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ASSESSING ESSENTIAL DIMENSIONALITY-2

Assessing Essential Dimensionality of Real Data

Abstract

The purpose of this article is to validate the capability of DIMTEST to assess

essential dimensionality of the model underlying the item responses of real tests as opposed

to simulated tests. A variety of real test data from different sources are used to assess

essential dimensionality. Based on DIMTEST results, some test data are assessed as fitting

an essential unidimensional model while others are not. Essential unidimensional test data,

as assesse DIMTEST, are then combined to form twodimensional test data. The

power of Stout's statistic T is examined for these twodimensional data. It is shown that

the results of DIMTEST on real tests replicate findings from simulated tests in that the

statistic T discriminates well between essential unidimensional and multidimensional tests.

It is also highly sensitive to major abilities while being insensitive to relatively minor

abilities influencing item responses.

Subject terms: DIMTEST, essential independence, essential dimensionality,
unidimensionality, multidimensionality, item response theory.
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Most of the currently used item response theory (IRT) models require the assumption

of unidimensionality. From the strict IRT perspective, unidimensionality refers to one, and

only one, trait underlying test items. Yet, it is a well known fact that items are multiply

determined (Humphreys, 1981, 1985, 1986; Hambleton & Swaminathan, 1985, chap. 2;

Reckase, 1979, 1985; Stout, 1987; Traub, 1983). Hence from the substantive viewpoint, the

assumption of unidimensionality requires that the test items measure one dominant trait.

Stout (1987) coined the term essential unidimensionality to refer to a particular

mathematical formulation of a test having exactly one dominant trait. Dimensionality is,

however, determined by the joint influence of test items and examinees taking the test

(Reckase, 1990). In addition, extraneous factors such as teaching methods, anxiety level of

examinees, etc., may also influence the dimensionality of the given item response data.

Thus dimensionality has to be assessed each time a test is administered to a new group of

examinees.

Factor analysis has traditionally been the most popular approach to assess

dimensionality (Hambleton & Traub, 1973; Lumsden 1961). Factor analysis, despite its

serious limitations to analyze dichotomous data (for example, see Hu lin, Drasgow, and

Parsons, 1983, chap. 8), has been the popular method to study the robustness of the

unidimensionality assumption (Drasgow & Parsons 1983; Harrison, 1986; Reckase, 1979).

There are a number of other promising methods proposed and used in varying degrees to

assess dimensionalityto name a few: full information factor analysis based on the

principle of marginal maximum likelihood (Bock, Gibbons, & Muraki, 1985; TESTFACT:

Wilson, Wood, & Gibbons, 1983); nonlinear factor analysis (McDonald, 1962; McDonald &

Ahlawat, 1974; Jamshid & McDonald, 1983); Holland and Rosenbaum's (1986) test of

unidimensionality, monotonicity and conditional independence based on contingency

tables; Tucker and Humphreys' methods based on the principle of local independence and

second factor loadings (Roznowski, Tucker, & Humphreys, 1991); and Stout's (1987)

J



ASSESSING ESSENTIAL DIMENSIONALITY-4

statistical procedure based on essential independence and essential dimensionality. Hattie

(1984, 1985) has provided a comprehensive review of traditional approaches to assess

dimensionality, and Zwick (1987) has applied some of the above mentioned recent

procedures to assess dimensionality of National Assessment of Educational Progress data.

Despite having several procedures available to assess dimensionality, there is no widespread

consensus among substantive researchers for a preference for any method(s), and often

there is dissatisfaction about assessing dimensionality (Berger & Knol, 1990; Hambleton &

Rovinelli, 1986; Hattie, 1985).

Stout (1987) proposed a statistical test (DIMTEST) to assess essential

unidimensionality of the latent space underlying a set of items. Nandakumar (1987) and

Nandakumar and Stout (in press) have further modified, refined, and validated DIMTEST

for assessing essential dimensionality on a variety of simulated tests. This article

demonstrates the validity and usefulness of Stout's procedure on a variety of real, as

opposed to simulated, tests. Test data from different sources are collected and used to

assess essential unidimensionality. Essential unidimensional data are then combined to

form twodimensional data. The power of Stout's statistic T is examined for these

twodimensional data.

