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Abstract

Perception of universal facial beauty has long been debated amongst psychologists
and anthropologists. In this paper, we perform experiments to evaluate the extent
of universal beauty by surveying a number of diverse human referees to grade a
collection of female facial images. Results obtained show that there exists a strong
central tendency in the human grades, thus exhibiting agreement on beauty assess-
ment. We then trained an automated classifier using the average human grades as
the ground truth and used it to classify an independent test set of facial images. The
high accuracy achieved proves that this classifier can be used as a general, auto-
mated tool for objective classification of female facial beauty. Potential applications
exist in the entertainment industry, cosmetic industry, virtual media, and plastic
surgery.

Key words: facial beauty classification, observer agreement, proportion analysis,
golden proportion, facial thirds, facial features, supervised learning, performance
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1 Introduction

It has long been believed that the concept of facial beauty is variable and
subjective to race, culture or era. However, psychological and medical sci-
ences state that there is a timeless, aesthetic ideal facial beauty based on
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facial proportions. Recent scientific studies also reveal that the concepts of a
“beautiful face” are not learned but seem to be “hard-wired” into our mind
from birth (Larrabee, 1997), (Yellin, 1997). Moreover, cross-cultural investi-
gations on facial beauty show that different groups have similar perceptions
of facial beauty, and a universal concept of beauty may be defined throughout
different races, cultures and eras (BBC Science, 2002), (Bell, 1997), (Cun-
ningham, Roberts, Barbee, Druen, et al., 1995), (Daibo, 1999 ), (Epker and
Koury, 1992), (Farkas, 1985), (Farkas, 1987), (Farkas, 1994), (Jefferson, 1993),
(Landau, 1989), (Langlois and Roggman, 1990), (Larrabee, 1997), (Marquardt
Beauty Analysis, 2002 ), (Mealey, Bridgstock and Townsend, 1999), (Michiels
and Sather, 1994), (Parris and Robinson, 1999), (Perrett, May and Yoshikawa,
1994), (Ricketts, 1982), (Yellin, 1997).

Attempts at measuring beauty quantitatively have been made by investigators
in psychology, arts and image analysis, and more recently in oral and maxillo-
facial surgery (BBC Science, 2002), (Bell, 1997), (Cunningham, Roberts, Bar-
bee, Druen, et al., 1995), (Daibo, 1999 ), (Epker and Koury, 1992), (Farkas,
1985), (Farkas, 1987), (Farkas, 1994), (Jefferson, 1993), (Landau, 1989), (Lan-
glois and Roggman, 1990), (Larrabee, 1997), (Marquardt Beauty Analysis,
2002 ), (Mealey, Bridgstock and Townsend, 1999), (Michiels and Sather, 1994),
(Parris and Robinson, 1999), (Perrett, May and Yoshikawa, 1994), (Ricketts,
1982). The most famous of these are based on the Golden Proportions (de-
rived from the Golden Ratio, or phi: 1.61803) (BBC Science, 2002), (Boris-
savlievitch, 1958), (Huntley, 1970 ) and the Facial Thirds (Farkas, 1985),
(Farkas, 1987), (Farkas, 1994). However, measuring facial beauty remains a
challenging task. The existing approaches either lack general confirmation
from a significant pool of human referees, or require several cumbersome man-
ual measurements, or both. Instead, it is important that the approach be
based on experiments with sufficient human referees and automated image
analysis tools. Such an automated and objective beauty classifier could be
extremely useful in several applications such as plastic surgery (for predictive
evaluation of facial beauty before surgical procedures), the cosmetic and enter-
tainment industries, and virtual media. In the following, we briefly review the
main methods from the recent literature and introduce our approach there-
after. The group from (Marquardt Beauty Analysis, 2002 ) has developed a
method that measures facial beauty by using the Golden Ratio. Although they
proved the usefulness of proportions in facial features, their method does not
carry documented evidence of its validity; moreover, it requires several manual
measurements. Aarabi and Hughes in (Aarabi and Hughes, 2001) proposed an
automated procedure based on the data from 12 human referees and k-nearest
neighbor classification. Their grading system, however, only provides coarse
classification into 4 beauty classes, thus limiting usefulness for many real ap-
plications. Moreover, the set of human referees was neither sufficiently large
nor diversified. Instead, an automated procedure was proposed in (Gunes and
Karsligil, 2002) based on automated image analysis and a rule-based classi-
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Fig. 1. System Framework.

fication system. The classification rules were elicited by hand and they still
required validation. In order to improve both validation and automation of
the procedures, in this paper, we propose an approach providing the following
advantages:

• the ground truth is based on a survey of tens of diverse human referees
giving beauty grades to a collection of 215 female facial images of different
age and ethnicity for a total of more than 10,000 grades. Such values are
significantly larger than those of the previous approaches. The statistical
results of this survey form our ground truth. The survey gives evidence
that the grade histograms (the histograms of grades, or marks, for a same
image from many human referees) are shown to be unimodal and compact
in most cases, thus supporting the statement of “universal” facial beauty
perception;

• the facial features of a face image are extracted automatically by using
accurate image analysis operators;

• the extracted facial image features and the ground-truth classification are
used together to train a tree-based classifier which provides automated grad-
ing of the facial beauty. The classifier is tested with an independent set of
facial images, reporting high classification accuracy; this validates our sys-
tem to be an objective, automated tool for classification of female facial
beauty. Extension to male cases would be straightforward.

The system framework illustrating these steps is shown in Figure 1. The rest
of the paper is organized as follows: Section 2 describes the facial proportions
used for measuring facial beauty. Section 3 describes the face detection process
and the feature extraction operators. Section 4 describes the human classifi-
cation and automatic classification process. Section 5 gives an evaluation of
the performance of the automated classifier and, finally, Section 6 presents the
conclusions and future work.

2 Facial proportions

In this section we present the facial proportions used in this study specifically
for the vertical and horizontal sets (Epker and Koury, 1992), (Farkas, 1985),
(Farkas, 1987), (Farkas, 1994), (Marquardt Beauty Analysis, 2002 ), (Parris
and Robinson, 1999).
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Fig. 2. The Golden Ratio.

2.1 Vertical proportions

The vertical proportions we considered are based on two main aesthetic the-
ories: the Golden Proportion and Facial Thirds methods (Epker and Koury,
1992), (Farkas, 1985), (Farkas, 1987), (Farkas, 1994), (Marquardt Beauty Anal-
ysis, 2002 ), (Parris and Robinson, 1999).

