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Abstract: With electricity representing around 20% of the global energy demand, and increasing

support for renewable sources of electricity, there is also an escalating need to improve solar

forecasts to support power management. While considerable research has been directed to statistical

methods to improve solar power forecasting, few have employed finite mixture distributions. A

statistically-objective classification of the overall sky condition may lead to improved forecasts.

Combining information from the synoptic driving conditions for daily variability with local processes

controlling subdaily fluctuations could assist with forecast validation and enhancement where

few observations are available. Gaussian mixture models provide a statistical learning approach

to automatically identify prevalent sky conditions (clear, semi-cloudy, and cloudy) and explore

associated weather patterns. Here a first stage in the development of such a model is presented:

examining whether there is sufficient information in the large-scale environment to identify days with

clear, semi-cloudy, or cloudy conditions. A three-component Gaussian distribution is developed that

reproduces the observed multimodal peaks in sky clearness indices, and their temporal distribution.

Posterior probabilities from the fitted mixture distributions are used to identify periods of clear,

partially-cloudy, and cloudy skies. Composites of low-level (850 hPa) humidity and winds for each

of the mixture components reveal three patterns associated with the typical synoptic conditions

governing the sky clarity, and hence, potential solar power.

Keywords: mixture distribution; sky clearness; solar radiation classification; weather patterns

1. Introduction

Improving forecasts of power from solar panels, whether short-range forecasts out to a few hours,

or longer, such as subseasonal forecasts, has been the subject of much research in recent years (as

reviewed by [1–4]). The target uses of the forecasts include planning future installations, optimizing

plant operations and efficiency, or balancing load demand and delivery [5]. As outlined by [6],

the choice of forecasting technique varies with the decision and time-scale of interest (hourly, daily, and

multiday). Solar power can be estimated as a function of solar irradiance, the solar photovoltaic cell

properties, and temperature (e.g., [7,8]), allowing power forecasts to leverage weather forecasting of sky

conditions. While statistical techniques are often favored for very short-term modeling, satellite-based

forecasts of cloud advection perform well in the multihour range [9,10], and longer-term forecasts are

generally found to be most reliable from numerical weather prediction models (e.g., WRF Solar [11]).

A thorough review of the common forecast approaches at different time aggregations is provided

by [4], finding that almost 75% of methods are statistics based. Of these, deterministic irradiance

forecasts often combine clustering analyses to classify the sky state [12–15], followed by a machine-based

learning algorithm to develop forecasts [16–19]. However, clustering analyses are subjective and

can result in model overfitting [20]. Approaches that combine clustering with machine learning can

Energies 2019, 12, 4409; doi:10.3390/en12234409 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2491-1020
https://orcid.org/0000-0003-1142-7184
http://www.mdpi.com/1996-1073/12/23/4409?type=check_update&version=1
http://dx.doi.org/10.3390/en12234409
http://www.mdpi.com/journal/energies


Energies 2019, 12, 4409 2 of 17

challenge the principle of parsimonious modelling by requiring additional estimation to achieve

accurate forecasts [21].

The statistical technique of finite mixture distributions is often used with success for wind power

forecasts (e.g., [5,22–24]), but seldom employed for solar power [25]. Finite mixture distributions and

their companion hidden Markov models (HMMs) [26] are fully probabilistic models representing the

full distribution of event frequencies, where HMMs also incorporate a transition probability for the

shift between each regime. This option is attractive, as the atmospheric regimes driving clear or cloudy

sky conditions cannot necessarily be known a priori [27]. HMMs have been used to good effect in

combination with atmospheric patterns to improve climate projections [28] and seasonal forecasts

(e.g., [29]). However, the drawback of HMMs is that if the state transition matrix is unconstrained,

an infinite number of distribution components and state transitions can be identified [30]. As this is

inefficient and often difficult to interpret [31], a simpler approach is to identify the likely candidates

in the absence of transitions, i.e., to use finite mixture models to develop a plausible hypothesis of

driving mechanisms.

To date, finite mixture models have tended to employ Dirichlet multinomial distributions on

prepartition, subhourly data to forecast solar irradiance from sky clearness indices [20,32]. A drawback

of the Dirichlet method is the assumption that sky clarity is adequately described by a discrete

distribution, yet the continuous nature of sky clarity can render it sensitive to the choice of data

bins [33]. While there is considerable evidence for multimodality in the continuous distributions

of solar irradiance indices [21,34,35], the use of other statistical distributions has seldom been

explored. HMM and other Markov chain processes have similarly focused on subhourly to subdaily

forecasts [16,18,19,36]. However, the transition matrices between sky states are often assumed to be

the same for all days, once seasonality has been removed, which is unlikely to be correct [37] and can

lead to substantial forecast errors [38,39].

We suggest that a better forecast may be achievable by combining knowledge of both daily

and subdaily solar irradiance fluctuations to allow for both the synoptic driving conditions for daily

variability, and microscale processes, e.g., governing convective cloud development [40]. As a first

step in this analysis, we employ finite mixture models to explore whether it is possible to identify

clear, overcast, or cloudy days and associated synoptic processes in an objective manner. Mesoscale

variability could then be incorporated in a nonhomogeneous HMM to dictate the subhourly evolution

of irradiance, dependent on the daily state (e.g., [36,38,41]). This paper presents the first part of that

analysis for a large solar power plant in the western desert area of Kuwait where the Shagaya Renewable

Energy Plant is being deployed. The statistical model is applied to daily values of sky clearness indices.

Composites of geopotential mean relative humidity and wind at 850 hPa are then produced for the

representative days of each distribution component to identify driving synoptic conditions.

Section 2 summarizes the data and methods used for this research, and Section 3 presents initial

exploratory analyses. The results of the mixture model development and relation to geopotential

humidity and winds are presented in Section 4, while Section 5 concludes and suggests further

research avenues.

