
Assessing Fat-Tree Topologies for Regular Network-on-Chip Design
under Nanoscale Technology Constraints

D. Ludovici§, F. Gilabert‡, S. Medardoni†, C. Gómez‡,
M.E. Gómez‡, P. López‡, G.N. Gaydadjiev§, D. Bertozzi†

† ENDIF, University of Ferrara, 44100 Ferrara, Italy.
‡ Dept. of Computer Engineering, Universidad Politecnica de Valencia, Spain.

§ Computer Engineering Lab., Delft University of Technology, The Netherlands.

Abstract

Most of past evaluations of fat-trees for on-chip interconnec-
tion networks rely on oversimplifying or even irrealistic architec-
ture and traffic pattern assumptions, and very few layout analyses
are available to relieve practical feasibility concerns in nanoscale
technologies. This work aims at providing an in-depth assessment of
physical synthesis efficiency of fat-trees and at extrapolating silicon-
aware performance figures to back-annotate in the system-level per-
formance analysis. A 2D mesh is used as a reference architec-
ture for comparison, and a 65 nm technology is targeted by our
study. Finally, in an attempt to mitigate the implementation cost
of k-ary n-tree topologies, we also review an alternative unidirec-
tional multi-stage interconnection network which is able to simplify
the fat-tree architecture and to minimally impact performance.

1. Introduction

Networks-on-chip (NoCs) closely resemble the interconnect ar-
chitecture of high-performance parallel computing systems [2]. For
this reason, the interconnection topologies used in the early NoC
prototypes can be traced back to the field of parallel computing.
In particular, NoC architectures aiming at low latency communica-
tion, performance scalability and flexible routing selected fat-trees
as their reference topology. The switch for the butterfly fat-tree net-
work of [16] or the SPIN micronetwork [8] are examples thereof.

However, other topologies have found wider application in com-
mon NoC design practice so far, namely 2D meshes and even folded
tori [3,4]. In fact, technology scaling to the nanoscale regime brings
physical design issues to the forefront, such as the reverse scaling of
interconnects. In this context, 2D mesh and torus topologies exhibit
a grid-based regular structure which is intuitively considered to be
matched to the 2D chip layout. In contrast, the higher wiring ir-
regularity and the larger switch radix of most fat-tree configurations
raise some skepticism about their practical feasibility. Moreover,
instead of aiming strictly for speed, designers increasingly need to
consider energy consumption constraints, and fat-trees are expected
to pay the increased connectivity they provide with a significant area
and power cost.

In spite of these concerns, constant attention has been devoted to
tree-based topologies in the NoC community, proving their superior
performance with respect to 2D meshes under different kinds of syn-
thetic traffic patterns [1, 13]. However, these analysis frameworks
are not able to be fully convincing and to impact NoC design prac-
tice in many senses. First, they often rely on abstract network sim-
ulators which cannot model the behaviour of any real architecture
and sometimes make irrealistic assumptions, such as packet drop or

TCP-compliant network transport protocols for on-chip communi-
cation. Second, most works really miss an in-depth physical anal-
ysis of layout feasibility and efficiency. Even when area synthesis
results are provided, the impact of wiring congestion and intercon-
nect delay on network performance is only assessed by means of
analytical models. Also, the effectiveness of advanced design tech-
niques such as clock or power gating or link pipelining is ignored.

This work aims at overcoming some limitations of previous
fat-tree topology evaluations for NoCs, by primarily investigat-
ing the layout feasibility and the implications of physical mapping
efficiency on system-level performance figures. This bottom-up
approach to topology evaluation and selection reflects the design
paradigm shift pushed by nanoscale technology, i.e., silicon-aware
decision making at each level of the design hiearchy. The objective
to perform a comprehensive layout-to-system level assessment of a
fat-tree and its comparison with a 2D mesh forced us to necessarily
restrict our exploration to a reasonable 16 core system. However,
scalability insights into the connectivity of 64 core systems are pro-
vided as well.