Golden Proportions. The Golden Ratio or Proportion is approximately the
ratio of 1 to 0.618 or the ratio of 1.618 to 1 (Borissavlievitch, 1958), (Huntley,
1970 ) as shown in Figure 2. According to the Golden Proportions method for
female facial beauty, in the case of a perfect, vertically aligned face, all the
proportions stated in Table 2 must fit the Golden Ratio (Parris and Robinson,
1999). The description of the distances that we used for the Golden Propor-
tions ratio calculations are given in Table 1 and also illustrated in Figure 3(a).
Table 2 describes the specific ratios used in the Golden Proportions method
and by our system. It is easy to see that there are other ratios that might
be derived as a consequence of the Golden Proportion Rule and other ratios
(such as for instance (3:4)) respect the Golden Proportions. However, they
were not used in the original work from (Parris and Robinson, 1999) as they
are redundant and as such not used in this work either.

Facial Thirds. The Facial Thirds method states that a well-proportioned face
may be divided into roughly equal thirds by drawing horizontal lines through
the forehead hairline, the eyebrows, the base of the nose, and the edge of the
chin (see Figure 3(b)). Moreover, the distance between lips and chin should
be double the distance between the base of the nose and lips (Farkas, 1985),
(Farkas, 1987), (Farkas, 1994), (Marquardt Beauty Analysis, 2002 ), (Parris
and Robinson, 1999). Table 3 summarizes the Facial Thirds ratios.

(a)(b)

(c)

Fig. 3. Template images for (a) Golden Proportions; (b) Facial Thirds; (c) horizontal
proportions.

Golden Proportions and Facial Thirds methods are similar to each other. How-
ever, the former specifies a larger number of proportions than the latter. More-
over, they use different measuring points and as such cannot be directly com-
pared. However, if we align them to the same measuring points, they seem in
good accordance. For instance, taking into account Figure 4 let us consider
the following two ratios:
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Table 1
Description of the distances used when defining the vertical facial ratios.

1 vertical distance between top of the face and tip of the chin

2 vertical distance between pupils and tip of the chin

3 vertical distance between top of the face and nostrils

4 vertical distance between top of the face and pupils

5 vertical distance between nostrils and tip of the chin

6 vertical distance between pupils and central lip line

7 vertical distance between lips and tip of the chin

8 vertical distance between pupils and nostrils

9 vertical distance between nostrils and central lip line

10 vertical distance between top of the face and eyebrows

11 vertical distance between eyebrows and tip of the nose

12 vertical distance between tip of the nose and tip of the chin

13 vertical distance between tip of the nose and lips

14 vertical distance between lips and tip of the chin

Table 2
Ratios used in the Golden Proportions method (Parris and Robinson, 1999).

2:4 vertical distance between pupils and tip of the chin to ver-
tical distance between top of the face and pupils

3:5 vertical distance between top of the face and nose to vertical
distance between nostrils and tip of the chin

6:7 vertical distance between pupils and central lip line to ver-
tical distance between lips and tip of the chin

5:8 vertical distance between nostrils and tip of the chin to ver-
tical distance between pupils and nostrils

8:9 vertical distance between pupils and nostrils to vertical dis-
tance between nostrils and central lip line

7:9 vertical distance between lips and tip of the chin to vertical
distance between nostrils and central lip line

mean ratio mean of the six aforementioned ratios
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Table 3
Ratios used in the Facial Thirds method.

10:1 Ratio of vertical distance between top of the face and eyebrows to
face length

11:1 Ratio of vertical distance between eyebrows and tip of the nose to
face length

12:1 Ratio of vertical distance between tip of the nose and tip of the
chin to face length

13:14 Ratio of vertical distance between tip of nose and lips to vertical
distance between lips and tip of the chin

Fig. 4. Comparison between measurement points of Golden Proportions and Facial
Thirds.
Table 4
Description of the distances used when defining horizontal facial ratios.

1 vertical distance between top of the face and tip of the chin

15 horizontal distance between center of the pupils (inter-eye dis-
tance)

16 horizontal distance between the widest parts of the face

1:3 Length of the face to the distance between top of the face and the nostrils;

1:X Length of the face to the distance between top of the face and tip of the
nose;

According to the Facial Thirds rules, (1:3) should be equal to 1.5 in an ideal
case and according to the Golden Proportion rules (1:X) should be 1.618.
Figure 4 shows that segment 3 is slightly shorter than X for any face and, as
a consequence, (1:3) is always slightly smaller than (1:X). This justifies the
small difference in the numerical values from the two sets of rules showing
their substantial agreement.

2.2 Horizontal proportions

For horizontal proportions, we propose to use the ratio of “the inter-eye dis-
tance to face width” as the eyes are the most notable horizontal landmark in
a face and the ratio of “facial width to face lenght” to capture the propor-
tionateness of the face elongation. For detailed description of such horizontal
ratios, please see Figure 3(c), and Tables 4 and 5.

According to these methods, a face is more attractive as it approaches the
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Table 5
Ratios used in the Horizontal Proportion calculation.

15:16 Ratio of inter-eye distance to face width

16:1 Ratio of face width to face length

proportions shown in Figure 3(a), 3(b) and 3(c), respectively. Facial plastic
surgeons have already been using these ratios as a guide for their work (Bell,
1997), (Cunningham, Roberts, Barbee, Druen, et al., 1995), (Daibo, 1999
), (Epker and Koury, 1992), (Farkas, 1985), (Farkas, 1987), (Farkas, 1994),
(Jefferson, 1993), (Landau, 1989), (Langlois and Roggman, 1990), (Larrabee,
1997), (Marquardt Beauty Analysis, 2002 ), (Mealey, Bridgstock and Townsend,
1999), (Michiels and Sather, 1994), (Parris and Robinson, 1999), (Perrett,
May and Yoshikawa, 1994), (Ricketts, 1982), (Yellin, 1997). Computing all
the aforementioned proportions requires accurate feature extraction, that we
perform in six phases: face localization by skin region detection, eye localiza-
tion, pupil localization, eyebrow localization, base of the nose localization, lip
localization and, finally, chin localization.

3 Feature extraction and analysis

Accurate feature extraction is of fundamental importance for reliable mea-
surement of facial beauty. A vast literature covers techniques for facial feature
extraction (Hjelmas, 2002), (Yang, Kriegman and Ahuja, 2002), (Rein-Lien,
Abdel-Mottaleb and Jain, 2002), (Graf, Chen, Petajan and Cosatto, 1995),
(Yow and Cipolla, 1995), (Yow and Cipolla, 1996), (Yow and Cipolla, 1997).
In this work, we choose to use the well-known methods proposed in feature-
based face detection approaches since such methods have proven reliable and
computationally efficient (Hjelmas, 2002), (Yang, Kriegman and Ahuja, 2002),
with main references to (Graf, Chen, Petajan and Cosatto, 1995), (Yow and
Cipolla, 1995), (Yow and Cipolla, 1996), (Yow and Cipolla, 1997).

