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Introduction

Electronic Health Records (EHR) are databases that store routinely-collected 

anonymised individual patient data. �ese databases were set up to aid patient care and 

monitor clinical services. �eir use for research is a secondary development, which has 

allowed researchers to conduct large-scale medical studies and perform retrospective 
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longitudinal analyses with large sample sizes. �e use of EHR for research is becoming 

increasingly common over time.

Clinical Practice Research Datalink

Where do the data come from?

EHRs are designed to improve efficiency in practices, such as to manage appointments 

and provide patient services, such as ordering repeat prescriptions. Under the GP Sys-

tems of Choice (GPSoC) framework [1], primary care practices use an EHR software 

system that best suits their data management needs. �e Clinical Practice Research 

Datalink (CPRD) [2] collects patient records from contributing GP practices in the UK 

using the Vision and, more recently, EMIS software systems.

Anonymised data are extracted by the CPRD through regular downloads, a process 

that does not require active intervention by the practices. Over 600 UK practices con-

tribute to CPRD. �e data encompass 42 million patient lives from over the last 30 years. 

A full description of CPRD can be found on the CPRD website [3].

CPRD structure

�e CPRD database is formed of 10 main datasets, as described in the CPRD Data 

Specification [4]. Patient records are coded using medical codes, which are the numeric 

equivalent of Read codes available in patient records from the GP system [5, 6]. Other 

coding systems, such as the International Classification of Diseases-10 (ICD-10) codes 

to identify diseases and malignancies, are available in linked EHRs only [7].

One of the 10 datasets, called the Test dataset, holds records of tests and examina-

tions performed in primary care, including laboratory tests. CPRD refers to each type 

of each test as an entity, assigning each a unique number, the entity code. For example, 

haemoglobin and platelet count tested as part of a Full Blood Count (FBC) blood test are 

assigned a unique entity code of 173 and 189, respectively. �e entity code is generated 

by the EHR system but is not visible to practice staff—it is used internally by the CPRD 

to provide a convenient way to file data that preserves (to some extent) the original data 

structure in practice. In the Test dataset, individual items in a patient’s record are coded 

using both medical codes and entity codes.

�e list of data items in the Test dataset include the pseudo-anonymised patient iden-

tification number, the medical and entity code corresponding to the test or examination 

performed, the date it was performed, and the test results.

Full blood count

A FBC is a blood test commonly ordered in both primary and secondary care in the 

UK. A single FBC test includes up to 20 individual parameters [8], although additional 

parameters may sometimes be measured. A patient’s blood sample, labelled using their 

name and NHS number, is delivered to a haematology laboratory and run through a 

processing machine, referred to as an analyser. Analysers have been used for many dec-

ades to derive FBC values and not all parameters were historically always derived. In the 

last decade or so, analysers derive the values for all 20 FBC parameters. Nine param-

eters are measured directly from the blood sample: red blood cell count, white blood 

cell count, haemoglobin, platelet count, basophil count, eosinophil count, lymphocyte 
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count, monocyte count, and neutrophil count. �e remaining 11 are parameters that 

describe the nine measured parameters, derived using mathematical formulae pro-

grammed into the analyser: mean platelet volume, haematocrit (or packed cell volume), 

mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemo-

globin concentration, red blood cell distribution width, basophil percentage, eosinophil 

percentage, lymphocyte percentage, monocyte percentage, and neutrophil percentage. 

Units of measurement used in practice have changed over time. An FBC report includes 

the resulting blood levels, units of measurement, and assigned medical codes for each 

FBC parameter.

�e FBC report, labelled with the patient’s name and NHS number, is electronically 

returned to the practice, where it is electronically assigned to the patient’s electronic 

record, a process that is largely automated. It is then examined and filed by a clinician 

who will decide on necessary actions. �is report contributes to the CPRD database at 

its next download, with each parameter assigned a medical code from the laboratory and 

entity code from the EHR system.

Data quality check aims

Laboratory data, including the FBC, from EHR databases are commonly used in research 

studies [9–14]. Although data cleaning is a common form of data preparation before 

analysis in practice, data quality assessments and validation are often not performed. 

A systematic review identified many barriers to perfoming quality checks, including 

large amounts of unstructured data, challenges with patient identification and match-

ing, problems with data extraction, and unfamiliarity with data quality assessment [15]. 

However, data quality checks are a crucial step to assess representativeness of clinical 

practices and ensure reliability of the results of any analyses. In one systematic review, 

all individual studies agreed that data accuracy and data completeness were key factors 

to consider when designing EHR studies [16]. A second review highlighted a need for a 

generalised approach to assess EHR data quality [17].

