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ABSTRACT 

Background: Several candidate vaccines to prevent COVID-19 disease have entered large-scale phase 3 

placebo-controlled randomized clinical trials and some have demonstrated substantial short-term 

efficacy.   Efficacious vaccines should, at some point, be offered to placebo participants, which will occur 

before long-term efficacy and safety are known.   

Methods: Following vaccination of the placebo group, we show that placebo-controlled vaccine efficacy 

can be derived by assuming the benefit of vaccination over time has the same profile for the original 

vaccine recipients and the placebo crossovers.  This reconstruction allows estimation of both vaccine 

durability and potential vaccine-associated enhanced disease.   

Results: Post-crossover estimates of vaccine efficacy can provide insights about durability, identify 

waning efficacy, and identify late enhancement of disease, but are less reliable estimates than those 

obtained by a standard trial where the placebo cohort is maintained. As vaccine efficacy estimates for 

post-crossover periods depend on prior vaccine efficacy estimates, longer pre-crossover periods with 

higher case counts provide better estimates of late vaccine efficacy. Further, open-label crossover may 

lead to riskier behavior in the immediate crossover period for the unblinded vaccine arm, confounding 

vaccine efficacy estimates for all post-crossover periods. 

 Conclusions: We advocate blinded crossover and continued follow-up of trial participants to best assess 

vaccine durability and potential delayed enhancement of disease. This approach allows placebo 

recipients timely access to the vaccine when it would no longer be proper to maintain participants on 

placebo, yet still allows important insights about immunological and clinical effectiveness over time.        
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Safe and durably effective SARS-CoV-2 vaccines hold the potential to dramatically alter the COVID-19 

pandemic.1,2 Multiple vaccine candidates are currently in phase 3 placebo-controlled clinical testing with 

key criteria for success including vaccine efficacy and safety. Early results from at least three trials3-5 

suggest high efficacy that far exceeds the FDA guidance threshold of 50% for symptomatic disease and 

severe disease. Yet critical questions remain, including the effects in subgroups such as the elderly and 

minorities and the assessment of longer-term efficacy and safety, given theoretical concerns for both 

vaccine associated enhanced disease (VAED; a potential concern in subgroups such as the elderly6-8) and 

waning protection.6,9,10 The latter concern must be considered in light of studies of seasonal 

coronaviruses11-13 and natural infection by SARS-CoV-2,14-17 which suggest immunity may wane within 6 

months to 2 years in some people.  Understanding whether durability of vaccine efficacy might be 

improved by revaccination is another critical question.10,12,13   

 

Current COVID-19 phase 3 vaccine trials are large and designed to accrue at least 150 cases of clinical 

disease in a short period of time.18-21 For example, the mRNA coronavirus vaccine efficacy trials reached 

these endpoints within four months after trial initiation, reflecting the magnitude of the COVID-19 

pandemic. While long-term safety and durability of efficacy are best evaluated by continued blinded 

follow-up of the original arms,22 at some point placebo volunteers must be offered the vaccine. The 

timing of this offer is complex with individual risk being weighed against the social value of the 

additional information, society's perception of fairness, and the availability of the vaccine outside the 

trial.23 Ultimately, the participant’s view of equity will impact retention and determine how long blinded 

placebo control continues.  Intuitively, placebo vaccination seems to preclude assessment of long-term 

comparative efficacy and VAED, as all are vaccinated. However, following crossover, the randomized 

trial remains, though now as a comparison of immediate (original vaccine arm) versus deferred (original 

placebo arm) vaccination. This allows assessment of waning vaccine effectiveness or associated 
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enhanced disease.  If, following crossover, the original vaccine arm accrues more cases than the original 

placebo arm, efficacy will be shown to wane. Furthermore, placebo-controlled vaccine efficacy can still 

be estimated after crossover, provided the trial continues with high levels of compliance and follow-up.  

To ensure the highest quality trial, blinded follow-up post crossover is ideal, wherein placebo recipients 

receive vaccine and vaccine recipients receive placebo. 

 Besides assessment of durability, continued follow-up allows for measurement of post-vaccination 

immune response in the newly vaccinated placebo recipients which can substantially increase the 

statistical power to assess immune correlates of risk. Continued follow-up readily allows a pivot to a 

randomized trial of a `booster’ dose of the vaccine to assess whether waning efficacy can be reversed.  

