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Summary 

We formulate the problem of choosing between two hypotheses as a problem of 

constructing a data-dependent evidential measure for or against the null hypothesis. 

Such a measure should obey some intuitive desiderata which we state as axioms. We 

examine critically the behaviour of common rules of assessing evidence in higher 

dimensions, such as combinations of p-values and Bayes posterior probabilities, and 

clarify the connection between hypothesis testing and our approach. Decision theoretical 

tools are also used to evaluate various rules and a general admissibility result is 

provided. A discussion comparing different methods of assessing evidence is included. 
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1. Introduction 

Suppose it is of interest to test the hypotheses 

vs. (1.1) 

using observed values x of the random variable X having a distribution depending on 0. The data and 

the parameter may be vector valued, and we can take 8 1 = eg without loss of generality. The classical 

decision theoretical approach to the problem of choosing between H0 and H1 is built around the 

Neyman-Pearson Lemma and the classical hypothesis tests theory, as in Lehmann (1985). Such an 

approach yields a 0-1 answer, rules that are often criticised as being data insensitive. Once a 

partition of the sample space into two regions has been decided, all values of data in the acceptance 

region are considered to cast the same evidence for H0 whereas all data in the rejection region bring the 

same evidence against H0• This binary behaviour has been considered as a serious drawback from 

theoretical point of view (e. g. DeGroot 1973, Berger 1985, Kiefer 1977, Robinson 1979). Several 

authors have proposed alternative approaches to the problem including the use of Bayesian posterior 

probabilities (DeGroot 1973), the report of conditional confidence (Kiefer 1977) and a decision 

theoretical approach to the estimation of accuracy of testing (Hwang et al. 1992). A basic 

consideration in all these approaches is to provide a data dependent measure of evidence for or against 

the null hypothesis. 

Practitioners seem to act under the same paradigm and not under t.he Neyman-Pearson theory. 

This might explain the wide-spread use of p-values, despite the non-rigorous derivation and 

interpretation which leads to a wide-spread misuse. Subject matter journals are flooded with p-values 

and their interpretation is, loosely speaking, "The smaller the p-value, the more evidence against H0". 

This interpretation borrows from the Bayesian approach, which offers valid measures of plausibility of 

the null hypothesis such as the posterior probability or the Bayes factor. The latter quantities are 

based on the posterior distribution of the parameter given the data, so they are inherently data 

sensitive. 

One might ask if decision theoretic tools, other than the traditional Neyman-Pearson-Wald 

approach, can help in measuring evidence in hypothesis testing. Since we are interested in estimating 

the viability of the set specified by H0 we can transform the testing problem into an estimation 

problem. Instead of deciding whether H0 or H1 is true we can consider the problem of estimating the 

function I(O E 6 0) (where I(·) denotes the indicator of an event). The performance of a decision rule, 

¢(x), is evaluated with respect to a loss function 

(1.2) 

where the function d(t) is minimised at t = 0, nondecreasing fort> 0, and nonincreasing fort < 0. 

An important point to note is that we are considering this problem as one of estimation, not of 

deciding between H0 and H1. Thus, we are making an assessment of H0, rather than drawing a 
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conclusion about H0• To assess H0 , we try to estimate 1(9 E S 0) with ¢(x), where we consider 1(9 E S 0) 

the quantity of interest implicit in the setup of (1.1). The rule ¢(x) has the interpretation that large 

values support H0 while small values support H1 , much like a p-value or a posterior probability of H0, 

and thus ¢(x) can be used by an experimenter in a similar way. An immediate consequence of this 

formulation, including the shape of the function L(U, ¢), is that any reasonable ~(x) must be in the 

interval [0, 1] for all values of the data. We will use the term evidential statistic or measure of 

evidence for ~(x). Note, however, that ~(x) does not measure "evidence" in the formal traditional 

sense, as done through the likelihood ratio (Birnbaum 1962, Royall 1986). 

Although (1.1) and (1.2) define the general problem of estimation in testing hypotheses, we will 

only consider some special eases in what follows, using losses of the form 

(1.3) 

with associated risk functions 

m = 1,2. (1.4) 

Note that standard Neyman-Pearson-type results may be viewed as decision-theoretic results using a 

loss of the form (1.3) with m = 1. In particular, the Bayes rules with respect to L1(9, ~), are Neyman­

Pearson-type solutions. Note that ~(x) estimates I(U E 9 0), and is not a rejection probability, so a 

Neyman-Pearson critical function would be equivalent to 1- ~(x). 

Alternatively, the Bayes rules with respect L2(U, ¢) are the posterior probabilities of H0 given the 

data. Hence the loss L2(U, ~) yields optimal solutions belonging to the interval [0, 1], conforming to 

our desire to give a measure of evideL.::e of H0 and not a 0-1 answer. However, evidential rules need 

not be restricted to Bayes rules. One can use heuristic methods to derive a ~(x) (for example ~(x) may 

be a p-value). By transforming the testing problem into an estimation one, we can evaluate rules using 

their risk ~(9, ¢), although risk considerations are not the only ones for a rule to be optimal. This 

approach was taken in Hwang et al. (1992) with fruitful results for the univariate case. 

The multivariate case can be treated in a similar spirit. However, for the testing setup there is a 

critical difference. While in the univariate case one can satisfactorily reduce the plausible procedures 

using optimality criteria (admissibility, consistency, invariance etc), if x and (I are vector valued the 

remaining procedures that are optimal (in some sense) are too numerous to choose from. For example, 

suppose that a multivariate test is considered as a combination of univariate tests, where the 

components of the vector valued data are independent of each other and the set S0 is a Cartesian 

product of subsets of !R. Then even if the choice of univariate tests is clear-cut, there are many ways to 

combine the results in a single statement about the truth of the joint null hypothesis. Choosing among 

them is usually termed as the problem of meta-analysis (Hedges and Olkin 1985). 

Our goal in this paper is to formalise evidence in the multivariate case, state the appropriate 

optimality criteria and examine if the evidential statistics commonly used are satisfactory. In Section 2 



4 

we state the assumptions and give the appropriate definitions. In Section 3 we review the methods of 

constructing p-values for a multivariate hypothesis by combining individual p-values, and we derive an 

impartial Bayes rule. We also discuss how we would like evidential statistics to behave and give a 

theorem relating posterior probabilities with p-values by examining the likelihood at various points of 

the parameter space. In Section 4 we state formally the intuitive requirements as axioms and examine 

in detail the behaviour of some common evidential measures. Section 5 relates hypothesis testing with 

evidence in higher dimensions and examines evidence from a decision theoretical point of view whereas 

Section 6 contains a complete class theorem for estimators of 1(0 E S0) under the loss L2(0, t/J). A 

discussion is included in Section 7. 

2. Definitions and assumptions 

A common evidential measure is the p-value. However, there does not seem to exist a universally 

accepted definition of a p-value. In many cases it has the form P(S(X) > s(x)) where xis the observed 

value of the random variable X and S is some statistic for which large values are considered evidence 

against H0• However, this is both rather vague since evidence is not a well defined term, and also 

ambiguous since such a statistic might not be obvious and or there might be more than one obvious 

statistics (see the birtomial example of Berger and Delampady 1987). Often a p-value is defined via a 

test, but the requirement of a test seems extraneous. We will use a more general definition which 

accommodates all cases. 