DIMTEST for Assessing Essential Unidimensionality

DIMTEST, a statistical test for assessing unidimensionality, is based on the theory of

essential dimenSionality and essential independence (Stout, 1987, 1990). An item pool is

said to be essentially independent with respect to the latent trait vector 0 if, for a given

initial segment of the item pool, the average absolute conditional (on a) covariances of

item pairs approaches zero as the length of the segment increases. When only one dominant

ability O meets the essential independence assumption, the item pool is said to be
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essentially unidimensional. In contrast, the assumption of local independence requires the

conditional covariances to be zero for all item pairs in question. The number of abilities

required to satisfy the local independence assumption is the dimensionality of the test.

While the traditional definition of dimensionality (Lord & Novick, 1968) counts all abilities

required to respond to test items correctly to satisfy the assumption of local independence,

essential dimensionality counts only dominant abilities required to satisfy the assumption

of essential independence (as opposed to local independence). DIMTEST, using this

definition, assesses the closeness of approximation of the model generating the given item

responses to the essential unidimensional model. Nandakumar (1991) describes the

theoretical differences between traditional dimensionality and essential dimensionality and

establishes through Monte Carlo studies the usefulness of DIMTEST for assessing essential

unidimensionality in the possible presence of several secondary dimensions.

To use DIMTEST for assessing essential unidimensionality, it is assumed that a

group of J examinees take an N item test. Each examinee produces a vector of responses of

is and Os, with 1 denoting a correct response and 0 denoting an incorrect response. It is

assumed that essential independence with respect to some dominant ability e holds and

that the item response functions are monotonic with respect to the same vector a The

hypothesis is stated as follows:

Ho: dE = 1 versus Ht: d > 1E

where dE denotes the essential dimensionality of the latent space underlying a set of items.

In order to assess essential unidimensionality of a given test data, DIMTEST follows

several steps. The steps are summarized briefly here (for details see Stout 1987;

Nandakumar & Stout, in press). First, test items are split into three subtests AT1, AT2,

and PT with the aid of factor analysis (FA) using part of the sample (a sample size of 500
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is recommended for this purpose). Items of AT1 are selected so that they all tap the same

dominant ability. Instead of using FA, it is also possible to use expert opinion (EO) to

select items for AT1. If the FA method of selection is chosen, DIMTEST automatically

determines the length of the subtest AT1. Once items for AT1 are chosen, items of AT2

are selected so that they have a difficulty distribution similar to those of AT1 items (for

details see Stout, 1987). The remaining items form the partitioning subtest PT.

Second, examinees are assigned to K different subgroups based on their score on the

partitioning subtest PT. In other words, all examinees obtaining the same PT total score

are assigned to the same subgroup. When the subtest PT is "long" and the test is

essentially unidimensional, within each subgroup k, examinees are assumed to be

approximately of similar ability. When PT is not long, the subtest AT2 compensates for

the bias in AT1 caused by PT being short. Also, AT2 compensates for the bias in AT1

caused by the presence of guessing or the difficulty factor that is often found by the factor

analysis.

Third, within each subgroup k, variance estimates, crl and o-^ 2u k, and the standard

error of estimate Sk are computed using item responses of AT1. These estimates are then

summed across K subgroups to obtain

K "2

k =1
k U,kTL

k

Similarly, TB is computed using items of subtest AT2. Stout's statistic T is given by

T = (T LT B)A7.

The decision rule is to reject If if T > Za, where Za is the upper 100(1a) percentile of the

8
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standard normal distribution, a being the desired level of significance.

When the given test data are well modeled by an essential unidimensional model,

items of AT1, AT2, and PT would all be tapping the same dominant dimension. Therefore,

the variance estimates Ug2k and ; 2 k
bewill approximately equal resulting lit a "small"

Tvalue, suggesting the tenability of Ho. On the other hand, when the test data is not well

modeled by an essential unidimensional model, the variance estimate at will be much

larger than crb k resulting in a "large" Tvalue leading zo the rejection of Ho.