2. Data and Methods

2.1. Data

We combine on-site observations with other ground-based meteorological observations for

the exploratory analysis, and satellite observations of global horizontal irradiance (GHI) for

statistical analyses.

Meteorological data from surface weather stations and meteorological towers were supplied by

the Kuwait Institute for Scientific Research (KISR) and their contractors for the period July 2012 to

June 2018, with approximately 20% missing data. Supplementary daily observations were obtained

from three Global Historical Climatological Network Daily (GHCND) stations [42,43] in addition to
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hourly observations from eleven Integrated Surface Data locations [44]. All ground-based observation

stations are indicated in Figure 1, together with the site of interest. The meteorological data were used

for the exploratory analyses presented in Section 3, to establish likely mechanisms affecting sky clarity.

 

 

 

Figure 1. Location of ground-based observation stations in Kuwait: WMO Daily stations (blue);

Integrated Surface Data stations (purple), Shagaya Renewable Energy Plant (red).

HelioSat-4 [45] is a physical model that uses aerosol properties, total column water vapor, and

ozone content from the Copernicus Atmospheric Monitoring Service (CAMS) in combination with

Meteosat satellite observations of cloud properties to derive the global, direct, and diffuse solar surface

irradiances, at ground level and normal angle of incidence. McClear [46] provides estimates of the

Global Horizontal Irradiance (GHI) under cloudless (or clear-sky) conditions, and has been validated

for 1-min measurements. McCloud [45] uses the McClear model to estimate the GHI under all sky

conditions by calculating the reduction in irradiance caused by clouds. Time-series are available for a

given location from 2004 to the present in 1 min, 15 min, 1 h, 1 day, and 1 month sums over Europe,

Africa, the Middle East, the Atlantic Ocean, and eastern parts of South America, interpolated to the

point of interest [46]. The data used for the present study are for complete years 2005–2017, 1 min

interval GHI (McClear and McCloud) at the Shagaya Renewable Energy Plant, available from the

Copernicus portal (http://atmosphere.copernicus.eu/).

Daily mean 850 hPa wind vectors and 850 hPa relative humidity fields for the greater Middle East

area were obtained from the ERA-Interim reanalysis archive [47] for the period 2005–2017.

2.2. Method

2.2.1. Clearness Index

Clouds present the greatest source of subhourly variability in GHI, with the fractional changes

greatest at midday [2,17]. Furthermore, daily and seasonal changes in the zenith angle can introduce

other errors in GHI measurements [38]. While solar power forecasts are usually at a high temporal

resolution (e.g., [1]), this analysis is on daily, and longer, variability. Given that our focus is on

synoptic-scale conditions, we avoid the influence of daily zenith angle fluctuations (i.e., sunrise and

sunset) and very short irradiance fluctuations by working with cumulative daily total GHI for the

purpose of this initial assessment. Further, cumulative daily total GHI removes the emphasis of diurnal

variability, or the errors inherent in utilizing the mean of highly variable data. Seasonal variations in

the theoretical available irradiance are removed by working with the Clearness Index.

http://atmosphere.copernicus.eu/
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The Clearness Index (Kt) [48] is the quotient of observed surface (It) and extra-terrestrial irradiation

(It
clr), or Kt =

It

Iclr
t

. This nondimensional measure is also deseasonalized, and can be calculated for

any temporal aggregation from hourly to monthly (e.g., [49]). Kt values are in the range (0, 1), where

values of 0 correspond with dark or fully obscured skies, and values of 1 correspond to the theoretical

maximum sky clarity for that particular location, time, and date.

2.2.2. Mixture Distributions

Finite mixture models are selected to account for the unobserved heterogeneity caused by different

sky conditions; a benefit is that exact proportions of the mixes do not need to be defined, but rather, can

be inferred from the data [26]. We assume that the data can be described by a homogeneous mixture

(i.e., >1 components derived from the same distribution family) for the different sky conditions. Further,

we assume that the data are continuously distributed and are Gaussian derived [13,21], although some

have suggested that other distributions are more appropriate [36].

An independent mixture model f (y)with k components is the weighted average, wi, for i = 1, . . . , k

component distributions with θ the parameter space, fi(y;θi) and for wi ≥ 0. Where:

f (y) =
k
∑

i=1

wi fi(y;θi) (1)

and
k
∑

i=1

wi = 1 (2)

The mean is a weighted average of the component means, while the variance comprises the

weighted variance of each component distribution and an increase in dispersion arising from the

difference in component means. Differences in the means tending to zero, or a vector of component

weights tending to (0, 1), is indicative of the underlying data converging to a single component

distribution [50]. For a two-component distribution, i = 1, 2, the mean, µ, and variance, σ, of the

mixture can be expressed as:

µ = w1µ1 + w2µ2 (3)

σ2 = w2σ
2
1 + w2σ

2
2 + w1w2(µ1 − µ2)

2 (4)

While it is possible that a two-component distribution may exist with a small difference between

the means and different estimates of variance, manifesting as a unimodal mixture, it is unlikely in this

case where there are clear differences in the sky conditions.

The Expectation-Maximization (EM) algorithm [51] is an iterative, two-step procedure to estimate

the partition (wi) between distinct distributions and the relevant parameters (θi), when the exact values

for wi and θi are unknown. The Expectation step (E-step) develops an “averaged” log-likelihood

function for the parameter estimates, which is then maximized to select improved parameter estimates

in the Maximization step (M-step). The process is iterated until convergence is reached for estimates of

wi and θi [52]. Other algorithms such as the Levenburg-Marquardt or Quasi-Newton methods may be

more efficient and effective in avoiding “noninteresting maxima”, but they are far more sensitive to the

initial parameter estimates [22].