The first step consists of locating the facial region in order to remove irrelevant
picture information. We assume that the largest part of each image is the
portrait view of a face and that each face is located in the center of the image.
In our test set, the center of the image will identify the face-skin color of the
observed person. Hence, we calculate the average pixel value from the center of
the gray facial image, within a 7 * 7 pixel region, assuming that it corresponds
to the facial region. Starting from this region, we then apply a region growing
step to improve detection of the contour of the facial region. The resulting
image from this step is shown in Figure 5(a).

After identifying the facial region, the eyes are usually detected first. After
band pass filtering, morphological operations are applied to enhance regions

7



Fig. 5. (a) Facial region after region growing (enhanced and binarized image); (b)
Horizontal position of eyes located as histogram local minimum in the upper his-
togram part; (c) Resulting image from horizontal edge detection; (d) Location of
the connected components identified as eyebrows; (e) Location of the lip line; (f)
Horizontal locations of eyebrows, pupils, tip of the nose, lip line and tip of the chin.

Fig. 6. Input image and the corresponding histogram.

with high intensity (e.g., eyes). The histogram of the enhanced image typically
exhibits a prominent peak. Based on the peak value and its width, adaptive
threshold values are selected in order to generate binarized images. For eye
detection, the vertical histogram of the skin-region is computed as shown in
Figure 6. The rows containing the eyes are located in correspondence with
a histogram local minimum in the upper histogram part (see Figure 5(b)).
Furthermore, the horizontal histogram for these rows is also computed, and
eyes are then located as the two local minima. Finally, connected component
labeling is applied to the binarized image in order to identify the areas of
candidate eye regions.

Furthermore, we exploit the knowledge about facial anatomy and use the
facial model and partial face groups introduced by Yow and Cipolla when
detecting the eyes and eyebrows (Yow and Cipolla, 1996). They model the
face as a plane with 6 oriented facial features (namely the eyebrows, the eyes,
nose and mouth) and use a second derivative Gaussian filter, elongated at an
aspect ratio of 3 to 1, to detect interest points. Such points, detected at the
local maxima in the filter response, indicate the possible locations of facial
features.

The second stage examines the edges around these interest points using edge
detection (i.e. Canny edge detector (Canny, 1986) in our case) and groups
them into regions (see Figure 5(c)). The labeled features are further grouped
based on the model knowledge of where they usually occur with respect to
each other (Hjelmas, 2002).

After detecting the pair of possible eyes satisfying the geometrical constraints
imposed by the human face, it is easier to localize the eyebrows. Eyebrows are
expected to be located in the upper part of the face and are the first non-skin
components on the facial region below the forehead as shown in Figure 5(d).
Nose localization takes place after having located the eyes since its horizontal
position is below the eyes and above the lips and its vertical position is in-
between those of the eyes (Hjelmas, 2002). The location of the nose is later
refined after having detected the lips. Lips anatomically are located between
the eyes and below the nose; lips can be easily discriminated from skin based
on their different intensity levels (Hjelmas, 2002), (Yang, Kriegman and Ahuja,
2002). Searching for the lips is relatively straightforward thanks to the well-
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Table 6
Age and gender information of human referees.

Age 18-25 Age above 25

Female 10 3

Male 17 18

Table 7
Background information of human referees by continental area.

Ethnicity Number

Africa 1

South East Asia 8

India 2

Australia 2

Eastern Europe 10

Western Europe 15

Europe (unspecified) 4

North America (USA) 2

Latin America 4

Fig. 7. Marking scheme used in the survey (the image used is one of the authors’;
display of a real face from the database is omitted for privacy reasons).

confined search space limited by nose and pupils (see Figure 5(e)). The chin
detection process takes place after lip detection, as the chin anatomically is
located between the lips and the neck. Hence, the search space is arranged
according to the lip line and the horizontal lower limit of the facial region (see
Figure 5(f)).

4 Human classification of facial beauty

In this work, we conducted a survey on a collection of female facial images with
48 human referees of different age and ethnical background. We organized a
set of 215 female face images varying in ethnicity and age and asked the
human referees to score them according to a scale of n = 10 grades, or marks,
labeled into 5 categories (1: least attractive - minimum; 10: most attractive
- maximum). For details on the pool of human referees, please see Tables 6
and 7. An example of the grading system is shown in Figure 7.
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It is arguable that there may be differences in interpretation of the marking
scheme used to mark the beauty level. However, there are some inherent diffi-
culties in marking schemes in general (Blumhof and Stallibrass, 1994). These
difficulties include:

• tendency to mark the more immediate concepts;
• tendency to mark towards the middle to avoid obvious offence (even if the

survey is double-blind);
• exposing the subjectivity of marking schemes by trying to decide on, and

weight, criteria. For instance, a mark of seven might represent a high mark
for one referee, whereas the same mark for another referee might represent
a concept of just above average.

For the purpose of this experiment, all the referees were informed of the basic
grading mechanism. In our survey, we used a scale of 10 grades by label-
ing grades with descriptive adjectives such as “beautiful”, “attractive”, and
“unattractive” to try to minimize the ambiguity in the marking scheme.

4.1 Analysis of Grade Distributions

In the following, we assume that each mark, x, belongs to a step scale with
a unit interval, or grade class, [x - 0.5, x + 0.5). As such, marks for each Ii

image from all the referees constitute a grade histogram for that image. We
tested the unimodality of the mark distributions for each image based on the
test defined in (Bottomley, 2004). By applying the Bottomley test to our case,
the distribution proves unimodal if the maximum distance between the mode
and the mean is bounded as follows:

|Mi − µi| <
√

(3)σi (1)

Mi: mode of the marks for image Ii

µi: average of the marks for image Ii

σi: standard deviation of the marks for image Ii

We computed the aforementioned measure for all 215 images and found that,
for all of them, the marks fit a unimodal distribution.

Having passed the unimodality test, we then approximated the marks for
each Ii image with a probability density function pi(x) of µi average and σi

standard deviation. Figure 8 shows an example of grade histogram (Image no.
82 from our data set). Figure 8 shows that a well-formed mode centred around
5 exists. However, it also shows that a few referees marked as different as 1
and 9. Therefore, when we put forward the statement that beauty is universal,
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Fig. 8. An example of grade histogram for image 82 from the data set.

Fig. 9. The histogram of the standard deviations for 215 images.

we mean that as a statistical statement. In other words, the judgement is not
identical. Yet, a strong central tendency exists.

