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Abstract

Background: Urine within the urinary tract is commonly regarded as “sterile” in cultivation terms. Here, we present
a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by
means of culture-independent high-throughput sequencing techniques.

Results: Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was
performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy
female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with
the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the
female urine samples studied were complex; considerable variation between individuals was observed and a
common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria
with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual
samples varied substantially and was in the range of 20 - 500.

Conclusions: Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which
includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology.

Background
Microbes, including bacteria, viruses and protists, reside
both on the surface and deep within numerous sites in the
human body. It is estimated that trillions of microorgan-
isms inhabit the average healthy human and that microbial
cell counts in and on the human body outnumber the
human cells by a factor of 10 [1,2]. Studies confirm that
humans live in a symbiosis with most of these microbes,
whose roles span from harmless to important to life and
health [1,3,4]. However, microorganisms can also be detri-
mental to their host and cause diseases such as digestive
disorders, obesity, skin diseases, oral disease, bacterial vagi-
nosis (BV), sexual transmitted diseases and urinary tract
infections (UTI) [2,5-9].
Urine within the urinary tract has in general been con-

sidered sterile [10,11], based upon a lack of culturable
microbial cells present in urine specimens obtained by

the clean-catch method and by catheterization [12-15].
Confirmation of a UTI relies on demonstrating signifi-
cant bacteriuria (or funguria) in a voided midstream
urine sample. Traditionally, 105 colony-forming units per
ml (CFU/ml) is the threshold for defining a positive (sig-
nificant) culture result [16,17]. Conventional culturing
techniques favor the fast growing and modest bacteria,
whereas fastidious bacteria can evade the standard cul-
ture conditions [18]. The presence of intracellular bac-
teria in uroepithelial cells [19], and even biofilm
formation in the urinary tract has been suggested [20,21].
Investigation of healthy urine specimens has demon-
strated the presence of non-culturable bacterial cells [22].
These findings stress that bacteria present in urine speci-
mens can escape detection by culture-dependent meth-
ods, and that the current view of bacterial diversity in
urine thus may be incomplete. This leaves a cryptic frac-
tion of bacteria that may be explored by other means.
Culture-independent, 16S ribosomal DNA (rDNA)

sequencing has been widely utilized in the past two dec-
ades to study bacterial diversity from various habitats
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since sequencing of PCR-amplified 16S rDNA overcomes
the limitations of culture-based bacterial detection [23].
However, often the search for microbial agents is per-
formed only after a disease state has been diagnosed.
Only a few investigations including urine from healthy
persons using 16S rDNA PCR have been reported
[12,24-26]. These studies had a variable success rate in
actually obtaining sequences, resulting in a limited over-
view of the healthy urine bacterial flora. However, two
recent 16S rDNA studies by Nelson et al. (2010) and
Dong et al. (2011) [27,28] have shown that the male
urine contains multiple bacterial genera.
Advances in sequencing technology, such as massively

parallel pyrosequencing as developed by 454 Life
Sciences [29], allow for extensive characterization of
microbial populations in a high throughput and cost
effective manner [30,31]. Amplicons of partial 16S rRNA
genes are sequenced on microscopic beads placed sepa-
rately in picoliter-sized wells, bypassing previously
needed cloning and cultivation procedures. Such sequen-
cing has revealed an unexpectedly high diversity within
various human-associated microbial communities, e.g.
oral-, vaginal-, intestinal- and male first catch urine
microbiota [4,28,32,33], but female urine microbial diver-
sity has so far not been studied using high throughput
sequencing (HTS) methods.
Here, we have investigated the bacterial diversity in

urine microbiota from healthy females by means of 16S
rDNA amplicon 454 pyrosequencing. This study demon-
strates the use of this methodology for investigating bac-
terial sequence diversity in female urine samples. Our
results indicate a diverse spectrum of bacterial profiles
associated with healthy, culture negative female urine and
provide a resource for further studies in the field of mole-
cular diagnostics of urine specimens.