�e aim of this study was to report a methodological approach to assess the quality 

of laboratory data from CPRD, demonstrated with application to the FBC. Our recent 

systematic review has identified many studies that use FBC data (n = 512), with 4% of 

53 eligible studies using FBC data performing data validation before analysis [18–21]. 

As laboratory data are frequently used across medical research, we provide recommen-

dations and guidance for researchers who wish to access and analyse EHR data in the 

future, and make available our statistical coding used to perform the data validation of 

CPRD, which other researchers can make use of.

Methods

CPRD data was accessed for a study period of 1st January 2000 to 28th April 2015 (data 

cut date) and approved by the CPRD Independent Scientific Advisory Committee, which 

covers ethical approval (14_195RMn2A2R). Patients aged at least 40 years at study entry 

with at least one FBC blood test in the Test dataset were included in the analysis because 

FBCs are more commonly performed in this age group.

A flow chart of our approach to assess the quality of the laboratory test data in CPRD 

is provided in Fig. 1.
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FBC‑related codes

�e Test dataset was actively searched to identify FBC-related medical codes and 

entity codes. �e derived code list was compared to independent lists from relevant 

published studies and clinical code repositories [22–24] to validate the list.

Medical and entity code comparison

�e medical and entity code assigned to each parameter was compared by checking 

the types of medical codes assigned to each FBC-related entity code and vice-versa. 

Parameters were considered to be consistently coded if the medical and entity code 

corresponded to the same FBC parameter, and mismatched if otherwise.

Six FBC parameters do not have their own entity code (mean platelet volume, baso-

phil proportion, eosinophil proportion, lymphocyte proportion, monocyte propor-

tion, and neutrophil proportion), as indicated in the CPRD entity code dictionary. 

�erefore, we stratified mismatches into 3 strata:

1. Where one code suggested a particular FBC parameter but the other suggested a dif-

ferent FBC parameter, with existing medical or entity codes for both parameters that 

could have been assigned.

2. Where the medical code suggested one of the six FBC parameters without an exist-

ing entity code. �ey were considered inconsistent because they were assigned an 

entity code for a different FBC parameter by the EHR.

3. Where one code suggested a particular FBC parameter but the other suggested the 

record was not FBC-related.

Availablility of mismatched parameters

In mismatched pairs, the parameter suggested by either code was checked to see if it 

was already available for that FBC test (an FBC can include 20 individual parameters). 

For example, if one code suggested haemoglobin and the other suggested neutrophil 

count, it was checked whether haemoglobin and neutrophil count were already avail-

able in the same FBC. �e three strata were analysed separately.

Rectify mismatches

�e blood values and corresponding units of mismatched pairs were used to clas-

sify each as one of the two parameters suggested by either code, depending on which 

they best reflected. Consideration was given to possible plausibility of values for each 

Step 2:
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Explore 

mismatches

Step 4:

Rec�fy 

mismatches

Step 6:

Derive 

missing data

Step 7:
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data
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Fig. 1 Flow chart of the methodological approach to assess the quality of laboratory test data in CPRD
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suggested blood parameter that could be used to differentiate between the two sug-

gested parameters. Parameters that could not be rectified were removed.

Standardising FBC units

In the resulting dataset of consistently coded or rectified parameters, standardisation of 

the blood values to a single, conventional unit of measurement was planned. Parameters 

with unreliable units, such as those partially entered or where the value and unit did not 

appear to match, were deleted.

To identify the extent of any extreme or implausible blood values, each parameter 

was converted into quantiles and the mean, median, and range for each calculated. All 

parameters were divided into 10 quantiles (or deciles), except basophils, eosinophils, 

lymphocytes, monocytes, and neutrophils, which were divided into four quantiles (or 

quartiles) because the range of possible values is very small such that deciles could not 

be derived.

Derive missing FBC values

Some FBC parameters are mathematically related so missing FBC values can be derived 

using known values. �e blood test date, which was the only available indicator to sepa-

rate each FBC if a patient had multiple, was initially examined to ensure we derived val-

ues in a single FBC test using other values within that same FBC.

Subsequently, 25 known mathematical equations were applied to derive missing val-

ues, where possible (see Additional file 1: 1). Equations for haematocrit, red blood cell 

distribution width, and mean platelet volume exist, but rely on information not available 

in the CPRD dataset and could not be used. Deriving a parameter’s value meant that it 

was available for use in an equation for another parameter, so we recursively applied the 

25 equations until no further values could be derived.

Describe FBC data

�e final dataset was summarised after all amendments, including the number of param-

eters and FBCs available, extreme or implausible blood values, and missing data.

Statistical analysis

A descriptive analysis was performed, with continuous variables described using mean 

with Standard Deviation (SD) or median with range and categorical variables described 

using counts and proportions. We used Stata 15.1 for all analyses.