The fat-tree we consider in this paper is the commonly used k-
ary n-tree, as it is defined in [12]. It allows to infer the topology
by structuring multiple switches of constant size in a regular pattern
and in a more compact layout. In spite of these properties, k-ary n-
trees cannot avoid the trade-off between the increased connectivity
they provide and the higher resource cost for it.

As a consequence, this paper also reviews an architecture opti-
mization of fat-trees that aims at simplifying the switch architecture
and saving network resources, while minimally impacting the high
performance of these topologies. In practice, the proposed unidirec-
tional multi-stage interconnection network (MIN) reduces the com-
plexity of the downward phase, resulting in faster and more compact
switches.

Network size 16 Cores
Unidir Unidir

Topology 4-ary 2-ary 2-ary 4-ary
2-mesh 4-tree 4-tree 2-tree

Switch radix 5 4 2 4
Total switches 16 32 32 8

Total Ports 64 112 64 32
Diameter 6 6 3 1

Bisect. Cut 8 16 8 8
Network size 64 Cores

unidir unidir
Topology 8-ary 2-ary 2-ary 4-ary

2-mesh 6-tree 6-tree 3-tree
Switch radix 5 4 2 4

Total switches 64 192 192 48
Total Ports 288 704 384 192

Diameter 14 10 5 2
Bisect. Cut 16 64 32 32

Table 1. Network topologies under test.

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3

5

6

7

0,2,6

1,3,5

5

2

3

0

1

2

4

2,4,6

1,5,7

3,5,7

0,4,6

1,3,7

0,2,4

6

7

0

1

4 0

4

1

5

2

6

3

7

0

2

1

3

4

6

5

7

(a)

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0,2,4,6

1,5

0

1

2

4

0,2,4,6

1,3,5,7

0,4

7
1,3,5,7

0,4

2,6

1,5

3,7

3,7

2,6

0

4

2

1

6

5

30,2,4,6

1,3,5,7

0,2,4,6

1,3,5,7

(b)

Figure 1. (a)A 2-ary 3-tree topology. (b)A RUFT de-
rived from a 2-ary 3-tree.

2. Topologies

Table 1 shows some representative data for the studied networks.
For each topology, half of the cores are processor cores and half rep-
resent their private memory cores. k-ary n-meshes are considered
as the baseline topologies: a 4-ary 2-mesh for 16-core systems and
an 8-ary 2-mesh in the 64 cores category. In all cases, we refer to
them as 2D meshes.

This paper focuses on on a specific implementation of Fat-trees
(FT): the k-ary n-trees (see Fig.1(a)), a parametric family of regu-
lar multistage topologies. k-ary n-trees are implemented by using
n stages of identical switches, where k is the number of links of
a switch that connect to the previous or to the next stage (i.e., the
switch radix is 2k). All the switches have the same number of as-
cending and descending links.

For fat-tree routing, this paper uses the deterministic routing al-
gorithm presented in [9]. During the ascending phase, consecutive
destinations are shuffled among the different ascending links of the
switches, as in Figure 1(a): each ascending port is labeled in italics
with the destination cores that are reachable through it. Also, Figure
1(a) shows in bold how destinations are distributed in the descend-
ing phase. As can be seen, each descending link is only used by a
single destination. We analyze a 2-ary 4-tree for a 16-core system,
and a 2-ary 6-tree for 64 cores.

Reduced Unidirectional Fat-Tree (RUFT) is a topology result-
ing from the simplification of a k-ary n-tree when using the de-
terministic routing algorithm above. RUFT was first introduced
in [10] as an attractive conceptual topology scheme, without any
implementation analysis. When using this deterministic routing al-
gorithm, the whole descending phase can be reduced to a single
long link that connects the output ports of the switches of the last
stage with the input port of the corresponding destinations. In this
way, switches become unidirectional and all packets must reach the
last stage of the network (Figure 1(b)). Although the use of long
links may compromise the feasibility of this topology, all the hard-
ware resources related to the descending phase are reduced to these
long links, simplifying the switch architecture. The resulting topol-
ogy resembles an unidirectional butterfly, with a permutation of the
reachable destinations from the last stage.

