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ABSTRACT The growing number of consumer-grade network-enabled Distributed Energy
Resources (DER) installations introduces new attack vectors that could impact grid operations through
coordinated attacks. This work presents a cyber-physical model and risk assessment methodology for
analyzing the emerging nexus between Internet of Things-based energy devices and the bulk transmission
grid. The cyber model replicates the device-level interconnectivity and software components interaction
found within these architectures to understand the feasibly of coordinated attacks, while the physical
model is used to assess the attack’s impacts on the grid. The manuscript questions the validity of previous
papers’ claims regarding IoT-based grid attacks by addressing key limitations in both the power grid and
cyberinfrastructure models of those works. The resulting methodology is then evaluated using the Western
Electricity Coordinating Council (WECC) electrical model coupled with DER’s operational statistics from
California. The results suggest that current DER penetration rates are not yet significant enough to present
serious risk, but continued DER growth may be problematic. Furthermore, the work identifies policies that
mitigate these risks through increased device diversity and cybersecurity requirements.

INDEX TERMS Cybersecurity, distributed energy resources, Internet of Things.

I. INTRODUCTION
The overall penetration level of Distributed Energy
Resources (DERs) is growing significantly due to ongoing
cost decreases and greater public interest towards renewable
energy. However, this requires the introduction of new plan-
ning, management, reliability, and cybersecurity strategies to
address upcoming challenges. Among the pending issues is
analyzing the risks of large-scale DER deployments when
these become part of large scale networks, like the Internet of
Things (IoT).

Emerging standards depend on the smart grid and
communication-enabled DER units to maintain adequate grid
parameters of individual units based on the system status.
The functional operation and security requirements of such
systems are being addressed by multiple bodies including
UL, SunSpec, and the IEEE, along with government-backed
policies (e.g. California Rule 21 and Hawaii’s Distributed
Generation Interconnection Plan (DGIP) [1]).

The associate editor coordinating the review of this manuscript and

approving it for publication was Bin Zhou .

Grid operators’ primary job is maintaining a continuous
system operation subject to physical constraints. Depending
on the DER penetration level system operators implement
mitigation plans that account for variations in power due to
the intermittent nature of renewables. However, there is a lack
of procedures for determining and sizing reserves to handle
artificial disruptions. This is particularly true for markets
where renewables have high penetration rates (instantaneous
or installed capacity values) [2], [3].

As identified by other authors, as DER becomes more
prevalent, new risk factors will emerge as the devices
are increasingly interconnected with networked consumer
devices, vendors, aggregators, utilities and other smart grid
technologies. This paradigm is a substantial shift from the tra-
ditional Supervisory Control and Data Acquisition (SCADA)
security approach, in which security depends heavily on the
isolation of critical networks.

The distributed nature of DER presents challenges as
devices are increasingly owned and controlled by outsiders,
while utilities have insufficient oversight to mandate strong
security levels for these devices. An array of new technical
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FIGURE 1. A depiction of network dependencies between the grid, vendors, third parties and underlying software.

challenges must be addressed by the utility to manage this
emerging risk, specifically the development of new method-
ologies to identify, measure and mitigate threats to grid oper-
ations on DER-targeted attacks.

Addressing this challenge requires that utilities implement
novel approaches to identify the impact of attacks on inde-
pendently owned DER. While attacks to individual devices
are insignificant to grid operations, as an aggregated body
they introduce significant risks. However, utilities in the near
future are not expected to have a complete risk profile asso-
ciated with each device. Therefore, probabilistic methods of
risk assessment will need to be developed.

The contributions of this work are 1) Proposal of new
cyber-physical models for DER devices based on their
unique properties 2) Evaluation of the proposed models using
real-world data and 3) Real-world effects simulations. The
reported results expand or refute some of the published work
(see section II). Additionally, it is expected that some of the
proposed models (such as the network delay-model) can be
applicable to other cyber-physical domains. The contribu-
tions of this work start in section III, where security risks are
identified based on characteristics of DER deployments and
underlying infrastructure. In section IV and V, a methodology
for analyzing these risks is proposed, both in the cyber and
physical domain. Finally, in section VI the proposed mod-
els are applied to a real-world system and the results are
discussed. Lastly, recommendations to limit the effects of a
cyber-attack are provided.

II. RELATED WORK
Traditionally power systems are studied and evaluated under
the assumption of naturally occurring events. In some cases,
the studies are broadened to address future expansions or
to consider rare large-scale events. For example, in [4]
the benefits and drawbacks of high-penetration levels of
Photo-Voltaic (PV) systems are analyzed. It analyses the
stability of the grid under a variety of fault conditions, includ-
ing sudden PV loss. Although the authors find limited grid
impacts, the events are assumed to be non-malicious. In [5]

the authors emphasize that hidden risks due to malicious
large-scale attacks in DER deployments are present, yet their
effects and causes remain largely unexplored.

The concept of hidden risks can be observed in Fig. 1a,
where DER devices are interconnected beyond the boundary
of a typical utility’s cybersecurity management, leaving them
more exposed to attacks. An example of such exploitation
can be found in [6], where a dynamic attack on demand-side
load is used to exceed the power system limits. Similarly,
in [7] the authors expand on the concept to assert that
a physical-interface can be used to launch cyber-physical
attacks.