Simulation studies (Stout, 1987; Nandakumar, 1987; Nandakumar & Stout in press)

on a wide variety of tests have demonstrated the utility of DIMTEST in discriminating

between one and twodimensional tests. Simulation studies by Nandakumar (1991) have

particularly demonstrated the usefulness of DIMTEST in assessing essential

unidimensionality with the aid of a rough index of deviation from essential

unidimensionality. The tests in Nandakumar (1991) were modeled by two and

higherdimensional IRT models as opposed to a onedimensional model, and the test items

were influenced by major and secondary abilities to varying degrees. For some tests, the

secondary ability or abilities influenced a high proportion of items, and for others the

secondary ability or abilities influenced only a small proportion of items. It has been shown

that DIMTEST reliably accepts the hypothesis of essential unidimensionality, provided the

model generating the test is close to the essential unidimensional model: established when

each of the secondary abilities influences relatively few items, or if secondary abilities are

influencing many items, the degree of influence on each item is small. The typeI error in

these cases was within tolerance of nominal level. As the degree of influence of the

secondary abilities increases, however, the approximation to an essential unidimensional

model degenerates, inflating the observed typeI error of the hypothesis of essential

unidimensionality. Simulation results (Stout, 1987; Nandakumar and Stout, in press) have

particularly demonstrated the excellent power of the statistic T when the model generating



ASSESSING ESSENTIAL DIMENSIONALITY-8

the item responses is twodimensional (two major abilities) with correlation between

abilities as high as .7 and items jointly influenced by both abilities.

Description of Data

The data sets used in the present study came from different sources. The U.S. history

and literature data for grade 11/age 17, from the 1986 National Assessment of Educational

Progress (NAEP, 1988) test data, were obtained irGin Educational Testing Service (ETS).

The General Science data, Arithmetic Reasoning data, and Auto Shop Information data for

grades 10 and 12, from the Armed Services Vocational and Aptitude Battery (ASVAB)

test data, were obtained from Linn, Hastings, Hu, and Ryan (1987). The Mathematics

Usage test data, the science test data, and the reading test data were obtained from

American College Testing program (ACT).

The NAEP achievement tests are part of the so called Balanced Incomplete Block

(BIB) design with spiraled administration (Rogers et al., 1988) which allows the study of

interrelationships among all items within a subject area. Because the U.S. history and

literature tests fall into the simplest category of BIB design, it was relatively easy to

gather the response data for all examinees taking these tests. Hence, these tests were

chosen for the present study. The items in each area (history and literature) were divided

into four "parallel" blocks with approximately the same number of items. One block of

items out of four was randomly selected in each case for the present study.

The U.S. history test data (HISTA) with 36 items consists of items requiring

knowledge from different time periods of U.S. history: Colonization to 1763; the

Revolutionary War and the New Republic, 1763-1815; Civil War, 1815-1877; the rise of

modern America, World War. I 1877-1920; the Depression, World War II, 1920-1945;

PostWorld War II, 1945to the present; and map items requiring the knowledge of

10
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geographical location of different countries in the world. A 31item subtest of HISTA,

named HIST was created (explained in detail in the next section) consisting of all the items

of HISTA, except the five map items. There are 2428 examinees in the HISTA and HIST

samples.

The literature test data (LIT) with 30 items consists of items requiring knowledge

within four literary genres: novels, short stories, and plays; myths, epics, and Biblical

characters and stories; poetry; and nonfiction. There are 2439 examinees in the LIT sample.

The ASVAB tests are used by the Department of Defense Student Testing Program

in high schools and post secondary schools. The Arithmetic Reasoning test data for grades

10 and 12, with 30 items each, consists of items requiring knowledge in solving arithmetic

word problems. The arithmetic reasoning test sample for grade 10 (AR10) has 1984

examinees, and for grade 12 (Afti2) has 1061 examinees. The Auto and Shop Information

test data for grades 10 and 12, with 25 items, each consists of items requiring knowledge of

automobile, tools, and shop terminology and practices. The auto shop test sample for grade

10 (AS10) has 1981 examinees, and for grade 12 (AS12) has 1974 examinees. The General

Science test data for grades 10 and 12, with 25 items each, consists of items requiring

knowledge in solving high school level physical, life, and earth sciences. There are 1990

examinees in the general science test sample for grade 10 (GS10) and 1990 examinees in the

general scien 'e grade 12 (GS12) sample.