Results

�e CPRD Test dataset contained 695,139,617 test or examination records from 658 pri-

mary care practices.

FBC‑related codes

In total, there were 325 different entity codes and 10,963 different medical codes used in 

the Test dataset. Table 1 shows a list of medical and entity codes related to the FBC we 

identified from the Test dataset. �ese codes were consistent with existing lists [22–24]. 

Codes in our list resulted in 228,707,454 FBC parameters among 2,914,589 patients.
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Table 1 Entity and medical codes in CPRD corresponding to the FBC

FBC parameter Entity code Entity term Medical code Medical term

Red blood cell count 194 Red blood cell count 17 Red blood cell (RBC) count

13,788 Nucleated red blood cell 
count

26,931 RBC count NOS

26,932 RBC count normal

26,933 RBC count low

44,213 RBC count abnormal

50,182 Red cell mass

57,136 RBC count raised

58,853 RBC count borderline low

70,079 RBC count borderline 
raised

White blood cell count 207 Total White Blood cell 
count

15 Total white cell count

1955 Leucopenia

3372 Leucopenia

4760 Leucocytosis

4996 White cell count abnormal

13,817 White blood count

13,818 White cell count

18,516 Leucocytosis

22,293 Leucocytosis -high white 
count

26,325 Leucopenia—low white 
count

26,946 Total white cell count NOS

26,947 Total white blood count

26,948 White cell count normal

38,198 Leucocyte count

45,115 Diff. white cell count 
normal

48,015 Total WBC (IMM)

48,341 Polymorphonuclear leuko-
cyte count

53,865 Leucocytosis

92,372 Leukocytosis
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Table 1 (continued)

FBC parameter Entity code Entity term Medical code Medical term

Haemoglobin 173 Haemoglobin 4 Haemoglobin estimation

739 Anaemia unspecified

795 Iron deficiency anaemias

3942 Haemoglobin low

10,404 Hb estimation

13,755 Haemoglobin—sample 
sent

26,272 Haemoglobin borderline 
high

26,908 Haemoglobin abnormal

26,909 Haemoglobin normal

26,910 Haemoglobin borderline 
low

26,912 Haemoglobin estimation 
NOS

26,913 Haemoglobin high

33,284 Haemoglobin requested

35,749 Haemoglobin very low

39,601 Haemoglobin not esti-
mated

41,531 Haemoglobin very high

Haematocrit/packed cell 
volume

312 Packed cell volume 40 Haematocrit

99 Haematocrit—PCV

14,240 Packed cell volume

19,836 Packed cell volume—PCV

23,476 Haematocrit—PCV—high

27,143 Haematocrit—PCV—NOS

27,144 Haematocrit—PCV—nor-
mal

27,145 Haematocrit—PCV—low

41,478 Haematocrit—PCV—
abnormal

55,365 Haematocrit—borderline 
low

62,347 Haematocrit—borderline 
high

Mean corpuscular 
volume

182 Mean corpuscular 
volume

10 Mean corpuscular volume 
(MCV)

2480 MCV—raised

13,774 Mean cell volume

26,920 MCV—NOS

26,921 MCV—normal

26,922 MCV—low

41,160 MCV—borderline raised

52,874 MCV—borderline low
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Table 1 (continued)

FBC parameter Entity code Entity term Medical code Medical term

Mean corpuscular hae-
moglobin

180 Mean corpuscular hae-
moglobin

20 Mean corpusc. 
haemoglobin(MCH)

23,214 Mean cell haemoglobin

26,917 MCH—normal

26,918 MCH—low

40,170 MCH—NOS

47,174 MCH—borderline raised

49,225 MCH—abnormal

51,616 MCH—borderline low

61,951 MCH—raised

Mean corpuscular hae-
moglobin concentra-
tion

181 MCH Hb Concentration 30 Mean corpusc. Hb. conc. 
(MCHC)

26,919 MCHC—raised

39,202 MCHC—NOS

47,345 MCHC—normal

55,183 MCHC—low

64,474 MCHC—borderline low

72,488 MCHC—borderline raised

Red blood cell distribu-
tion width

361 RBC red blood cell size 64 Red blood cell distribution 
width

1191 RBC’s—anisocytosis

1962 RBC’s—macrocytic

9933 RBC’s—microcytic

19,837 RBC—red blood cell size

51,484 Red blood cell size normal

52,050 Red blood cell size NOS

Platelets 189 Platelets 7 Platelet count

3320 Thrombocythaemia

4006 Thrombocytopenia

4415 Platelet count abnormal

26,926 Platelet count NOS

26,927 Platelet count normal

37,666 Platelet aggregation test

Mean platelet volume – – 14,166 Mean platelet volume

Basophil count 313 Basophil count 25 Basophil count

27,146 Basophil count NOS

27,147 Basophil count normal

27,148 Basophil count abnormal

53,404 Basophilia

Basophil proportion – – 14,096 Percentage basophils

Eosinophil count 168 Eosinophil count 22 Eosinophil count

13,742 Eosinopenia

18,531 Eosinophil count raised

26,905 Eosinophil count NOS

26,906 Eosinophil count normal

Eosinophil proportion – – 19,760 Percentage eosinophils
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Medical and entity code comparison