The objective of the next experiment was that of measuring the level of hu-
man agreement in grading the image set. In the case of complete agreement
amongst the referees, all grades for each image would be exactly the same.
Instead, different judgements would give place to dispersed grades. Moreover,
different individual interpretations of the marking scheme might introduce a
certain amount of dispersion even at a parity of judgement. In order to study
the grade dispersion over the whole image set, we decided to compute the
standard deviation of grades for each image, σi, and study their probability
distribution,

∑
(σ), on the image set. Figure 9 shows the histogram of the

standard deviations computed with step 0.1 on the set of 215 images. In order
to explore the unimodality of the histogram we applied the test described in
Equation 1. According to the test’s result the histogram is unimodal, has a
pronounced mode around σ = 1.7, is maximally symmetric and of approxi-
mately Gaussian shape, with a limited skew to the right. Therefore, we quan-
tified the skewness to see if it was significant (Evans and Kuenning, 2002).
The suggested measure is the standardised third sample moment around the
mean:

α3(xi) =

N∑
i=1

(xi−µ)3

N σ3

(2)

where xi, i = 1, ..., N are the samples and µ and σ the sample mean and stan-
dard deviation, respectively. If the distribution is symmetrical or non skewed,
this quantity will be close to zero as positive and negative deviations will
cancel each other. If the distribution is right-skewed, the cubed positive devi-
ations outweigh the cubed negative ones yielding an overall positive number.
Conversely, if the distribution is left-skewed, the cubed positive deviations
outweigh the cubed negative deviations.

(Evans and Kuenning, 2002) state that a distribution with skewness less then
0.5 can be well approximated by a Gaussian distribution. In our case, the
skewness of the standard deviations, α3(σi), is equal to -0.0459. Since this
value is close to zero we can conclude that the distribution of the standard
deviations is not significantly skewed. In this case, the distribution can be
appropriately described by its mean, µσ, and standard deviation, σσ. The
smaller µσ, the higher the agreement on the perception of beauty over a set
of different referees and a collection of different images.
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Fig. 10. A Gaussian curve of standard deviation 1.628 superimposed to a grade
class.

Table 8
Probability distribution of the standard deviation of grades, (

∑
(σ), over the set of

images.

Average (µσ): 1.628

Standard deviation(σσ): 0.234

µσ = 1
Nimg

Nimg∑
i=1

σi, σσ =

√
(Nimg

Nimg∑
i=1

σi
2 − (

Nimg∑
i=1

σi)2)/Nimg
2

σi =

√√√√(Nref

Nref∑
j=1

xij
2 − (

Nref∑
j=1

xij)2)/Nref
2, i = 1, ..., Nimg

xij ∈ {1, 2, ..., N} , j = 1, ..., Nref : grades of the human referees for the
Ii image

Number of images (Nimg): 215

Number of referees (Nref ): 48

Number of classes (N): 10

Table 8 shows that in this experiment the standard deviation in the human
referees’ grades is an average of (µσ) = 1.628, less than twice the grade class
size (which is unitary), thus proving that in general the agreement between the
different human referees is high, even if not complete, and can be considered
as the ground truth for the second part of our paper where we attempt at
automatising the beauty assessment. To represent this graphically, Figure 10
shows a Gaussian distribution of standard deviation 1.628 superimposed to a
grade class. Although this result is rather stable over the image set (σσ is low
- see Table 8), we also found that the value of σi tends to be lower for images
from most and least attractive faces, while for images with intermediate score
the histogram tends to be less compact i.e. showing less agreement between
the human referees.

4.2 Converse Probability Analysis

In this sub-section we aim to estimate the converse probability i.e. which
variables, or factors, could be possible explanations for the distribution of
the human votes. The variables we chose to analyze are: age, ethnicity and
gender. Age and gender are well-known confounder variables in social and
clinical trials and thus need to be explored. Given the potential influence of
cultural issues in beauty judgment, we also decided to consider an ethnicity
variable. Accordingly, we divide the grades of the referees into the following
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Table 9
Mean, variance and standard deviation for groups of referees based on age, ethnicity
and gender over the set of images.

variable mean of the
population

variance of
the popula-
tion

stdev of the
population

age 18-24 4.48592 2.12803 1.45877

25 and above 4.2846 2.46905 1.57132

ethnicity European 4.44861 2.37074 1.53972

Non-European 4.26935 2.26489 1.50495

gender Female 4.79817 2.14504 1.46459

Male 4.22179 2.3925 1.54677

group pairs: age (18-24/25 and above), ethnicity (European/ non-European)
and gender (female/male). If results tend to remain stable for different values
of these factors, we will be able to conclude that they do not significantly
affect the score distribution. We demonstrate this hypothesis in two steps.
Firstly, in Table 9 we provide descriptive statistics of the grade distribution
for the three factors. A necessary condition to the claim for “universality” of
beauty perception is that any group would show a similar mean and standard
deviation. Table 9 shows that means and standard deviations are not identical,
but actually very similar between the different groups. Therefore, none of these
factors seem first-order explanations for the distribution of the human votes.
Secondly, we decided to run hypothesis tests to probe these findings. The first
test is a paired t-test assessing the statistical similarity or difference between
the means of two groups of paired data. To obtain the paired data, for each
Ii image, we divided the grades from the referees into two groups, 1 and 2,
and computed their averages, x1i and x2i. We computed the t-test over such
paired data to test their means, µ1 and µ2, over the whole set of images. The
null hypothesis, H0, that we formulate here is that the two means differ by a
small ∆ amount, chosen as the difference between the sample means of the two
groups over the whole image set reported in Table 9. The alternate hypothesis,
Ha, is that their mean difference is different from ∆:

H0 : µ1 − µ2 = ∆
Ha : µ1 − µ2 <> ∆

The null hypothesis is rejected in favour of the alternate hypothesis if the t
statistic:
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Table 10
Paired t-test results on the means of referees’ groups based on age, ethnicity and
gender variables.

variable ∆ df t statistic tcritical two tailed Ha H0

Age 0.2 214 0.04547 1.97111 REJECTED ACCEPTED

Ethnicity 0.18 214 -0.02408 1.97111 REJECTED ACCEPTED

Gender 0.57 214 0.18011 1.97111 REJECTED ACCEPTED

t = (µ1 − µ2)

√√√√√ Nimg(Nimg−1)
Nimg∑
i=1

((x1i−µ1)−(x2i−µ2))2
(3)

is either greater than a value called tcritical two tailed computed on the t distribu-
tion, or smaller than −tcritical two tailed. Hypothesis tests also require to choose
a significance, or alpha, level. Here we choose the typical alpha level of 0.05.
Test results are shown in Table 10. In all cases, the null hypothesis is not
rejected. Therefore, the small differences between the sample means of any
two groups are statistically confirmed. It can be observed that:

• The difference between the means of any two groups is always significantly
smaller than 1 which is equivalent to say that they differ by less than one
mark.

• The highest difference between the means of two groups, 0.57 i.e. 5.7%
of the grade range, is for the gender variable. This gives evidence to the
slightly higher scoring provided by female referees with respect to that of
male referees.