The ACT mathematics usage test data (MATH) with 40 items consists of items

requiring knowledge in solving different types of mathematics problems: arithmetic and

algebra operations, geometry, numeration, story problems, and advanced topics. There are

2491 examinees in the MATH sample.

The ACT reading test data (READA) with 40 items consists of 4 passages, each

followed by 10 questions. The first three passages are taken from different books all dealing

with humanities, and the last passage is taken from a book about psychology. The first
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passage came from Of the Farm by John Updike. The second passage came from Light and

Color in Nature and Art .by Samuel Williamson and Herman Cummins. The third passage

came from Theatre: i f the Art by Brian Hansen. And the fourth passage

came from Toward a Psychology of Being by Abraham Maslow. A 30-item subset of

READ-A named READ was created (details in the next section) consisting of the first 30

items of READ-A. There are 5000 examinees in the READ-A and READ samples.

The ACT science test data (SCI-A) with 40 items consists of 7 passages, each

followed by 5 to 7 questions. The first passage dealt with the effect of the thymus gland on

the development of immune system in mice. The second passage dealt with sub-surface

ground water movement and its effects for waste disposal. The third passage dealt with the

periods of the pendulum on the earth and the moon and its relationship to the string length

and mass of the ball. The fourth passage dealt with the environmental impact of effluent.

The fifth passage dealt with a bimetallic ca:,alyst and its relationship to the speed of

certain chemical reactions. The sixth passage dealt with the views of two paleontologists on

the characteristics of dinosaurs. And the seventh passage dealt with the principals of

osmosis and osmotic characteristics of 3 categories of organisms. A 28-item subset of

SCI-A named SCI was created (explained in the next section) consisting of the first 28

items of SCI-A. There are 5000 examinees in SCI-A and SCI samples.

In addition, in order to examine the effect of sample size on DIMTEST, both SCI and

READ are randomly split into four mutually exclusive data sets. The READ is split into

READ1, READ2, READ3, and READ4with 750, 1000, 1250 and 2000 examinees,

respectively. Similarly SCI is split into SCI1, SCI2, SCI3, and SCI4with 750, 1000, 1250,

and 2000 examinees, respectively. In all there are 22 test data. These are listed along with

the test size and sample size in the first three columns of Tables 1 and 2.

2
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Creation of TwoDimensional Test Data

Three different sets of twodimensional test data from the content perspective were

created by combining responses from test dat4 that were assessed as essentially

unidimensional by DIMTEST in the present study.

The twodimensional test data, RS, was created by combining responses of 30 items

of READ with the responses of 6 items of SCI forming a 36item test with 5000 examinees.

The 6 items of SCI are part of one of the passages randomly selected from its 5 passages.

Just as in the unidimensional case of READ and SCI, RS is then randomly split into 4

mutually exclusive data sets RS1, RS2, RS3, and RS4with 750, 1000, 1250 and 2000

examinees, respectively. These tests are listed along with their test sizes and sample sizes

in the first four columns of Table 3.

The twodimensional test data ARGS1, for Grade 10, was created by combining the

responses of 30 items from AR10 with the responses of 5 items (randomly selected from 25

item responses) from GS10. Similarly, ARGS2 was created by combining the responses of

30 items from AR10 with the responses of 10 items from GS10. The twodimensional test

data GSAR1, for gradel2, was created by combining the responses of 25 items from GS12

with the responses of 5 items from AR12; and GSAR2 was created by combining the

responses of 25 items from GS12 with responses of 10 items from AR12. These test data are

listed along with their test sizes and sample sizes in the first four columns of Table 4.