When evaluating RUFT, we consider two different topologies for
each network size. The first ones are the unidirectional networks
resulting from the simplification of standard k-ary n-tree fat-trees,
that is, we analyze an unidirectional 2-ary 4-tree in the 16 cores
category, while we analyze an unidirectional 2-ary 6-tree in the 64
cores category. These unidirectional networks have the same num-
ber of switches of the original fat-trees but, as can be seen in Table
1, the switch radix is reduced to one half.

This led us to consider an alternative RUFT implementation, de-
noted as S(implified)-RUFT hereafter, trading switch radix (which
we make equal to that of the fat-tree) for the switch count. Thus,
we define an unidirectional 4-ary 2-tree for the 16-core system and
a 4-ary 3-tree for 64 cores. This way, the total number of switches
is lower than that in the original fat-tree, as reported in Table 1.

Since our work considers topologies with a maximum switch
radix of 5, the same switch count reduction could not be made in
the original bidirectional fat-tree since this would have required 8x8
switches. The operating frequency slowdown would not be accept-
able [7].

2.1 Floorplan design

This section discusses the criteria for floorplan design of the
topologies under test. The xpipes-Lite NoC architecture has been
used as an experimental NoC platform [17].

Processor and memory cores are replaced by non-routable hard
obstructions of size 1mm x 1mm. At first, we manually place the
hard black boxes on the floorplan. Fences are then defined to limit
the area where the cells of each network-on-chip module can be
placed. Subsequently, the Cadence SoC Encounter tool automati-
cally places NoC cells without trespassing the fences. Fence size is
set based on the report of the placement-aware logic synthesis.

The 2D mesh floorplan is straightforward (see Fig.2(a)) due to
its regular grid structure matching the 2D silicon surface.

Things are more complex for 2-ary 4-tree FT (Fig.2(d)). The
topology consists of 4 switch stages with 8 switches each. Our floor-
planning strategy was to minimize wirelength between consecutive
switch stages. For this reason, cores are clustered in groups of four
and the connected switches (of the first and second stage) are placed
in the middle of each cluster. The third switch stage is split into 2
subgroups and placed between the upper and lower clusters. Each
subgroup serves its relative counterpart from the first and second
stage. The last switch stage is located in the center of the chip. The
presented layout exhibits equalized wirelengths between the second,
the third and the last stage of switches.

The 2-ary 4-tree RUFT (Fig.2(b)) is a novel unidirectional fat-
tree which has never been laid out before. This time, a switch be-
longing to the last stage is directly connected to the network inter-
face of a core. This link is viewed in [10] as the intuitive weakpoint
of the layout of this topology. To go around this problem, our floor-
planning directive in this case is to minimize the wirelength of this
critical set of links. Thus, switches from the last stage are positioned
in the middle of each 4-core cluster. Obviously, also the first stage
has to be close to the appropriate cores. Therefore, it is placed above
and below the middle of the chip between two neighboring clusters,
so to equalize the link length and keep the delay as homogeneous
as possible on the wires of the first stage. As the third stage has to
be connected to the last one and to the second one, two groups of
switches belonging to the third barrier are placed at the left and at
the right of the chip center. This also achieves an easy connection
with the second stage, which is positioned in the center of the chip.
An interesting property of the presented floorplan is that the link
length is kept almost constant on a stage-by-stage basis.

Finally, the floorplan for a 4-ary 2-tree S-RUFT is illustrated
in Fig.2(c). Although the number of switch stages is small (just
2), this is a challenging topology from a physical layout viewpoint.
The problem stems from the fact that each switch of the first stage is
directly connected to all the switches of the second stage. Moreover,
a second stage switch is connected to network interfaces of cores,
since this is again a unidirectional topology. Following the same
floorplanning strategy of the 2-ary 4-tree RUFT, a switch from the
last stage has to be placed in the middle of a 4-core cluster.