Two papers that explored these threats are available at [8]
and [9]. In [8], the authors propose a scenario where
IoT-based load controllers can be used to cause abnormal grid
conditions. The authors present a series of attack scenarios
that are evaluated under a variety of grid studies. Although
the attacks are realistic, some flaws regarding their evaluation
methods were identified by [10]. In [9], the authors propose
to use Internet-enabled devices to create load ‘‘shocks’’ that
can adversely impact the grid. In their proposal, demand
variations are triggered by malicious code that alters the
computational demands of PCs and peripherals. The authors
propose a series of mechanisms that can be used to gain
location and timing awareness to maximize impact. In [11],
the authors determined the feasibility of attacks against the
market by disrupting the Demand Response (DR) signals (i.e.
offering artificially low prices during high demand periods),
such attacks could exceed the system capabilities and cause
localized blackouts. Furthermore, these IoT-derived vulner-
abilities have been identified as a significant growing risk
by the quadrennial Department of Energy (DOE) security
report [12].

In [13] the authors identify key issues with DER
deployments and provide a series of product improvements
that must be integrated into new systems in order to pre-
vent cyber-attacks. In [14] a Cybersecurity Framework (CSF)
compatible with the National Institute of Standards and Tech-
nology (NIST) guidelines is presented, the guide has been
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integrated into a web tool to be used by federal, private
and utility scale organizations. The tool guides organizations
through the process of satisfying key regulatory domains,
with security assessment (e.g. managing risk, threats, and
vulnerabilities) being one of the pillars.

Excluding the aforementioned works, most other articles
do not model the cyber-factors that determine a system’s vul-
nerability level, either by assuming that a system of devices
has been already compromised or that such compromise
is trivial to achieve. This contrasts with the more rigorous
research techniques applied to traditional control networks,
such as SCADA and associated communications infrastruc-
ture. For example, in [15] a graph-based model to assess the
security risk of individual devices is introduced, where the
operator is responsible for “assigning vulnerability weights to
each entry point”. In [16] a game-theoretic approach is used
to model a per device risk. It uses a set of operator-assigned
weights used by the game-theory model. Both proposed mod-
els ([15], [16]) are bias-prone due to their operator-assigned
weight components. In [17] a power-based metric is used to
assign the weights but the model has a ‘‘bulk-power system’’
applicability.

In summary, DER and IoT-based distributed attacks have
focused on determining the effects without analyzing the
underlying causes (see Table 1). Fortunately, it seems that
some techniques developed for bulk-power system infras-
tructure can be adapted to this new field. Such adoption,
however, is not direct due to their underlying connectivity dif-
ferences (closed, regulated networks vs open, unregulated).
To assess these risks, this paper presents a novel approach
where the cumulative risk for a wide variety of attack sce-
narios is determined by calculating the maximum amount of
devices which can be controlled by a single entity, this is
expressed as the attacker’s controllable power EACpwr . This
number is computed by using a graph-basedmodel to recreate
the mutual dependencies (in the cyber-domain) of a given
device and determining the largest cluster size. For simplicity,
these individually assessed clusters are combined under the

TABLE 1. An overview of previous work contributions and identified
weaknesses.

assumption that all attack-vectors have the same probability
of occurrence.

III. DER CYBERSECURITY RISKS
Asmentioned earlier, DER systems are highly interconnected
network structures that link devices, applications, and ser-
vices across multiple domains. A depiction of such depen-
dencies is shown in Fig. 2, where not only individual devices
can be mapped to administrative agents (i.e. third-party or
vendors) but also to the under-laying hardware and software
components. Such diagram reveals the means in which vul-
nerabilities can affect devices acrossmultiple domains. In this
section an in-depth review of the DER grid capabilities, com-
munication and hardware/software risks will be discussed.

FIGURE 2. Cross PPA/Vendor dependencies.

A. DER’S GRID CAPABILITIES
On-field DER units exhibit a variant degree of func-
tions and management capabilities. Due to the inclusion of
smart inverter grid support functions administrative agents
(i.e. utilities) can exert granular control over individual
devices, by imposing dynamic rules that are dependent on
the actual grid state. Some key functions include volt/var con-
trol, reactive power control and power curtailment. Although
these functions are intended to increase grid manageability,
function abuse could lead to events that are both complex to
identify and mitigate.

B. DER COMMUNICATION RISKS
Network-enabledDER controllers have rapidly gained accep-
tance since their introduction in 2009 [18]. However, such
networking capabilities also increase their attack surface.
For example, LAN-WAN (Local Area Network - Wide Area
Networks) isolation can be broken by deficient firewall rules
or vulnerable equipment [7], [19]. Furthermore, certain tech-
nologies (such as Bluetooth) have limited security mecha-
nisms that can be exploited if the attacker is within close
proximity. Such attacks can be particularly damaging if multi-
ple devices are within the medium’s receive/transmit distance
limit (e.g. solar farms, community installations). In addi-
tion, certain designs, such as centralized cloud management
solutions can become highly desirable entry vectors (i.e. for
pushing a compromised SW update), particularly when those
interfaces are hard-coded or weakly enforced ([20], [21]).
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In the next paragraphs, a brief discussion on DER-related
infrastructure vulnerabilities will be presented.
Access mechanism risk factors

• Communication security: The security mechanisms
used to protect the connection will directly determine
whether an attacker could compromise these resources
[22], [23]. Since most DER operational markets, do not
mandate security mechanisms the existing security can
only be expected to match those typically found in IoT
devices, which are not perfect [24].