Methods
Urine sampling
Urine was collected by the clean catch method in which
healthy adult female volunteers (n = 8), collected mid-
stream urine into a sterile container. Specimens were
initially kept at 4°C, and within an hour transported to
the laboratory for DNA isolation. All specimens were cul-
ture negative, as tested by the Urological Clinic at the
University Hospital HF Aker-Oslo. Samples were taken
with informed consent and the study was approved by
the Regional Committee for Medical Research Ethics
East-Norway (REK Øst Prosjekt 110-08141c 1.2008.367).

DNA isolation
30 ml urine volume was pelleted by centrifugation at
14000 RCF for 10 min at 4°C. 25 ml of the supernatant
was decanted and the pellet was resuspended in the
remaining volume. 5 ml of the sample was again pelleted

by centrifugation for 10 min at 16000 × g (4°C). The pel-
let and some supernatant (up to 100 μl) were processed
further. DNA was isolated from the urine pellets with
DNeasy Blood & Tissue kit (QIAGEN, Germany), follow-
ing the tissue spin-column protocol with minor modifica-
tions. Briefly, cell lysis was initiated by adding 100 μl
POWERlyse lysis buffer (NorDiag ASA, Oslo, Norway)
followed by incubation at 80°C for 10 min. Finally, 200 μl
of Qiagen buffer AL was added. Samples were mixed by
pulse-vortexing for 15 sec. From this point onward, puri-
fication was carried out as per manufacturer’s instruc-
tions. Finally, the DNA was eluted in 100 μl of AE buffer
from the kit. The DNA concentrations in the samples
were measured by using the Quant-iT PicoGreen dsDNA
assay kit (Molecular Probes, Invitrogen USA) and ranged
from 0.33 ng/μl to 1.59 ng/μl.

16S rDNA PCR
DNA (10 μl of 1:9 dilution) was amplified by PCR using
the broad range 16S rDNA primers described in Table 1.
The composite primers each comprised a 17-20 bases
target specific region at their 3’ end and a 19 bases region
of the Primer A (forward primer) or the Primer B
(reverse primer) sequences needed for GS FLX amplicon
sequencing (454 Life Sciences, USA) at their 5’end. PCR
reactions were performed using 25 μl (final volume) mix-
tures containing 1× GeneAmp PCR Gold Buffer Applied
Biosystems, 3.5 mM MgCl2, 0.2 mM GeneAmp dNTP,
10 pmol of each primer and 0.025 U/μl AmpliTaq Gold
DNA Polymerase, LD (Applied Biosystems, USA). The
amplification protocol for the V1V2 amplicon primers
was: 95°C for 10 min, followed by 35 cycles of 95°C for
30 s, 50°C for 30 s and 72°C for 25 s, and a final elonga-
tion step at 72°C for 7 min. The protocol for the V6
amplicon primers was: 95°C for 10 min, followed by 35
cycles of 95°C for 30 s, 50°C for 25 s and 72°C for 25 s,
and a final elongation step at 72°C for 7 min. Replicate
PCRs were performed for each sample. A positive control
(with previously amplified bacterial DNA) as template
was run for every PCR.
PCR amplicons were detected and confirmed for DNA

from all eight subjects by agarose gel electrophoresis
prior to pyrosequencing (data not shown).
All crucial steps during DNA isolation and the entire

PCR set up were performed in a laminar air flow (LAF)-
bench, illuminated with a UV lamp prior to use in order
to avoid possible contaminants. In addition, negative
DNA extraction controls (lysis buffer and kit reagents
only) were amplified and sequenced as contamination
controls.
Additionally, negative PCR controls (sterile Molecular

Biology Grade Water from 5PRIME (VWR, Norway) as
template) were run for every PCR protocol, resulting in
no PCR product.
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454 pyrosequencing
Replicate PCR products were pooled and purified using
Agencourt AMPure PCR purification (Beckman Coulter,
USA). DNA concentration and quality were assessed on
a Bioanalyzer 2100 (Agilent, USA). Equal amounts of
both amplicons (V1V2 and V6) for a single subject or
contamination control were pooled and sequenced using
GS FLX chemistry in the same lane of a PicoTiterPlate
divided into 16 lanes. Each of the amplicons was pyrose-
quenced together, except for samples F1 and F3.
454 pyrosequencing was performed by the Norwegian

Sequencing Centre (NSC) at the Department of Biology,
University of Oslo, Norway.