Unfortunately, in this case the switch has to be interconnected
also to all the switches of the first stage, which should be necessarily
placed in the center of the chip to equalize link length. This results
in very long links going from each cluster to the switches at the
center of the layout. As we will show later on, this dramatically
impacts the achievable post-routing performance of this topology.

The 2D mesh is easily scalable to 64 cores, resulting in an 8-ary
2-mesh. Also the floorplan of the fat-tree (which becomes a 2-ary
6-tree FT) can be easily scaled with our strategy. In fact, a 64 node
topology can be viewed as built up by four clusters of 16 cores with
two additional switch stages connecting them to each other. The
four clusters can be internally placed as previously described.

For the 2-ary 6-tree RUFT, again 4 clusters of 16 cores are
formed. However, the main issue is that unlike the usual fat-tree,
the center of each cluster is now occupied by the second stage of
switches and not the fourth one (i.e., the last in the 16-core sys-
tem). Therefore, the fourth stage being scattered on the edges of the
chip, the connection with the additional switch stages is not equal-
ized, leading to links of uneven lengths. A better floorplan could
be obtained by customizing it for a 64-core system, which is not as
intuitive as for a 16-core system and falls outside the scope of this
paper.



(a) (b) (c) (d)

Figure 2. Floorplans of topologies under test. a) 4-ary 2-mesh b)2-ary 4-tree RUFT c)4-ary 2-tree
S-RUFT d)2-ary 4-tree FT. Only the main wiring patterns are reported.

Max Post-. Post- Area Area Area overhead
Topology Arity Synthesis place&route 16 cores 64 cores for Retiming

4-ary 2-mesh 5x5 0.9 ns 1.19 ns 802k µm2 3691k µm2 0%
2-ary 4-tree RUFT 2x2 0.6 ns 1.15 ns 795k µm2 4769k µm2 37%
2-ary 4-tree FT 4x4 0.8 ns 1.29 ns 1280k µm2 8076k µm2 19%

4-ary 2-tree S-RUFT 4x4 0.8 ns 2.1 ns 400k µm2 2400k µm2 112%

Table 2. Physical synthesis reports
Finally, the S-RUFT topology now becomes a 4-ary 3-tree (3

switch stages). Without going into further details, this floorplan
turns out be as inefficient as that of the RUFT topology, and results
in very long links between the last stage of switches and the network
interface of connected cores.

3. Post-Layout analysis

Timing
We target a 65 nm low-power STMicroelectronics SVT technology
library [15]. In all topologies, the network building blocks have
been synthesized for maximum performance. The post-synthesis
critical paths (ignoring place&route effects) are reported in Table 2,
3rd column. We found the critical path to be always in the switch
and to reflect the maximum switch radix of the topology. Obviously,
the lower switch radix of the 2-ary 4-tree RUFT results in a much
shorter critical delay.

We then iterated place&route starting from the post-synthesis
target frequencies. Timing closure was achieved at the post-layout
speed reported in the 4th column of Table 2. Performance degra-
dation turns out to be very significant, thus pointing out the critical
role of interconnects. In fact, for all topologies (and even for the
2D mesh) the critical path goes through the switch-to-switch links
(wire delay plus a few flow control gate delays). The impact of the
link delay is evident, in that the critical delays of the topologies are
differentiated by the longest link in that topology.

The 2-ary 4-tree RUFT wastes part of its speed with respect to
the 2D mesh due to the use of longer links. In practice, the the-
oretical performance enhancement associated with a lower switch
radix does not materialize after place&route, but has served as tim-
ing margin against physical degradation effects. The 2-ary 4-tree FT
has incurred a lower degradation than the 2-ary 4-tree RUFT, but its
post-synthesis performance was lower, therefore it ends up running
even slower than the 2D mesh. Finally, for the 4-ary 2-tree S-RUFT
the above effects are even more apparent due to the longer wires that
are needed to connect a low number of switching resources sparse
all around with each other. The lower area footprint is achieved at
the cost of a remarkable 162% speed degradation after place&route.