SETUP  

A schematic for a blinded crossover trial is illustrated in Figure 1.  Following initial equal randomization 

to vaccine or placebo, volunteers are followed for case accrual and at some point an efficacy signal is 

reached. After regulatory approval, blinded crossover occurs so that all willing volunteers have received 

the efficacious vaccine.   At the point of crossover, the trial has changed into a blinded randomized trial 

of immediate (original vaccine) vs deferred (original placebo) vaccination.  Following crossover there 

remain two distinct interventions that can be contrasted. Intuitively, if the placebo case accrual rate for 

the original vaccine arm is higher than the recently vaccinated, efficacy must be waning.  Additionally, 

post-crossover vaccine efficacy can be estimated by assuming the newly vaccinated in period 1 or period 

2 receive the same benefit.  Figure 2 illustrates the concept for a vaccine with 80 % efficacy in period 1.  

We deduce the case count for an inferred period 2 placebo group by requiring that the inferred count 

align with the vaccine efficacy just observed in period 1 for the original vaccine recipients. We then use 

this inferred case count to deduce a period 2 vaccine efficacy.  We note that the approach generalizes 

beyond two equal periods, but the key aspects are easiest to develop in this simpler setting.    
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Table 1 provides more detail. During period 1, vaccine efficacy is estimated as VE1 = 100% (1-25/125) = 

80%, the reduction in observed cases as a result of the vaccine.   Following crossover, we evaluate two 

scenarios:  in scenario 1, the number of cases is similar in period 2 with a relative risk (original 

vaccine/original placebo) in period 2 of RR2= 41/39, which suggests little vaccine efficacy has been lost. 

Using the period 1 vaccine efficacy, we infer the number of placebo cases, that could have been seen, 

had there been a standard (non-crossover) trial, as 39 x (125/25) = 195. We then calculate vaccine 

efficacy in period 2 as VE2 = 100% 100%(1- 41/195) =100%( 1-[25/125] x [41/ 39]) = 100% (1- RR 1 x RR 2) 

= 79%.  Note we obtain the same estimate of 79% even if the period 2 case counts are halved (or tripled) 

and thus this procedure does not require a constant placebo case accrual rate. For scenario 2, there is 

clear evidence of loss of durability as RR2= 53/9=5.89.  Indeed, the vaccine efficacy becomes negative 

suggesting potential harm in period 2. Such a scenario is extreme, but does show how crossover could 

be used to assess late VAED.    

 

ASSUMPTIONS 

 A standard non-crossover trial requires 1) adequate retention following the original randomization such 

that the two randomized cohorts remain balanced at the start of period 2; 2) that the vaccine is similarly 

efficacious against circulating viruses in both periods; and 3) consistency in case assessment across 

periods, in order to obtain unbiased assessments about durability of efficacy. Importantly, the crossover 

design is valid without making assumptions about whether and how background incidence changes from 

period 1 to period 2. The only additional assumption required of the blinded crossover design is that the 

newly vaccinated obtain the same benefit of vaccination in period 1 as in period 2. This is implicitly 

assumed in all vaccine trials with rolling enrollment.     

With an effective vaccine, the two groups might not be similar at the start of period 2, as the more 

vulnerable (e.g., riskier behavior or frailer health) placebo volunteers will acquire COVID-19 during 
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period 1 at a greater rate than the matching vulnerable population of vaccinated volunteers, who were 

protected by vaccination.24-27  So period 2 can start with fewer vulnerable people in the original placebo 

arm compared to the original vaccine arm. Thus, the vaccine efficacy may appear to wane, but only 

because of a biased comparison.   For large COVID-19 vaccine trials with relatively few cases, the 

fraction of participants excluded because of an event and resulting bias may not be a substantial 

concern.  Additionally, true waning vaccine efficacy is supported if the kinetics of antibody waning in 

individuals track with individual risk over time, so long as the infecting pathogen does not undergo 

evolution that renders it less susceptible to the vaccine.28  

     

ESTIMATION AND COMPARATIVE PERFORMANCE 

The modified Poisson method to estimate overall vaccine efficacy can be generalized to provide period-

specific estimates of relative risk and vaccine efficacy.29,30  This person-year approach allows for 

differential follow-up within each period due to rolling enrollment or dropout. More than two periods 

with different durations can be assessed and with sophisticated methods, a period-free curve of 

placebo-controlled vaccine efficacy throughout follow-up can be derived.    