Sequence read analysis
A total of 190 287 reads were produced (female urine 165
041 raw reads and contamination control 25 246 raw
reads). The initial sequence reads were split into two
pools using the V1V2 and V6 primer sequences via the
sfffile program from 454 Life Sciences, thus reducing the
sequences to 152 413 urine reads (Table 2) due to the
program splitting on exact match to primer.
The 454 pyrosequencing method has a characteristic

error rate in the form of insertion/deletion errors at
homopolymer runs. To correct for this phenomenon, the
raw reads were processed with PyroNoise [34] with a
minimum length cutoff of 218 and 235 nt for the V1V2
and V6 regions, respectively. The PyroNoise program clus-
ters all reads whose flowgrams indicate that they could
stem from the same sequence, while also considering read
abundance. After denoising, one sequence per cluster
together with the number of reads mapping to that cluster
is reported. Next, the sequences (at this stage one
sequence per denoised cluster) that did not have an exact
match to the primer were removed, and the forward pri-
mer sequence itself was also trimmed. Finally, the urine
sample sequence sets were stripped for sequences that
could be from the same source as those in the contamina-
tion control dataset. This was done by using the program
ESPRIT http://www.biotech.ufl.edu/people/sun/esprit.html
[35] to do a complete linkage clustering at 1% genetic

difference of each sample together with its respective con-
trol. Before clustering, the control sequences were weighed
so that there were the same number of reads stemming
from both the sample and the control going into the pro-
cess. Within each cluster the frequency of sample vs con-
trol sequence was calculated, and any sample sequences
found in clusters where 50% or more of the sequences
belonged to the control were removed.
For taxonomic grouping we used MEGAN V3.4 http://

www-ab.informatik.uni-tuebingen.de/software/megan/
welcome.html[36,37], which uses blast hits to place reads
onto a taxonomy by assigning each read to a taxonomic
group at a level in the NCBI taxonomy. The sequence
reads (one read per denoised cluster from the pyronoise
step) that passed the filtering steps were compared to a
curated version of the SSUrdp database [38] using blastn
with parameters set to a maximum expectation value (E)
of 10-5. The 25 best hits were kept. To reflect abundance
behind each denoised sequence cluster, prior to taxo-
nomic classification each entry in the blast output file
was replicated as many times as there were reads map-
ping to its query sequence. MEGAN analysis of these
blast records was performed using a minimum alignment
bit score threshold of 100, and the minimum support fil-
ter was set to a threshold of 5 (the minimum number of
sequences that must be assigned to a taxon for it to be
reported). These parameters were consistently used
throughout this analysis. When comparing the individual
datasets using MEGAN, the number of reads were nor-
malized to 100 000 for each dataset using the compare
tool in MEGAN.
Sequences generated in this study have been sub-

mitted to the Sequence Read Archive with the study
accession number ERP000957. It can be accessed
directly through http://www.ebi.ac.uk/ena/data/view/
ERP000957.

Clustering of reads into OTUs
Numbers of operational taxonomic units (OTUs), rare-
faction curves, Chao1 richness estimations and Shannon
diversities were calculated using MOTHUR v1.17.0 [39],

Table 1 PCR primers used

Primer Sequence (5’®3’) 16S rDNA region Product size Reference

A2+V1 F GCCTCCCTCGCGCCATCAGAGAGTTTGATCMTGGCTCAG V1V2 392 bp3 [32]

B2+V2 R GCCTTGCCAGCCCGCTCAGCYNACTGCTGCCTCCCGTAG 8-3611

A2+1061R GCCTCCCTCGCGCCATCAGCRRCACGAGCTGACGAC V6 316 bp3 [33]