Overall, in spite of a good post-synthesis frequency, thanks to
the lower radix, MINs typically suffer from a more significant per-
formance degradation after place&route due to their more intricate
wiring compared to a 2D mesh. Hence, final performance cannot be
predicted from early post-synthesis results in a straightforward way
without accounting for interconnect-related effects.

When scaling the system to 64 cores, link pipelining was con-
sidered to mitigate the impact of link delay on system performance.
Please observe that a pipeline stage is not just a simple retiming
stage, but needs to take care of flow control and hence is a flow

control stage with 2 slot buffers (see [14] for more details). We tar-
get a reasonable 750 MHz clock speed for the network, and place
pipeline stages across links inducing timing violations at the target
clock speed.

In the experiment, we conservatively inferred unrepeated AND
retimed switch-to-switch links for 64-node networks, which is cer-
tainly a worst case for MIN network latency. The expected power
and area share of wire repeaters in future systems [5] discouraged
their use in this early work on topologies for large scale systems.
Moreover, they are likely to incur placement concerns in NoC lay-
outs. This was left for future work. For RUFT we found that, as
expected by [10], a high number of stages (11) needs to be placed in
the links connecting the last switch barrier to the network interfaces
of destination cores. For the fat-tree, as expected by previous work
(e.g., [6]), latency of links close to the root grows. However, due to
the better scalability of fat-tree floorplan, the worst-case latency of
the fat-tree is lower than RUFT.

Area
Table 2, 5th column, reports total floorplan cell area. The 2D mesh
and the 2-ary 4-tree RUFT exhibit almost the same area, in that they
have exactly the same number of I/O ports for a 16-core system,
which are the ones that mainly determine switch area. The 2-ary 4-
tree FT has a significant 60% area overhead with respect to the 2D
mesh, which can be correlated with a 75% increase in the number of
switch ports. Interestingly, although featuring the same number of
switches, the 2-ary 4-tree RUFT achieves a significant area saving
with respect to the FT since it employs lower-radix switches. Ob-
viously, the 4-ary 2-tree S-RUFT exhibits the lowest area footprint
with just 8 4x4 switches.

When looking at area projections for 64-core systems (based on
post-synthesis area reports of network building blocks), we observe
that area of MINs has increased much more than that of the 2D
mesh. This is due to a higher increase factor of the switch count in
MINs than in 2D meshes to interconnect a larger number of cores.
This makes area footprint of 2-ary 4-tree FT hardly affordable and
that of 2-ary 4-tree RUFT larger than the 2D mesh.

When we account for area overhead induced by retiming and
flow control stages, Table 2 shows that an impressive 37% overhead
is incurred by RUFT due to the poor scalability of its floorplan.
Obviously, S-RUFT is the more penalized topology, and more than
50% of its area with 64 nodes might be occupied by retiming stages.
Please consider that this is a worst-case scenario pointing out scal-
ability issues, which can be mitigated by repeater insertion in the
links or by custom floorplans for a given system size.

4. System Level Analysis

Based on the physical insights reported above, we anno-



0,7
0,9

1,1
1,3
1,5

1,7
1,9

Writes Reads Writes Reads

Uniform (Cycles) Uniform (ns)

2D MESH

FAT TREE

RUFT

S RUFT

Figure 3. 16-core system. Normalized performance.

0

0,2

0,4

0,6

0,8

1

1,2

Writes Reads Writes Reads

Uniform, Ideal Latency (Cycles or ns) Uniform, Projected Latency (Cycles or ns)

2D MESH

FAT TREE

RUFT

S RUFT

Figure 4. 64-core system. Normalized performance.
tated maximum clock speed of each topology to a cycle-accurate
transaction-level (TL) simulator of the xpipesLite NoC architec-
ture [11]. We model actual read and write OCP transactions at the
network boundary. In uniform traffic, OCP transaction destinations
are randomly chosen among all the available memories in the sys-
tem. Transaction sizes are randomly chosen, betweeen 4 and 16
data burst beats. All networks were operated close to their satura-
tion points.