The selection of the initial parameter estimates can be important to ensure that convergence to

a global optimum is achieved. However, where maxima that are not representative of the data, or

insignificant differences between distributions occur, the process is repeated with different initial

conditions to validate the result. We adopt the default conditions for initial parameter estimates,

convergence (changes in loglikelihood ≤ 1 × 10−8), and iterations (<1000) provided in the R software

package (version 3.5.2, R Core Team, Vienna, Austria) [53], mixtools [54]. That is, data are randomly

partitioned into k components with parameters selected as the initial mean of each component and a
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common variance. Mixture weights are random selections from a uniform distribution (i.e., random

selections that are normalized to sum to 1). The optimum number of distribution components is tested

using a combination of Akaike’s Information Criterion (AIC) [55] and a bootstrapping approach with

100 repetitions.

3. Exploratory Evidence

The annual distributions of the daily and subdaily clearness index (in Figure 2) demonstrate

multimodal properties that are suggestive of multiple component distributions. This multimodality is

more apparent for subdaily (Figure 2a) than daily data (Figure 2b). However, the subdaily data includes

twilight observations at zenith angles <10◦ that may cause abnormal fluctuations of irradiance [56].

 

௜ݓ ௜ݓ௜ߠ ௜ߠ
௜ݓ ௜ߠ

≤  1 ×  10ି଼ mixtools݇

௧Figureܭ 2. Annual distributions of (a) Subdaily and (b) daily clearness indices (Kt) from CAMS.

Plotting the daily data by month (Figure 3) suggests that the same component distributions are

more prevalent at different times of the year, reflecting seasonal weather fluctuations at the site, and

the influence of latitude on solar intensity. For instance, Ref. [57] noted that winter season precipitation

is useful for estimating the likely frequency of dust-storms, which would correlate with periods of

lower sky clarity as appears to be the case for January, February, and December. Ref. [58] identified

that poor visibility events in the UAE arise either as a result of dry, wind-induced dust storms, or

wetter weather such as fog or haze. Thus, rare poor visibility events during the summer are probably

related to the Haboob winds transporting dust from the east and northeast [59]. Stronger wind speeds

occur the hotter months, strengthening in response to the Low Level Jet during nocturnal hours and

offset from the peak GHI [60]. In contrast, the winter north and northwesterly winds bringing higher

relative humidity from the Gulf of Aman impact at-site visibility while more stable, clearer, conditions

occur in the summer [59], as is apparent in Figures 3 and 4.

Figure 4 illustrates the daily clearness index, calculated from a time series of extra-terrestrial and

received solar irradiation between 2005 and 2017. For each day, the color represents the mean value of

the clearness index on that calendar day. While the figure is for illustrative purposes only, it highlights

the fact that for the majority of the year there are excellent visibility conditions (Ktx > 0.8), with the

lowest values occurring during the winter months.
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Figure 3. Daily values of clearness index by month.

 

Figure 4. Mean Daily Clearness Indices (Kt) by day and month for the period 2005–2017.
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As daily maximum temperatures at the Shagaya Renewable Energy site were only available since

2012, GHCND Abraq Mazraa observations of daily maximum temperature are used as a proxy to

increase the period of record for comparison with daily clearness. The correlation between daily

maximum temperatures and daily clearness values is plotted in Figure 5 for 2007–2017. This supports

the correlation between the highest daily temperatures and the highest values of clearness also found

by [59]. Again, this result reflects the local climatology and expected seasonal pattern of higher

temperatures during July and August, as well as the highest clearness values during the summer

months (darker shades of red).

Solar panel efficiency starts to reduce at high temperatures, similar to the reduced efficiency of

wind power at high wind speeds. Recent research has demonstrated that while higher winds and

temperatures (and, thus, sky clarity) are seasonally coincident, higher wind speeds occur nocturnally,

allowing for more consistent power generation at sites combining wind and solar generation [60]; refer

to Figure 6a. The higher wind speeds can occasionally lead to dust storms that will impair solar panel

productivity [58], but these events are rare.

 

௧௫ܭ > 0.8

௧Figureܭ 5. Scatter plot illustrating correlation between Daily Clearness Index (Kt) and Daily Maximum

Temperature at Abraq Mazraa (◦C) for 2007–2017.
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Figure 6. Mean annual daily wind observations from Shagaya Renewable Energy Park as: (a) wind roses

of speed and direction by month; and frequency distributions of (b) wind direction and (c) wind speed.

4. Results

We assume that the distribution of daily clearness indices is Gaussian distributed. From the

evidence presented in Section 3, we expect a minimum mixture of two Gaussians, representing good

and poor conditions. A disadvantage of mixture model distributions is that they can appear to

improve statistical model fitting by using multiple mixture components to fit the data, rather than

each component truly arising from a different driving regime. With this in mind, it is possible that the

data are derived from a single exponential-type distribution [36]. Alternative distribution families,

including gamma, exponential, and Weibull, were compared using a range of model diagnostics

(loglikelihoods, AIC, goodness of fit), for distributions with 1 to 5 components (not shown), concluding

that multiple Gaussian distributions are the most appropriate choice [61].

4.1. Mixture Models

The exploratory analyses suggest that the multiple components of a distribution arise from

seasonally varying processes, and that within each season, there is not as much variability as there is

annually. Therefore, we can test the validity of model assumption using a bootstrapping approach,

iterating the model fits for 100 random samples of the data.

Figure 7 illustrates loglikelihood values for mixture distributions with 1 to 5 components fitted

to daily clearness indices; the process was repeated for 100 data samples, with no replacement.

The continued increase in loglikelihood values could suggest that there are 4 or 5 processes represented

by the mixture components. However, closer inspection reveals that the increase in loglikelihood

from 3 to 4, and then 4 to 5, is not significant. Further, the fourth and fifth components have very low

mixture weights and parameters that overlap with another distribution component, indicating that a

three-component Gaussian mixture model is the optimum configuration.
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The final 3-component mixture model is illustrated in Figure 8a in red, together with the results

from 100 random samples in darker red. Figure 8b shows the improvement in data representation by

comparing the quantile–quantile plots of a single distribution (grey), the three components (red), and

three components from 100 random samples (darker red). The mixture model comprises:

Component 1 : µ1 = 0.61 σ1 = 0.16 w1 = 0.27

Component 2 : µ2 = 0.89 σ2 = 0.05 w2 = 0.17

Component 3 : µ3 = 0.93 σ3 = 0.02 w3 = 0.56

where µi is the component mean; σi is the component standard deviation; and wi is the component

weight. Thus, the resultant probability density function for the full mixture has µ = 0.83 and σ = 0.06.

