq. (4), there is an # € Hsuch that ¢, = )Z/,/ﬁ is a one-to-one transformation
with Jacobian 1/|X 4. Taking into account Eq. (15), we get

12 R p Pyl -
/RP [IP) 7 dB < X c ot | X 1> O/Rka: 11+Tp(¢hk)d¢h. Since

o/o exp (@, /2)/ {1 + exp (¢, ))doy; = 2°f°1/(1 + uz)du =gz, for k=1, ..., p, we conclude that
— o0 0
the prior distribution for gis proper, thatis, [ =(f)dp < o.
RP

Proof of Theorem 4.2.1—Let ¢,{f| 5y, Zo) denote the density function of a p-dimensional
multivariate ¢distribution with location vector S, scale matrix Zy, and v degrees of
freedom, which is given by

v+ p
vy E)=M{l+1(ﬂ—ﬂ)’2_l(ﬂ—ﬂ)
VRSO ry /2 v TS0 0

}—(V+p)/2.

The tail condition in the proposition is represented by limy g —coll (BI*2/ (850, Zo) = O, for
all v>0. Itis equivalent to im ,, | 1(§) |”2{1 +(B- By To (B~ ﬂo)/v} =0, forall v>

0. Recall from Eq. (16) that | I(B) | < Zhen! ih |2H,f: lva:.“k, and from Eq. (15),

~

w;.“k < exp (= X,,'p), where Kpk is the kth row of X5, Therefore,

i 172, , 1 o1
0= pfim o HPO T+ 0 =P’ Zg B = Fp)

172

Y2 .
< dim 1%, 17 T exp (%P (14265 6= 1 =o.
1Bl — o |, &y )= Y

and consequently we have limygj—co | (B)2/t.(BBo, Zo) = 0.

Let o(f 50, Zo) be the probability density function of the p-dimensional normal distribution,
where X is a p x p positive definite matrix, which is given by

9B| By Zo) = @0 PR exp = (8- By Ty (B - /2. The tail condition in the
proposition is represented by lim)g,—co / (B)M21 p( By, Tp) =00. It is equivalent to
limy g o B | exp {(B= B 5 B~ Fp) = .

J Stat Theory Pract. Author manuscript; available in PMC 2018 May 23.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wu et al.

Page 18

Without loss of generality, we assume there are no ties for each component of x;;, where ;€
R(). Since [I(B)| = |Ajl, with Ajy as in Eg. (13), we need to prove only for Aj,. We further
take /o = 1 for simplicity. For p=1, A1 = Zjiemyn) WiplZneryr) Wan (X = Xll)}2 and
0= (73. Recall that wa j; = exp(x; B)/Z e ryy) €Xp(xpy B)- Note that

. 1, iijl = max {x]l:l1 € Ry},
lim w,. =

1j .
P+ 10 otherwise.

Let /o be such that g4, = min{wy;: 4 € R01)} and /" be such that Xj=max{x;: 1 €
R(4)}. Thus, we have

. 2,2
ﬂ_}H_r{l_ 0 A] exp {(ﬂ_ﬂo) /50}

> lim Wy

2,2 .
Y 40 exp{(/;’—/}o) /60}/;’ lim

J, — + o

2
wy, (x. —x;)
111 7 l1 ’

116@@1) IIEQ(Y])
) exp ((f ~ P log) s 2

= m X. —X = o0 .

f— + © le e ‘%(yl) exp {(xll —on)ﬁ}jl c ‘%(yl) ) j*

Similarly, we can prove that lim, _, _ A, exp {(5— py)*log) = oo using — Band - xj; to
replace Sand xj, in A

For p>1, let = rdy, where r€ R and dis the Ath unit vector in the canonical basis of R”.
It suffices to show that for any d, lim, | | A, | exp {(rd) — ﬁo)’zal(rdk - By} = oo. Let
j,’j be such that x _ = max {le «'J1 € ROy} - Similar to the case when p= 1,

Tk

lim, o 1A | exp ((rd,~ o) T (rd, — B} = Tim,_ | w, o (rdy ~ B X (rd.

J

- ﬁo)}

Zj e a0~ sz)(le N
Therefore, limy o0 A1l*2/p(BBo, To) = .

Proof of Theorem 4.3.1—The matrix X™ is given by

% * o\, , ® s _ .
X [0, -0, (X(io)) 2t 8y = )Xy = X — 1)),0} , Where X(io) is the (n— fp) % psubmatrix

generated by the first risk set with rows 0", (X(jy+1) = X(i)) "+ - (X(n) = X(i5))"- Notice that all

the rows above XZ‘ yare 0" since &4 =0,7=1, ..., p — 1. The remaining row vectors are
0
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simply linear combinations of the row vectors in Xz“i ) Thus, the matrix X™ is of full column
0

rank pif and only if XZ ) is of full column rank. This also implies that n= iy + p.
0

Proof of Proposition 4.3.1—Using only the risk set R())), the proof follows steps
similar to those found in the proof of Theorem 4.1.1 after replacing I(8) by Aj, given in Eqg.
(13).
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O x2)y = (1,1)

$(1) = (0
{
.CC(l) = (0,0)
(@p=2 (b)p=3
Figure 1.

Ilustration of C1 and C2 when there are exactly two events.
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(AR
Y
A

Figure 2.
Example 2: (a) partial likelihood function for (B, B)”; (b) contour plots of the prior (gray)

and posterior (blue) distributions for (81, ).
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