Figure 3 shows performance results for a 16-core system under
uniform traffic. Results are normalized to the 2D mesh. The left
side of the figure shows total simulation time in clock cycles, while
the right one shows the elapsed time in nanoseconds (accounting
for the actual post-layout clock period from Table 2). Small differ-
ences in performance can be seen when execution cycles are evalu-
ated. When only write transactions are considered, the best result is
achieved by the fat-tree, that is the topology that provides the larger
bisection bandwidth (see Table 1). On the contrary, topologies en-
suring lower latency (like S-RUFT) can better handle read transac-
tions. For this small scale system, fat-tree and 2D mesh have the
same diameter and, because of the chosen mapping, the same aver-
age distance between every source-destination pair. This explains
their performance balancing.

Unfortunately, when the real achievable speed is considered for
each topology, S-RUFT becomes unusable. The fat-tree suffers
from around 10% performance penalty with respect to the 2D mesh,
in spite of its higher number of network resources, while RUFT
proves an equivalent solution to 2D mesh. Given the lower wiring
complexity of 2D mesh, this latter might be the reference solution
for small scale systems.

When we move to a 64-core system, the global picture is totally
different, as illustrated in Fig.4. Since link pipelining is now used,
the same frequency of 750 MHz for each topology is enforced and
the proper latency is assumed for the links of the MINs. For the sake
of comparison, also the ideal case with 1 cycle latency on each link
is reported.

Figure 4 now shows a neater performance differentiation be-
tween topologies. When considering only write transactions, the
best topology is the fat-tree, reducing execution time by 10% over
the 2D mesh. In fact, this traffic is bandwidth-intensive and the fat-
tree provides the higher bisection bandwidth. Oddly, although both
RUFTs provide in theory higher bisection bandwidth than the 2D
mesh, this latter shows a better performance. RUFTs tend to confine
congestion by constraining its spread across the network. Although
this effect reduces global network congestion, backpressure propa-
gation is such to reduces the rate at which communication-intensive
cores can inject new packets, thus increasing overall execution time.

Read transactions cause a different scenario. Essentially, the
traffic crossing the network is bounded. In fact, due to the block-
ing behaviour of the network interfaces on read transactions (until

the response packet arrives), the maximum number of outstanding
transactions is one for each processor core. It follows that perfor-
mance is driven by the diameter of each topology. Under these
conditions, S-RUFT becomes the best topology, with a reduction
in total time of 28.1% over the 2D mesh, followed by RUFT with a
reduction of 22.2%. Although fat-tree improves performance over
2D mesh, it is not enough to outperform both RUFTs.

These conclusions may change when projected link latencies are
introduced. Their impact over topology performance depends on
the type of traffic. For write transactions, Fig. 4 shows an improve-
ment in performance of all MINs. The reason lies in the fact that
retiming stages introduce more buffering as well. In the presence of
bandwidth-intensive traffic, this feature results in less core blocking
(due to backpressure from the network) and hence enhanced perfor-
mance.

However, for read transactions network latency makes the differ-
ence in order to block network interfaces as short as possible. In this
scenario, link latency degrades performance of all MINs, and fat-
tree performs even worse than the 2D mesh. By combining repeater
stages with retiming stages in each wire segment, performance can
be brought back closer to the ideal one, but the power balance then
becomes unclear and its analysis is left for future work.

5. Discussion and Conclusions

This work proves that fat-trees are feasible for on-chip networks
from a physical design viewpoint. Unfortunately, for small scale
systems, they are not able to capitalize on their better performance
scalability yet. As the system size scales up, 2D meshes however
suffer from poor performance scalability. Hence, the need for alter-
native topologies becomes more stringent. k-ary n-trees can pro-
vide that performance scalability, but at an impractical power and
area cost. In this scenario, unidirectional MINs (like RUFT and
S-RUFT) become attractive for their reduced power and area over-
head. Unfortunately, their advantages cannot be easily materialized
due to a more intricate physical design. Due to link pipelining,
area and power cost of k-ary n-trees becomes prohibitive. Over-
all, we also prove that ignoring physical synthesis effects in high-
level topology evaluations might result into largely misleading indi-
cations.