The twodimensional test data HSTLIT1 was created by combining the responses of

31 items from HIST with the responses of 5 items (randomly selected from 30 item

responses) from LIT. Similarly HSTLIT2 and HSTLIT3 were created by combining the

responses of 31 items from HIST with the responses of 8 and 10 items, randomly selected,

from LIT respectively. These test data are listed along with their test sizes and sample

sizes in the first four columns of Table 5.
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Results

Unidimensional Studies

All the tests in Table 1, except HIST, READ, and SCI (which are derived subtests of

HISTA, READA, and SCIA, respectively as described below), were initially tested for

essential tmidimensionality using DIMTEST. In each case, 500 examinees were randomly

selected ':om the given pool for the use of selecting AT1 items, using factor analysis. The

rest of the items were used for computing Stout's statistic T. The size of AT1 (M) was also

determined by DIMTEST. For each test, the Tvalue and the pvalue are noted. Table 1

lists the T and pvalues for all tests in the fourth and fifth columns The method of

selection of the AT1 subtest, the value of M, and item numbers selected for AT1 are listed

in the last three columns of Table 1.

Table 1 about here

It can be seen from Table 1 that the pvalues associated with test data LIT, AR10,

AR12, GS10, and GS12 are well above the nominal level of significance (a=.05), thereby

strongly affirming essential unidimensional nature of these tests. That is, the underlying

model generating the test data is judged essentially unidimensional. However, the pvalues

associated with HISTA, AS10, AS12, MATH, READA, and SCIA are well below the

nominal level of significance of .05, thereby strongly affirming the multidimensional nature

of these test data. For these tests where pvalues were below the nominal level, the nature

of multidimensionality was further explored.

1,4
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When the test data are essentially unidimensional, items of AT1 are, by logic, of the

same dominant dimension as the rest of the items; therefore, DIMTEST does not reject the

null hypothesis. When the test data is not unidimensionai, however, the items of AT1 are

dimensionally different from the rest of the items, and DIMTEST rejects the null

hypothesis of essential unidimensionality. Following this reasoning for tests where pvalues

were very low, the content of items of AT1 were examined. Table 1 shows that for

HISTA, items 12 through 16 and item 6 were selected for AT1. Upon studying the content

of these items, it was found that items 12 through 16 were homogeneous and differed

dimensionally from the rest of the items of HIST A; these 5 items require the knowledge of

location of different countries on the world map (map items), while the rest of the items

deal with U.S. history. It is also possible in theory that these items were selected for AT1

due to chance alone. In order to test for this, DIMTEST was applied on the given sample of

2428 examinees 100 times repeatedly, each time randomly splitting 2428 examinees into

two groups of 500 and 1928 examinees. That is, AT1 items were selected repeatedly on

different random samples of 500 examinees each. The resampling results showed that items

12 through 16 were consistently selected for AT1. In addition to these items one or two

more items, which varied from run to run, were selected from the rest of the items. Hence

it was concluded that the map items are dimensionally different from the rest. A subset

HIST was formed consisting of all items of HISTA except for map items. It can be seen

from Table 1 that the pvalue associated with HIST (p=.095) shows evidence of essential

uniclimensionality. Furthermore, from the content perspective, items of AT1 do not form a

set that is dimensionally different from the rest of the items of HIST.

A similar phenomenon was observed with test data READA and SCIA. For

READA, the last 10 items (items followed by the last passage) formed part of subtest

AT1. Again these same 10 items formed part of AT1 in repeated resampling applications of

DIMTEST. Upon studying the content of these items, it was found that these 10 items
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tapped "psychology" content area which is different from the "literature," tapped by the

first three passages. Another possibility is that, since these are the last 10 items of reading

test, speededness could have caused the secondary dimension. Based on these observations,

it was concluded that these items were dimensionally different from the rest, and a subset

READ was formed consisting of first 30 items of READA. It can be seen from Table 1

that the pvalue associated with READ (p=.32) shows strong evidence of an essential

unidimensional model underlying the test items. In addition, items of AT1 now come from

all the passages of READ.

For test data SCIA, the 12 items following the last two passages formed part of

AT1. Just as in HISTA and READA, after resampling application of DIMTEST, these

items were removed. The resulting subtest SCI with the first 28 items was still found to be

multidimensional (p=.002). Thus, a unidimensional subset could not be formed. Unlike

reading test items, science test items come from distinctly different content areas, with a

moderate correlation among content areas, and require a higher level of abstract reasoning

and analytical skills than the reading items. Thus, in addition to content areas, difficulty

or speededness could have caused major secondary dimensions in this case.