B2 +784F GCCTTGCCAGCCCGCTCAGAGGATTAGATACCCTGGTA 784-10611

The table contains primer name, sequence (hypervariable specific sequence in bold font), 16S rDNA region covered, product size and references for the primers
used in this study.
1 Coordinates are given relative to the 1542 bp E. coli K12 16S rDNA sequence.
2A and B primer: corresponds to 454-adaptor sequences from the amplicon pyrosequencing protocol for GS FLX http://www.my454.com/downloads/protocols/
Guide_To_Amplicon_Sequencing.pdf[101], p. 7.
3Product size includes the primer sequences.
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Table 2 Sampling depth and biodiversity found by amplicon 454 pyrosequencing V1V2 and V6 regions from eight culture negative female urine samples

Sample

Combined sequence pool F1 F2 F3 F4 F5 F6 F7 F8

V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6 V1V2 V6

Sampling depth

Total reads 78346 74067 14579 18362 12629 6565 4305 17474 9877 5005 12645 6586 8216 5692 7861 6986 8234 7397

Length
cutoff1

48861 45382 8479 8039 8416 4752 2721 13066 6253 3467 10116 5074 4428 3047 3967 3495 4481 4442

Denoised 2 48860 45136 8479 7977 8416 4703 2721 13064 6253 3461 10116 5057 4427 3031 3967 3432 4481 4411

Cleaned 3 48452 44760 8476 7969 8353 4682 2720 13060 6242 3459 10109 5053 4361 2988 3711 3138 4480 4411

Unique OTUs 1354 2069 61 376 456 328 22 115 116 102 95 81 523 134 322 581 163 538

OTUs4 3% 1209 1435 52 240 411 254 20 81 101 85 73 63 504 116 300 499 130 338

OTUs4 6% 1092 1072 50 178 379 210 19 61 92 73 62 51 472 101 270 436 116 244

Phyla5 (11) 10 8 4 4 6 3 1 3 4 4 3 3 3 4 8 7 4 4

Genera5 (45) 35 28 8 8 15 10 1 8 10 5 6 4 4 4 19 17 9 8

Diversity indices

Chao16 (3%) 1211 2469 64.75 456.36 412.62 410.33 24.5 128.83 104 195.5 86.04 108.76 504.11 130.6 324.6 1121.43 250.12 835.02

Chao1 LCI95 1209 2286 56.13 371.05 411.36 353.85 20.97 102.95 101.7 136.49 77.88 82.43 504 122.1 313.14 953.17 195.84 670.9

Caho1 HCI95 1216 2690 91.27 597.21 418.2 498.76 40.69 185.2 112.75 322.11 107.8 170.8 506.28 148.39 346.03 1352.03 349.14 1080.04

Shannon index7 (3%) 2.99 3.05 0.52 1.96 1.99 1.62 0.23 0.49 1.44 1.44 0.33 0.44 3.01 1.32 3.76 4.07 2.06 3.31

Normalized Shannon index (3%) 8 0.52 1.96 1.86 1.63 0.23 0.50 1.42 1.44 0.34 0.45 2.89 1.35 3.72 4.07 2.06 3.31
1Length cutoff at minimum 218 nt for V1V2 reads and 235 nt for V6 reads.
2Total number of sequences after processing the dataset through the PyroNoise program developed by Quince et al., 2009 [34].
3The number of reads per dataset after removal of sequences that could be from the same source as those in the contamination control dataset.
4OTUs: Operational Taxonomic Units at 3% or 6% nucleotide difference.
5Number of phyla and genera are based on taxonomic classification by MEGAN V3.4 [36,37], with the total number of phyla and genera detected in parenthesis.
6Chao1 is an estimator of the minimum richness and is based on the number of rare OTUs (singletons and doublets) within a sample.
7The Shannon index combines estimates of richness (total number of OTUs) and evenness (relative abundance).
8The Shannon index after normalization of the number of sequences (as described in Methods).
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both on each separate sample and on pooled V1V2 and
V6 sequences, after replicating each sequence to reflect
the amount of reads mapping to its denoised cluster.
Each sequence set was first reduced to unique
sequences, before a single linkage preclustering step as
described by Huse et al., 2010 [40] was performed. In
this step, shorter and less abundant sequences were
merged with longer and more abundant sequences with
a maximum of two differing nucleotides. OTUs were
calculated using average clustering at 3%, using a pair-
wise distance matrix. Distances were calculated using
Needleman-Wunsch, discounting endgaps while count-
ing internal gaps separately.
Considering that the Shannon index is sensitive to the

