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Abstract: Small reservoirs have developed across semi-arid areas as a low cost solution for
millions of rural small holders to harvest scarce water resources. Studies have highlighted limited
agricultural water use and low water availability on individual reservoirs, but no information
exists on the drought patterns of multiple small reservoirs. Their small size and dispersion prevents
individualised hydrological monitoring, while hydrological modelling suffers from rainfall variability
and heterogeneity across data sparse catchments and reservoirs. A semi-automated original approach
exploiting free, archive Landsat satellite images is developed here for long-term monitoring of
multiple ungauged small water bodies. Adapted and tested against significant hydrometric time
series on three lakes, the method confirms its potential to monitor water availability on the smallest
water bodies (1–10 ha) with a mean RMSE of 20,600 m3 (NRMSE = 26%). Uncertainties from the
absence of site-specific and updated surface-volume rating curves were here contained through
a power relationship adapted over time for silting based on data from 15 surrounding lakes.
Applied to 51 small reservoirs and 546 images over 1999–2014, results highlight the ability of
this transposable method to shed light on flood dynamics and allow inter annual and inter lake
comparisons of water availability. In the Merguellil upper catchment, in Central Tunisia, results reveal
the significant droughts affecting over 80% of reservoirs, confirming the need for small reservoirs to
maintain a supplementary irrigation objective only.

Keywords: water harvesting; remote sensing; Landsat; agricultural water availability; Tunisia

1. Introduction

1.1. Small Water Bodies in Agriculture

Small reservoirs and other water and soil conservation works have become increasingly
widespread across semi-arid areas due to their combined ability to harvest sparse and scarce erratic
rainfall and runoff for local users, reduce the transport of eroded soil, attenuate floods and, in certain
cases, favour groundwater recharge. Small reservoirs are built relatively inexpensively [1,2], using
materials taken locally and composed of an embankment made from compacted soil and a stone
cladding. The dam is equipped, in certain cases, with a spillway, a water intake tower connected to
an outlet valve to lower levels and flush sediment. Definitions vary widely, but capacities typically
remain under 1 million m3 (1 Mm3) and surface areas under 10 ha [3].

Bottom-up development fuelled by the simplicity and low costs of these structures led notably
to large numbers of tanks in India [4] and açudes in Brazil [5]. Supported through national and
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international projects, these reservoirs flourished across countries of sub-Saharan Africa, Asia and
Latin America since the 1960s (Figure 1).

208000

3000

15000

70000

1000

800

100

110

350

600

3000

120

600

10000

425

1700

610

1000

12000

50

0 2 500 5 0001 250 Kilometres

Number of SR per country

Figure 1. Estimated number of small reservoirs (SR) for several countries (based on national,
non-exhaustive assessments in [6]).

Providing rural small holders with an additional water supply, these reservoirs are believed to
hold great potential to support small-scale irrigation [2]. These structures also benefit from reduced
environmental impacts, unlike large irrigation and dam projects, drawing continued attention and
support from donors and stakeholders. Studies in several countries have highlighted multiple benefits
of these multi-use systems and interest from users, but have also pointed to limited agricultural
production [7,8]. These findings lead, on the one hand, to questioning the suitability and subjectivity of
evaluation frameworks and exploring quantitatively and qualitatively the benefits of small reservoirs
(SR), to inform stakeholders of the relevance of such investments. On the other hand, additional
research must seek to investigate the reasons behind the limited agricultural development.

Significantly, the actual hydrological potential of these small reservoirs remains largely unknown.
Individual instrumentation for research and monitoring purposes has highlighted significant droughts,
but also significant heterogeneity in their functioning, as a result of differing catchment characteristics
(rainfall, size, land use, etc.) and reservoir characteristics (high infiltration, evaporation, withdrawals,
etc.) [9–12]. The small scale, size, importance and scattered and isolated nature of these systems
prevent wide-scale monitoring of their resources, and modelling suffers from large uncertainties [10,12],
predominantly due to highly localised rainfall intensities, which are not captured by field observations
or satellite-based products. Furthermore, more thorough understanding of the hydrology of multiple
SR is a prerequisite to understanding and modelling the combined influence of small reservoirs on
downstream flows, estimated to reach up to 50% on heavily-developed catchments [13–15].

1.2. Remote Sensing in Hydrology

Remote sensing, which began with aerial photography, has seen a significant surge in methods and
applications following the development of satellite imagery over the past 40 years. Providing coverage
of the whole globe at increasing spatial, temporal and spectral resolution and with reducing
costs, satellite-borne sensors increased opportunities for spatial analysis of the atmosphere, oceans,
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continental surfaces and underground resources. These enhanced sensor characteristics allow for
hydrological studies across multiple locations and large areas, while archive images support historical
perspectives over several decades. Providing information of interest on flooded areas, hydrological
processes and ecosystems, images are used to assess water surfaces, river depths and widths, as well as
to investigate water quality issues, such as turbidity or salinity, notably through proxies, such as
chlorosis or increased brightness resulting from high salinity [16], or to visualise geomorphology
and map river channels. Specifically, remote sensing has shown its potential to monitor large areas,
including wetlands [17–19], large rivers [20] and large lakes [21,22]. Studies have also pointed to the
potential of satellite imagery to study small water bodies, as low as 1 ha, notably for inventory or
diachronic studies [23].