For the test data MATH, AS10, and AS12, where pvalues were low, items of AT1

did not form a subgroup tapping a secondary ability as found in HISTA, READA, or

SCIA. In addition upon studying the content of the items, it was found these items tap

raulaple major content areas. Therefore these test data are treated as multidimensional.

Table 2 about here

Table 2 shows dimensionality results of the unidimensional READ and

lb
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multidimensional SCI test data for different sample sizes. The pvalues associated with

READ1 through READ4 show evidence of a high degree of essential unidimensionality

underlying the test data. These results are consistent with that of READ in Table 1. The

selection of items of AT1 for tests READ1 through READ4 are highly varied, and yet they

consistently affirm essential unidimensionality. The results of SCI1 through SCI4 are

consistent with that of SCI in Table 1 in affirming multidimensionality of the test data.

Items of AT1 varied highly for all four tests and yet consistently affirmed

multidimensionality, except for SCI3.

Twodimensional Studies

Results of twodimensional reading and science test data are reported in Table 3.

Since items that tap a distinct second dimension, from the content perspective, are clearly

known (in this case, 6 SCI items), the science items were forced to be selected for AT1.

This is an example where expert opinion is used to select AT1 items. The T and pvalues

for RS1, RS2, RS3, RS4, and RS strongly confirm the twodimensional nature of these test

data. As expected, as the sample size increases, the power also increases.

Table 3, Table 4 and Table 5 about here

The results of the twodimensional test data of ARGS GSAR are reported in

Table 4. Also in this case, since items that are used to create these twodimensional data

are known (GS items for ARGS and AR items for GSAR), these items were forced to be

selected for AT1. The T and pvalues associated with all the four tests strongly confirm

17
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the multidimensionality of these test data. For ARGS1 and ARGS2, there is a sharp

increase in T- and p-values as the degree of contamination, as measured by the number of

item responses contaminated, increases from 5 to 10.

The results of the two-dimensional history and literature test data are reported in

Table 5. As with other two-dimensional tests, LIT items were forced to be selected for

AT1. Also in this case, the T- and p-values confirm the multidimensional nature of these

data.

DIMTEST was again applied to a sample of test data selected from two-dimensional

tests. This time FA was used as the method of selection for AT1 items. The purpose of this

analysis was to check if the FA method of selection of AT1 items would lead to the similar

p-values as with EO. The findings revealed that for these tests FA could not always ferret

out purely unidimensional items from content perspective. The subtest AT1 had a mixture

of items tapping both dimensions, and DIMTEST was then able to correctly assess

dimensionality only when there were 1000 or more examinees for computing the statistic.

Discussion and Conclusions

None of the tests examined in the present study are strictly unidimensional in the

sense of measuring only one ability. Items, in every test, are influenced by several

secondary abilities in addition to the major ability intended to be measured. Based on

DIMTEST analysis, some test data were assessed as fitting an essential unidimensional

model while others were not. This depends upon whether the secondary abilities were major

or minor.

The unidimensionality analysis of HIST-A, READ-A, and SCI-A present interesting

findings. For HIST-A, the map items had high second factor loadings and thus were

selected for AT1. Consequently, the computed T-statistic wu large, leading to the
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rejection of Ho and implying that AT1 items are dimensionally different from the rest of

the test. Content analysis of HISTA reveals that HISTA consists of items of United

States history for different time periods spanning from 1763 to present time. These items

cover such a large span of time that the test is surely slightly multidimensional for this

reason alone. In addition, the test contains map items. The map items, however, were

isolated and statistically confirmed as not measuring the same trait as the rest of the test.

This shows that the statistic T is highly sensitive to distinct major dimensions (in this

case, map items). The analysis of HIST, with map items removed, reveals that it is

essentially unidimensional. Thus the statistic T seems to be robust against relatively minor

correlated abilities influencing test items while being sensitive to major abilities. Likewise,

for the test data READA, multidimensionality was caused by items tapping psychology

topic (scientific) versus literature topics (humanities). Once the psychology item responses

were removed, the remaining item responses could be well modeled by an essential

unidimensional model. In contrast, the multidimensionality in SCIA was due to not only

distinct major abilities but also likely due to speededness of the test, which in itself is a

major determinant. Moreover, an essential unidimensional subtest could not be formed for

SCIA.