 

 

Figure 7. Log likelihood values for Gaussian mixture models with 1 to 5 components.
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Component 1 : ߤଵ = ଵߪ    0.61  = ଵݓ    0.16 = 0.27Component 2 :  ߤଶ = ଶߪ    0.89 = ଶݓ    0.05 = 0.17Component 3 :  ߤଷ = ଷߪ    0.93 = ଷݓ    0.02 = ௜ߤ0.56 ௜ߪ ߤ௜ݓ = 0.83 ߪ =0.06

Figure 8. Daily Clearness indices (Kt) with three-component Gaussian mixture in red, 95% confidence

intervals in dark red, and single Gaussian in grey, represented as (a) distribution densities; and

(b) quantile-quantile plots.

We then examine the fitted distributions for plausibility to ensure that they reflect the assumption

of seasonality where each component arises from a common set of processes. Posterior probabilities

from the fitted mixture distributions are used to identify periods of clear, partly-cloudy, and cloudy

skies. When plotted with respect to the calendar day, the hypothesis that the three components reflect

seasonal weather patterns is supported. Figure 9 illustrates the observed value of daily clearness by

month in purple; gray dots represent the mean of each distribution component with respect to the

associated posterior probability of each observation. Thus, there are gaps in Component 1′s sequence

of gray dots during July and August when the sky clarity is highest. The posterior probabilities

predict that daily clearness indices fall mainly into Component 3; purple dots are spread around two

components, but are largely concentrated in the top portion of the chart. In contrast, the posterior

probabilities and observed indices for January and December show a broader spread across all values,

with a higher concentration of values in Component 1.

 

௧ܭ

Component 1 : ߤଵ = ଵߪ    0.61  = ଵݓ    0.16 = 0.27Component 2 :  ߤଶ = ଶߪ    0.89 = ଶݓ    0.05 = 0.17Component 3 :  ߤଷ = ଷߪ    0.93 = ଷݓ    0.02 = ௜ߤ0.56 ௜ߪ ߤ௜ݓ = 0.83 ߪ =0.06

 

Figure 9. Posterior probability of distribution components (dark grey) with respect to calendar day

and observations (purple).
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4.2. Identification of Synoptic Weather Conditions

Statistical testing (Figure 7) indicates that a three-component Gaussian mixture model best

represents the distribution of daily clearness indices for this site in Kuwait. However, it is important to

evaluate whether there is a physical mechanism underlying the data distribution, or if the apparent

mixture components arose as a statistical artefact of the data. [31] assessed the reality of distribution

components by comparing the posterior probabilities to geopotential heights. We use the posterior

probabilities to select the days that have an observed clearness index closest to the component mean.

While the components are not calculated seasonally, the selected dates naturally partition according to

summer, winter, and spring/fall seasons. We then composite the low-level (850 hPa) relative humidity

and low-level (850 hPa) winds on those days to examine whether there is a clear signal of large-scale

synoptic behavior (Figure 10). This elevation was selected as an appropriate elevation to minimize the

influence of the variable terrain, while still illustrating surface weather patterns through the strength

and direction of moisture fluxes. As with [31], allowing the data to self-organize into regimes has led

to more readily-interpretable weather patterns (explained below).

Higher relative humidity can lead to aerosol particle growth and coalescence, reducing

visibility [58]. This is apparent in Component 1 (35–40% humidity), where the anticyclonic pattern

centered over Oman results in moderate south-westerly flow over Kuwait transporting moist air from

the Red Sea. Component 2 has the lowest relative humidity; however, the strong northwesterly winds

bring dust from the desert regions of Iraq (25–30% humidity). Component 2 also has a pronounced

trough centered over the Persian Gulf, associated with warmer conditions and the potential for strong

thunderstorms [62]. The high pressure center in Component 3 is over Saudi Arabia, resulting in dry

and light westerly winds over Kuwait that are more favorable for calm, clear conditions.

Several authors have examined weather and circulation patterns over the Arabian

Peninsula [57,62–64], with particular emphasis on improved water resource management and

renewable energy production. Differing seasonal foci mean that there are differences between

the low-level wind and relative humidity patterns found here and the defined weather types, as well

as differences between the studies in question. For instance, [64] focused solely on dust outbreaks

throughout the year, while [65] examined dust outbreaks only during the wet season. [66] did

not specifically identify weather types; however, they sought to explain their mixture distribution

allocations with regard to typical surface wind regimes in the United Arab Emirates.

Ref. [63] characterized weather types over Saudi Arabia using the Lamb weather-type

classification [67], finding that days with a cyclonic pattern followed by those with southeast directional

flow are the most frequent during the summer. This behavior parallels Component 3, where the high

pressure center is over Saudi Arabia, and is the most frequently occurring pattern during the summer

months. It also is the component that describes the clearest days (i.e., Kt > 0.9), as it is associated with

the synoptic patterns generating less moisture and dust transport.

All three components appear to correspond with anticyclonic weather patterns described by [62],

with high pressure centers over Iran or Saudi Arabia and lower pressure centers over north Africa.

Ref. [64] confirm that a trough over the Arabian Peninsula advects dust and is most commonly

associated with the onset of the Arabian Peninsula summer low during March to June. During summer

months, this same pattern is recognized as the summer Shamal, causing the majority of dust storms

during this season [58,64]. Ref. [65] confirm that the processes generating dust storms are very different

in winter and summer, with the majority of dust storms arising during the spring and early summer.