• The lowest difference between the means of two groups, 0.18 i.e. 1.8% of the
grade range, is for the ethnicity variable.

For each pair of groups, we also applied an F-test to assess the statistical
similarity or difference between the standard deviations of the two groups. We
formulated the null and alternate hypotheses as follows:

H0 : σ1 = σ2

Ha : σ1 > σ2

where σ1 and σ2 are the sample statndard deviations of the two groups. We
ordered the two groups so that σ1 > σ2 so as to use a one-tail version of the
F-test which is more convenient given the asymmetry of the F distribution.
The alternate hypothesis is accepted if the F statistic:
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Table 11
F-test results for the variances of the referees’ groups based on age, ethnicity and
gender factors.

variable df F statistic Fcritical one tailed Ha H0

Age 214 1.16025 1.25279 REJECTED ACCEPTED

Ethnicity 214 1.04673 1.25279 REJECTED ACCEPTED

Gender 214 1.11536 1.25279 REJECTED ACCEPTED

Table 12
The probability of a particular group given a particular set of grades with the age
criterion (younger vs. older).

Score p(x) p(x | younger) p(x | older)

(1-3) 0.3478 0.3169 0.3717

(4-6) 0.4569 0.4773 0.4410

(7-10) 0.1436 0.1350 0.1502

F = σ1
2/σ2

2 (4)

is greater than a value called Fcritical one tailed computed on the F distribution.
Again, the alpha level was set to 0.05. Test results are shown in Table 11. In
all cases, the alternate hypothesis is rejected and the null hypothesis accepted
confirming that variances are similar between any two groups.

Further to testing similarities of means and standard deviations, we analysed
the probability of picking a particular group given a particular set of grades.
In other words, we explored which variables, if any, could be possible explana-
tions for the distribution of the human grades. We divided the grades of the
referees into the following three sets: low (1-3), average (4-6), and high (7-10).
We provide results in Tables 12, 13 and 14. Results for variables age and eth-
nicity show that conditional probabilities p (group | set of grades) are similar
for both groups and thus similar to the marginal probability p (group). Re-
sults for variable gender show that the conditional probability for low grades,
p (group | (1−3)) is lower for the female group than the male one. Conversely,
the conditional probability for high grades, p(group | (7−10)) is higher for the
female group. This confirms that the female referees tended to provide slightly
higher grades than the male referees, also explaining the small differences in
their average marks reported in Table 9.
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Table 13
The probability of a particular group given a particular set of grades with the
ethnicity criterion (European (E) vs. non-European (NE)).

Score p(x) p (x | NE) p(x | E)

(1-3) 0.3478 0.3607 0.3385

(4-6) 0.4569 0.4805 0.4400

(7-10) 0.1514 0.1353 0.1628

Table 14
The probability of a particular group given a particular set of grades with the gender
criterion (female vs. male).

Score p(x) p(x | female) p(x | male)

(1-3) 0.3478 0.2640 0.3789

(4-6) 0.4569 0.4705 0.4518

(7-10) 0.1514 0.1843 0.1391

Fig. 11. Distribution of the individual features over the training set of 165 images.

5 Automatic Classification of Facial Beauty

As the next step, we aim to generate an automated classifier capable of re-
producing the average human judgement of facial beauty by using a feature
set based only on features automatically extracted from the images. We use
the average grade, µi, given to the facial images by the human referees as our
ground truth. In the following, we describe our approach for generating the
automated classifier.

First, features extracted from each face were stored as tuples of attributes
characterizing the face. The feature set contains several facial ratios as shown
in Table 15. In addition, we show the histogram of each individual feature and
that of the ground truth for a set of 165 images in Figure 11. Individual fea-
tures do not show obvious clusters, thus supporting the idea that we can use
an arbitrary number of grades as our classes. For classification purposes, sev-
eral different methods including SVMs, neural networks, or other probabilistic
models could be employed. We have chosen to use a supervised symbolic clas-
sifier, C4.5, based on the notion of entropy since its output - a decision tree -
can be easily understood and interpreted by humans (Blumhof and Stallibrass,
1994), (Michalski, Carbonell and Mitchell, 1984), (Quinlan, 1993). Supervised
classification requires the user to pre-classify a set of samples and train the
classifier based on those samples. The training set must be large and varied
enough to provide sufficient classifier training. Once our model is built, we
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Table 15
The feature set for automated beauty classification.

From the Golden Proportion theory: From the Facial Thirds theory:

2:4 vertical distance between pupils and tip of
the chin to vertical distance between top of the
face and pupils

10:1 Ratio of vertical distance between top of
the face and eyebrows to face length

3:5 vertical distance between top of the face
and nose to vertical distance between nostrils
and tip of the chin

11:1 Ratio of vertical distance between eye-
brows and tip of the nose to face length

6:7 vertical distance between pupils and cen-
tral lip line to vertical distance between lips
and the tip of the chin

12:1 Ratio of vertical distance between tip of
the nose and tip of the chin to face length

5:8 vertical distance between nostrils and tip
of the chin to vertical distance between pupils
and nostrils

13:14 Ratio of vertical distance between tip of
the nose and lips to vertical distance between
lips and tip of the chin

8:9 vertical distance between pupils and the
nostrils to vertical distance between nostrils
and central lip line

Horizontal proportions:

7:9 vertical distance between lips and tip of
the chin to vertical distance between nostrils
and central lip line

16:1 Ratio of face width to face length

mean ratio (of the above) 15:16 Ratio of inter-eye distance to face width

Fig. 12. The generated decision tree (sections).

need to estimate its accuracy. Estimating the accuracy of a classifier using
training data could be optimistic and, thus, misleading. An analysis of accu-
racy tests for classification algorithms has been proposed in the much-cited
(Dietterich, 1998). In the following sub-sections we discuss how we validate
our approach with (a) the holdout method and (b) k-fold cross-validation.

5.1 Validation with the holdout method

For this validation method, we partitioned the 215 images into two indepen-
dent datasets, a training dataset of 165 images and a test dataset of 50 images.
Initially, we trained the classifier with 165 randomly selected images from our
database. C4.5 (with parameters: confidence factor= 0.25, minNumObj= 1,
numFolds=3) generated a decision tree of size 129 with 65 leaves. We then
used a testing set of 50 images to test it. Analyzing the decision tree’s struc-
ture can provide us with useful insights on the classification criteria. However,
as the tree size is large, we report only some sections of it in Figure 12.