• Aggregator’s communications: Field devices com-
municate with aggregator’s portals to constantly
monitor and schedule day-to-day operations [25].
Although multi-level access mechanisms are usually
in place, administrative-level permissions could be
abused by unauthorized parties. Additionally, weak
aggregator-vendor interfaces can introduce security vul-
nerabilities.

• Vendor’s cloud-based communications: Similar to
aggregators, vendors provide users with tools to
remotely manage their assets, these tools also provide
configuration and firmware updates. However, these
tools can also be used for malicious purposes if their
security mechanisms are compromised.

Deployment characteristics risk factors

• Inter-Device proximity: Physical proximity may play
an important role in future worm/virus spreading charac-
teristics. Although most viruses rely on the host CPU to
operate, recent articles suggest that malware can utilize
and peripherals such as network controllers (i.e. Wi-FI)
to launch attacks [26].

• Smart Inverter penetration levels: Inverters have a
varying degree of ‘smartness’ as many legacy inverters
have no communication interfaces, while newer ones
provide both wired and wireless connections. There-
fore, the degree to which inverters within a region
are ‘communication-enabled’ will directly influence the
risk.

• Aggregator/Vendor market cap: Targeted attacks can
compromise all devices that share a common design flaw
(e.g. a vulnerability). Such vulnerability can be present
in the device’s firmware or at the vendor’s cloud-level.
Therefore, a vendor with a large market cap implies
that a larger set of devices can be exploited by a single
vulnerability.

• Software aging component: The typical IoT device is
expected to receive software updates for a period of three
years, while the service life of a DER device is likely
to exceed ten years [27]. This situation could lead to
the eventual proliferation of insecure devices as attacks
increase/improve while the device ages.

• Shared software components: The number of shared
software components (and thus lack of software diver-
sity) can increase the risk level of succumbing against
a single zero-day attack for a large set of devices.

FIGURE 3. Mean cluster size (Vendor
⋃

3rdP) vs P, with a 90% confidence
range (in red).

Examples of these shared components can be observed
in Fig. 1 where multiple:

Operating Systems: {OS A, OS B, . . . },
Control Applications: {Ctrl A,. . . , PVCtrl A, . . . }
Configuration tools: {ConfI A, ConfI B, . . . }
Network stacks: {Drivers, Protocol handlers}

coexist across multiple devices.

IV. RISK MODELING OF END-USER DER DEVICES
Most product development cycles follow incremental
improvement rounds, which are broken when sudden tech-
nological breakthroughs occur. This foments stable markets
(participant-wise) that evolve slowly, unless a new, innovative
participant disrupts a market, or financial factors affect par-
ticipants. Furthermore, studies have shown that people tend to
buy products based on company history, personal recommen-
dations, or well-played advertisement campaigns [28]. These
factors, lead to markets that behave like oligopolies, where
a limited set of vendors and products dominate a market for
extended periods of time.

These market tendencies have also been observed
inside Power Purchase Agreements (PPA)-based deploy-
ments (see figure 2) and other IoT-based load-controlling
devices [10]. Such market distributions inherently fos-
ter a lack of diversity that may impact its cyber-security
properties [29].

A. MODELING VENDOR AND THIRD PARTY PROVIDERS
INTERACTION
As outlined by section III-B DER systems can have multiple
participants within a service area: {utilities, consumers,
vendors, third parties, and PPA operators} ∈ Service_area.
Utilities can interact with all members, but they can be con-
sidered as a secure entity due to strict regulatory require-
ments. In contrast, customers are not required to comply with
any requirement, creating security risks (to be explored on
section V.1), however individual, targeted attacks are unlikely
to cause major issues. On the other hand, vendors and other
third parties (including PPA operators) are unregulated, but
can have an influence over a large set of devices (later analysis
shows that the largest clusters represent the highest risk).
To account for these characteristics, a power-law model [30]
for analysing these vendor-third party interaction is proposed.
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FIGURE 4. Sample Vendor/Third-party cluster, n = 51, 23 PPAs,
28 Vendors, P = 1.54.

Based on the observed DER deployment characteristics,
a weighted Barabasi-Albert preferential attachment (PA)
algorithm was selected to recreate the power-law character-
istics of the market. The Barabasi-Albert preferential attach-
ment algorithm is a random network generator which seeks to
model scale-free networks. It is based on the premise that cer-
tain nodes (i.e. hubs) become popular and thus new, emerging
nodes will likely get attached to them. Once the algorithm is
completed it generates a degree distribution (over the nodes)
that follows a power-law distribution. The Barabasi-Albert
model employs two steps to replicate its scale-free properties.
The algorithm starts with a base network topology (a graphG,
G = (V,E) to which the new nodes (Vnew) and edges
(Enew = [Vnew,Vi ∈ G]) will be iteratively added. The
new link (or links) added in each step will link Vnew to an
existing Vi ∈ G, the target node (Vi) will be picked by a
using a weightedmodel, the classic model for picking a node i
(probability (5)) is given by:

5(Vi) =
deg(Vi)

sumx=ntotalx=1 deg(Vx)P
(1)

Based on Eq. 1, the nodes with the highest5 value are the
most-likely to be selected and the process is repeated. The
algorithm has two parameters: (P), the attachment probabil-
ity; and l(x), the links distribution (number of links added at
each step),. Based on this, the P factor was randomly set in
the range of 0.8 - 2.0 (to replicate market data), with up to
one link added at each step. The (1) link per step was used
to simulate that vendors and third parties have only one link
between them. Notice that this limit does not imply that each
node will have only one link, it rather implies that two nodes
can have at most 1 link between them.