Table 2 evaluates the performance of a standard non-crossover trial compared to a crossover trial in  

terms of power or the probability of detecting waning efficacy and the power of detecting harm in  

period 2, with calculations implemented in the R package plaXdesign.31  We also report sample size 

ratios, where for example, a sample size ratio of 2 means a crossover trial would  require twice as many 

volunteers to achieve the power of a given standard trial. The first four rows correspond to a scenario 

with high initial efficacy that accrues about 200 COVID-19 cases in placebo recipients during period 1 

and accrues 200 or 100 COVID-19 cases in placebo recipients during period 2 in a standard trial. Under 

crossover these period 2 placebo cases are inferred. We have good power to detect waning efficacy 
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when VE changes from 90% to 75% with 200 cases in period 2 under either the crossover (0.93 power) 

or standard design (0.90 power).  Power is lessened with 100 cases in period 2 with crossover having 

0.69 power and standard having 0.81 power.     

The bottom four rows focus on a scenario where a subgroup may be at risk of VAED.  The subgroup 

accrues about 25 placebo cases in period 1 thus about 1/8 of the total of 200 placebo cases.   As before, 

we anticipate around 25 or 12 placebo cases in period 2 under the standard trial.  We consider subgroup 

vaccine efficacies in Period 2 of –100% and –300% or a doubling and quadrupling of the case rate on 

vaccine compared to a placebo group, respectively. These estimates are meant to roughly parallel the 

vaccine-enhanced risk of hospitalized dengue disease and of severe dengue disease seen with the CYD-

TDV dengue vaccine in baseline-seronegative participants.32 Power to detect waning efficacy is greater 

than 0.80 for all scenarios. The power to detect harm is substantially worse under the crossover design 

compared to the standard trial with poor power to detect harm with a period 2 VE of –100%, but 

powers of 0.71 and 0.85 to detect harm with a VE of –300% with 12 and 25 expected cases in period 2, 

respectively.     

Figure 3 demonstrates the behavior of the method for more than two periods. The vaccine efficacy 

estimates for post-crossover periods depend on all prior VE estimates so if any period has an unreliable 

estimate of VE, so will subsequent periods. Evaluation of waning efficacy, within any post-crossover 

period is a simple contrast of two randomized arms and, with sufficient cases and blinded follow-up, can 

be rigorously evaluated, even after a ‘weak link’ period.   Figure 3 suggests that longer periods (longer 

links) with higher case counts (wider links) will provide better estimates of late vaccine efficacy.   This 

underscores the statistical benefit of maintaining the original placebo-controlled design for as long as 

possible to maximize the first period. 

COLLATERAL BENEFITS OF PLACEBO CROSSOVER  
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Correlates of risk and correlates of protection analyses involve describing associations between the 

measured immune response shortly after the last dose of vaccine and subsequent risk of COVID-19 

disease.33-35 A proven or “reasonably likely” immune correlate of protection can allow for 

immunobridging to populations not included in the trials either through traditional or provisional 

approval, for example through the FDA’s Accelerated Approval mechanism.36,37 This makes the 

establishment of correlates of risk and protection a key goal of vaccines trials.  Following a strong 

positive efficacy result, an immune correlates analysis may be underpowered due to relatively few 

breakthrough cases in the vaccine recipients. However, placebo crossover could effectively double the 

sample size for assessing immune correlates of risk and protection, a notable benefit of crossover. 

If vaccine efficacy wanes substantially over the course of follow-up, a natural question will be whether 

revaccination can reverse the loss. Continued follow-up of the volunteers provides a ready-to-go vehicle 

to experimentally evaluate revaccination by randomizing those who received vaccine to another course 

of vaccine or placebo.  While a boost trial can be quickly conducted in a standard trial that maintains 

follow-up, placebo crossover allows for a doubling of those who are available for the boost trial relative 

to a trial that maintains a placebo control. A boost trial following crossover could proceed in two stages-

--the original vaccine arm would be randomized first and the crossover placebos randomized later, if 

needed (Figure A1 in the Appendix).  If the vaccine efficacy wanes from 80% to 40% and it is hoped 

boosting will recover the VE to 80%, about 42 cases are required to achieve 90% power, substantially 

fewer than the roughly 150 cases required for the original trial.        