Further, winter months are affected by the southerly shift of the polar jet, increasing the contrast in

north and south air masses over the Arabian Peninsula, bringing more frontal systems and poorer

visibility. Again, this finding supports the frequency and occurrence of Component 1 during the winter

and transition seasons.
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Figure 10. Mean relative humidity at 850 hPa and wind vectors (m/s) at 850 hPa associated with

each distribution component, derived from ERA-Interim (2005–2017). Arrows indicate direction and

magnitude of winds. Kuwait is shown with a white star.

5. Discussion and Conclusions

As support for renewable sources of electricity goes up [68], increasing the number of solar

power installations, there is also an increasing need to improve solar power forecasts. Recent

private–public–academic research identified the need to combine nowcasts of solar power forecasts

at high temporal resolution (subhourly), with coarser temporal resolution forecasts (out to several

days) to meet decision-maker needs [1]. The research presented here contributes to longer duration

forecasts by identifying large-scale weather systems affecting sky clarity and reducing reliance on

computationally-intensive numerical weather predictions.

Many have examined the use of statistical methods to improve solar forecasting, but limited

attention has been paid to the use of finite mixture distributions. Often, those applications utilizing

finite mixture models have employed Dirichlet multinomial distributions on prepartitioned, subdaily

data [20,32], and neglected the influence of larger-scale processes on the subdaily fluctuations. Apart
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from the drawback of selecting an appropriate bin interval to describe continuous data with discrete

distributions, we consider that an objective classification of the overall sky condition is more likely to

lead to improved forecasts.

We examined daily clearness indices for the Shagaya renewable energy plant in Kuwait, calculated

from satellite retrieved global horizontal irradiance data between 2005–2017. After analyzing the data,

we assume that they are best described by a mixture of Gaussian distributions [13,21]. Exploratory

analysis reveals that there are multiple peaks in the data frequency, and that the variability in subdaily

clearness indices is greater than in daily clearness indices. As noted by [40], subdaily variability is more

sensitive to local features and meso- to micro-scale processes, while multiday variability is dependent

on synoptic-scale systems. Our focus here was on the synoptic-scale, and so we analyzed only the

distribution of daily indices.

Seasonal distribution of the clearness indices corresponded with the observed weather conditions.

That is, the hottest periods of the year, which have low humidity and stable air conditions, also had the

highest clearness indices, while the lowest values correspond with the more turbulent conditions of

winter and the transition seasons. A three-component Gaussian mixture model fit these data very well,

with the posterior probabilities reproducing the observed distribution of clearness indices throughout

the year. Alternative distribution families were examined and found to be inadequate, highlighting

instead that multiple mixture components can erroneously improve the statistical model in the absence

of physical reasoning. Utilizing the posterior probabilities, we composited the 850 mb humidity and

850 mb wind on the day’s most clearly assigned to each component. This procedure generated three

patterns associated with the typical synoptic conditions governing the sky clarity, and hence, potential

solar power.

As noted by several authors, limited attention has been paid to circulation types, specifically with

respect to precipitation occurrence, over the Arabian Peninsula [58,63,65]. The sparse observation

network is frequently cited as the cause for the low research interest in this region. Thus, Kuwait’s

lower density observation network has received even less attention than larger neighboring countries

such as Iran or Saudi Arabia. While our focus was not directly on precipitation occurrence, it is

correlated with cloudy sky conditions. Poor visibility conditions also arise from haze, fog, or dust

storms [58], which can also be attributed to wind conditions generated by different circulation types.

We have not determined specific weather types, but the exploratory analyses of wind and temperatures

throughout the year generally corroborate the circulation patterns and associated air flow directions.

The peak wind gusts occur during the summer months, with much lower wind speeds during the

transition seasons and winter. This result emphasizes that poor visibility conditions are driven by

different mechanisms during the summer and winter [63,65], where cooler temperatures are likely to

give rise to more fog and cloud cover rather than the dust storms of the summer.

The similarities that are apparent between the humidity and geopotential wind patterns for each

distribution component and the weather type studies, as well as the differences between each of

these studies, suggest that a hidden Markov Model would be appropriate for statistical forecasting.

This approach would permit the data to identify the hidden states driving sky clearness, rather than

predefining the process from a short observation time series. Further developments of such a model

should focus on incorporating the subdaily variability to create a stochastic weather generator dependent

on the hidden large-scale synoptic processes together with local microscale drivers. For instance, [31]

found some success in predicting subdaily wind two to five days out using hidden Markov Models. A

key requirement for developing such a model would be sufficiently long observation series to estimate

the transition probabilities for each weather pattern.

Author Contributions: Conceptualization, M.R.T. and S.E.H.; methodology, M.R.T and E.G..; formal analysis,
M.R.T.; writing—original draft preparation, M.R.T.; writing—review and editing, M.R.T., S.E.H., E.G., C.K., T.J.;
visualization, M.R.T.; supervision, E.G.; project administration, S.E.H.; funding acquisition, S.E.H.

Funding: The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF).
Support for this work was provided by a grant from the Kuwait Institute for Scientific Research.



Energies 2019, 12, 4409 14 of 17

Acknowledgments: Data were obtained from the NCAR Data Repository, NOAA’s Global Historical Climate
Network, and the Copernicus Atmosphere Monitoring Service. Thanks to Abby Jaye for assistance in producing
Figure 10; to James Done for providing comments on a draft version of the manuscript; and to Barbara Brown
for useful statistical insights. All calculations were carried out in R (http://www.r-project.org/), using packages
tidyverse, mixtools and cowplot.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Haupt, S.E.; Kosovic, B.; Jensen, T.; Lazo, J.; Lee, J.; Jimenz, P.; Cowie, J.; Wiener, G.; McCandless, T.;

Rogers, M.; et al. Building the Sun4Cast system: Improvements in solar power forecasting. Bull. Am.