Since not all utilities have detailed market information
(as compared with [1]) a probabilistic-model; is proposed,
this probabilistic model generates random connectivity
graphs in which properties can be compared to real-world
conditions. Such parameters can be tuned to better rep-
resent actual market properties. In the proposed example
(see Fig. 4), the random model generator simulates that
1000 nodes are added to the market during each run, each
run is executed with a random P value. In this simulation,
each node represents a participant, therefore a graph col-
oring algorithm with a two color threshold is proposed to

classify between vendors and third parties. All nodes with
degree = 0 are dropped and the generated clusters are saved.
The properties of these clusters are compared with actual
market conditions (i.e. to pick the best P value, a plot of
cluster size vs P is given in 3). The link distribution is also
tuned to recreate the market characteristics. The parameters
that can be evaluated to set the tuning parameters are:
• Number of participants: vendors and third-parties
(3rdP).

• Distribution/Average number of vendors participating
with a third party.

• Distribution/Average number of third parties participat-
ing with vendors.

Figure 4 shows one of the largest randomly generated clusters
(p = 1.54), this will be our starting model for evaluating
large scale clustering vulnerabilities between interconnected
entities in the next section.

B. MODELING PRODUCT\VENDOR\THIRD-PARTY
CONNECTIVITY
Figure 4 represents the communications backbone between
vendors and third-party operators, however other smaller
clusters are present in our simulatedmodel that must be evalu-
ated. To achieve this operation a second round of preferential
attachment is proposed. This second round creates a new node
(representing a product) and attaches it to 1 vendor and up to
1 third party operator (linkage probability over a tuple l =
vendor = 1,third party <1). To accomplish this task, first a
random vendor is picked using the preferential attachment
model (with P = Pv, where Pv is the vendor attachment
factor), then a third party operator is randomly picked (also
using preferential attachment) from the set of third parties that
are connected to the vendor (with P = Pt , where Pt is the
third-party attachment factor).

The factors Pv and Pt allow the model to replicate the
observed market conditions. For example, Table 2 shows the
market distribution for DER devices installed in California,
USA [31]. Such vendor distribution can be replicated in the
proposed model by using a custom factor of Pv (See Fig. 5).
Similarly real-world data can be used to recreate the third

TABLE 2. Device characteristics, per vendor.
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party attachment properties (e.g. by using data available
in [31] to produce records alike Table 3). Again, such third
party market distributions can be simulated by setting Pt
(See Fig. 6) and setting the linkage probability l = {1,TPC},
where TPC denotes the probability of an end-device being
connected to a third party (third party connectivity ratio).

TABLE 3. California’s PPA operators (third parties) market share [32].

As it can be observed from figures 5 and 6 the market
distributions generated by the preferential attachment model
are comparable to those observed by real market data (in
red). Notice that for simplicity, the models are developed in
terms of the % market share which is computed according
to installed capacity. Advanced models can also be created
by determining market share based on the number of field
devices and then appending the capacity of each device into
the model. Also note that, due to the model’s random nature,
it does not follow a precise exponential distribution for simu-
lations that include a small number of nodes. This effect can
clearly be observed in Fig 8 and Fig. 7 where some market
share values (represented by points) significantly deviate
from the expected value (represented by lines).

FIGURE 5. A comparison between real-world vendor market shares (red)
vs those generated with PV = 1.63, product nodes= 3000.

FIGURE 6. A comparison between real-world third party market
shares (red) vs those generated with PT = 1.63, product nodes= 3000.

An interesting note to this model, is that similar product
nodes can be aggregated together to represent a device model,

FIGURE 7. Percentage of models attached to the largest (5) third-party
clusters.

FIGURE 8. Percentage of models attached to the largest (5) vendor
clusters.

or a device class, a device class is a common set of devices
that share the same common vendor, third party linkages,
and have a determined number of members (product-nodes).
This second round of preferential attachment model tends
to prefer those participants that are already members of a
{vendor}-{third party cluster}, reinforcing the concept that a
small number of highly interconnected systems tend to appear
in DER environments, a concept which will be explored in the
next section.

V. RISK ASSESSMENT METHODOLOGY
In this section, a methodology (Fig. 9) for determining the
expected amount of DER that can be controlled by a coor-
dinated attack based on a variety of cyber-physical system
factors is presented.

FIGURE 9. Overview of the proposed methodology.

Since future DER units are expected to have an active
role in power delivery by using grid support functions more
detailed models will be needed. As a first step, reactive power
from DER units is represented as a negative complex power
load (−S). This technique is an extension of the approaches
published in [4] and [33] which demonstrate methods for
evaluating DER risks in power systems by representing them
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Algorithm 1 Feeder NEM Dissaggregation
Result: Compute feeder load and masked generation
Given: penetration rate (Pr = Rated PV/Rated Load) for
service Area_i
For Each: feeder ∈ Areai

X = NEMfeeder/(1− Pr )
Loadfeeder = X
DERfeeder = Pr ∗ X

as negative active-power loads and aggregating them to the
nearest generation bus.