original number of sequences generated from a given
sample [41] we calculated the Shannon index for normal-
ized numbers of sequences for each separate sample. A
random number of reads, corresponding to the lowest
number of sequences in a sample group, i.e. 2720 for
V1V2 and 2988 for V6, were picked 100 times from each
sequence set. These new sequence sets were processed
through MOTHUR in the same fashion as the full
sequence sets and the average of the resulting Shannon
values are shown in Table 2.

Results
454 pyrosequencing data
In our study a total of 78 346 sequences for the V1V2
region and 74 067 sequences for the V6 region were
obtained (Table 2). The quality filtering approach as
described in Methods eliminated 40% of the sequenced
reads. Additionally, since the bacterial identification tech-
nique (broad range 16S rDNA PCR) utilized in this study
was highly sensitive and susceptible to environmental
contamination, we included negative control extractions,
followed by PCR and sequencing, to determine the con-
tamination resulting from the chemicals and consum-
ables used. The read datasets were stripped for sequences
found to cluster predominantly with contamination con-
trol sequences. This resulted in removal of an additional
1% of the reads, showing that background contamination
levels were low (Table 2).

Identity of the bacterial DNA found in female human
urine
An analysis using MEGAN of all pooled reads from the
two different amplicon libraries of the 16S rRNA gene (i.e.
V1V2 and V6 regions) revealed a total of eleven phyla in
female urine, with the bacterial DNA sequences predomi-
nantly found in Firmicutes (65%), Bacteroidetes (18%),
Actinobacteria (12%), Fusobacteria (3%), and Proteobac-
teria (2%) (Figure 1A). The other 6 phyla were represented
by less than 1% of the total sequence reads. The phylum
Chloroflexi was identified by only the V6 sequence dataset;

similarly, the phyla Spirochaetes, Synergistetes and Fibro-
bacteres were only identified by the V1V2 sequence
dataset.
When examining the two sequence sets separately, 22

different orders were identified in total. The 4 most
abundant bacterial orders were the same for both
regions sequenced; Lactobacillales (53% for V1V2 and
55% for V6), Bacteroidales (20% for V1V2 and 16% for
V6), Clostridiales (10% for V1V2 and 11% for V6), and
Bifidobacteriales (9% for V1V2 and 13% for V6) (Figure
1B and 1C). Additionally, 18 other orders were detected
in both the V1V2 and V6 datasets. Further, Bdellovibrio-
nales, Myxococcales, Rhizobiales and Enterobacteriales
were only identified in the V6 sequence dataset, while
Desulfuromonadales and Spirochaetales were only
observed in the V1V2 dataset (Figure 1B and 1C).
Analyzing the data at the genus level revealed 45 differ-

ent genera. 88% and 87% of the reads in the V1V2 and V6
sequence datasets, respectively, were assigned to Lactoba-
cillus, Prevotella and Gardnerella (Figure 2A). These three
major genera found in female human urine belong to the
three most predominantly detected phyla: Firmicutes, Bac-
teroidetes and Actinobacteria (Figure 1A). Out of the 45
different genera, 17 genera were unique for the V1V2
sequence reads, whereas a total of 10 genera were uniquely
found with V6 sequence reads.
Keeping the same parameters as for the analysis at

higher taxonomic levels, a small number of bacterial reads
from the V1V2 and V6 dataset were assigned to species
level, see Additional file 1: Table S1. When comparing to
previous reports from literature [9,17,37,42-81], nine out
of the 45 species listed are associated with UTI. Twenty of
the species listed represent uncultured bacteria, many of
them with an unknown pathogenic potential (Additional
file 1: Table S1).