Definition 1. A statistic p(x) is a p-value if, for (} E e0, the suprema! distribution of p(X) is uniform 

(0, 1), that is, if 

sup P( p(X) ~ u) = u, 0 ~ u ~ 1. (2.1) 
oee0 

If the set e0 has more than one element the distribution of p(X) could be different for various 

elements of S0 • However in most cases of interest there is a rather unambiguous "extreme boundary" 

point of S0 such that p(X) is uniform if the parameter is this point and stochastically larger than a 

uniform for all other points of e0• Furthermore p(X) is often stochastically smaller than a uniform for 

(} E S 1, but the definition does not require the specification of an alternative hypothesis. The p-value 

often has the form 1 - F 0 (S(x)) where 00 is on the boundary of the null hypothesis and F 0 is the 
0 

cumulative distribution function of a statisticS when the true parameter is(}. 

Note that Definition 1 neither implies that p(x) is optimal or sensible in any sense, nor gives any 

recipe as to how to construct a p-value. Similar to the definitions of other statistical procedures (e. g. 

estimators or tests), it simply gives a criterion to judge if a function of the data is a p-value for a 

particular null hypothesis. 
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Example 1. Consider that Xi,..... N(O, 1), i = 1, 2, ... , n, independently and we wish to test 

(2.2) 

- n 
From sufficiency considerations, it turns out that a reasonable statistics to use is X = I: Xi and large 

i=l 
values of X indicate large values of 0. Since the set e0 = ( -oo, 00 ] contains small values of 0, 

quantities of the form 

P 6(X > x) = 1- <J(( x - 0)/'fii), (2.3) 

where <) is the standard normal cumulative distribution function, might be useful in defining a p-value. 

It is straightforward to see that P 9(X > x ) is increasing in 0 so the most conservative (largest) value of 

(2.3) is attained at 00• Hence one can define asp-value the statistic 

p(x) = 1- <J(( x - 00)/'fii). (2.4) 

For 0 = 00 , p( X) is exactly the one minus the probability integral transform, so if the true 

parameter equals 00 then it has a uniform distribution. Since (2.4) is decreasing in x and the normal 

distribution has the monotone likelihood ratio property, smaller values of 0 generate larger values of 

p( X). Hence for 0 < 00 , p( X) is stochastically larger than a uniform random variable, whereas for 

(} > 00 , it is stochastically smaller. 

It turns out. that a p-value is closely related to a test, or to be more accurate, to a family of 

testing procedures, one for each a level. The following theorem is a generalisation of Lehmann (1985) 

p. 170 and shows the relation. 

Theorem 1. For the hypothesis in (1.1), suppose that Ra is the rejection region of a test of size n. 

Furthermore, suppose that Ra is defined for every a and 

For every x, define 

p(x) = inf {n: x ERa} 

then p(x) is a p-value according to the Definition 1. 

Proof. It suffices to show that for every n0 E [0, 1] 

Note that p(X) ::; n 0 is equivalent to X ERa for every a~ n0 by (2.5) and (2.6). Hence, 

= sup P9( X E 
o ee0 

(2.5) 

(2.6) 

(2.7) 
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Conversely, from a p-value p(x) one can almost trivially define a test of size n by the rejection 

region 

Rn = { x : p(x) $ n} . (2.8) 

Indeed p-values are often used to derive a test by rejecting the null hypothesis when the p-value is 

smaller than a particular level n. Obtaining the correct rejection probability for the test is major 

consideration for requiring the p-values to be uniform in H0• Note that the only restriction is that the 

rejection regions are nested in the sense of (2.5), which seems a minimal requirement for a sensible te~;t. 

Apart from that, a test corresponding to a p-value need not be an optimal or sensible procedure, 

reflecting the fact that the definition of p-value is quite general. It is also wrong to assume that any 

optimality of the test is automatically transferred to the p-value or vice versa. 

We now focus our attention on the multivariate problem, where things are a bit more 

complicated. Suppose that Xi ..... f(xi I (} i) independently, for i = 1, 2, .•. , k. To avoid trivialities we 

assume that the support of f(x I Oi) does not depend on Oi. The observations Xi are assumed one 

dimensional, perhaps after reduction by sufficiency or other consideratious. We will denote the data 

(x1, ••• , xk) by x whereas 0 will be the vector (01, ••• , O~c)· The data xi are obtained from separate 

experiments providing separate pieces of evidence about the hypotheses 

(2.9) 

The most important cases are e 0i = ( -oo, 00 i] or 9 0 i = [ fl..oi• 00 i ], where fl..oi $ Ooi• that is, the one­

sided and two-sided hypotheses. Without loss of generality we can take 90i = 0, fl..oi = -e, 00 i = f, 

for e ~ 0. It might be of interest to combine the evidence from all xi into a single statement about the 

truth of the combined null hypothesis H0 = Q Hoi• in which case the test of interest will have the form 
I 

(1.1) with eo= ( -oo, o]k or eo= [ - e, € ]k, i. e. 

H0 : Oi $ 0, i = 1, ... , k vs. H1 : (Ji > 0, for some i (2.10) 

and 

H0 : I Oi I $ e:, i = 1, ... , k vs. H1 : I (}i I > e, for some i. (2.11) 

For specific distributions one can view the problem of testing (2.10) or (2.11) as a special case of 

(1.1) and derive a single appropriate test. However we view the problem of combining evidence in a 

general setup where the form of the distribution of Xi is not used, either because it is unknown or 

because the values of xi are unknown. Hence the procedures that we will examine are "omnibus" in 

that they are not distribution specific. We will assume that for each individual hypothesis of (2.9) we 
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have a p-value available, which we will denote by p(x;) or P;· 

The problem of combining evidence using a combination of p-values goes back at least to Tippett 

(1931) and Fisher (1932). Other important references include Birnbaum (1954) and Hedges and Olkin 

(1985). It is worth noting that, given a testing procedure and the density f( · I 0), we can sometimes 

reconstruct the values of X; (or at least the information from x; that is used in the test) from the 

individual p-values p(x;) and vice versa. 

To avoid detailing the technical assumptions in each statement in the paper we will assume that 

the densities f(x; I 0 ;) have the monotone likelihood ratio property and the parameterisation is such 

that large values of X; indicate large values of 0 i• Hence if 0 i ~ eoi• the p(X;) will be stochastically 

smaller than a uniform random variable (Lehmann 1985 p. 170). Note that though it is not a 

requirement of Definition 1, in practice all p-values that are used satisfy it. It is also worth noting that 

for (2.10) and (2.11) there are points in the parameter space that can be considered "extreme 

boundary" points between the null and the alternatives. When we talk about extreme boundary points 

or extreme points of the null we will refer to 0 = (0, 0, ... , 0) for (2.10) and 0 = ( ± f, ± f, ... , ±f) for 

(2.11). 

3. Measuring Evidence 

In this section we review some of the more common rules used to measure evidence, in particular 

the p-values discussed by Marden (1991). Also, we look at a (generalized) Bayes rule using a sequence 

of priors that concentrate mass 1/2 on H0 and 1/2 on Hr We examine the behavior of these rules as 

measures of evidence, and formulate a set of axioms that evidential measures should satisfy. We will 

state everything in term of H0 and H1 given by (2.10) but the translation to (2.11) is straightforward. 

If there is a substantial difference it will be explicitly stated. 