Meteorol. Soc. 2018, 121–135. [CrossRef]

2. Lohmann, G. Irradiance variability quantification and small-scale averaging in space and time: A short

review. Atmosphere 2018, 9, 264. [CrossRef]

3. Reikard, G.; Haupt, S.E.; Jensen, T. Forecasting ground-level irradiance over short horizons: Meteorological

and time series models. Renew. Energy 2017, 112, 474–485. [CrossRef]

4. Van der Meer, D.W.; Widén, J.; Munkhammar, J. Review on probabilistic forecasting of photovoltaic power

production and electricity consumption. Renew. Sustain. Energy Rev. 2018, 81, 1484. [CrossRef]

5. Bracale, A.; De Falco, P. An advanced bayesian method for short-term probabilistic forecasting of the

generation of wind power. Energies 2015, 8, 10293–10314. [CrossRef]

6. Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods

and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [CrossRef]

7. Clack, C.T.M. Modeling solar irradiance and solar pv power output to create a resource assessment using

linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 2017, 56, 109–125. [CrossRef]

8. Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev.

2008, 12, 235–249. [CrossRef]

9. Auligné, T. Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and

simulated observations experiments. Mon. Weather Rev. 2014. [CrossRef]

10. Auligné, T. Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments.

Mon. Weather Rev. 2014. [CrossRef]

11. Jimenez, P.A.; Hacker, J.P.; Dudhia, J.; Haupt, S.E.; Ruiz-Arias, J.A.; Gueymard, C.A.; Deng, A. WRF-Solar:

Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Am.

Meteorol. Soc. 2016, 97, 1249. [CrossRef]

12. Greybush, S.J.; Haupt, S.E.; Young, G.S. The regime dependence of optimally weighted ensemble model

consensus forecasts of surface temperature. Weather Forecast. 2008, 23, 1146. [CrossRef]

13. Lai, C.S.; Jia, Y.; McCulloch, M.D.; Xu, Z. Daily clearness index profiles cluster analysis for photovoltaic

system. IEEE Trans. Ind. Inf. 2017, 13, 2322. [CrossRef]

14. Lorenz, E.; Hammer, A. Short term forecasting of solar radiation based on satellite data. In Proceedings of

the EUROSUN2004, Freiburg, Germany, 20–23 June 2004.

15. Mellit, A.; Massi Pavan, A.; Lughi, V. Short-Term forecasting of power production in a large-scale photovoltaic

plant. Sol. Energy 2014, 105, 401–413. [CrossRef]

16. Hocaoglu, F.O.; Serttas, F. A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting.

Renew. Energy 2017, 108, 635–643. [CrossRef]

17. McCandless, T.C.; Haupt, S.E.; Young, G.S. A regime-dependent artificial neural network technique for

short-range solar irradiance forecasting. Renew. Energy 2016, 89, 351–359. [CrossRef]

18. Morf, H. Sunshine and cloud cover prediction based on Markov processes. Sol. Energy 2014, 110, 615–626.

[CrossRef]

19. Poggi, P.; Notton, G.; Muselli, M.; Louche, A. Stochastic study of hourly total solar radiation in Corsica using

a Markov model. Int. J. Climatol. 2000, 20, 1843–1860. [CrossRef]

20. Frimane, Â.; Aggour, M.; Ouhammou, B.; Bahmad, L. A Dirichlet-multinomial mixture model-based approach

for daily solar radiation classification. Sol. Energy 2018, 171, 31–39. [CrossRef]

http://www.r-project.org/
http://dx.doi.org/10.1175/BAMS-D-16-0221.1
http://dx.doi.org/10.3390/atmos9070264
http://dx.doi.org/10.1016/j.renene.2017.05.019
http://dx.doi.org/10.1016/j.rser.2017.05.212
http://dx.doi.org/10.3390/en80910293
http://dx.doi.org/10.1016/j.rser.2013.06.042
http://dx.doi.org/10.1175/JAMC-D-16-0175.1
http://dx.doi.org/10.1016/j.rser.2006.07.011
http://dx.doi.org/10.1175/MWR-D-13-00172.1
http://dx.doi.org/10.1175/MWR-D-13-00173.1
http://dx.doi.org/10.1175/BAMS-D-14-00279.1
http://dx.doi.org/10.1175/2008WAF2007078.1
http://dx.doi.org/10.1109/TII.2017.2683519
http://dx.doi.org/10.1016/j.solener.2014.03.018
http://dx.doi.org/10.1016/j.renene.2016.08.058
http://dx.doi.org/10.1016/j.renene.2015.12.030
http://dx.doi.org/10.1016/j.solener.2014.09.044
http://dx.doi.org/10.1002/1097-0088(20001130)20:14&lt;1843::AID-JOC561&gt;3.0.CO;2-O
http://dx.doi.org/10.1016/j.solener.2018.06.059


Energies 2019, 12, 4409 15 of 17

21. Munkhammar, J.; Widén, J. A Markov-chain probability distribution mixture approach to the clear-sky index.

Sol. Energy 2018, 170, 174–183. [CrossRef]

22. Ailliot, P.; Monbet, V. Markov-Switching autoregressive models for wind time series. Environ. Modell. Softw.

2012, 30, 92–101. [CrossRef]

23. Carta, J.A.; Ramírez, P. Use of finite mixture distribution models in the analysis of wind energy in the

Canarian Archipelago. Energy Convers. Manag. 2007, 48, 281–291. [CrossRef]

24. Zhang, J.; Chowdhury, S.; Messac, A.; Castillo, L. A Multivariate and multimodal wind distribution model.

Renew. Energy 2013, 51, 436–447. [CrossRef]

25. Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar forecasting methods for renewable energy integration.

Prog. Energy Combust. Sci. 2013, 39, 535–576. [CrossRef]

26. Zucchini, W.; MacDonald, I.L. Hidden Markov Models for Time Series: An Introduction Using R; CRC Press:

Boca Raton, FL, USA, 2009.