A. PHYSICAL MODEL REQUIREMENTS
A steady-state model can be used to model and asses the
effects of small scale or slowly evolving cyber-originated dis-
turbances. However, sudden large-scale cyber-attacks could
lead to significant sudden power imbalances, whose effects
could be equivalent to large generation or load tripping
events. Therefore it would be ideal to represent the system
under a time-variant model that accurately models the system
response. Such a model should include the physical and
cyber characteristics of DER generation, as well as the grid
dynamics. These factors will be discussed in the next sections.

B. PHYSICAL MODEL
Energy consumption is often reported asNet Metered Energy,
or (NEM), a quantity which aggregates the actual amount of
total load and the energy being produced behind-the-meter.
Hence, NEM can be modeled as NEM = ConsumedLoad −
Dist. Generation. Based on this equation, DER supply can
be modeled as a negative complex power (−SDER) load
which value will depend on the primary energy source (i.e.
solar intensity) and configured parameters. On a larger scale,
a feeder NEM can be modeled as:

NEMfeeder = Loadfeeder − DERfeeder (2)

In [4] the authors proposed aggregating DER units accord-
ing to their installation ZIP code and then aggregating each
zip code’s output power into the nearest medium voltage bus.
Although this approach can be precise, it requires advanced
tracking mechanisms that record both the electrical and
cyber characteristics. To simplify this requirement an equally-
distributed, per-region (e.g. a service area) DER penetration
ratio is proposed. This ratio can be derived from utilities or
state-level penetration levels (i.e [34]). The designed algo-
rithm works as follows:

Additionally, the negative load can be located at the middle
or end of the feeder by inserting a stray impedance between
the interconnection bus and the new generator. The stray
impedance value must be representative of typical feeders in
the area, this model has been described in detail by [35].

During an attack simulation, a certain EACpwr of Dis-
tributed Generation (DG) value is taken offline across the
entire system and the electrical system response is assessed.

Additional scenarios can be studied by including their respec-
tive actions and models. Other interest scenarios could
include evaluating the operation of protective equipment such
as Under-frequency Load Shedding (UFLS) and distance
relays.

1) SYNCHRONOUS VS ASYNCHRONOUS ATTACK
MODELING
The previously described load model assumes that attackers
can simultaneously attack all of the compromised devices.
However, in real-world conditions, the attacker’s attack
sequence is subject to a combination of communication
delays and variable response times across multiple devices.
To account for this asynchronous behavior a 1P/1t model
over a Truncated Gaussian Distribution (TGD) is proposed.
The TGD must satisfy two parameters: 1) the truncated area
under the curve must be equal to the amount of power being
compromised (1P), and 2) its truncated width represents the
time-period over which the devices are attacked (1t). Under
this approach, the random variable is bounded within the
[−3.3σ + 3.3σ ] range, a range that encompasses 99.9% of
the probabilistic space.

2) DISCRETE LOAD COMPOSITIONS
The TGD-based method can be used to model realistic
timing behaviors on a per-feeder level. However, maintain-
ing and simulating multiple, concurrent TGD curves could
be computationally-prohibitive. Therefore, as an alternative,
an area-dependent, discrete DERfeeder value is proposed,
the discrete value that can be controlled (on/off) at time
top. Where, top is computed according to its order in a bin
packaging algorithm running on top of the TGD-method.
Under this formulation, the bin packaging problem tries to
allocate discrete bins (representing individual DERfeeder val-
ues) into multiple fixed-size containers that represent the area
under the TGD curve. Although optimal solutions to this
algorithm are considered NP-complete, non-optimal solu-
tions based on first-fit algorithms provide sufficiently valid
results (see Fig. 17). Furthermore, by using this approach
randomness in both time and location domains is achieved.

C. CYBER DOMAIN TO PHYSICAL THREAT COMPUTATION
FOR DER DEVICES
According to Fig. 1 each field device can be mapped to
individual transmission regions, third parties, as well as indi-
vidual vendor’s hubs. But they can also bemapped to software
and location-defined hubs, each of these hubs will have an
associated set of risk factors that will influence their impact
in this section a breakdown of this factors will be introduced
with the aim of translating this risks into numerical grid
threats.

1) COMPUTATION OF SERVICE PROVIDER THREATS
Section IV introduced a preferential attachment model that
can be used to recreate the dependency links between
end-user devices and service providers (vendor and third
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FIGURE 10. Traditional load model vs proposed system.

parties). By analyzing figures 7 and 8 it can be deduced
that the largest service providers have the largest number of
attached devices and therefore are the largest risk factors. The
number of members in a hub will be denoted by HubV for
vendors, and HubT for third parties.
Notice that other risk-limiting factors must be considered

before a formal model is proposed, for example, not all
products have the same average output power (see Table 2),
which can have a correlation with installation types (and
management practices). Furthermore, not all products are
cloud-connected or actively connected to the Internet. Such
complexities must be taken into account before the potential
hub impact can be determined. To assist with this task two
simplified models that can be used to compute the amount of
risk, in terms of EACpwr are proposed.

a: VENDOR HUBS
Vendor hubs are not necessarily internet-enabled, with a sam-
ple taken from [31] indicating that only 35-40% of devices
are internet-enabled, furthermore due to firewalls this value
can be lowered. To address this issue, the value can be set
based on network reachability tests. Notice that the proposed
model (eq. 3) assumes that the PA model was constructed
usingmarket share in terms of installed capacity and therefore
all nodes (which represent products) are assumed to have the
same capacity.