Several tests in the decision tree appear in good accordance with the aesthetics
theories on proportions. For instance, in Section 1 in Figure 12, the attribute

17



tested just prior to the leaf level (Ratio (2:4), bottom two lines) is tested
in agreement with the Golden Proportions rule: given its theoretically ideal
value of approximately 1.618, face images with a value less or equal to 1.667
are given a grade of 7, while those with values above are given the much lower
grade of 2. Section 2 describes the full path leading to the leaf containing all
the cases graded as 10 (maximum) by the decision tree. The tests are (from
top to bottom):

• (a) Ratio (10:1) >0.3318. in agreement with Facial Thirds (ideal value of
0.333); however, although an upper bound certainly exists, the interval size
is undefined;

• (b) 0.666667 <Ratio (16:1) <= 0.740741. no reference value from the the-
ories, but the test makes sense in limiting the ratio of face length to face
width to a finite interval;

• (c) Ratio (6:7) >1.488, in agreement with Golden Proportions’ ideal value
of 1.618;

• (d) Ratio (11:1) <= 0.3285. in disagreement with Facial Thirds (ideal value
of 0.333); however, the interval size is undefined and actual values might be
very close to one third;

• (e) Ratio (10:1) <= 0.337-(nine), >0.337-(ten). again, in slight disagree-
ment with Facial Thirds (ideal value of 0.333); actually, tests (d) and (e)
combined seem to state that the upper “third” in a face (see Figure 3(b))
should be slightly bigger than the mid “third” to attract the highest grades.

Since the above tests define a set of intervals, they also send the reassuring
message that it is not necessary for one to have “exact” facial proportions
values for achieving the highest grades of beauty. Section 3 in Fig. 12 shows
the test on the root node. Such a test is in agreement with the Facial Thirds
theory (ideal value of 0.333) since the sub-tree in the <= 0.3318 direction
only contains grades between 1 and 7, while the opposite sub-tree contains
generally higher grades, in the range 3 to 10. This shows that tests high up in
the tree structure seem in substantial agreement with the aesthetics theories.
This result appears striking to the Authors, given that the human referees were
instructed to grade the “beauty” of a face in its entirety without any specific
indication towards face proportions (and certainly had no metric cameras to
measure facial features’ distances and ratios).

Feature Selection and Ranking. The discussion over the classification tree
reported in Figure 12 does not provide a systematic analysis of the relative
importance of the various features. Therefore, we decided to use the feature se-
lection and feature ranking algorithms in the WEKA package (Holmes, Donkin
and Witten, 1994) to measure it. Feature selection algorithms apply attribute
selection on input data with various search methods such as Best-first search
and Exhaustive search. Best-first search evaluates a number of subsets and
finds the subset with a merit of certain percentage. If the number of features
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selected is a subset of the original feature set, the selection criterion is good in
terms of decreasing the dimensionality of the problem. In Section 2, we stated
that the Facial Thirds and Golden Proportion ratios seem in good agreement.
As such, they seem redundant and thus might be dropped by the selection
procedure. Instead, as shown in Table 16, even with different selection meth-
ods all features were retained. Therefore, we decided to apply feature ranking
on the feature set. Feature ranking algorithms rank attributes by their indi-
vidual evaluations and can be used in conjunction with attribute evaluators
such as ReliefF, GainRatio, Entropy etc. The details of the feature ranking
approaches used and the ranking obtained are given in Table 17. Results show
that vertical proportions seem to play a more important role in facial beauty
classification than horizontal proportions. Within the vertical proportions, fea-
tures from the Golden Proportions theory are the best descriptor. In general,
the Golden Proportions seem to be the most significant features, and thus
better descriptors than the others.

Evaluation of Classification Accuracy. A major issue in our work was
how to effectively quantify the classifier accuracy given the particular ground
truth. The most common figure used to describe the accuracy of a given clas-
sifier is the ratio α= (number of correctly classified cases / total number of
cases) and the error, e, be simply defined as e = 1 - α, or:

e =
1

Nimg

Nimg∑
i=1

ei

 ei = 0 if |ti − ai| = 0

1 otherwise
(5)

where ti is the true class (assuming ti = round(µi) from ground truth), αi is
the assigned class and Nimg the total number of images. If the classes embed
a metric as in our case (i.e.: class 3 is semantically twice as distant from class
1 than class 2), the incorrect classifications would better be weighted based
on their distances from the corresponding true class. Consequently, the error
rate can be redefined as:

ed = 1
Nimg

Nimg∑
i=1

di , di = |ti − ai| (6)

where di is the distance between the true and the assigned class.

(a)(b)

Fig. 13. Comparison between two images with similar average, but different variance
values.

In our case, it must also be taken into account that the true classification
deriving from ground truth is not a scalar value but rather a probability
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Table 16
The feature selection approaches used and the features obtained.

Data Summary

Instances: 165

Attributes: 13

Evaluation mode: evaluate on all training data

Feature Selection

Selection Method 1:

Evaluator: weka.attributeSelection.CfsSubsetEval

Search: weka.attributeSelection.BestFirst -D 1 -N 5

Search Method: Best first.

Start set: no attributes

Search direction: forward

Stale search after 5 node expansions

Total number of subsets evaluated: 61

Merit of best subset found: 0

Attribute Subset Evaluator (supervised, Class (nominal): 14 Hum Class): CFS Subset Eval-
uator

Selected attributes: none

Selection Method 2:

Evaluator: weka.attributeSelection.CfsSubsetEval

Search: weka.attributeSelection.ExhaustiveSearch

Search Method: Exhaustive Search.

Start set: no attributes

Number of evaluations: 379

Merit of best subset found: 0

Attribute Subset Evaluator (supervised, Class (nominal)): CFS Subset Evaluator

Selected attributes: none

distribution. As the “true” class of each Ii image, i = 1,..., Nimg, we assumed
the rounded average of the corresponding grade histogram, ti. Figure 13 shows
the grade histograms for two limit cases from our image set. In Figure 13(a),
the grade histogram is rather spread, with approximately similar values in the
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Table 17
The feature ranking approaches used and the feature ranking obtained.

Data Summary

Instances: 165

Attributes: 13

Evaluation mode: evaluate on all training data

Attribute Ranking Methods

Search Method: Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 14 Hum Class): Symmetrical Uncertainty
Ranking Filter

Search Method: Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 14 Hum Class): Chi-squared Ranking Fil-
ter

Search Method: Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 14 Hum Class): Gain Ratio feature evalu-
ator

Ranking in order:

(1) 2:4 vertical distance between pupils and tip of the chin to vertical distance between top
of the face and pupils

(2) 3:5 vertical distance between top of the face and nose to vertical distance between nostrils
and tip of the chin

(3) 6:7 vertical distance between pupils and central lip line to vertical distance between lips
and tip of the chin

(4) 5:8 vertical distance between nostrils and tip of the chin to vertical distance between
pupils and nostrils

(5) 8:9 vertical distance between pupils and nostrils to vertical distance between nostrils and
central lip line

(6) 7:9 vertical distance between lips and tip of the chin to vertical distance between nostrils
and central lip line

(7) mean ratio

(8) 16:1 Ratio of face width to face length

(9) 15:16 Ratio of inter-eye distance to face width

(10) 10:1 Ratio of vertical distance between top of the face and eyebrows to face length

(11) 11:1 Ratio of vertical distance between eyebrows and tip of the nose to face length

(12) 12:1 Ratio of vertical distance between tip of the nose and tip of the chin to face length

(13) 13:14 Ratio of vertical distance between the tip of nose and lips to vertical distance
between lips and tip of the chin
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Table 18
The evaluation results of human and classifier classification for the testing set of 50
images.