27. Hughes, J.P.; Guttorp, P. A class of stochastic models for relating synoptic atmospheric patterns to regional

hydrologic phenomena. Water Resour. Res. 1994. [CrossRef]

28. Bellone, E.; Hughes, J.P.; Guttorp, P. A hidden Markov model for downscaling synoptic atmospheric patterns

to precipitation amounts. Clim. Res. 2000, 4415, 15. [CrossRef]

29. Carey-Smith, T.; Sansom, J.; Thomson, P. A hidden seasonal switching model for multisite daily rainfall.

Water Resour. Res. 2014, 50, 257–272. [CrossRef]

30. Ghahramani, Z. An introduction to hidden models and bayesian networks. Int. J. Pattern Recognit. Artif. Intell.

2001, 15, 9–42. [CrossRef]

31. Bessac, J.; Ailliot, P.; Cattiaux, J.; Monbet, V. Comparison of hidden and observed regime-switching

autoregressive models for (u, v)-components of wind fields in the northeastern Atlantic. Adv. Stat. Climatol.

Meteorol. Oceanogr. 2016, 2, 1–16. [CrossRef]

32. Soubdhan, T.; Emilion, R.; Calif, R. Classification of daily solar radiation distributions using a mixture of

Dirichlet distributions. Sol. Energy 2009, 83, 1056. [CrossRef]

33. Béranger, B.; Duong, T.; Perkins-Kirkpatrick, S.E.; Sisson, S.A. Tail density estimation for exploratory data

analysis using kernel methods. J. Nonparametric Stat. 2019, 31, 144–174. [CrossRef]

34. Fernández-Peruchena, C.M.; Bernardos, A. A comparison of one-minute probability density distributions

of global horizontal solar irradiance conditioned to the optical air mass and hourly averages in different

climate zones. Sol. Energy 2015, 112, 425–436. [CrossRef]

35. Jurado, M.; Caridad, J.M.; Ruiz, V. Statistical distribution of the clearness index with radiation data integrated

over five minute intervals. Sol. Energy 1995, 55, 469–473. [CrossRef]

36. Tabone, M.D.; Callaway, D.S. Modeling variability and uncertainty of photovoltaic generation: A hidden

state spatial statistical approach. IEEE Trans. Power Syst. 2015, 30, 2965. [CrossRef]

37. Ngoko, B.O.; Sugihara, H.; Funaki, T. Synthetic generation of high temporal resolution solar radiation data

using Markov models. Sol. Energy 2014, 103, 160–170. [CrossRef]

38. Alimohammadi, S.; He, D. Multi-Stage algorithm for uncertainty analysis of solar power forecasting.

In Proceedings of the 2016 IEEE Power Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21

July 2016; pp. 1–5. [CrossRef]

39. Köhler, C.; Steiner, A.; Saint-Drenan, Y.-M.; Ernst, D.; Bergmann-Dick, A.; Zirkelbach, M.; Ritter, B. Critical

weather situations for renewable energies—Part B: Low stratus risk for solar power. Renew. Energy 2017,

101, 794–803. [CrossRef]

40. Rodríguez-Benítez, F.J.; Arbizu-Barrena, C.; Santos-Alamillos, F.J.; Tovar-Pescador, J.; Pozo-Vázquez, D.

Analysis of the intra-day solar resource variability in the Iberian Peninsula. Sol. Energy 2018, 171, 374–387.

[CrossRef]

41. Ailliot, P.; Bessac, J.; Monbet, V.; Pène, F. Non-Homogeneous hidden Markov-switching models for wind

time series. J. Stat. Plann. Inference 2015, 160, 75–88. [CrossRef]

42. Menne, M.J.; Durre, I.; Korzeniewski, B.; McNeal, S.; Thomas, K.; Yin, X.; Houston, T.G. Global Historical

Climatology Network—Daily (GHCN-Daily), Version 3.24; NOAA National Climatic Data Center: Asheville,

NC, USA, 2018. [CrossRef]

43. Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical

Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [CrossRef]

http://dx.doi.org/10.1016/j.solener.2018.05.055
http://dx.doi.org/10.1016/j.envsoft.2011.10.011
http://dx.doi.org/10.1016/j.enconman.2006.04.004
http://dx.doi.org/10.1016/j.renene.2012.09.026
http://dx.doi.org/10.1016/j.pecs.2013.06.002
http://dx.doi.org/10.1029/93WR02983
http://dx.doi.org/10.3354/cr015001
http://dx.doi.org/10.1002/2013WR014325
http://dx.doi.org/10.1142/S0218001401000836
http://dx.doi.org/10.5194/ascmo-2-1-2016
http://dx.doi.org/10.1016/j.solener.2009.01.010
http://dx.doi.org/10.1080/10485252.2018.1537442
http://dx.doi.org/10.1016/j.solener.2014.11.030
http://dx.doi.org/10.1016/0038-092X(95)00067-2
http://dx.doi.org/10.1109/TPWRS.2014.2372751
http://dx.doi.org/10.1016/j.solener.2014.02.026
http://dx.doi.org/10.1109/PESGM.2016.7741199
http://dx.doi.org/10.1016/j.renene.2016.09.002
http://dx.doi.org/10.1016/j.solener.2018.06.060
http://dx.doi.org/10.1016/j.jspi.2014.12.005
http://dx.doi.org/10.7289/V5D21VHZ
http://dx.doi.org/10.1175/JTECH-D-11-00103.1


Energies 2019, 12, 4409 16 of 17

44. NOAA NCEI CDO. Integrated Surface Data, DS3505, NOAA National Centers for Environmental Information

Climate Data Online. Available online: www.cdo.NCEI.noaa.gov (accessed on 18 April 2018).

45. Qu, Z.; Oumbe, A.; Blanc, P.; Espinar, B.; Gesell, G.; Gschwind, B.; Wald, L. Fast radiative transfer

parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorologische Zeitschrift

2017, 26, 33–57. [CrossRef]

46. Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Morcrette, J.-J. McClear: A new model

estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013,

6, 2403. [CrossRef]

47. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Vitart, F. The ERA-Interim

reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc.