EACpwrV = #DER ∗Max(HubV ) ∗ Intr ∗ SAPO[W ] (3)

where:
#DER = Number of Installed DER units
Max(HubV ) = Largest vendor hub, obtained from preferen-
tial attachment model [%]
Intr = Percent of network-reachable devices [0-1]
SAPO = System-wide Average Power Output (i.e. ≈
2500 W) [W]

In some cases, where the utility only records the
system-wide installed capacity (instead of detailed records),
the #DER, SAPO terms can be substituted by:

SIC = #DER ∗ SAPO [W ] (4)

SPL = SIC/System Demand(rated) [%] (5)

where:
SIC = System-wide Installed Capacity [W]
SPL = System-wide penetration level [W]

b: THIRD PARTY HUBS
Most third parties services depend on internet connectivity
to function correctly, furthermore it is likely that firewalls

FIGURE 11. Typical software components found in smart inverters,
showing a sample set of vulnerabilities.

are configured to accept connections from these third parties.
Such assumptions simplify the EACpwrT model to:

EACpwrT = #DER ∗Max(HubT ) ∗ TPC ∗ SAPO [W ]

(6)

where:
#DER = Number of Installed DER units
Max(HubT ) = Largest third party hub, obtained from prefer-
ential attachment model [%]
TPC = Third party connectivity ratio [0-1]
SAPO = System-wide Average Power Output (i.e. ≈
1800 W) [W]

Although theMax(v) andMax(Hubt ) in equations 3 and 6
assume a single a single hub is evaluated, the under laying
graph construction allows tomodel severalwhat if cases, such
as:

• What if, the top 3 vendors are compromised:
Max(3v) = Max(HubV ) ∪ 2nd Max(Hub(V )) ∪
3rd Max(Hub(V ))

• What if, the top vendor and the top third party are
compromised:
Max(v+ t) = Max(HubV )+Max(Hubt )

• What if, the a vendori is compromised thru a
third partyj:
Max(v&t) = Max(HubVi ) ∪Max(HubTj )

2) COMPUTATION OF SOFTWARE-BASED THREATS
As shown in Fig. 1, each device can contain multiple soft-
ware (SW) components that are fused together during product
development. This creates a direct analogy with IoT environ-
ments, where an IoT system is usually composed of multiple
software packages (i.e. a software stack) running on top of an
IoT-based operative system. A graphical overview of the core
software components in a DER device is shown in Fig. 11.
This figure shows the four basic software components: a) The
OS, which provides the basic foundation for bridging the
hardware and software layers, including low-level network

61168 VOLUME 8, 2020



D. J. Sebastian Cardenas et al.: Assessing Cyber-Physical Risks of IoT-Based Energy Devices in Grid Operations

TABLE 4. (i) Largest DER vendor-hub risk. (ii) Largest DER software-hub risk. (iii) Largest DER 3rd party-hub risk.

communications. b) a configuration interface (ConfI) which
handles the device settings, c) a controller interface (CtrlI)
which handles the smart inverter functions, and d) a PV
controller (PVCtrl) that governs the low-level inverter logic.

Although software components developed in-house might
introduce zero-day vulnerabilities, this risk is increased when
the industry relies on public software libraries that are shared
and can thus create large pools of vulnerable devices. Possibly
leading to large-scale cyber-attacks (e.g. the Mirai bot-
net [24]). To illustrate this issue, Fig. 11 was constructed by
randomly creating devices (represented by square boxes) that
employ 1 or more of the basic SW components (represented
by connected edges). Then by randomly classifying some
edges as vulnerable edges (in red) we obtain a graph that mod-
els the shared-software risk. This image shows how multiple
vulnerabilities can affect a single device, for example, certain
devices can have 1-or more vulnerabilities that are applicable
to it (devices with no vulnerabilities have been omitted).
The ability to exploit and mounting an attack will depend
on 1) the number of devices sharing the same component
(represented by the hub size), 2) the version and configuration
requirements required to exploit them, and 3) the ability of
remotely exploiting it. This third line of defense will usually
be dependent on the reachability of the component, with the
OS and remote listeners being more accessible than internal
software components.

Many researchers have unsuccessfully tried to predict the
outcome of a zero-day event, however infection rates, mech-
anisms, and effects can vary widely. Therefore, in this work,
we have considered unpractical to model the software rela-
tionships. Nevertheless, an upper-bounded hub size can be
estimated by identifying the most common software compo-
nent and assuming a vulnerability will be exploitable (e.g.
a zero-day vulnerability).

EACpwrS = #DER ∗Max(HubS ) ∗ SAPO [W ] (7)

where:
Max(HubS ) = Most common software component*Most
common version

VI. CASE STUDY
For the first part of this section, the current risk level for the
state of California was analyzed. In this specific example,
the 2019 California average demand value in conjunction
with the latest penetration records available at [31] were

used as the base scenarios. Starting from those records,
and the data shown in Tables 2 and 3 the risk levels were
computed by assuming various network-reachability levels
(using Eqs. 3- 7). The results presented in tables 4(i)-(iii)
indicate that the overall risk is low but could increase as the
penetration levels or connectivity levels increase.