Average of st. dev. on
the test set

Average of absolute
standardized distance
(esd)

Average of signed
standardized dis-
tance (essd)

1.537 0.964 -0.085

range of 3 - 6. In Figure 13(b), instead, grades are highly concentrated around
the dominant one, 5. It is evident that the distance between the true class, ti,
and the class assigned by the classifier, αi, should be considered as errors of
different weight in these two cases. Hence, in place of the simple distance, we
can consider the standardized (or Mahalanobis) distance:

sdi = |ti−ai|
σi

i = 1, ..., Nimg (7)

where σi is the standard deviation of the probability distribution for the Ii

image. In this case, the definition of the error changes as follows:

esd = 1
Nimg

Nimg∑
i=1

sdi (8)

The error redefined according to Eqs. 7-8 is an effective description of the
average classifier performance over a collection of images. Table 18 provides
details on the evaluation results from an experiment with the testing set of 50
images. Results obtained with the C4.5 classifier gives a value of e = 0.964.
This result means that the standardized classifier error is on average less than
the standard deviation within the class, which is inherent, proving the accuracy
of classification.

Another measure of the classifier’s performance can be given by the signed
error, essd, which can be obtained from Eq. 8 by simply replacing the stan-
dardized distance sdi = |ai − ti| by the signed distance ssdi = ai − ti. In
a balanced situation, the signed error should be close to zero since positive
and negative errors of similar entity would compensate. In the experiment,
we obtained a value for essd = -0.085, thus exhibiting undershooting, i.e. the
classifier providing a mark which is on average slightly lower than that of the
human referees. However, the entity of such undershooting is very limited and
the classifier can be still generally considered balanced.
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5.2 Validation with the 5-fold cross-validation method

For this validation method, we divided the initial data set into five independent
subsets of equal size, namely D1 to D5. Using C4.5, we then performed five
iterations of training and testing. In the generic iteration i, Di is used as
the test dataset and the remaining four subsets are used for training. Such
an error is in general a better estimate of the “real” error (expected value
of it) than the estimate obtained from one single holdout test (Dietterich,
1998). The accuracy of each classifier was computed according to Eq. 8, with
five error measures obtained from the various folds. In order to calculate the
overall accuracy, the errors were eventually averaged. The result obtained,
eavg, is equal to 0.920. Such a value is very close to that of the same error
measurement, esd that we obtained with the Holdout Method as described in
the previous section and proves the stability of the accuracy value over the
population.

6 Conclusions and future work

In the first part of this paper, we evaluated the extent of beauty universality by
asking a diversified set of human referees to grade a collection of female facial
images in terms of their facial beauty. Results obtained show that the different
individuals generally provided unimodal and compact grade histograms, thus
well supporting the concept that perception of beauty is universal to a certain
degree.

Later, we introduced an approach to automatically measure beauty based on
automated extraction of facial features and supervised classification. We pre-
sented an efficient procedure for automatically measuring facial features from
face images by means of image analysis operators. For supervised classification,
we used such extracted facial features and the average human grades from a
set of images to train an automated classifier. The high accuracy achieved on
an independent test set and from cross-validation proves that this classifier
can be effectively used as an automated tool to reproduce an “average” hu-
man judgement on facial beauty. Many potential applications can benefit in
the entertainment and cosmetic industries and plastic surgery. In particular,
in plastic surgery this program can be used as a predictive, guiding device to
decide the scope and extent of surgical corrections - given the physical con-
straints of each specific case. In this way, the prediction of the beauty level
achievable with the surgical operation will not be based only on the surgeon’s
or patient’s opinion, but on the estimate from a tool capable of reproducing
a more enlarged human judgment. Given that the highest grades of beauty
can be obtained from a range of values of facial proportions, hopefully, such a
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device could discourage some patients from requiring exaggerate, risky inter-
ventions. Other possible application areas can be listed as follows.

• Affective computing, to make an autonomous system (e.g. a robot) capable
of human-like aesthetic judgment.

• Virtual worlds, to morph real faces under aesthetic criteria.
• The cosmetic industry, as an automated judgment tool for assessing the

effectiveness of cosmetic intervention.

An important observation is that, during the poll, the human referees were
asked to grade facial “beauty” in its entirety with no mention of particular
regard to facial proportions. It is likely that several other features such as the
color and shape of eyes, lips, nose, smiling vs. angry attitude, subject’s appar-
ent age, and others have influenced their grades. However, the fact that the
automated system proved capable of reproducing the average human judge-
ment based on facial proportions alone, gives evidence to the important role
played by facial proportions in the perception of facial beauty. In the future,
we plan to explore the importance of the other aforementioned factors for the
extension and refining of the automated classification.

Finally, in the recent literature, there has been some attempt to also explore
male facial beauty (Peseo, 2003). In his papers (Peseo, 2002), (Peseo, 2002)
and (Peseo, 2003), Peseo describes the similarities and the slight differences
of ratios and measurements for either gender to be considered attractive. He
similarly bases his analysis on the Golden Proportions and Facial Thirds rules
and adds several more ratios and criteria to them derived from other canons.
Eventually, extending the analysis and classification to male facial beauty by
a similar automated analysis of proportions seems feasible and can be the
objective of future works. Overall, our findings and those of Peseo confirm
that, in a geometrical facial biotype, certain proportions will be perceived as
more attractive than others in a predictable way. However, some deviations
from ideals will not necessarily compromise an optimal facial aesthetic and
may explain the existence of the various kinds of “charm”.

References

Aarabi, P., Hughes, D. 2001. The Automatic Measurement of Facial Beauty,
IEEE International Conference on Systems, Man and Cybernetics, 4, 2644
-2647.

BBC Science - the Human Face, http://www.bbc.co.uk/science/humanbody
/humanface/beauty golden mean.shtml (last accessed August, 2002)

Bell, A. 1997. The Definition of Beauty, Nature, October/November Issue.
Blumhof, J., Stallibrass, C., 1994. Peer Assessment, Hatfield: University of

Herefordshire.

24



Borissavlievitch, M. The Golden Number and the Scientific Aesthetics of Ar-
chitecture, A.Tiranti, London.