2011, 137, 553–597. [CrossRef]

48. Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct 2418, diffuse and total

solar radiation. Sol. Energy 1960, 4, 1–19. [CrossRef]

49. Nemes, C.; Ciobanu, R.; Rugina, C. Probabilistic analysis of Sky clearness index for solar energy systems

planning. In Proceedings of the 2018 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 24–25

May 2018; pp. 1–9. [CrossRef]

50. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press Inc.: Waltham, MA,

USA, 2011.

51. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.

J. Roy. Stat. Soc. Ser. B Methodol. 1977, 39, 1–38.

52. Do, C.B.; Batzoglou, S. What is the expectation maximization algorithm? Nat. Biotechnol. 2008, 26, 897–899.

[CrossRef] [PubMed]

53. R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing: Vienna, Austria, 2018. Available online: http://www.r-project.org/ (accessed on 28

December 2018).

54. Benaglia, T.; Chauveau, D.; Hunter, D.R.; Young, D. Mixtools: An R package for analyzing finite mixture

models. J. Stat. Softw. 2009, 32, 1–29. [CrossRef]

55. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.

[CrossRef]

56. Hinkelman, L.M.; Schaeffer, N. Relating solar resource and its variability to weather and climate across the

northwestern United States. Sol. Energy 2017, 157, 966–978. [CrossRef]

57. Nasrallah, H.A.; Balling, R.C.; Selover, N.J.; Vose, R.S. Development of a seasonal forecast model for Kuwait

winter precipitation. J. Arid Environ. 2001, 48, 233–242. [CrossRef]

58. Aldababseh, A.; Temimi, M. Analysis of the long-term variability of poor visibility events in the UAE and

the link with climate dynamics. Atmosphere 2017, 8, 242. [CrossRef]

59. Naizghi, M.S.; Ouarda, T.B.M.J. Teleconnections and analysis of long-term wind speed variability in the UAE.

Int. J. Climatol. 2017, 37, 230–248. [CrossRef]

60. Naegele, S.M.; McCandless, T.C.; Greybush, S.J.; Young, G.S.; Haupt, S.E.; Al-Rasheedi, M. Climatology of

wind variability for the Kuwait Region. Renew. Energy 2019, in press.

61. Peyvandi, S.; Amirshahi, S.H.; Hernández-Andrés, J.; Nieves, J.L.; Romero, J. Spectral recovery of outdoor

illumination by an extension of the Bayesian inverse approach to the Gaussian mixture model. J. Opt. Soc.

Am. A 2012, 29. [CrossRef] [PubMed]

62. Almazroui, M.; Dambul, R.; Islam, M.N.; Jones, P.D. Atmospheric circulation patterns in the Arab region and

its relationships with Saudi Arabian surface climate: A preliminary assessment. Atmos. Res. 2015, 161, 36–51.

[CrossRef]

63. El Kenawy, A.M.; McCabe, M.F.; Stenchikov, G.L.; Raj, J. Multi-Decadal classification of synoptic weather

types, observed trends and links to rainfall characteristics over Saudi Arabia. Front. Environ. Sci. 2014, 2.

[CrossRef]

64. Houssos, E.E.; Chronis, T.; Fotiadi, A.; Hossain, F. Atmospheric circulation characteristics favoring dust

outbreaks over the solar village, central Saudi Arabia. Mon. Weather Rev. 2015, 143, 3263. [CrossRef]

65. Alobaidi, M.; Almazroui, M.; Mashat, A.; Jones, P.D. Arabian Peninsula wet season dust storm distribution:

Regionalization and trends analysis (1983–2013). Int. J. Climatol. 2017, 37, 1356. [CrossRef]

www.cdo.NCEI.noaa.gov
http://dx.doi.org/10.1127/metz/2016/0781
http://dx.doi.org/10.5194/amt-6-2403-2013
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1016/0038-092X(60)90062-1
http://dx.doi.org/10.1109/SCSP.2018.8402677
http://dx.doi.org/10.1038/nbt1406
http://www.ncbi.nlm.nih.gov/pubmed/18688245
http://www.r-project.org/
http://dx.doi.org/10.18637/jss.v032.i06
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/j.solener.2017.07.060
http://dx.doi.org/10.1006/jare.2000.0746
http://dx.doi.org/10.3390/atmos8120242
http://dx.doi.org/10.1002/joc.4700
http://dx.doi.org/10.1364/JOSAA.29.002181
http://www.ncbi.nlm.nih.gov/pubmed/23201667
http://dx.doi.org/10.1016/j.atmosres.2015.03.014
http://dx.doi.org/10.3389/fenvs.2014.00037
http://dx.doi.org/10.1175/MWR-D-14-00198.1
http://dx.doi.org/10.1002/joc.4782


Energies 2019, 12, 4409 17 of 17

66. Ouarda, T.B.M.J.; Charron, C.; Shin, J.-Y.; Marpu, P.R.; Al-Mandoos, A.H.; Al-Tamimi, M.H.; Al Hosary, T.N.

Probability distributions of wind speed in the UAE. Energy Convers. Manag. 2015, 93, 414–434. [CrossRef]

67. Lamb, H.H. British Isles weather types and a register of daily sequence of circulation patterns. In 1861–1971:

Geophysical Memoir; HMSO: London, UK, 1972; Volume 116, p. 85.

68. World Energy Outlook 2018. Available online: http://www.iea.org/weo/ (accessed on 17 July 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enconman.2015.01.036
http://www.iea.org/weo/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Data 
	Method 
	Clearness Index 
	Mixture Distributions 


	Exploratory Evidence 
	Results 
	Mixture Models 
	Identification of Synoptic Weather Conditions 

	Discussion and Conclusions 
	References