Variation between urine samples from different
individuals
The distribution of the different taxa differed markedly
among the urine specimens. 16S rDNA sequences from
the phyla Firmicutes and Bacteroidetes were found in all
urine samples. Sequences from Proteobacteria and Acti-
nobacteria were observed in 6/8 and 5/8 urine samples
respectively, while sequences from Fusobacteria were
identified in only 2 samples. The remaining six phyla
defined in our pooled urine sequence dataset were only
detected once among the urine samples; Spirochaetes,
Chloroflexi, Fibrobacteres and Acidobacteria in sample
F7, Tenericutes in sample F4 and Synergistetes in sample
F2. These results indicate that there is a noticeable intra-
individual variation in urine 16S rDNA sequences even at
the phylum level.
The interpersonal microbial sequence diversity and the

distribution of bacterial DNA at the genus level in each

Siddiqui et al. BMC Microbiology 2011, 11:244
http://www.biomedcentral.com/1471-2180/11/244

Page 5 of 12



individual are shown in the heat map in Figure 2B. In the
majority of the urine specimens (6 out of 8) one genus
was dominant, i.e. represented by at least 75% of the
reads, while in two specimens (sample F7 and F8) there
was a more even distribution among the represented gen-
era (Figure 2B). A polymicrobial state is suggested for all
but a single urine specimen based on both of the 16S
rDNA sequence datasets. The exception was sample F3,
which showed only the presence of Lactobacillus based
on the V1V2 reads, while the V6 amplicon sequence data
identified seven additional bacterial genera, though at a
low frequency. The most frequently identified genus was
Prevotella, with sequences present in 7 out of 8 urine
samples. Sequences assigned to Lactobacillus, Peptoni-
philus and Dialister were also frequently detected (6/8),
followed by Finegoldia (5/8), Anaerococcus, Allisonella,
Streptococcus, Staphylococcus (all 4/8). Interestingly,
reads assigned to Gardnerella were only identified in 3/8

urine samples, even though this genus was the 3rd most
abundant group in the pooled sequence dataset for both
the V1V2 and V6 regions (Figure 2A). Three other gen-
era and a group of 5 genera were identified by reads
belonging to 3 or 2 urine samples, respectively. 24 genera
were only detected in 1 out of the 8 samples.

Species richness and diversity estimates of the female
urine microbiota
Bacterial taxonomic richness and diversity varied greatly
among urine samples investigated in this study. Com-
munity richness and diversity were determined using
rarefaction plots, Chao1 and Shannon index estimations
(Figure 3 and Table 2).
Rarefaction curves were generated for 3% genetic dif-

ference level (e.g., at the species level). The number of
OTUs calculated for the eight individual samples ranged
from 20-504 and 63-499 OTUs for the V1V2 and V6
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Mycoplasmatales
Bacillales
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Figure 1 Summary of the microbial phyla and orders detected in human female urine. A: An overview of the taxonomy at the phylum
level as computed using MEGAN V3.4, using normalized counts by pooling together the V1V2 and V6 16S rDNA reads. The size of the circles is
scaled logarithmically to the number of reads assigned to the taxon. Nodes denoted as “Not assigned” and “No hits” are the number of reads
that were assigned to a taxon with fewer than 5 hits, or did not match to any sequence when compared to the SSUrdp database, respectively.
B and C: Comparison of taxonomic assignments for human female urine sequences at the order level. Reads obtained using the V1V2
hypervariable 16S rDNA region were predominantly assigned to Lacobacillales, and identified in total 18 different orders where
Desulfuromonadales and Spirochaetales are unique to this V1V2 dataset. V6 reads revealed a slightly higher diversity with 20 different orders;
Bdellovibrionales, Myxococcales, Rhizobiales and Enterobacteriales are only identified by this V6 method.
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regions, respectively (Figure 3A, B and Table 2). OTU
numbers of the total bacterial community in the female
urine at 3% difference for the V1V2 sequence pool was
calculated to 1209 OTUs and to 1435 OTUs for the V6
sequence pool (Figure 3C, D and Table 2). Furthermore,
total unique OTUs for the V1V2 pooled reads were
1354 and for the V6 pooled reads 2069 (Table 2).
To compare the diversity between the eight different