All 228,707,454 FBC parameters had a medical and entity code assigned. Coding was 

consistent for 95.2% (n = 217,752,448) and mismatches occurred in 4.8% (n = 10,955,006) 

(see Table 2). Mean age at study entry was 42.3 years and 42.8 years for patients with 

consistently coded parameters and mismatched pairs and 44.6% and 43.3% were male, 

respectively. Mismatched pairs were among 94.1% (n = 619) of the 658 practices. �ere 

were 37.9% (n = 4,156,438) from FBCs performed within five years of the data cut (2010 

to 2015) and the majority of tests with mismatches were performed between 2005 and 

2010 (42.0%, n = 4,595,900).

Table 1 (continued)

FBC parameter Entity code Entity term Medical code Medical term

Lymphocyte count 208 Lymphocyte count 19 Lymphocyte count

3189 Lymphocytosis

11,240 Lymphopenia

23,120 Lymphocyte count normal

23,121 Lymphocytosis—absolute

26,949 Lymphocyte count NOS

26,950 Lymphocyte count 
abnormal

32,932 Reactive lymphocyte 
count

34,551 Total lymphocyte count 
(IMM)

37,677 Lymphocytosis—relative

42,346 Abnormal lymphocytes

74,019 Lymphocyte function test

Lymphocyte proportion – – 17,621 Percentage lymphocytes

Monocyte count 183 Monocyte count 21 Monocyte count

9248 Monocytosis

13,776 Monocyte count NOS

26,923 Abnormal monocytes

26,924 Monocyte count normal

26,925 Monocyte count raised

44,189 Monocyte count abnormal

72,849 Monocytopenia

Monocyte proportion – – 13,775 Percentage monocytes

Neutrophil count 184 Neutrophil count 18 Neutrophil count

4463 Neutropenia

13,777 Neutrophil count NOS

15,725 Neutrophilia

23,112 Neutrophil count normal

23,113 Neutrophil function test

31,382 Neutrophil count abnor-
mal

105,211 Band neutrophil count

Neutrophil proportion – – 17,622 Percentage neutrophils

FBC full blood count
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Of the mismatched pairs, 44,349 had medical and entity codes correspond to differ-

ent FBC parameters, where both suggested parameters had existing medical or entity 

codes that could have been assigned (strata 1). See Table 3 for further details. �e most 

common mismatch was entity 208 (lymphocyte count) and medical code 38,189 (white 

blood cell count), with 43,869 occurrences.

�ere were 10,272,007 mismatched pairs because six do not have an existing entity 

code and an alternative assigned (strata 2). See Table  3 for further details. �e most 

common mismatch was entity 189 (platelets) and medical code 14,166 (mean platelet 

volume), with 2,267,404 occurrences.

�e remaining 638,650 mismatched pairs had one code suggest a FBC parameter 

but the other suggested the test was not from a FBC blood test (strata 3). �ere were 

12 FBC entity codes where the corresponding medical code was not a FBC parameter, 

Table 2 Number of full blood count parameters at di�erent stages of the quality check

FBC full blood count, RBC red blood cell count, WBC white blood cell count, MCV mean corpuscular volume, MCH mean 

corpuscular haemoglobin, MCHC mean corpuscular haemoglobin concentration, RDW red blood cell distribution width, 

MPV mean platelet volume

a Consistent records are those where the medical code and entity code correspond to the same parameter. Those where 