For the second part of this work, the WECC system was
selected. It covers the US southwest which has the highest
solar potential [36]. With California alone, exhibiting the
largest penetration levels in the continental US [37]. The
results of this work are based on the 2012 high-load summer
scenario which had an estimated peak load of 66,939 MW
in the California region (vs the 71,329 MW actually mea-
sured during that summer [34]). As required by NERC the
base-model can withstand typical (n − 1) failure scenarios
and therefore can tolerate the effects of everyday contin-
gencies, such as a 3-phase fault inside a critical substation
(see Fig. 12).

FIGURE 12. Effects of a 3ph fault inside a critical substation bus
[24147 — Sylmar] at t = 0, t = .058 and t = .150 seconds.

The operating scenario was simulated in PSLF R©. The
solution parameters where set as follows: {Unsteady steady
rate=.0001, step width= 1/4 cycle, tolerance= .0005, Max-
imum solution iterations = 200}. For this work, an unstable
condition is said to occur when the simulator fails to converge
during a transient study and no further processing can be
performed.

Another example of a critical component is the Grand
Coulee Power plant, with a capacity of 6465 MW [38].

For this work, four scenarios are assumed. The first two
cases consider that a cyber attack towards DER infrastructure
occurs. While a third case assumes a DER attack coincides
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TABLE 5. (i) 35% renewables, attack targets largest vendor and largest third party. (ii) 45% renewables, attack targets largest vendor and 2-largest third
parties. (iii) 45% renewables, attack targets largest vendor and largest third party.

TABLE 6. Scenario parameters for Loss of distributed PV.

with a malfunction in a protective device. While the final
scenario considers the asynchronous time characteristics of
real-world attacks.

All of the scenarios assume future DER penetration levels
of either 35% or 45%. These scenarios are in accordance
with California’s 50% target set by 2030 (with an interim
30% renewable energy goal set for 2020 [39]). Both Sce-
narios assume that 70% of this renewable generation will
come from network-enabled, DER-based generation. The
exact factors (percentages) considered for each attack are
summarized in Tables 5(i)-(iii). Notice that internet reach-
ability for vendor-based attacks is set much lower than the
reachability levels of third-party services. This is to account
for the economic-driven factors of constant monitoring by
third parties

In all scenarios, the Total Expected Attacker Controllable
Power (EACPwr), is assumed to be attainable by clustering
the largest vendor and largest (or largest) third party hubs.
These penetration percentages are based on expected future
values ((from Tables 2, 3). The first three scenarios assume
that 1) %EACPwr is controllable by the attacker, 2) attacked
devices are located inside the California market, specifically
within the Investor Owned Utilities, 3) simultaneous DER
disconnection event occurs during the peak of DER genera-
tion output (a time synchronous-event is assumed). The cases
are as follows:

A. COORDINATED DISCONNECTION OF PV (20%)
In the first scenario, 6,127 MW of power are lost instan-
taneously (14%). However, the effects are transitory, with
minor voltage drops (see Fig. 13), the system can return to
a stable operating point. Table 6 summarizes the percentage

FIGURE 13. Initial Vdrop at t = 0 a) during a 14%EACPwr trip (6,127MW)
and b) during a 24% EACPwr trip in California [10,744MW].

of buses that have severely violated the operating conditions
(both in frequency and voltage terms), for this case only 3.3%
of the nodes experienced low voltages for approximately
3 cycles.

B. COORDINATED DISCONNECTION OF PV (35%)
The second scenario causes a DER trip event that accounts
for 10,722 MW (operating with a .85 leading power fac-
tor). If this amount of power is suddenly lost (equivalent to
6.1% of the available generation in the WECC), it causes
an immediate voltage issue on the grid (see Fig 13). Even if
these voltages are apparently less severe than those produced
during a typical fault (see Fig.12) it triggers a set of events that
ultimately led to an unstable system condition. Fig 14 shows
the voltages and frequency swings occurring during the event.

Table 6 shows that a large percentage of the nodes exhibit
abnormal frequencies that ultimately cause the system to
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FIGURE 14. a) System Voltage at t = 6.25s after the trip event in
California, b) System frequency at t = 9.5s after the attack event
(scenario 2).

FIGURE 15. Island formation during the 1996 WECC Blackout.

break into several islands. This further causes several buses
to become disconnected creating a cascading failure event.

The final observed frequencies for this event are shown
in Fig. 14. As it can be observed the island formation resem-
bles those of the 1996 blackout (Fig. 15).

C. CONCURRENT GRID EVENTS
The previous scenarios require a relatively high penetration
ratio to cause a significant disturbance. However, these cases
were evaluated under normal grid conditions which ignore
the security requirements of a typical ‘‘n − 1’’ contingency
evaluation. To address this issue, an scenario where three
relay units have misoperated either as a result of a naturally
occurring event or due to a cyber attack is assumed.

In the proposed scenario, the protection characteristics of
the relays (which protect 3 lines, two originating at the same
substation) are assumed to operate correctly under normal
conditions, yet trip instantaneously when a power oscillation
is incorrectly identified in zone 3. This was achieved by:
1) modifying the Z3 reach characteristics, 2) disabling the
oscillation detection mechanism. Although the assumptions
were done using modified settings (i.e. due to a cyber-attack),
such events occur manymore times than desired by the power
industry [40], [41].