Another interesting feature of these analyses is that although both READ and SCI

are paragraph comprehension type test data, they differ widely in the degree of their

approximation to essential dimensionality. The READ test data has 3 passages each

followed by 10 items, all dealing with humanities. Although these passages come from

different sources, the model underlying the item responses approximates an essential

unidimensional model. This is an example where a few secondary abilities (possibly highly

correlated) each influence a large group of items. In contrast, the SCI test data has 5

passages each followed by 5 or 6 items. These passages, although they deal with science in

general, come from widely different and conceptually difficult topics, and the model
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underlying the item responses does not approximate an essential unidimensional model.

This is an example where many secondary abilities each influence a small groups of items,

but the strength of the influence of these secondary abilities is such that item responses can

not be well modeled by an essential unidimensional model. These results are consistent

with simulation results of Nandakumar (1991) in that the number of hen i,-.31uenced by

secondary abilities and the strength of the secondary abilities present determine the degree

to which the assumption of essential unidimensionality is violated.

The results obtained in this study are similar to the results obtained by other

researchers who have analyzed some of these data using different statistical methodologies.

Zwick (1987) performed dimensionality analyses of HIST-A and LIT by various techniques

to assess dimensionality and concluded that these are unidimensional. Regarding the ACT

data, it is believed that MATH and SCI are multidimensional. Bock, Gibbons, and Muraki

(1985) have analyzed ASVAB test data for a different sample and found a significant

second factor for arithmetic reasoning, general science, and auto shop information. Since

the sample used here is not the same it is hard to develop a meaningful comparison.

The results of two-dimensional tests demonstrate a very good power of the statistic

T. The statistic T has the capability to ignore minor secondary traits, which should be

largely discounted, from the major dominant traits. This is evidenced in several cases. The

test data HIST illustrates this. There is inherent multidimensionality in HIST as it covers

a range of time periods in history. However, the p-value is above the nominal level of

significance, suggesting acceptance of unidimensionality. By contrast, with the additional

contamination of only 5 LIT items or 5 map items, the T-value shoots up, indicating

essential multidimensionality of the data. This remarkable sensitivity of the statistic T to

major dimensions illustrates its power.

These results, for the first time, have illustrated both the factor analysis approach

and the expert opinion approach to select items for the subtest AT1. Tables 1 and 2 use FA

2u
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to select AT1 items, and Tables 3, 4, and 5 use EO. It is evident that FA serves as an

exploratory tool and EO serves as a confirmatory tool in selecting items for AT1 to assess

essential dimensionality.

The dimensionality of a given set of item. responses in certain sense is a

continuumone cannot determine whether a given data of responses generated by a set of

items to an examinee sample is truly essentially unidimensional or truly multidimensional;

one can only approximate. Although the exact number of dimensions in an IRT model is

rigorously defined for a finite length test, the number of dominant dimensionswhether

determined by Stout's essential dimensionality conceptualization or by some other

conceptualizationis only rigorously definable for an infinitely long test. In other words,

for a finite test (that is, for any real test data) it is a judgment call whether a particular

IRT model is seen as having one, or more than one, dominant dimension, based upon where

on the continuum the amount of multidimensionality falls. One consequence of this is that

the performance of ability estimation procedures such as LOGIST or BILOG needs to be

addressed in the context of the assessment of the amount of lack of unidimensionality. In

this regard, indices of lack of essential unidimensionality developed by Junker and Stout

(1991) will be extremely useful. These indices can be used to decide when it is safe to use

unidimensional estimation procedures such as LOGIST and BILOG to arrive at accurate

estimates of ability.