this does not apply were considered to have mismatched coding

FBC 
parameter

1. In the CPRD Test dataset 2. After 
rectifying 
mismatches

3. After 
standardisation

4. After 
deriving 
valuesConsistenta Mismatcheda

Using entity 
codes

Using 
medical 
codes

RBC 17,496,396 – 2233 17,496,431 14,483,956 14,989,332

WBC 17,510,110 4 84,959 17,510,410 16,098,918 13,391,463

Haemoglobin 18,129,224 425 3318 18,136,578 13,241,660 15,956,530

Haematocrit 16,229,494 – 90 16,229,502 3,901,766 14,929,672

MCV 16,972,637 3 62 16,972,661 16,190,073 15,508,062

MCH 15,828,539 48 2443 15,828,610 14,776,728 14,978,026

MCHC 11,600,421 – 99 11,600,434 7,872,690 14,758,965

RDW 7,187,721 – 92,334 7,187,769 319,775 312,052

Platelets 17,321,447 2,267,404 798 17,321,470 16,110,377 15,409,813

MPV – – 2,299,660 2,049,996 2,041,360 1,964,340

Basophil count 15,064,082 1,647,073 625 15,064,119 13,939,287 11,532,656

Basophil % – – 1,670,876 1,579,167 1,498,690 11,577,466

Eosinophil 
count

15,963,917 1,579,993 6578 15,963,935 14,761,804 11,609,390

Eosinophil % – – 1,601,225 1,516,946 1,505,596 11,619,039

Lymphocyte 16,164,725 1,634,084 6825 16,164,762 14,950,124 12,202,708

Lymphocyte % – – 1,616,430 1,531,345 1,508,370 12,195,026

Monocyte 
count

16,047,916 1,601,135 7117 16,047,958 14,687,897 12,068,644

Monocyte % – – 1,625,740 1,537,874 1,510,233 12,076,052

Neutrophil 
count

16,235,819 1,586,187 9391 16,235,860 15,061,611 12,306,548

Neutrophil % – – 1,609,549 1,540,087 1,521,541 12,299,431

Not FBC 638,650 314,654

Total (% of 
228,707,454)

217,752,448 
(95.2%)

10,955,006 
(4.8%)

10,955,006 
(4.8%)

227,515,914 
(99.5%)

185,982,456 
(81.3%)

241,685,233 
(105.7%)
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commonly entity 189 (platelets), with 162,335 occurrences where the medical code indi-

cated platelet distribution width (medical code 33,285), which describes the variation in 

the size of platelet cells. �ere were 83 different FBC medical codes assigned where the 

corresponding entity code was not FBC-related, commonly 64 (red blood cell distribu-

tion width), with 92,232 occurrences where the corresponding entity code was 289 (film 

report). From 14 FBC entity codes, we identified 609 parameters assigned medical code 

0, which represents missing data (see Additional file 1: 2).

Availablility of mismatched parameters

In strata 1, the 44,349 mismatched pairs belonged to 44,221 FBC tests, with most tests 

having only one mismatched pair among them (99.7%, n = 44,098). Both parameters 

suggested by the medical and entity code were already available in that FBC for 96.7% 

(n = 42,891) of mismatched pairs, one of the two suggested parameters was available for 

0.2% (n = 68), and neither were available for 3.1% (n = 1,390).

In strata 2, the 10,272,007 mismatched pairs were among 3,615,271 FBC tests. �e 

majority of tests had only one mismatched pair (56.5%, n = 2,042,743), followed by five 

parameters (34.7%, n = 1,252,826). Among the mismatched pairs, the parameter sug-

gested by the entity code was already available in that FBC test for 94.5% (n = 9,708,930) 

and neither parameter suggested by the medical and entity were available for 5.5% 

(n = 563,077). �e parameter suggested by the medical code was not already present in 

any of the 3,615,271 FBC tests.

In strata 3, the 638,650 mismatched pairs were among 357,315 FBC tests. Most of 

these tests (64.3%, n = 229,836) had only one mismatched pair among them. Among the 

mismatched pairs, the parameter suggested by the medical code was already available 

Table 3 Number of mismatched pairs per FBC parameter

a Where one code suggested a particular FBC parameter but the other suggested a di�erent FBC parameter, with existing 

medical or entity codes for both parameters that could have been assigned

b Where the medical code suggested one of the six FBC parameters without an existing entity code

c Where one code suggested a particular FBC parameter but the other suggested the record was not FBC-related

FBC parameter (medical code) FBC parameter (entity code) Number 
of mismatched 
pairs

Strata  1a:

 White blood cell count (38,198) Lymphocyte count (208) 43,869

 Neutrophil count (18) Haemoglobin (173) 425

 Mean corpuscular haemoglobin concentration (30) Mean corpuscular haemoglobin (180) 48

 Mean corpuscular volume (10) White blood cell count (207) 4

 Haemoglobin (795) Mean corpuscular volume (182) 3

Strata  2b:

 Mean platelet volume (14,166) Platelets (189) 2,267,404

 Basophil proportion (14,096) Basophil count (313) 1,647,073

 Eosinophil proportion (19,760) Eosinophil count (168) 1,579,993

 Lymphocyte proportion (17,621) Lymphocyte count (208) 1,590,215

 Monocyte proportion (13,775) Monocyte count (183) 1,601,135

 Neutrophil proportion (17,622) Neutrophil count (184) 1,586,187

Strata  3c:

 One indicates FBC but the other indicates anything other than FBC 638,650
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in the same FBC for 2.0% (n = 12,826) and the parameter suggested by the entity code 

already available for 47.2% (n = 301,292). For 50.8% (n = 324,532), neither parameter 

suggested by the medical or entity code was already available in the same FBC test.