3.1 Combining p-values 

As seen in Section 2, the defining characteristic of a p-value is its uniformly distribution under 

H0• Given any statistic S = S(X1, ••• , Xk), we can construct a p-value based on observing S = s as 

Ps(s) =sup P6(S ~ s). (3.1) 
oee0 

If S has a continuous distribution, then under H0 the random variable Ps(S) will be stochastically 

greater than a uniform (0, 1) random variable and typically for some value 0 E 9 0 it will be uniformly 

distributed. If S is discrete Ps(S) will be stochastically greater than a uniform random variable. For 

Ps(s) to measure evidence against (or for) H0, its behavior (or equivalently the behavior of S) on H1 

must also be examined. This is where our rules for measuring evidence become important. 

Two popular methods for creating a p-value for the hypothesis (1.1) using individual p-values of 



8 

(2.9) are based on ideas of Fisher (1932) and Tippett (1931). (Tippett's rule is actually a special case 

of that of Wilkinson (1951)). Other rules are the normal, the sum, Pearson's and maximum. Table 1 

shows the statistic S used in each case as function of p(x;). Note that for each rule, S is unique up to 

one-to-one transformations. For more details about combining p-values to construct an overall Ps see 

Birnbaum (1954) and Hedges and Olkin (1985). 

Table 1: Methods for combining p-values 

Method Statistic 

k 
Fisher .n P; 

1=1 

Tippett min p· 
1$i$k I 

k 
Normal I; ~-t(P;) 

i=1 

k 
Sum EP· 

i=1 ' 

k 
Pearson 1-.n (1-p;) 

1=1 

Maximum max p· 
1$i$k ' 

We denote the resulting p-val ... es by PF• PT• PN etc., that is 

k k 
PF(x) = P( 0 U; > 0 p(x;)) 

i=1 i=1 
(3.2) 

PT(x) = P( min U; > min p(x;)) 
1$i$k 1$i$k 

(3.3) 

etc, where U; are independent uniform (0, 1) random variables. It is easy to see all of these random 

variables have uniform distributions under H0 (or, more accurately, when the individual p-values have 

a uniform distribution). Note that we can also use at least some of the statistics S(x) of Table 1 

themselves as evidential statistics, in the sense that their value gives evidence for or against the null 

hypothesis. Their calibration, however, is not clear. In the future we will refer to Fisher, Tippett, 

Pearson and maximum statistics as well as a normalised sum statistic ~I; P;· The normalisation is 

necessary so that it lies in the interval [0, 1]. We will not use the normal statistic since it is not clear 

how one could scale it to be comparable with the rest of the evidential statistics. The behaviour of 

these rules at different points of the null and the alternative hypothesis, however, is a criterion as to 

whether they are reasonable measures of evidence. 
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3.2 An Impartial Bayes Rule 

In order to obtain some intuition about sensible evidential rules, we turn to a Bayesian derivation 

to see if the behavior of a Bayes rule will coincide with our thoughts on proper evidential behavior. 

For the hypothesis (1.1) suppose now we observe X; ,.... f(x; I 0;), and we take a prior for the 0/ s. By 

considering the null hypothesis of (1.1) as an intersection of the hypotheses in (2.9) we note that the 

posterior probability of e0, which is Bayes rule for testing (1.1) under the squared loss L2(0, ¢), is too 

small even if the prior probabilities for each H0; are reasonable. The reason for that is that the prior 

probability of e0 = (I e0; is significantly smaller than the prior probability of E>o;· The phenomenon 
• 

becomes stronger as the dimension k becomes larger. This may not be a problem per se, but we feel 

that the dimension induces an undesirable bias against H0• 

We can eliminate such a bias by adjusting the prior distribution so that the prior probability of 

H0 and H1 are both 1/2. We will illustrate the method for the one sided hypothesis (2.10) but the two 

sided case is analogous. For a given prior 1r(01, ••• , Ok), define 

7 = J 1r(01 , ... , Ok) d01 , ... , dOk 

0o 

and take as the prior on (01, ••• , Ok) to be 

(3.4) 

(3.5) 

Using the loss function 12(0, ¢) it is straightforward to calculate the Bayes rule (the posterior 

expectation of I( 0 E E>0)) as 

¢ ( ) - P (o e I ) - P 1r(E>o I x) (3 6) 
1r x - 71"* E o x - P 7r(E>o I x) + 1 ~ 'Y P 7r(eg I x) . 

where P 1r*( · I x) and P 71"( • I x) are posterior probabilities under 1r* and 1r, respectively. 

If the original prior 1r is symmetric, then 7 = 2-k. Specialising to the case where 

X;"" N(O;, 0'2) and 0;"" N(O, r 2), all independent, we have 

where o(x;) 

Bayes rule 

k 
n p(x;) 

i=l 
k k , 
n p(x;) +-;-- (1- n p(x;)) 

i=l 2 -1 i=l 

(3.7) 

(3.8) 
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where p(xi) are the individual p-values. 

Examination of ¢>1 (x) yields some interesting facts. For example, ¢>1 (x) is larger than many of 

the evidential statistics of Table 1, such as f1 p(xi) or mjn p(x;). However, it is smaller than the p-, 
values based on these statistics. Thus, if one uses a statistic such as f1 p(x;) to assess evidence against 

H0, this corresponds to putting prior mass less than 1/2 on H0• (In fact, f1 p(x;) is a limiting posterior 

probability using a normal prior, hence weighting H0 by 2-k.) However, f1p(x;) is smaller than most 

of the evidential p-values, such as PF and PT· 

3.3 Some informal evidential desiderata 

While choosing evidential rules one would want them to have some properties so that they 

conform to our intuition, hence we now examine and formalise such properties. In measuring evidence 

against H0 , we would want such evidence to increase as the parameter moves further from H0• One 

way of quantifying this is to require an evidential statistic if>(x) to satisfy 

l,im E0¢>(X) = 0, 
Oi-+00 1=1, ... ' k 

(3.9) 

This condition merely states that if each 0 i is infinitely far from H0 , then evidence against H0 is 

maximized. A stronger but not unreasonable requirement is that 

For every i = 1, ... , k lim E9¢>(X) = 0. 
0;->00 

Other, reasonably self-evident behavior of an evidential measure concerns monotonicity and 

symmetry. In the exchangeable case, it seems clear that evidence should be equal whether 0 = 

( 01, 02, ... , 0 i• 0 i' ... , 0 k) or 0 = ( Ov 02, .. • , 0 j• 0 i• ... , 0 k), that is, we require symmetry of E0¢>(X) 

in the arguments. Moreover, we desire our evidential statistic to be monotone. Since we want small 

values of if>(x) to signify more evidence against H0, we require 

E9¢>(X) ! 0 i• i = 1, ... , k. 

In the two sided case, a modification of (3.11) could be 

E9¢>(X) i 0;, i = 1, ... , k for 0;;::; C; 

(3.11) 

(3.12) 

(3.13) 

for some C;, -f.;::; C;;::; 1:. Somewhat stricter properties are that if>(x) itself is symmetric in its 

arguments and monotone in each x;. These imply the corresponding properties of E6¢>(X). 

It is more complicated to deduce reasonable evidential behavior along an H0 - H1 boundary, for 

example on the set {0: 0; ;::; 0 i = 1, ... , k -1, Ok E !R}. Also, the exact calibration of evidential 

statistics is unclear. More precisely, the calibration 

lip1 E0¢>(X) 
0;->-00 1=1, ... , k 

1, (3.14) 
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E0 ¢(X) = 1/2 (3.15) 

together with (3.11) seems reasonable for the one sided case. We might ask what class of rules satisfy 

(3.14) and (3.15), and see if such a requirement is reasonable and we will do so in Section 4.2. The 

requirement of (3.15) seems to be crucial in terms of our perception of evidence. At (} = ( 0, ... , 0 ), 

an evidential measure should be "impartial", and this concept seems to translate numerically into a 

statement such as (3.15). Note that for the two sided case the requirement 

Ec ¢(X) = 1, (3.16) 

where C = ( C1, C2, ••• , Ck) E [ - E, f ]k is too strong, especially iff= 0. This is because, unlike the 

one-sided case, the set e0 is compact hence, in some sense, one cannot be far from the boundary. This 

is specially true if f = 0, in which case the set e0 has an empty interior. So for testing (2.11) we are 

content with (3.11) and 

EB 4>(X) 1/2 (3.17) 

where B = (Bv B2, ... , Bk) E { -f, c }k. 