In cases where approximation of essential unidimensional model to the data is in

question, there are various alternatives. The test items can be split into essential

unidimensional subtests (for example, HISTA and READA). Another possible approach

is to investigate the applicability of the concept of "testlet" to the data (Rosenbaum, 1988;

Thissen, Steinberg, and Mooney, 1989). If the assumption of local independence is violated

within the passages but maintained among the passages, the theory of testlets promises

unidimensional scoring for such tests. The test data SCIA and SCI could fall into this
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category. Multidimensional modeling can be applied if either of the above procedures can

not be applied (Reckase, 1989).
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Table 1
Results of

o'
dE 1,1 a .05

* **
Test No. of No. of T p Selection of Al Items of

items Examinees AT1 items AT1

HISTA 36 2428 6.19 .00001 FA 6 6,12,13,14,15,16
HIST 31 2428 1.31 .095 FA 5 7,23,24,26,30
LIT 30 2439 .71 .234 FA 6 5,9,18,20,22,26
AR10 30 1984 .75 .727 FA 6 1,3,4,5,6,8
AR12 30 1961 .64 .260 FA 4 1,4,6,14
GS10 25 1990 .96 .168 FA 5 4,16,19,23,25
GS12 25 1988 .26 .601 FA 6 14,15,19,23,24,25
AS10 25 1981 2.27 .012 FA 5 4,16,19,23,25
AS12 25 1974 3.64 .000 FA 5 3,4,8,14,22
MATH 40 2491 2.79 .003 FA 10 1,5,25,27,29,30

32,34,35,39
READA 40 5000 8.67 .00001 FA 10 31,32,33,34,35,36,

37,38,39,40
READ 30 5000 .48 .32 FA 7 1,2,6,11,12,13,21
SCIA 40 5000 3.19 .0007 FA 12 29,30,31,32,33,34

35,36,37,38,39,40
SCI 28 5000 2.97 .002 FA 5 2,3,5,8,12

*AT1 items can be selected by using factor analysis (FA) or by expert
opinion (E0).
**

is the size of AT1

Table 2
Results (-c Ho: dE = 1, a = .05

Test No. of No. of
items examinees

T p Selection of
AT1 items

M Items of
AT1

READ1 30 750 .05 .480 FA 5 11,12,13,15,17
READ2 30 1000 .48 .317 FA 7 1,2,6,11,12,13,21
READ3 30 1250 .06 .524 FA 7 2,4,6,9,11,12,13
READ4 30 2000 1.01 .155 FA 5 1,11,12,13,16

SCI1 28 750 1.89 .029 FA 7 1,3,4,5,17,20,21
SCI2 28 1000 3.19 .007 FA 6 8,12,14,18,20,24
SCI3 28 1250 1.38 .080 FA 7 6,9,10,11,19,25,28
SCI4 28 2000 2.91 .001 FA 7 8,9,10,11,12,19,22



Table 3

Results of Ho: dE 1 for twodimensional tests:

READ & SCI; .05

Test No. of No. of T p Selection of M Items of

Items Examinees AT1 items AT1

RiED SCI

RS1 30 6 750 1.92 .020 E0 6 31,32,33,34,35,36

RS2 30 6 1000 2.72 .003 E0 6 31,32,33,34,35,36

RS3 30 6 1250 3.71 .0001 EO 6 31,32,33,34,35,36

RS4 30 6 2000 3.32 .0005 ED 6 31,32,33,34,35,36

RS 30 6 5000 6.83 .0000 EO 6 31,32,33,34,35,36

Table 4

Results of Ho: dE . 1 for twodimensional tests:

AR k GS; a=.05

Test No. of No. of T p Selection of M Items of

Items Examinees AT1 items AT1

AR GS

ARGS1 30 5 1853 2.85 .002 EO 5 31,32,33,34,35

ARGS2 30 10 1853 6.15 .000 E0 10 31,32,33,34,35,
36,37,38,39,40

GSAR1 25 5 1811 4.29 .000 EO 5 26,27,28,29,30

GSAR2 25 10 1811 4.06 .000 E0 10 26,27,28,29,30,
31,32,33,34,35

Table 5

Results of Ho: dE 1 for twodimensional tests:

HIST k LIT; a=.05

Test No. of No. of T p Selection of M Items of

Items Examinees AT1 items AT1

HIST LIT

HSTLIT1 31 5 2428 3.01 .036 E0 5 32,33,34,35,36

HSTLIT2 31 8 2428 3.38 .000 E0 8 32,33,34,35,36,
37,38,39

HSTLIT3 31 10 2428 2.03 .021 Ell 10 32,33,34,35,36,
37,38,39,40,41
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