Bottomley, H. Maximum distance between the mode and the mean of a uni-
modal distribution, Leydon Close, London, 6th February 2004.

Canny, J., 1986. A Computational Approach to Edge Detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6), 679-698.

Chen, A.C, German, C., Zaidel, D.W., 1997. Brain asymmetry and facial at-
tractiveness: Facial beauty is not simply in the eye of the beholder. Neu-
ropsychologia, 35, 471-476.

Cunningham, M.R., Roberts, A.R, Barbee, A.P., Druen, P.B et al., 1995. Their
Ideas of Beauty are, on the Whole, the Same as Ours. Journal of Personality
and Social Psychology, 68, 261-279.

Daibo, I., 1999. Suggestion From Comparison Research Of Facial Beauty,
Hokusei Gakuen University, Sapporo, Japan.

Dietterich, T. G., 1998. Approximate Statistical Tests for Comparing Super-
vised Classification Learning Algorithms. Neural Computation, 10(7).

Epker, N.B. and Koury, M.E., 1992. Maxillofacial Esthetics: Anthropometrics
of the Maxillofacial Region. J. Oral Maxillofac. Surg., 50, 806-820.

Evans, K.M. and Kuenning, G.H. 2002. A Study of Irregularities in File-Size
Distributions. International Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS ’02).

Farkas, Leslie G. et al., 1985. Vertical and Horizontal Proportions of the Face
in Young Adult North American Caucasians. Plastic and Reconstructive
Surgery, 75(3), 328-38.

Farkas, Leslie G. et al., 1987. Anthropometrics and art in the aesthetics of
women’s faces. Clinics in Plastic Surgery, 14(4).

Farkas L.G., 1994. Anthropometrics of the Head and Face, Second Edition,
Raven Press, New York.

Graf, H.P., Chen, T., Petajan, E., Cosatto, E., 1995. Locating Faces and Facial
Parts. Proc. First Int’l Workshop Automatic Face And Gesture Recognition,
41-46.

Gunes, H., Karsligil, M.Y., 2002. Measuring Female Facial Beauty by Calcu-
lating the Proportions of the Face. Proc. of ISCIS XVII Seventeenth Int.
Symp. on Computer and Information Sciences, 71-75, Orlando, Florida, Oct.
2002.

Hjelmas, E., 2002. Face Detection: A Survey. Computer Vision and Image
Understanding, 83, 236-274.

Holmes, G., Donkin, A., and Witten, I.H., 1994. WEKA: A machine learn-
ing workbench. Proc of Second Australia and New Zealand Conference on
Intelligent Information Systems, Brisbane, Australia, 1994.

Huntley, H. E., 1970. The Divine Proportion: A Study in Mathematical
Beauty, Dover Publications, New York.

Jefferson, Y., 1993. Facial Aesthetics–Presentation Of An Ideal Face, Journal
of General Orthodontics, 4, 18-23.

Landau, T., 1989. About Faces, Bantam Doubleday Dell Publishing Group

25



Inc., New York.
Langlois, J.H., Roggman, L.A., 1990. Attractive Faces Are Only Average.

Psychological Science, 1, 115-121.
Larrabee, W., 1997. Facial Beauty: Myth Or Reality?. Archives of

Otolaryngology-Head and Neck Surgery, 123, 571-572.
Marquardt Beauty Analysis, 2002. http://www.beautyanalysis.com/Index2

mba.htm (last accessed 12/07/2004).
Mealey, L., Bridgstock, R., Townsend, G.C. 1999, Symmetry and Perceived

Facial Attractiveness: A Monozygotic Co-Twin Comparison.
Michalski, R. S., Carbonell, J. G., Mitchell, T. M., 1984. (Eds.), Machine

Learning - An Artificial Intelligence Approach. Springer-Verlag, Berlin.
Michiels, G., Sather A.H. 1994. Determinants of Facial Attractiveness in a

Sample of White Women, Int. Journal of Adult Orthodontics and Orthog-
nathic Surgery, 9, 95-103.

Parris, C., Robinson, J. Jr. 1999. The Bold And The Beautiful (Ac-
cording To Plastic Surgeons), Tyler Street Christian Academy and
University of Texas Southwestern Medical Center, Dallas, Texas,
http://www.swmed.edu/stars/resources/stock99/parris.html (last accessed
12/07/2004).

Perrett, D.I., May, K.A., Yoshikawa, S. 1994. Facial Shape and Judgments of
Female Attractiveness, Nature, 239-242.

Peseo, G., 2002 (a). The “Beauty” of Homo sapiens: standard canons, ethnical,
geometrical and morphological facial biotypes (part one), Virtual Journal
of Orthodonics, Vol. 4, No. 4.

Peseo, G., 2002 (b). The “Beauty” of Homo sapiens: standard canons, ethnical,
geometrical and morphological facial biotypes (part two), Virtual Journal
of Orthodonics, Vol. 5, No. 1.

Peseo, G., 2003. The “Beauty” of Homo sapiens: standard canons, ethnical,
geometrical and morphological facial biotypes (part three), Virtual Journal
of Orthodonics, Vol. 5, No. 2, ISSN - 1128-6547.

Quinlan, J. R., 1993. C4.5: Programs For Machine Learning, Morgan Kaufman
Publishers, San Mateo, California.

Rein-Lien Hsu, Abdel-Mottaleb, M., Jain, A.K., 2002. Face Detection in Color
Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24 (5), 696 -706.

Ricketts, M.D., 1982. Divine Proportions in Facial Aesthetics. Clinics in Plas-
tic Surgery, 9(4).

Two-Sample t-Test for Equal Means, NIST/SEMATECH e-Handbook of Sta-
tistical Methods, http://www.itl.nist.gov/div898/handbook/ (last accessed
31/05/2006)

The Golden Proportion, http://www.goldenmeangauge.co.uk/golden.htm,
http://www.beautyanalysis.com/mba phithekeytobeauty page.htm (last
accessed 12/07/2004)

Yang, M., Kriegman, D.J., Ahuja, N., 2002. Detecting Faces In Images: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26



24(1).
Yellin, S., 1997. Aesthetics for the Next Millennium. Facial Plastic Surgeons

Monographs, 13(4), 231-239.
Yow, K.C., Cipolla, R., 1995, Finding Initial Estimates of Human Face Loca-

tion, Proc.2nd Asian Conf. on Comp. Vision, 3, 514-518.
Yow, K.C., Cipolla, R., 1996. A Probabilistic Framework For Perceptual

Grouping of Features for Human Face Detection, Proc. Second Int’l Conf.
Automatic Face And Gesture Recognition, 16-21.

Yow, K.C., Cipolla, R., 1997. Feature-Based Human Face Detection. Image
and Vision Computing, 15(9), 713-735.

27