The evidential behavior that is more difficult to quantify is that which occurs along a boundary. 

For example, consider the configuration where (} i = 0, i = 1, ... , k - 1 and (} k _.. - oo. In words, k - 1 

components are on the boundary and one component is overwhelmingly for H0• An informal 

assessment of desired behavior would lead one to require the evidential statistic to "drop a dimension", 

that is, to assess an evidence measure of 1 for Ok, and to behave as if we now have a k -1 dimensional 

boundary. 

One reason for examining 4>L(x) of (3.8) was to understand its behavior on boundaries, in 

particular, what happens as some (} i--.oo while others remain fixed. To simplify calculations, we will 

examine the behavior of ¢L(x) in terms of the x;' s which, due to the assumption of monotone 

likelihood ratio, is equivalent to examining behavior in terms of the 8;' s. Suppose that, from x1, •.. , 

xk, m (::; k) of them are equal to 0 and the rest k- m are at -oo. Then, for this configuration 

2k-1 
¢>L(x) = (2k _ 1) + (2m _ 1) · (3.18) 

For example, if k = 3 and (x1, x2, x3) = (0, 0, -oo), then 4>L = 7/10, while if (x1, x2, x3) = (0, -oo, 

-oo) then ¢L = 7/8 > 7/10. Thus, evidence for H0 increases as the number of coordinates at -oo 

increases, quite reasonable behavior, and one that is shared by Fisher's procedure (but not Tippett's). 

3.4 Extremal Behavior of Evidential Statistics 

In the preceding section it was stated that an evidential statistic should approach 0 or 1 in 

expectation as the parameter moves deeper into H1 or H0, respectively. Furthermore we know that if 

the evidential statistic is itself a p-value then it can be arbitrarily close to 0 or 1 and it often behaves 
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this way if the the sample x indicates strong evidence for or against the null hypothesis. The desire to 

approach the limits is based mainly on common usage of p-values, and also on the interpretation of 

P(00 I x) as a measure of evidence. In this section we quantify this behavior precisely, and determine a 

set of conditions that guarantee the attainment of the bounds 0 and 1 by a posterior probability. 

If P(00 I x) can range from 0 to 1, then there is a chance of Bayesian/frequentist evidence 

reconciliation in the sense that there may exist an (improper) prior for which P(e0 I x) = p(x). If 

P(00 I x) is strictly between 0 and 1, then there is no chance for reconciliation. If we examine the 

behavior of the likelihood f(x 18), we can get some idea of when reconciliation is possible. Essentially, 

if there exist values of 8 in eo and eg for which the likelihood can be driven to zero, then reconciliation 

is usually not possible. This is formalized in the following theorem, which is based on a lemma that 

describes a type of monotone likelihood ratio behavior. 

Theorem 2. Under the conditions of Lemma A.1 (Appendix), if for every a, bE$ (the closure of 

the sample space) and 82 E e either part i) or part ii) of the Lemma fails to hold, then the p-value 

cannot be a posterior probability (for a prior yielding m11'(x) < oo). 

The proof follows directly from Lemma A.l. Though the conditions of the lemma seem unwieldy, they 

are just a detailing of obvious requirement. The following examples show this. 

Examples for Theorem 2 

i) Normal, one-sided. For X"' N(8, 1) and e0 = (-oo, 0), take 82 = 0, a= oo and b = -oo. 

Then Theorem 2 holds and any posterior probability ranges from 0 to 1. 

ii) Normal, two-sided. For X"' N(O, 1) and e0 = { 0 }, part ii) of Lemma A.1 does not hold. 

Thus the posterior probability cannot reach 1. 

iii) Exponential, one-sided. For X"' f(x 18) = 8e-O:r: and eo = (0, 1), part i), but not part ii), 

of Lemma A.1 holds (there is no b). 

vi) Binomial, one-sided. For x"' Binomial(n, 8) and e0 = [0, 8oJ, neither part i) nor part ii) 

holds. However, for the prior 1r(8) = 1/0 we have lim P(e0 I x) = 1 and P(e0 I x) is equal 
x-+0 

to the p-value. There is not contradiction as for this prior m11'(0) = oo. 
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4. Formal Axioms of Evidence 

We are now in the position to state formally the ax10ms of evidence that we would like a 

reasonable evidential statistic to satisfy. Then we can examine how these axioms can restrict the class 

of p-values (as defined in definition 1 or (3.1)) or other evidential statistic to the ones that are 

acceptable. 

4.1 Statement of the Axioms 

The axioms are stated in terms of both statistics and parameters. We first state them for the 

one-sided case and then we modify them for the two sided case, following the discussion in Section 3.3. 

For testing 

(4;1) 

a set of reasonable axioms for a measure of evidence t/>(X) is: 

(A1) Eo t/>(X) = 1 if 0; = -oo, for all i = 1, ... , k 

(A2) Eo t/>(X) = 1/2 if 0; = 0, for all i = 1, ... , k 

(A3) Eg <P(X) = 0 if 8; = +oo, for any i = 1, ... , k 

(A4) t/>(xl, ... ' xk) decreasing in x; for any i = 1, ... , k. 

The values 8 i = -oo and () i = +oo are to he interpreted as the lower and upper limiting values of 

0; respectively, which may or may not he attained. Note that, since the evidential statistics belong to 

[0, 1], axioms (A1) and (A3) are equivalent to convergence in probability of t/>(X) to 1 and 0 

respectively. 

Under the monotone likelihood ratio property an immediate consequence of (A4) is 

(B1) decreasing in 0 i for any i = 1, ... , k. 

If the variables are exchangeable (and in the case of Bayes rules the prior is symmetric in 0 ;'s) it would 

he reasonable to expect that 

(B2) for any i, j = 1, ... , k. 

However, in the general case the symmetry requirement is too stringent and seems unreasonable if the 

random variables X; have different distributions. Hence, in the future we will not deal with (B2). 

For testing 

H0 : IO;I :::;f, i=1, ... ,k vs. H1 : IO;I >f, forsomei (4.2) 

the axioms are modified as follows: 
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(C1) Eo 1/>(X) ::; 1 if O;E[-i,i], for all i = 1, ... , k 

(C2) Eo 1/>(X) = 1/2 if 0; = ± i, for all i = 1, ... , k 

(C3) Eo 1/>(X) = 0 if I o; I = +oo, for any i = 1, ... , k 

(C4) 4>(xt•···• xk) decreasing in xi for xi ;::: Xoi 

increasing in xi for xi ::; Xoi for any i = 1, ... , k. 

Axiom (C1) is a weaker version of (Al) and is almost always satisfied. It is included for 

completeness. The equivalent of (B2) is now 

decreasing in 0 i for 0 i ;::: C i 

increasing in 0; for 0;::; cj, I C; I ::; f, for any i = 1, ... ' k 

though it does not follow from (C4) immediately. 