Rectify mismatches

In strata 1, the entity code for 51 parameters and the medical code for four were cho-

sen. For 34,059, it was not clear which of the two parameters the value and units repre-

sented. �e remaining 10,235 mismatched pairs had no values entered and could not be 

assessed.

In strata 2, the entity code for 153,590 parameters and medical code for 9,471,831 were 

chosen. For 602,633 mismatched pairs, it was not clear which of the two parameters the 

value and unit represented. �e remaining 43,953 had no values entered.

In strata 3, the entity code for 24,925 parameters and medical code for 113,065 were 

chosen. For 344,438, it was not clear what the value and unit represented. �e remaining 

156,222 mismatched pairs had no values entered.

Of the 10,955,006 mismatched pairs, the most common FBC parameter rectified was 

mean platelet volume (n = 2,041,360) and 1,191,540 could not be rectified (see Addi-

tional file 1: 3 for full details). �e resulting dataset consisted of 227,515,914 consistently 

coded or rectified FBC parameters among 2,914,589 patients. Table  2 shows the total 

number of FBC parameters in the resulting dataset.

Standardising FBC units

In the resulting dataset, most units of measurement were unreliable, such as missing, 

partially entered, or clearly wrong. For example, red blood cell count values reported 

in seconds (Additional file 1: 4). Some parameters had values that seemed to be in the 

standardised unit but an alternative unit was recorded. Where there were extreme val-

ues, it was not possible to assess whether the unit was correct or if the value was asso-

ciated with an alternative unit of measurement. �e red blood cell count had the most 

variability in number of units (n = 89) and mean platelet volume had the least (n = 3) 

(Fig.  2). No apparent differences in the values and units of each FBC parameter over 

time were observed in the dataset.

Standardisation was not possible due to the high volume of inconsistent and incom-

plete units of measurement. Consequently, only parameters where the units were 

already entered as those we planned to standardise to were included in the dataset 

(Table  4 shows the final units of measure). �e resulting dataset consisted of 81.3% 

(n = 185,982,456) parameters of the original 228,707,454 among 2,870,006 patients 

(Table 2).

To identify the extent of extreme or implausible values, summary statistics for deciles 

for each parameter were calculated, except for basophils, eosinophils, lymphocytes, 

monocytes, and neutrophils, where quartiles were derived. On the lower end, there were 

171 parameters with negative values and 6,327,555 values entered as zero. On the higher 

end, for each parameter, the highest quantile showed a plausible median value and inter-

quartile range, suggesting relatively few extreme values (see Additional file 1: 5).
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Fig. 2 Number of different units entered for each full blood count parameter (n = 769 in total).RBC red 

blood cell count, WBC white blood cell count, MCV mean corpuscular volume, MCH mean corpuscular 

haemoglobin, MCHC mean corpuscular haemoglobin concentration, RDW red blood cell distribution width, 

MPV mean platelet volume

Table 4 Descriptive statistics of each FBC parameter in the �nal derived dataset

FBC full blood count, RBC red blood cell count, WBC white blood cell count; WBC white blood cell count, MCV mean 

corpuscular volume, MCH mean corpuscular haemoglobin, MCHC mean corpuscular haemoglobin concentration, RDW red 

blood cell distribution width, MPV mean platelet volume

a Percentages are calculated out of the total number of tests (n = 16,537,017)

FBC parameter No. records Mean SD Median Min Max No. (%)a missing values

RBC  (1012/L) 14,989,333 4.3 5.3 4.4 0 8,577.0 1,547,684 (9.4%)

WBC  (109/L) 13,391,464 7.6 46.6 6.9 0 123,000.0 3,145,553 (19.0%)

Haemoglobin (g/dL) 15,956,531 14.7 14.2 13.5 0 13,728.7 580,486 (3.5%)

Haematocrit (L/L) 14,929,673 30.6 49.0 38.7 0 121,881.6 1,607,344 (9.7%)

MCV (fL) 15,508,063 90.7 15.4 91.0 0 10,730.0 1,028,954 (6.2%)

MCH (fL) 14,978,027 45.4 214.4 30.3 0 33,378.5 1,558,990 (9.4%)

MCHC (g/dL) 14,758,966 318.3 973.6 33.5 0 352,127.7 1,778,051 (10.8%)

RDW (%) 312,052 14.0 1.7 13.7 0 43.8 16,224,965 (98.1%)

Platelets  (109/L) 15,409,814 266 175.0 256.0 0 319,000.0 1,127,203 (6.8%)