Acknowledgments

This work has been partially supported by the GALAXY Euro-
pean Project (FP7-ICT-214364) and partly by the Hipeac Network-
of-Excellence (Interconnect Cluster).

6. REFERENCES

[1] Vu-Duc Ngo, H.Nam Nguyen, Hae-Wook Choi; ”Analyzing the Performance of Mesh and Fat-Tree Topologies
for Network on Chip Design”, L.T.Yang et al. (Eds): EUC 2005, LNCS 3824, pp.300-310, 2005.

[2] L. Benini, G. De Micheli, ”Networks on chip: a new SoC paradigm”, IEEE Computer, vol. 35, no. 1, pp.70-78,
Jan. 2002.

[3] S. Kumar et al., ” A Network on Chip Architecture and Design Methodology”, IEEE Computer Society Annual
Symposium on VLSI, April 2002. pp. 105-112.

[4] Rijpkema, E.; Goossens, K.; Radulescu, A., ”Trade Offs in the Design of a Router with Both Guaranteed and
Best-Effort Services for Networks on Chip”, Design, Automation and Test in Europe (DATE’03), Mar. 2003, pp.
350-355.

[5] D. Sylvester and K. Keutzer, ”Getting to the bottom of deep sub-micron II: A global paradigm”, Proc. IEEE Int.
Symp. Physical Design, pp.193-200, 1999.

[6] H.Matsutani, M.Koibuchi, D.F.Hsu, H.Amano, ”Three-Dimensional Layout of On-Chip Tree-Based Networks”,
Int. Symp. on Parallel Architectures, Algorithms and Networks, pp.281-288, 2008.

[7] Antonio Pullini et al., ”Bringing NoCs to 65 nm”, IEEE Micro 27(5): pp.75-85 (2007).
[8] A.Adriahantenaina, H.Charlery, A.Greiner, L.Mortiez, C.A.Zeferino, ”SPIN: a Scalable, Packet Switched,

On-chip Micro-Network”, DATE’03, Embedded Software Forum, pp.70-73, 2003.
[9] C.Gomez et al., ”Deterministic versus Adaptive Routing in Fat-Trees”, CAC’07, as part of IPDPS’07, 2007.

[10] C.Gomez et al.; ”Beyond Fat-Tree: Unidirectional Load-Balanced Multistage Interconnection Network”,
Computer Architecture Letters, June 2008.

[11] Francisco Gilabert, Simone Medardoni, Davide Bertozzi, Luca Benini, Mara Engracia Gmez, Pedro Lpez, Jos
Duato; ”Exploring High-Dimensional Topologies for NoC Design Through an Integrated Analysis and Synthesis
Framework”, Int. Network-on-Chip Symp., pp.107-116, 2008.

[12] F.Petrini, M.Vanneschi, ”k-ary n-trees: High Performance Networks for Massively Parallel Architectures”, Int.
Parallel Processing Symposium, 1997, pp.87-93.

[13] P.P.Pande, C.Grecu, M.Jones, A.Ivanov, R.Saleh; ”Performance Evaluation and Design Trade-Offs for
Network-on-Chip Interconnect Architectures”, IEEE Trans. on Computers, Vol.54, no. 8, 2005.

[14] A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, ”Fault Tolerance Overhead in Network-on-Chip Flow Control
Schemes”, Proceedings of 18th Annual Symposium on Integrated Circuits and System Design (SBCCI) 2005,
Florianpolis, Brazil, Sep 4-7, 2005, pp. 224-229.

[15] Circuits Multi-Projects, Multi-Project Circuits; http://cmp.imag.fr
[16] P.P.Pande, C.Grecu, A.Ivanov, R.Saleh ”Design of a Switch for Network on Chip Applications”, ISCAS’03,

pp.V.217-V.220, Vol.5, 2003.
[17] S.Stergiou et al., ”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”, DAC, pp.559-564,

2005.