We would like a satisfactory evidential rule to satisfy axioms (A1)- (A4) or (C1)- (C4). The 

reasonableness of the axioms is not ad hoc, in the sense that it is a combination of intuitive thinking 

and examination of the behaviour of typical rules. In the following we study the p-values of Table 1, 

the impartial Bayes rule developed in Section 3.2 and other evidential statistics to judge if both the 

axioms and the rules of evidence conform to our intuition and practice. We will proceed to verify the 

axioms (Al)- (A4). The verification of the equivalent (C1)- (C4) for the two sided case is analogous. 

4.2 Verification ofthe Axioms 

Axiom (A1) is satisfied for all combined p-values obtained by the statistics given in Table 1, as 

long as the individual p-values tend to 1 in probability, i. e. if 

for every t < 1. (4.3) 

This is also true for the statistics of Table 1 (excluding the normal and scaling them to be between 0 

and 1) if they are considered as evidential measures. The Bayes rule <t>1 (x) given by (3.8) also satisfies 

(A1) when ( 4.3) holds. However it is worth noting that ( 4.3) is a rather strong requirement. It is not 

satisfied in general in the two sided case, since, as we mentioned earlier if e0 is compact, it is not 

possible to go deep into the null. It is satisfied however for the one sided location or scale family when 

the test concerns the location or scale parameter, respectively. 

Axiom (A2) is automatically satisfied by all p-values, as long the individual p-values have a 

uniform distribution. This is true at the boundary of the null hypothesis under the monotone 

likelihood ratio assumption. The evidential statistics are badly calibrated with respect to (A2). The 

product and the minimum of the p-values have an expectation less that 1/2 whereas the maximum and 

Pearson statistics overestimate the evidence for the null hypothesis. This becomes more extreme as the 

dimension k gets larger. However, the (normalised) sum of p-values has an expectation equal to 1/2. 



15 

The Bayes rule ¢1 (x) given by (3.8) deserves special attention, since, as we saw in Section 3.2, it 

was derived so that it satisfies our intuitive requirement of impartiality, hence we would like to see if it 

satisfies (A2). However, an application of Jensen's inequality shows that 

(4.4) 

with equality for k = 1 and strict inequality for k > 1. This means that the evidence from ¢1 (x) is 

mostly against the null hypothesis, despite the fact it was constructed so that the prior probability of 

the null hypothesis is 1/2. In order to obtain impartiality in the sense of (A2) we must give a 

significant prior weight to the null hypothesis. Table 2 shows the prior probability for selected 

dimensions such that if the prior 1r* is constructed as (3.5) the expectation of the limiting posterior 

probability (3.8) equals 1/2. 

Table 2: Prior probability of H0 such that the expectation of the Bayes rule equals 0.5. 

k P(B E 0 0) 

2 0.612 

3 0.683 

4 0.741 

6 0.837 

10 0.943 

15 0.987 

20 0.997 

These results are in accordance with Moreno and Cano (1989) who examined the point null 

hypothesis in higher dimensions and found that p-values are typically larger than posterior 

probabilities. The equality for k = 1 should be expected, in view of the results of Casella and Berger 

(1987) on reconciling posterior probabilities and p-values in the one-sided one-dimensional case. 

Verification of axiom (A3) is more subtle. Similarly to (A1) we see that if 

lim P(p(Xi) < t) = 1 
9;--+00 

for every t > 0, (4.5) 

then one can show that for all evidential statistics and the respective p-values of Table 1 as well the 

impartial Bayes rule ¢1 (x), the limit of the expectation is 0 if all B; tend to +oo. In contrast to (4.3), 

( 4.5) is often satisfied because eg is typically unbounded and large values of 8 i yield small p(xi) for the 

most commonly used p-values. However to verify axiom (A3) we must see what happens when some, 

but not all individual (Ji tend to +oo (hence the respective p-values tend to 0). 

Note that the p-values PF• PN• Ps and Pp have the form 

k k 
p ( E F-1(U;) ~ E F-1(1- P;)) 

i=1 i=1 
(4.6) 
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where U; are independent uniform (0, 1) random variables and F-1 is the inverse of a cumulative 

distribution function F. To examine the limit of (4.6), we examine the behaviour of F. 

For Pearson's and sum p-values we have F(x) = 1 for a finite x, hence (4.6) is equal to zero if and 

only if 

(4.7) 

that is, ( 4.6) is positive if at least one individual p-value is not equal to zero. A similar remark can be 

made about the p-value derived from m?-JC Pi· Hence for Pp, Ps and PM (A3) is not satisfied . 
• 

If for any x < oo, we have F(x) < 1 (that is if the support ofF is not bounded above) then one 

can see 

(4.8) 

which in turn implies that (4.6) goes to zero. That means that for Fisher's and normal p-values, (A3) 

holds, as long as at least one individual p-value tends to zero and the other ones are bounded away 

from 1. Translating into parameter values, (4.6) will tend to zero, as long as at least one 0; tends to 

+oo but the other ones are not too far away from the boundary of H0 and H1• This is somewhat 

unsatisfactory since it means that the individual pieces evidence can "cancel out". In other words, 

(4.9) 

is indeterminate. Its value depends on the rate at which 01 and 02 go to their respective limits. 

Fortunately, for Fisher's p-value there is a x > -oo such that F(x) = 0 (the support of F is 

bounded below), hence we can obtain the stronger property 

k 
lim L: F-1(1- Pi) = -oo, 

Pi--+0 i=1 
( 4.10) 

irrespective of the values of p j• j ::/= i, that is, if there exists strong evidence against one Hoi• then, 

irrespective of the evidence for or against other H0;'s, one draws the right conclusion for () Hoi· 
• 

Similarly, Tippett's p-value, the Fisher and Tippett statistics and the Bayes rule </>L(x) satisfy (A3) 

even if some individual Pi 's give strong evidence for the null hypothesis. 

5. Multivariate Evidence 

In the previous sections we examined the properties of evidential measures without relating them 

with the formal hypothesis testing setup. However, Theorem 1 guarantees an equivalence between p­

values and tests so it is reasonable to expect that the implied relation will give us further insight as to 

how the properties of a test translate to the behaviour of the p-value as an evidential measure. In this 

section we relate the formal definition of a p-value in a higher dimensional setup with the respective 

tests and their acceptance regions. We will also try to clarify the connection between test statistics, 
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acceptance regions and the rules of combinations. These are straightforward in the one dimensional 

case, but not if the data and the parameters are vector valued. However keeping the geometric pictures 

in mind is always helpful. 