MPV (fL) 1,964,340 9.6 7.3 9.4 0 726.0 14,572,677 (88.1%)

Basophil count  (109/L) 11,532,657 0.1 2.4 0.1 0 6,500.0 5,004,360 (30.3%)

Basophil proportion (%) 11,577,467 0.9 1.7 0.8 0 2,694.1 4,959,550 (30.0%)

Eosinophil count  (109/L) 11,609,391 0.2 0.7 0.2 0 1,218.0 4,927,626 (29.8%)

Eosinophil proportion (%) 11,619,040 3.1 3.4 2.6 0 5,869.8 4,917,977 (29.7%)

Lymphocyte  (109/L) 12,202,709 2.1 78.8 1.9 0 275,000.0 4,334,308 (26.2%)

Lymphocyte proportion 
(%)

12,195,027 28.5 43.4 28.1 0 95,486.1 4,341,990 (26.3%)

Monocyte count  (109/L) 12,068,645 0.6 0.6 0.5 0 1,218.0 4,468,372 (27.0%)

Monocyte proportion (%) 12,076,053 7.8 5.5 7.5 0 8,590.6 4,460,964 (27.0%)

Neutrophil count  (109/L) 12,306,549 4.5 7.1 4.1 0 12,200.0 4,230,468 (25.6%)

Neutrophil proportion (%) 12,299,432 60.4 44.2 60.0 0 59,623.5 4,237,585 (25.6%)
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Derive missing FBC values

Initially, 332 parameters that had no test date were removed, as these parameters could 

not be matched to other parameters to derive missing values in the same FBC. A fur-

ther 8,091,664 parameters were removed because multiple blood tests taken on the 

same day in a single patient could not be distinguished. �e resulting dataset contained 

177,890,460 parameters from 16,589,428 FBC tests among 2,856,400 patients.

Before applying the equations in Additional file  1: 1, there were approximately 11 

parameters available on average among the 16,589,428 tests. After application, there 

were 16 parameters available on average. A parameter was considered unreliable if the 

derived value was negative and consequently considered all mathematically associated 

parameters to be unreliable, and deleted 23,541,367 parameters. At a blood test level, we 

deleted 52,411 FBC tests that had no available data for any individual parameter.

Describe FBC data

Of the original 2,914,589 patients, 2.0% (n = 58,569) of patients were excluded in total 

after all amendments. Of those excluded, the mean age at study entry was 42.2 years and 

47.2% were male. �e final dataset contained 241,685,233 parameters from 16,537,017 

FBC tests from 2,856,020 patients. Mean age at study entry was 42.3 years and 44.5% 

were male in the final dataset.

�ere were approximately 15 parameters available per FBC on average. �e FBC data-

set contained more parameters than were originally available in the CPRD Test dataset. 

Table 2 shows the total number of each parameter in the final dataset. See Additional 

file 1: 5 for the number of tests for each number of parameters available. All nine meas-

ured parameters were all available for 67.1% (n = 11,102,834) and all 11 derived param-

eters for 0.3% (n = 48,046) of FBC tests. Only 0.3% (n = 47,999) of FBC tests had all 20 

parameters available.

Summary statistics for each parameter are in Table 4. All parameters appeared to have 

extreme or implausible values, as indicated by their minimum and maximum values. 

Haemoglobin had the least amount of missing data, with 3.5% of tests having unknown 

values, and red blood cell distribution width had the most, missing for 98.1% of tests.

Discussion

Many research studies that use laboratory data from EHR datasets do not often report 

assessing the quality of the dataset analysed. We identified three studies that performed 

quality checks using FBC data in a recent review [18–21]. �is study highlights the qual-

ity of data from EHR datasets should be assessed to ensure a fundamental understand-

ing of the data and to derive a reliable dataset for analysis. �is is further emphasised 

because the use of these databases for research was not the primary reason for their 

development. With application to FBC data from the CPRD Test dataset, approximately 

5% of the data has mismatches in coding, with medical codes (translated from Read 

codes) and entity codes (from the EHR system) suggesting results from different tests or 

examinations performed in practice. �e underlying procedure of assigning entity codes 

to patient records within the EHR are unknown and the process at haematology labora-

tories and primary care practices are automated, so it is unclear why there were some 
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mismatches. No other studies that explored the consistency of the two coding systems in 

CPRD were identified. Mismatched pairs did not belong to a particular practice or group 

of practices, with approximately 97% of practices in the CPRD dataset having at least 

one FBC test with an inconsistently coded parameter. Furthermore, no major differences 

were observed over time.