This attack lowers the system-wide penetration require-
ments to 23% (reusing the same EACPwr ′s factors). Under

FIGURE 16. a) Voltage profile at t = 6.50s after DG is tripped. b)
Frequency profiles at t = 14.318s after the event.

FIGURE 17. a)Ideal vs discrete PDF values attained b) Attained CDF for
scenario 4.

this scenario (%EACPwr = 16%) the expected amount of
lost DG is 7,000 MW (See Table 6). The result of these coor-
dinated attacks results in an unstable operating condition. The
final system frequencies can be observed in Fig. 16b. While
the effects of a voltage swing can be observed in Fig. 16a.

D. EFFECTS OF A NON-COINCIDENT ATTACK
Under this scenario %EACPwr is assumed to be 15%
( 6.8GW), It considers a time and location TGD-modeled
attack over a period of 10s in the state of California. The
computed TGD was calculated with a σ = 3.3s and an
effective time range of [−5, +5] s. The resulting curves
(density and cumulative functions) are shown in 17. The
outcome of this non-coincident attack also results in grid
separation and an eventual lack of convergence. This result
has been attributed to badly tuned electrical models (i.e. the
PSLF model).

From Fig. 16 it can be observed that low voltages could
cause legacy devices (non-ride thru enabled) to disconnect,
leading to more cascading events. This effect can also be
used to lower the amount of power that the attacker controls,
e.g. by controlling 5,000 MW and indirectly causing an addi-
tional 2,000 MW to trip due to low-voltage disconnections.
In Fig. 18 a time series representation of the tripped lines is
shown, the coordinated attack caused 45 lines to trip.

VII. DISCUSSION AND PROPOSED MITIGATIONS
This paper evaluates the risk and impacts of attacks to
IoT-based DER devices, utilizing real-world information
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FIGURE 18. Timeline of trip events.

regarding the diversity of DER deployments and its under-
laying grid (the WECC model). The results of the paper
specifically contradict previous works, demonstrating that
attacks targeting any single-entry vector, such as hijacking all
devices within one central entity (e.g. PPA, vendor) or com-
promising Internet connectivity will have minimal impact
to grid operations based on the current penetration rates.
Specifically, the work questions the severity of the results
obtained by [8] and [9].Workswhich explored generic attacks
to IoT-based devices rather than DER devices, their results
strongly suggested that IoT-based attacks could have signif-
icant implications to the grid. However, both works failed to
incorporate realistic methods/models that accounted for the
attacks’ propagation methods.

Furthermore, the presented results likely over-emphasize
the risk, since the employed model lacks some of the
grid security mechanisms, such as Remedial Action
Schemes (RAS) and ignores corrective operator-based
responses. Nevertheless, substantial increases in DER pen-
etration will likely increase these risks. Other factors that
might increase the risk are concurrent events such as badly
tuned controls, misconfigured equipment, or by pushing
incorrect settings to DER devices (via IEEE 2030.5). How-
ever, such attacks are deemed opportunistic, since they
require the presence of an external agent.

Based on these studies, the authors suggest that the pro-
posed risks will grow and require additional countermeasures
to ensure adequate protection against such threats. Utili-
ties need to model, evaluate and address the new emerging
risks from external infrastructure, including IoT-controllable
loads, DER and transactive energy mechanisms. Since util-
ities have little control over the external infrastructure poli-
cies must be designed to reduce the size of vulnerable
clusters. This can be accomplished by developing policies
that 1) increase market diversity, 2) limit the number of
devices controlled by a single entity, 3) establish risk assess-
ments procedures, 4) establish contingency and mitigation
procedures, 5) advocate for an increase in security mandates
of DER infrastructure and, 6) create monitoring and response
programs that mitigate risks.

In this context, the Department of Homeland Security has
published a set of strategic guidelines for addressing cyberse-
curity of IoT infrastructure [42]. Short term solutions include
developing risk analysis based on worst-case scenarios as

well as their mitigation strategies, the inclusion of manda-
tory software maintenance programs into existing warranty
mandates, use of hardware-enforced fail-back mechanisms as
well as promoting interest towards the security of distribution
side components.

VIII. CONCLUSION
The work presented an overview of the IoT-based risks cur-
rently present in DER devices. These risks were incorporated
into a risk assessing methodology that uses a probabilistic
approach to compute the amount of an attacker’s controllable
power. The attacker’s controllable power is then fed into
a power system model to assess the physical grid impacts.
The risks and proposed methodology were applied to two
hypothetical scenarios where the 2020 and 2030 Califor-
nia’s renewable energy targets are assumed to be fulfilled.
Based on the results of these scenarios it is imperative to
state that large distribution-side componentsmust be included
during power-grid security assessments. They should be ide-
ally included as part of the technical risk evaluation process
imposed by regulating bodies. Our current work assumes that
a synchronized timing source is available to the attacker,
and that devices can instantaneously react, further work must
be developed to account for time deviations in time-driven
attacks. The presented cases show that in the future, the grid
may be vulnerable to large scale DER attacks, even if they
are connected at the distribution levels. Finally, guidelines for
reducing risks and mitigating IoT-based risks are identified.
These guidelines are based on industry trends andwill be gen-
erally applicable to a wide range of energy delivery systems.
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