Suppose that, as in Section 1, we test (2.10) or (2.11) and for any a we have a testing rule of the 

form "Reject H0 if x ERa" where Ra ~ ~k is a rejection region such that 

sup P( X E R0 ) = o. 
e e e0 

(5.1) 

Throughout this section we assume that the rejection regions are nested in the sense of (2.5) and 

monotone, that is, for the one sided (2.10) 

x E R0 and y ~ x coordinatewise => y E R0 , (5.2) 

with an analogous requirement for the two sided (2.11). Nested rejection regions are necessary for 

Theorem 1 to hold, whereas monotonicity is equivalent to (A4). For such tests the acceptance aild 

rejection regions of a fixed o level are connected subsets of ~k. The points that separate the 

acceptance from the rejection region are also a connected set. The boundary points can be described by 

a curve of the form { x : 1/J01(x) = 0} where 1/J01(x) depends on o. Note that 1/J01(x) might not have a 

tractable form. Possibly after reparameterization we can often write, 

(5.3) 

Example 2 Suppose that xi- N(Oi, 1) independently and we test Ho : oi = 0, i = 1, 2, 3 VS HI : oi =F 0 

for some i. A test is of the form "Reject if x E R0 = {(xi, x2, x3) : xi+ x~ + x~- r2 ~ 0}", where r 

dep.;nds on o. The rejection regions are monotone in the two sided sense: if x =(xi, x2, x3), y = (Yv 

y2, y3), x E R0 and I Yi I ~ I xi I, i = 1, 2, 3 then y E R0 • Furthermore they are nested in that a test 

with smaller o level has a rejection region which is a subset of the rejection region of a test with a 

larger a level. The boundary points separating the acceptance and rejection regions lie on spheres and 

have the form {(xi, x2, x3) :xi+ x~ + x~- r2 = 0}, that is 1/J01(x) =xi+ x~ + x~- r2• 

Rejection regions of most multivariate tests of interest are not as general as (5.3) suggests. 

Indeed the expressions 1/J01(x) often have the special form 

(5.4) 

where ¢(x) is independent of a but c01 is not. If (5.4) holds, we can derive an overall evidential 

statistic ¢(x) and the testing rules can be written "Reject H0 if ¢(x) ~ c01" for some constant c01 , i. e. 

(5.5) 

The testing rules, in turn, define a p-value as follows: 

p(x) = inf{a : x E R0 } = P(¢(X) ~ ¢(x)). (5.6) 
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Example 2 (continued) By examining the equation of a sphere we see that ¢(x) = x~ +x~ +xi is 

independent of a whereas ca = r2 depends on a. The Euclidean distance of x from the origin is a (not 

calibrated) evidential statistic. The p-value P( xi ~ x~ + x~ +xi ), where xi is a chi squared random 

variable with 3 degrees of freedom, is a one-to-one function of ¢(x) and is an evidential statistic in the 

sense of Section 1. 

Remark. If a1 -:f:. a 2, the curves { x: '1/Ja (x) = 0} and { x: '1/Ja (x) = 0} might have common points 
1 2 

but they do not cross. However if (5.4) holds the curves { x: ¢(x) = ca } and { x: ¢(x) = ca } have 
1 2 

no common points. 

Note that in the one dimensional case, at least when using the Neyman-Pearson approach, 

rejection regions are nested and monotone and the curve (essentially a point) { x : ¢(x) = ca} that 

separates acceptance and rejection region defines a function ¢(x) independent of a. Then ¢(x) ·is 

unique up to one-to-one transformations and is a one-to-one function of x (or the p-value). However 

this is not true in the higher dimensional case. For a given testing rule and data x there might be 

more than one curve of the form { x: '1/Ja(x) = 0 } on which x lies, hence P(¢(X) ~ ¢(x)) is not well 

defined. The following examples will make clearer the meaning of the function ¢ in a more 

complicated situation. 

Example 3 Suppose that X1 ,.., f(x1 I 91) and we test H0 : 91 $ 0. If F01 is the inverse cumulative 

distribution function associated with f( · I 0), the testing rule "Reject H0 if x ERa= 

[ F01(1- a), +oo )" separates the acceptance and rejection regions by the points { x : x = F01(1- a)} 

or, equivalently { x: p(x) =a} or any other { x: ¢(x) = c} where¢ is a one-to-one function ofx and c 

is a one-to-one function of a. 

Example 4 Suppose that xi- f(xi I 9i) independently and we test Ho: 9; $0, i = 1, 2. 

Consider the testing rule of the form 

For a E [ 0, ! ] reject if x1 ~ F01( 1- 'l<i) and x2 ~ F01( 1- 'l<i), 

For a E ( ! , ! ] reject if x1 ~ F01(!) and x2 ~ F01(1- 2a ), 

For a E (!, 1] reject if x1 ~ F01(1- a). 

This rule uniquely defines, for any a, the acceptance and rejection regions. However, although for a 

given a there is a curve { x : '1/Ja(x) = 0 } separating the regions, the curve cannot be written as { x: 

¢(x) =c} where¢ does not depend on a. The point (x1, x2) = ( F01(!), F01(£)) lies on more than 

one curve of the form { x: '1/Ja(x) = 0 }. 

Now consider the testing rule 
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The curve that separates lR2 into the acceptance and rejection regions is {(x1, x2) 

mjnxi = F01( 1-'[Ci)} or {(x1 , x2) : mjnp(x;) = 'fCi}. An associated evidential statistic is 
' ' 

¢(x) = mjnp(xi) and the p-value is Tippett' s. 
' 

Examining the multivariate p-values derived from rejection regions, one can obtain some 

interesting results. First we can find the envelopes of the multivariate p-values. That is, for given x, 

we can find the minimum and maximum p-value that one could report by using various tests, whether 

they are derived by combining the individual p-values or from some other, distribution specific 

statistic. 

Let If be the class of all tests that have monotone and nested rejection regions and let If 8 the 

tests that are, in addition, symmetric in x;' s. Then, for given x E lRk 

k 
inf p(x) = n p(x;) 
If i=1 

(5.7) 

k 
sup p(x) = 1- n (1- p(xi)) 
If i=1 

(5.8) 

inf p(x) = min p(xi) 
«:J'8 1~i~k 

(5.9) 

(5.10) 

Verifying (5.7)- (5.10) is a straightforward matter, and follows easily if one draws the pictures 

associated with the possible shapes of the rejection regi<-''lS of the tests in If and If 8 • The LHS of 

(5.7)- (5.10) are the evidential statistics yielding PF• Pp. PT and PM respectively. However, there is 

no testing rule that achieves the extrema for all x E ~k. If there was, then the statistics themselves 

would be p-values, hence they would have a uniform distribution, and it is easy to see that it is not the 

case. 

The plethora of tests in the multivariate case, reflecting the wide choice of rejection regions, 

makes the problem of choosing evidential measures difficult. Even after eliminating the ones that do 

not obey the axioms of Section 4, there are several plausible functions ¢(x). In the univariate case, 

appealing to the Neyman-Pearson theory gives reasonable criteria to choose tests and hence associated 

p-values as good starting points. Other measures of evidence are the Bayesian posterior probabilities of 

the null hypothesis. 

Again, one might ask if decision theoretic tools can help. By evaluating the risks R2(8, ¢) (given 

by (1.4)) of various ¢(x) as estimators of 1(8 E 8 0), we may hope that we can narrow the choice and 

arrive at some preferable procedures. Of course, risk considerations cannot be the only criterion. 

Reasonableness, as formalised in Section 4 is also important. It is well known that, in general, there 

are procedures that have minimum risk for some parameter values but are otherwise non-optimal. An 
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attempt to find a single best procedure using only risk considerations is doomed. We may hope, 

however, that we can find a single procedure, best in terms of risk, in some smaller class of procedures. 

The following theorem says that this also is a vain hope. The result applies to evidential measures that 

are p-values derived from the tests in the class ~ and shows that for the one-sided hypothesis we 

cannot find a uniformly best p-value. The theorem is closely related to an analogous result by 

Birnbaum (1954) for testing. Formally we have: 

Theorem 3. For the hypotheses (2.10), let p(x) be any p-value corresponding to a test 

(5.11) 

Then there is a parameter value (} and a p-value p8(x) such that, 

(5.12) 

Proof. Observe that ( I(O E e0)- p6(X))2 and ( I(O E e0)- p(X)? are positive random variables. 