Quite often, one of two FBC parameters suggested by either code was already available 

for that FBC, but this did not necessarily mean that the other parameter is the incorrect 

one, as other mismatched pairs within that same FBC might could suggest that same 

parameter. Approximately 17% of the mismatched pairs were rectified based on the FBC 

value and corresponding unit, where plausible. Furthermore, standardising the blood 

values to conventional units was not possible because many were not appropriately 

recorded in CPRD, such as partially entered or did not appear to match the value. Some 

units were clearly wrong, such as blood values measured in seconds. However, as the 

majority of parameters were recorded in standard units, the proportion of parameters 

dropped was relatively low.

It is likely that many researchers are not aware of the mathematical relationship 

between parameters, with only one study identified using such equations to derive miss-

ing data [10]. A previous study has compared different approaches for missing data 

imputation of clinical laboratory measurements, including the full blood count, but 

do not discuss these mathematical relationships between parameters [25]. Using our 

approach to resolve missing data, we derived a dataset of FBC parameters that contained 

more data than originally available in the CPRD dataset of FBCs.

All 20 parameters are automatically derived from laboratory analysers in recent years, 

although this has not always been the case. �is may explain why the original CPRD 

dataset had approximately 11 of 20 parameters available per FBC on average. Reasons 

for missing data are not recorded in CPRD, but one possible explanation is likely due 

to technology catching up to changes in practice as new parameters become available. 

After deriving missing data using known mathematical relationships between param-

eters, approximately 15 of 20 parameters were available per FBC on average but less 

than 1% of tests had all 20 parameters available. Of all 20 FBC parameters, missing data 

was most common for the red blood cell distribution width and mean platelet volume 

parameters, missing for approximately 98% and 88% of FBC tests, respectively. Histori-

cally, these parameters were derived by laboratory analysers along with the other 18 

parameters but the output suppressed before the FBC report is sent to the GP practice. 

�is was because the parameters were not considered helpful or meaningful, which was 

considered standard practice until recently. �is could explain why many FBC tests in 

CPRD have missing data for these parameters.

Approximately 59,000 patients (2%) with FBCs were removed from the original CPRD 

Test dataset through our data quality check, resulting in a relatively large dataset of FBC 

results. Age and gender were the only demographic data available and were balanced 

between those included and those excluded, suggesting no differences in key patient 

characteristics. �e final dataset is therefore considered representative of the overall 

sample.
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A systematic review identified many barriers to perfoming quality checks. �ese 

include handling large amounts of unstructured data, problems with data extraction, and 

unfamiliarity with data quality assessment [15]. A second review highlighted a need for 

a generalised approach to assess EHR data quality [17]. Our methodological approach 

could help tackle these barriers to assessing data quality from EHRs and help researchs 

improve the quality of research findings.

Recommendations

Our methodological approach was applied using a dataset of FBCs from CPRD. How-

ever, the approach can form a basis and be adapted for researchers to assess the quality 

of other tests and examinations and from other datasets. To help researchers prepare 

their EHR datasets for analysis, we provide our Stata statistical programming (Addi-

tional file 1: 6) for the FBC data quality check for other researchers to make use of.

Often, EHR staff perform the data cut from the EHR and subsequently extract the rel-

evant data items using the clinical codes used in the EHR. We recommended researchers 

extract the appropriate data items or have close involvement with EHR staff who extract 

the data to better identify the accuracy of the dataset and develop a fundamental under-

standing of the processes involved in preparing EHR datasets.

We recommend researchers use the mathematical equations to derive missing FBC 

data, thereby ensuring the relationship between parameters within a FBC holds. If sub-

sequently there is still missing data, we suggest researchers use multiple imputation to 

impute the values of eight parameters: red blood cell count, haemoglobin, platelet count, 

basophil count, eosinophil count, lymphocyte count, monocyte count, and neutrophil 

count. �is is because these parameters are measured from a blood sample and can be 

used to derive missing data for the other parameters using mathematical equations. 

Researchers should consider the need for inclusion of the red blood cell distribution 

width and mean platelet volume, for which missing data was common, because impu-

tation may not be plausible and including FBCs with these parameters will drastically 

reduce the sample size.

One reason for limited data validation among research studies is that large datasets are 

computationally intensive. We recommend researchers invest in powerful laptops that 

are efficient for data processing and either internal or external hard drives for data stor-

age. Furthermore, we recommend that researchers factor data quality checks into their 

study timelines, as the process can take many months but is crucial to ensure a reliable 

dataset for analysis.

Conclusion

Without performing data assessments, the opportunity to understand the dataset and 

assess its accuracy is often missed. We describe how there are a number of considera-

tions when preparing EHR data and advise researchers to perform data quality checks 

to understand the extent of any issues, to derive a reliable dataset for analysis. Although 

routine datasets provide a large sample size for analysis, we emphasise that the reliability 

of the data should be prioritised.
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