 

IMPLEMENTATION 

Once the vaccine is available, principles of ethics (including an evaluation of the social benefit and 

individual risk profile of the trial), transparency, and fairness should govern the timing and 
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implementation of the planned crossover.23 Ideally a blinded crossover phase would be an integral part 

of the original design and part of the initial consent. Otherwise, a protocol amendment would be 

introduced and reconsent obtained.     

Performing the crossover blinded offers substantial scientific advantages. Just as the pre-crossover 

period was blinded to address initial vaccine efficacy, so should the post-crossover period be blinded to 

address durability.  Both questions are critical and deserve the same rigor. With an unblinded crossover, 

there is real concern that immediately after crossover the newly unblinded original vaccine recipients 

will forgo masks and social distancing while the newly unblinded placebo volunteers will not.  Another 

concern is that mild subjective symptoms might be differentially dismissed/elevated in the unblinded 

arms. This is particularly important since efficacy is entirely predicated on volitional presentation with 

signs or symptoms of COVID-19.  Such differential behavior would substantially confound a between-

arm case split consistent with waning efficacy in period 2.   Furthermore, such a ‘biased link’, as 

illustrated in Figure 3, would confound interpretation of all later periods. With minimal assessment of 

safety and reactogenicity in the newly vaccinated, operationally maintaining the blind could essentially 

only require the addition of dummy shot(s) in the original vaccine recipients with some additional blood 

draw(s).   Nonetheless, if some volunteers choose to become unblinded, continued follow-up of those 

participants should be pursued to maximize information. Simple questions to assess planned and actual 

risk behavior, along with comorbidities, could help adjust for the biases caused by unblinding.  

An important goal for COVID-19 vaccine trials is to assess the effect of vaccine on asymptomatic 

infection as assessed by periodic serologies. To maintain this goal, serologies should be collected in all 

volunteers at the time of crossover with both arms having the same schedules post crossover to ensure 

even-handed evaluation of this endpoint. While more complex, the methods of this paper can be 

generalized to study vaccine efficacy against infrequently assessed endpoints such as seroconversion. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.20248137doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.14.20248137


Different approaches to crossing over could be implemented, with a key requirement being that both 

arms are treated the same. The simplest would be to plan for all participants to crossover. If the vaccine 

is initially recommended for a subgroup, e.g. higher risk individuals, crossover might initially target the 

higher risk subgroup with the blinded placebo-controlled trial continuing for the lower risk subgroup. 

Crossover could later occur for the lower risk subgroup if an efficacy signal is achieved.  Operationally, 

crossover could follow the order of the original enrollment but occur at an accelerated pace compared 

to enrollment, so that different cohorts would crossover on different days relative to the initial 

vaccination.  Another possibility is to randomize the time of crossover.  To reduce volunteer fatigue, late 

follow-up might be lessened provided critical endpoints are still assessed as in the pre-crossover period. 

CONCLUSIONS    

The high efficacies reported in primary3 and interim4,5 analyses of multiple vaccine candidates, while 

universally welcomed, add complexity and uncertainty to the environment surrounding access to the 

vaccine for trial participants randomized to placebo. Continued blinded follow-up in the original arms is 

optimal to assess vaccine efficacy over time and is endorsed by the FDA in their guidance pertaining to 

COVID-19 vaccine development. Early efficacy provides incomplete information about the totality of the 

risks and benefits of the vaccines. But at some point, consensus will emerge that the placebo volunteers 

should be offered vaccine. This paper argues that valuable information regarding durability and VAED 

can be obtained even after the placebo volunteers receive the vaccine and that studies should maintain 

rigorous blinded follow-up post crossover to recover this information. Additionally, continued follow-up 

allows for a doubling of the volunteers who can contribute to an immune correlates analysis and allows 

for a quick pivot to a trial of boosting should the vaccine demonstrate waning efficacy.  
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Figure 1.  Schematic of a standard trial of vaccine vs placebo that pivots to a blinded crossover trial of 

immediate vs deferred vaccination.  The tapering and fading blue wedge following vaccination evokes a 

potential waning of efficacy. At some point following a positive primary efficacy signal, placebo 

volunteers receive the vaccine and vaccine volunteers receive placebo. A balanced case split between 

arms in period 2 supports maintenance of the period 1 vaccine efficacy. A key assumption is that vaccine 

efficacy for the newly vaccinated is the same whether at the start of period 1 or at the start of period 2.   
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Figure 2.  Schematic of how crossover allows imputation of the case counts for an inferred placebo 

group.    Following crossover, we assume the vaccine efficacy in Period 2 for the newly vaccinated 