urine samples, the Shannon diversity index was deter-
mined both with the original, and with normalized num-
bers of sequences (Table 2). There was no substantial
difference between the two Shannon indices calculated
for the same sample.

Discussion
In this work we sequenced two different variable regions
of 16S rDNA isolated from eight culture-negative urine

samples. Urine samples are at risk of contamination by
the bacterial flora of the female urogenital system
[82,83], therefore sampling of mid-stream urine was per-
formed by the clean catch method, under guidance of an
experienced urotherapy nurse. To avoid further bacterial
growth, which could skew the results, the samples were
kept on ice and analyzed within an hour. Amplicon
lengths used here exceed the typical fragment size (150-
200 bp) of circulating cell-free DNA in urine [84], thus
reducing the frequency of such DNA in our analyses.

Bacterial profile of female urine
The sequences found in the samples were mainly
assigned to the Firmicutes phylum (65%) with Bacterio-
detes, Actinobacteria, Fusobacteria and Proteobacteria
members accounting for most of the remaining
sequences (Figure 1A). This overall composition of phyla
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Figure 2 Bacterial genera detected in healthy female urine. A: Comparison of healthy female urine bacterial genera abundance determined
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is comparable to prior 16S rDNA sequencing studies of
the human urogenital tract (vaginal microbiota [79] and
male urogenital tract [27,28,85]). However, we also found
sequences from Fibrobacteres, a phylum not previously
associated with human microbiota as described by the
Human Microbiome Project catalog (HMP) [69,86], the
Human Oral Microbiome Database (HOMD) [70,87] and
in studies on the gastrointestinal tract, vaginal and male
urine bacterial flora [27,28,79,88,89].
Our analysis revealed that the bacterial composition in

human female urine specimens is polymicrobial and that
there is considerable variation between urine samples
(Figure 2B). Lactobacillus, Prevotella and Gardnerella
were the dominant genera (Figure 2A), however, not
every urine sample exhibited 16S rDNA from these gen-
era (Figure 2B), indicating that a single characteristic
microbial community for female urine cannot be estab-
lished. Similar results were also seen in Nelson et al.
(2010) [27] and Dong et al. (2011) [28] in their studies

on male urine composition. While Lactobacillus and
Prevotella were not among the dominant genera in the
first study [27], rDNA sequences belonging to these
genera were dominant in the latter study [28], as it is in
our data. Lactobacillus was, however, considerably more
abundant in female than in male urine. The two studies
on male urine did not display the genus Gardnerella
(typically associated with the female vagina), as a major
bacterium, while this genus is one of three dominating
genera in our study. In contrast, Sneathia, another vagi-
nal bacterium - only present at low abundance in female
urine, was reported as a dominant genus in male urine.

Comparison of V1V2 and V6 primer sets
Two different primer sets previously used for investigat-
ing human microbial communities [32,33] covering dif-
ferent parts of the hypervariable regions were used in this
study. The V1V2 region is noted for its robustness for
taxonomic classification, while the V6 region is more
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appropriate for measuring microbial diversity due to high
variability [32,90,91]. These differences were also
reflected in our study where V1V2 uncovered a wider
taxonomical range (Figure 2 and Table 2). Both rDNA
regions detected approximately the same groups at phy-
lum and order level, however, a larger difference was evi-
dent at the genus level. The V1V2 method detected 35
different genera in total, 16 of which were not found in
the V6 dataset. The V6 method detected 28 genera in
total, where 10 genera were unique to this dataset. Thus,
using a combination of these two primer sets clearly
maximized the bacterial diversity that could be detected.