Using the identity 
00 

E g(X) = J P(g(X) ~ x) dx 

0 

and making the appropriate changes of variables, inequality (5.12) becomes 

1 1 

J P e(pe(X) ~a) (1- a) da < j P 6(p(X)::; a) (1- a) da 

0 0 

for (} E e0 , and 

1 1 

j P 8(p6(X) ~a) a da < j P 8(p(X) 2: a) ada 

0 0 

(5.13) 

(5.14) 

(5.15) 

for (} rJ. 6 0• Hence it suffices to find a value of(} and the corresponding p8(X) such that either (5.14) or 

(5.15) is true. Let (} = (01, 0, 0, ... , 0) and p8(X) = p(X1), the univariate p-value derived from the 

family of uniformly most powerful unbiased tests for the hypothesis H0 : 01 ~ 0 vs. H1 : (} > 0. By the 

definition of most powerful unbiased tests (which have rejection regions of the form { p(x1) ::=;a}), the 

tests of the form "Reject if p(x) ~ a" must either have a larger rejection probability for a 01 ~ 0 or a 

larger acceptance probability for a 01 > 0 (with a strict inequality for some 01 , unless p(x) = p(x1)). 

Hence there exists either a 01 ::=; 0 such that 

(5.16) 

or a 01 > 0 such that 

(5.17) 
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Inequalities (5.14) or (5.15) follow immediately from (5.16) or (5.17) respectively. 0 

In the above theorem the p-value p(x1) is a rather unreasonable as evidential rule for the 

hypothesis H0 : (} ~ 0, but has better risk than other, perhaps more reasonable ¢(x) for some parameter 

values. A way of eliminating such estimators is to examine the maximum possible risk, that is to 

apply the minimax criterion. However, in this situation, it turns out that the criterion is not of great 

help. Similarly to Hwang et al. (1992) the unique (under L2(0, ¢)) minimax estimator of I(O E e0) is a 

rather silly one. 

Theorem 4. Suppose the hypothesis are as in (1.1) and e0 and e1 have a common limit point (}c such 
k 

that the likelihood f(x I 0) = n f(xi I Oi) is continuous at (Jc· Then the rule ¢o(x) = 1/2 is unique 

minimax. 
i=1 

Proof. Consider sequences of points (}no E e0 and (}nl E e1 such that ,}i,~ (}nj = Oc, j = 0, 1 and a 

sequence of priors putting a mass 1/2 to each of the points (}nO and (} nl' It is straightforward to see 

that the corresponding sequence of Bayes rules is 

(5.18) 

and by the continuity of the likelihood Ji~ 4>n(x) = 1/2. By the Dominated Convergence Theorem 

the limiting Bayes risk is equal to 1/4, hence by applying Theorem 18, p. 350 of Berger (1985), we 

conclude that ¢0(x) is minimax. Uniqueness follows from the convexity of the loss L2(0, ¢). 0 

Another criterion which has proved useful in eliminating sub-optimal procedures is admissibility. 

Though there are admissible rules that are certainly unreasonable, the use of inadmissible rules is 

rather undesirable since they can be dominated by others for all parameter values. In the next section 

a criterion for the admissibility of evidential rules is provided. 

6. Characterizing Admissible Rules 

We turn our discussion to the admissibility of evidential procedures with respect to the squared 

error loss L2(0, ¢) of (1.3). The general theorem is, that under some regularity conditions that we will 

make precise, Bayes rules are admissible procedures. Earlier work (Hwang et al. 1992) showed that the 

generalised Bayes rules form a complete class, but it was assumed that e c ~ and the family of 

distributions was a canonical exponential family on ~. In this section we extend this result to 

multidimensional problems. Although we will only apply the complete class results to the combining 

of experiments problem, the results can be applied in other settings. 
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Note that if admissibility is the only criterion, this complete class result almost rules out the 

consideration of p-values based on the evidential statistics of Table 1 because they are not Bayes rules. 

This is somewhat contrary to the one dimensional situation (Hwang et al. 1992), where p-values are 

generalised Bayes rules in the one-sided problem, hence admissible. In higher dimensions, for the 

problem of one-sided testing, there are statistics based on p-values which are generalised Bayes, such as 

the product of p-values. It turns out that this is an admissible procedure. Based on admissibility, 

rather than using the Fisher combination as the basis for constructing a p-value, one could use the 

product itself as a measure of the evidence that has been accumulated against the null hypothesis. The 

problem is, as we have already seen, that the values of the product are in general too small to be 

intuitively acceptable since the prior probability of the null is small. 

We shall consider the testing problem for e C ~k. We assume that the model under 

consideration is a canonical exponential family, with density (with respect to a measure v) given by 

where 

with 

Nv = {0: j exp{O ·x}v(dx) < oo} 

¢( 0) = log Av( 0) 

Av(O) = j exp(O · x) v(dx) . 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Note that -Xv(O) is the Laplace transform of the dominating measure v, with 0 as the parameter of the 

transform. One may also define Av(O) as a Laplace transform, however now, integrating with respect 

to v( dO). The recognition that Av( ·) is a Laplace transform simplifies the proof of the construction of 

the complete class theorem. Using this approach, one may apply a variety of results on the continuity 

of the Laplace transform. For more details on these continuity results see Brown (1976, Chapter 2). 

The results will be applied in the special case of the problem at hand. The main ideas of the proof go 

back to the pioneering work of Farrell (1968). 

It is shown below that the rules in the complete class are essentially generalized Bayes rules, after 

allowance for truncation. We define e to be a truncation set for a function tP(x) if tP(X) = 0 for. X t e. 

For more on truncation see Stein (1956) and Farrell (1968). In the following we consider the equalities 

to be equalities almost everywhere (with respect to the appropriate measure). 

Theorem 5. Let tP be an admissible estimator of 1(0 E e0) under the loss function L2(0, tP) and e be a 

truncation set for tP such that for all X E e, 0 < ¢(x) < 1. Then there exist 0'-finite measures 7ro on eo 
and 7r 1 on el such that 

(6.5) 

and tP is finite and given by 
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j f(x I 0) 1r0(d8) 

0 
(6.6) 

Proof: Suppose¢ is an admissible rule. From Brown (1~86, Theorems 4.A.7 and 4.A.12) there exists a 

sequence of finite priors Gn concentrated on finite subsets such that the Bayes rule 4>0 n(x) converges to 

tj>(x) in the weak* topology. The special case of 4> = 0 is obvious. Assume E0 ¢(X) > 0. By the 

dominated convergence theorem it follows that ¢0 n(x) > 0 with positive measure for n sufficiently 

large. Define 

e E ei , i = o, 1. (63) 

Let Hn = Hon + H1n. Note that Hn is a finite measure. By Lemma 7.17 of Brown (1986) there exists a 

subsequence H ,, limiting finite measure H and a closed convex set e on e, such that for i = 0, 1, as 
n 

n'--+ oo 

~H. ,(x) --+ ~H/x) 
an 

(6.8) 

~H. 1(x) --+ oo 
an 

(6.9) 

Note H(S) = H0(60) (since H0n(S0) = 1). Now define 

..\H (x) 

tPn(x) = ..\ (x) D_; ..\ (x) . 
Hon Hln 

(6.10) 

It follows by construction that tPn --+4> for all X E e. 

The first part of the theorem follows from the fact that Bayes estimates are admissible and the 

fact that for L2 loss, if a rule 4>' is as good as ¢ and ¢ has a truncation set e, then ¢'(x) = tj>(x) for 

0 

Remark 1. The results hold if v is a counting measure. 