(Deferred Vaccine Arm) is the same 80% that was observed in the newly vaccinated (Immediate Vaccine 

Arm) in Period 1.  This logic implies that a counterfactual placebo group of 20 volunteers would have 

about 5 cases.   Thus the vaccine efficacy for the original vaccine arm in Period 2 has waned to 100% (1 – 

3/5) = 60%. 
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Figure 3. Following crossover, the period-specific vaccine efficacy estimates depend on all previous 

periods. A period with few cases makes subsequent efficacy estimates unstable but paradoxically does 

not preclude evaluation of subsequent waning efficacy. A bigger and stronger chain is achieved with a 

long first (and thus subsequent) period and more cases within each period.    
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Table 1:  Illustrative data to demonstrate how a placebo-controlled vaccine efficacy in Period 2 can be 

calculated by inferring a placebo group in Period 2 following crossover for two different scenarios. 

 In scenario 1, there is no waning of effect, whereas in scenario 2 the efficacy has waned for those 

originally vaccinated. In both scenarios, the vaccine efficacy in Period 1 for the newly vaccinated of 

80% is assumed to apply to the newly vaccinated in Period 2.   Bolded numbers are post vaccination 

cases, italicized numbers are inferred placebo cases.  

 

Arm 

 

Period 1 

 

 

 

Crossover 

 

 

Period 2 

Scenario 1 

Period  2 

Scenario 2 

Arm # cases # cases # cases 

Original Vaccine 

(Immediate Vaccine) 

25 41 53 

Original Placebo 

(Deferred Vaccine) 

125 39 9 

Inferred Placebo n/a 195=39  x 125/25 45=9 x 125/25 

Period Specific Vaccine 

Efficacy 

(95% Confidence Interval)  

80%=1-25/125 

(69%, 88%) 

79%=1-41/195 

(60%, 89%) 

-18%=1-53/45 

(-209%, 51%) 
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Table 2: Statistical performance of the crossover design compared to the standard non-crossover 

design.   The first four rows denote scenarios with high efficacy where waning efficacy is of major 

interest.   The second four rows correspond to a subgroup where efficacy is more modest and vaccine 

harm or VAED is of greater concern.   A sample size ratio of 2 means a crossover trial would need to 

have twice the sample size to achieve the same power as a standard trial.  VE2 is the vaccine efficacy 

in period 2. A README is available at the plaXdesign page on Github31 with instructions on how to 

reproduce this table. 

 

Scenarios  Statistical Performance  

Expected 

Number of 

Placebo Cases 

True Vaccine 

Efficacy 

Sample Size Ratio 

For Testing 

 

Power to Detect 

Waning Efficacy 

Power to Detect Harm 

In Period 2 

(VE2 <0) 

Period 

1 

Period 

21 

Period 

1 

Period 

2 

Waning 

Efficacy 

Harm 

VE2<0 

Crossover Standard Crossover Standard 

200 200 90% 90% 0.91 2.82 0.025 0.025 0.00 0.00 

200 200 90% 75% 0.88 5.00 0.93      0.90 0.00 0.00 

200 100 90% 90% 1.21 2.32 0.025 0.025 0.00 0.00 

200 100 90% 75% 1.33 3.90 0.69      0.81 0.00 0.00 

Subgroup at increased risk of VAED 

25 25 50%  -100%  0.56 3.67 0.99 0.90 0.31 0.81 

25 25 50%  -300% 0.53 4.20 1.00 1.00 0.86 1.00 

25 12 50%   -100%  0.85 2.63 0.86 0.80 0.23 0.50 

25 12 50%  -300%  0.84 2.95 1.00 0.99 0.71 0.99 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.14.20248137doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.14.20248137


 

 
1 In the crossover trial, these are inferred cases.  
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