Estimated species richness in female urine microbiota
Our OTU calculations on female urine displayed rich-
ness levels that were in the same range as reported for
commensal vaginal microbiota (1584 OTUs) [79], but
lower than those reported for oral (3011 to 5669 OTUs)
[4,92] and fecal samples (up to 5200 OTUs) [90]. For all
but one sample, the Chao1 minimum richness estimates
for the V1V2 dataset are in close agreement with the
observed number of OTUs (Table 2). In addition, the
rarefaction curves approached saturation, demonstrating
that the OTU diversity was almost completely covered
by the V1V2 variable region (Figure 3A and 3C). In con-
trast, the Chao1 estimates and the rarefaction curves for
all but one of the V6 samples indicated that the current
sequencing effort for the V6 variable region was not
exhaustive (Table 2 and Figure 3B, D).

Clinical significance of the bacterial DNA identified in
human female urine
The anaerobe microbial profile of urine specimens is not
routinely investigated in microbiological laboratories
since fastidious bacteria often evade standard culture
conditions. The present work shows that, besides bacter-
ial species associated with vaginal, fecal and skin bacterial
flora, unsurprising considering the anatomy of the female
urogenital tract, several types of bacteria previously not
seen in female urine were identified. Interestingly, some
species detected have earlier been described as causing
UTI and bacterial vaginosis (BV), but here we also detect
these potentially pathogenic species in asymptomatic
healthy female urine samples. For example, most of the
fastidious (opportunistic), mostly anaerobic pathogenic
bacteria identified by 16S rDNA PCR and sequencing in
a study of UTI samples [9], were also detected in our
study. On the other hand, uropathogenic E.coli (UPEC), a
common cause of UTI [93], was not detected in any of
our urine samples.
Lactobacillus was dominant in the urine microbiota

(see Figure 2A), as it is in the human vaginal microbiota,
and all of the other genera previously found in vaginal
microbiota were also identified in our samples [64,79].

BV is in a majority of cases characterized by a shift in
composition of the vaginal microbial community that
results in decreased number of lactic producing bacteria
and increased numbers of other facultative or anaerobic
species in relation to normal bacterial flora [79]. A simi-
lar shift in bacterial composition as seen in BV was
found in 4 of our eight urine samples: Lactobacillus was
either present at a low abundance or not detected at all,
and the other genera present were mostly anaerobes.
One of these, the anaerobe Prevotella disiens is also
typically found in females with genital tract infections.
Furthermore, the genus Gardnerella, comprising only
the species G. vaginalis, is involved in BV, as well as
associated with preterm delivery [94,95], and also
reported as an uropathogen [9,96].
Both the species Aerococcus urinae and the genus

Ureaplasma, examples of “difficult-to-culture pathogens”
commonly not detectable by conventional culture meth-
ods [52], were detected in our samples. A. urinae is gen-
erally associated with bladder infection in elderly people,
but can also cause serious complications, such as infec-
tive endocarditis when not detected and treated during
UTI diagnosis [97,98]. Ureaplasma spp occurs more
commonly in patients with symptoms of UTI than pre-
viously thought [99], and the species Ureaplasma urea-
lyticum has also been associated with chronic urinary
symptoms in women [100]. Whether or not these poten-
tially pathogenic bacteria represent non-pathogenetic
variants or are simply not causing any disease in this
setting remains to be investigated.

Conclusion
Our finding of sequences of these potentially disease-
causing species and genera in healthy female urine is an
example of the enhanced resolution that can be
obtained by high-throughput sequencing. This study
also shows that the urine medium of asymptomatic
females is harboring a surprisingly wide range of bac-
teria, including many potentially associated with patho-
genic conditions. Apparently, such bacteria are part of
the healthy urine microbiota.

Additional material

Additional file 1: Table S1: Bacteria species identified in female
urine by 16S rDNA amplicon 454 pyrosequencing and their general
pathogenic potential.
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