Remark 2. The truncation set may be identified with the convex acceptance region, as studied by 

Birnbaum (1955) and Stein (1956), in the case where 0 0 is a bounded set in 1Rk. It may be shown that 

any nonrandomised test with convex acceptance region is admissible. In fact, when 0 0 = {00} is 

simple, such tests form a minimal complete class. These facts link the optimality results of testing (i.e. 

Lcloss) to those in evidence assessment (i.e. L2-loss). That is, the truncation sets in the complete 

class theorem above are to be identified with the convex acceptance regions in simple hypothesis 

testing. 
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Now consider the problem of testing k separate independent hypothesis, that is, testing (2.9) 

where eo= D eo;· It is important to note that the null hypothesis states that all 0; E eoi 
I 

simultaneously. Therefore for each event Oi E e0; one may define a parameter I(O; E e 0 ~ which is to 

be estimated. Hence the parameter of interest for H0; (i = 1, ... , k) is equal to Il 1(0; E e0 ;)· 

i=1 
Following the development above and in Hwang et al. (1992) it follows that the loss function will be 

. k 2 
12(0, ¢) = ( Il I(O; E 6 0;)- ¢(x)) . (6.11) 

i=1 

Under the conditions of the complete class theorem above it follows that the admissible estimators are 

the generalized Bayes rules. Hence, if the prior for 0 = (01, ••• , Ok) is a product of the priors for 1r(O;) 

(i = 1, ... , k), it follows that the product of the individual generalized Bayes rule for H0 ; form the 

complete class for the multiple hypothesis H0• 

Of course admissibility of an evidential rule implies that there is no other rule that dominates it 

for all parameter values, hence it rules out any complete risk ordering of admissible estimators. It is, 

however, necessary to examine numerically the risks of various rules as functions of the parameters in 

order to gain some feeling as to whether some estimators are more satisfactory than others. Figure 1 

shows some simulation results for the normal case and the one sided null hypothesis. The plot shows 

the risks of the Fisher and Tippett p-values, as well as the Fisher statistic, (i. e. the product of the 

individual p-values) and the impartial Bayes rule ¢1 (x). It can be seen that the risks of Tippett's and 

Fisher p-values are virtually identical. The Fisher statistic and the Bayes rule have relatively small 

risk in the alternative, hut they do not perform satisfactorily in the null. Furthermore, the differences 

in the risks in the null and in the alternative is large. This can he explained by the fact that they are 

both small, hence they perform well when they estimate the mdicator function when it equals zero hut 

badly when the indicator function equals one. 

7. Discussion 

Evidence in the multivariate case seems to he considerably harder to quantify than in the 

univariate case. In some sense there are too many criteria and too many procedures to choose from. 

We would like to use statistics that both conform to our intuition and perform satisfactorily from a 

decision theoretical point of view. The axioms formulated here give a quantitative description of our 

intuition whereas minimaxity and admissibility results can provide evaluation tools. However, there 

does not seem to be a clear connection between the two approaches. Rules that perform well with 

respect to the evidential axioms may not necessarily do so under risk considerations. 

It seems that the omnibus p-values derived from the various combination rules of the individual 

p-values are not posterior rules under any prior. Tippett's and maximum p-values are not smooth 

enough (they are not differentiable as functions of the data) to he Bayes or generalised Bayes rules, so 
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they are ruled out immediately. Other rules such as normal, sum or Fisher also seem unlikely to be 

generalised Bayes. This should not come as a surprise, since such combinations were constructed in 

rather ad hoc, though heuristically intuitive ways. However the heuristic way of constructing them 

implies, as a result, that they tend to follow the evidence desiderata. 

On the other hand, Bayes rules that are optimal using decision theoretical criteria need not be 

evidential, at least in the sense that was described in the paper. Statistics such as the product of p­

values are too small to be satisfactory whereas attempts to construct "impartial" Bayes rules make 

some difficulties apparent. The dimension of the problem affects the posterior probabilities in a crucial 

way. In order to obtain posterior probabilities that do not bring evidence against the null hypothesis 

too often, we must put a large prior mass on 8 0 , so in higher dimensions there is a built in bias against 

the null. 

Each particular problem will have considerations that are important. If a well calibrated, 

intuitive evidential statistic is desired, then a p-value such as Fisher or Tippett should be used. They 

both seem to behave reasonably for different parameter values, both in the null and the alternative. 

This is perhaps closely connected with the convexity of the regions of the tests from which they are 

derived. Under some regularity conditions, tests with convex acceptance regions form complete class 

with respect to the traditional decision theoretical loss for tests (i. e. the absolute error loss L1(0, ¢)), 

and it seems that this optimality carries through to p-values as evidential rules. Other p-values do not 

to satisfy all axioms, so it should not come as a surprise if, at least for some data values, they give 

evidence contrary to our intuition. 

If we are not concerned with evidence as formalised above, but with the estimation of accuracy in 

testing, such as expressed by the indicator function, then generalised Bayes rules are clear winners. 

The impartial rule which gives equal mass to the null and the alternative satisfies the admissibility 

criterion, as well as our idea of impartiality. Of course, if prior information is available and we want 

to use it, then there is no reason to be impartial and proper Bayes posterior probabilities can be 

reported as evidential measures. 

It seems, however, that calibration of evidence is more important than optimality using decision 

theoretical criteria, which necessitates the existence of some axioms that evidential rules should satisfy. 

Minimaxity proves to be useless, whereas admissibility does not guarantee that only reasonable 

estimators are optimal in that criterion. Furthermore the fact that a rule is inadmissible does not 

imply that an estimator that has smaller risk is easy to find or to use. Numerical evidence shows that 

the risk of the admissible rules can be quite high compared with the risk of the reasonable evidential 

rules such as the Fisher and Tippett p-values. The simulation results also suggest that these p-values 

have risk close to the minimax risk. The relatively good decision theoretical performance coupled with 

their intuitively appealing behaviour justifies their use as rules of evidence. 
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Appendix 

Lemma A.l Let X ...... f(x I 0), and suppose we test H0 : 0 E e 0 vs. H1 : 0 E e 1 where the support 

of f{x I 0) does not depend on 9. Let 11"(0) be a prior supported on e 0 U e 1 for which 11"(e0) > 0 and 

11"{91) > 0, and which results in a marginal distribution m11"(x) < oo for every x. 

i) If there is a value a for which 

. f{x I 00 ) 

l!.!?a f{x I 92) = 0 and 

lim P(O E eo I x) = o. 
x--+a 

ii) If there is a value b for which 

lim P(O E eo I x) = 1. 
x-+b 

Proof: The proof follows quickly from Lebesgue's monotone convergence theorem by writing 

J f{x IO) 11'(0) dO 
f{x I 02) 

P(O E eo I x) eo 

P(O E e 1 1 x) 

J f(x IO) 11'(0) dO 
f(x 182) 

e 1 

Taking limits inside the integral yields the desired result. 

(A.l) 

(A.2) 

(A.3) 

{A.4) 

(A.5) 

D 
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Figure 1: Simulated risks of the Fisher statistic (Product), the Fisher p-value (Fisher), the impartial 

Bayes rule ¢1(x) (Bayes) and Tippett p-value (Minimum) for a normal distribution and one--sided 

hypothesis H0 : 0; :$ 0, i = 1, 2, 3, 4. The true parameter values have the form ( 0, 0, 0, 0) for (a) and 

(0, 0, 0, 0) for (b). The x-axes of the plots represent the values of 0. 
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