Long-term monitoring of small water bodies however introduces specific constraints and
difficulties in terms of temporal resolution, archive availability, costs and spatial resolution. Ogilvie [12]
highlighted the existing potential of freely-available medium-resolution (Landsat) imagery to monitor
resources in seven gauged small reservoirs as low as 1 ha over several years. Monitoring multiple
ungauged small reservoirs introduces additional constraints to upscale the approach, notably in terms
of identification and automation, as well as the conversion of remotely-sensed surface area to volumes
in the absence of lake-specific rating curves to account for morphological differences and silting
over time.

Strategies to adapt the method to ungauged small reservoirs and to reduce the associated
uncertainties are investigated here and assessed against long-term hydrometric time series available
for small reservoirs within a semi-arid catchment in central Tunisia (Figure 2). Applied to 51 small
reservoirs over 15 years, the results of this approach are then analysed to inform stakeholders of the
true hydrological potential of small reservoirs to support agricultural practices (in terms of water
availability, droughts, etc.) in semi-arid areas.
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Figure 2. Location of Merguellil upper catchment and its small reservoirs and those with the stage data
and surface-volume relationships employed here.



Geosciences 2016, 6, 42 4 of 25

2. Materials and Methods

2.1. Water Detection Principles

Remote sensing exploits differences in the electromagnetic waves emitted and reflected by objects
under investigation to distinguish and classify land surface areas. The different level of absorption
and reflectance in several wavelengths can be used to discriminate water over other land uses and
combined in multispectral analysis to identify and classify land use features.

Classification methods for water detection employ algorithms to group pixels into clusters with
similar reflectance profiles. In supervised classifications, learning zones based on external knowledge
of the field or spectral information are incorporated from the onset and help calibrate the method.
In unsupervised classifications, the classes produced by the algorithm are analysed a posteriori
according to their spectral profiles or by exploiting secondary information, such as land use maps or
field knowledge. Methods include K-means classification based on fuzzy logic, which remains highly
effective in distinguishing land uses [19,24]. Maximum likelihood classifications (MLC) based on the
Bayesian probability function have been used over different scales, but for automatic delineation, this
method was reportedly affected by residual noise and is not calibrated with ground truth data to
improve the method [23,25]. Furthermore, they are resource intensive (computational and operator
time to define training zones) and can be applied and automated to series of images with difficulty.
Reflectance values on a single band notably the short wave infrared (SWIR) and near infrared (NIR) or
thermal bands may be thresholded to distinguish water bodies [26].

Considering the difficulties observed when water mixes with vegetation, several spectral water
indices were developed to make use of the contrasting reflectance of objects in several bands
(wavelengths). Using two or more spectral bands, these indices have been widely used in water
studies and have been shown to perform as well [26] or better than other methods, notably MLC [27].
Working pixel by pixel unlike classifications, such as MLC, they are also less likely to over-classify
areas with large variations in their covariance matrix. Often based on the normalised difference of
two spectral bands, the ratio helps remove some of the residual noise after radiometric corrections,
and constant thresholds may be defined, which facilitate the automation of water detection over
successive images. Based on the comparison of seven commonly-used water detection indices,
Ogilvie [12] showed the superior performance for small water bodies of the Modified Normalised
Difference Water Index (MNDWI, [28]), which exploits the reduced reflectance in the SWIR spectral
bands (Equation (1)). The index was most proficient in terms of detection accuracy and threshold
stability, making it most suitable for semi-automated detection across several remote sensing images.

MNDWI =
Green − SWIR

Green + SWIR
(1)

2.2. Small Reservoirs in the Merguellil Upper Catchment

The catchment used for this study is the Merguellil Upper catchment (1200 km2), situated
in central Tunisia. In this semi-arid region, rainfall is low and characterised by high annual and
interannual variability (329 mm/year ± 131 mm), but no declining trend has been observed [15,29].
Potential evapotranspiration varies between 1.5 and 8 mm/day for a total of 1600 mm/year.
Event-based, the runoff regime is the result of intense localised rainfall events (up to 50 mm/h),
which occur 5–6-times/year and cause wadis to overflow and reservoirs to flood.

The catchment contains several small reservoirs built since the 1960s. These were introduced in
northern areas of Tunisia at the beginning of the 20th century [7], before spreading south with the
support of several governmental and international projects. These included an ambitious nationwide
strategy to build 1000 small reservoirs, 210 larger reservoirs and 20 large dams. By the late 1990s,
over 700 small reservoirs had been built nationally for an estimated capacity of 70 Mm3 and led to
a second phase after 2002, supported locally through a host of additional projects [1]. These works
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were combined with additional water and soil conservation works, including contour benches and
protecting river banks. Aggressive precipitation and runoff, combined with cropping and pasture
lead to strong erosion in the region, causing soil loss, gullies and the sedimentation of downstream
dams [30,31].

Representative of many problems found elsewhere in the semi-arid Mediterranean basin,
notably problems of uneven distribution of water resources and competition between upstream
and downstream users, groundwater overexploitation and climatic variability, the region has provided
an interesting case study for numerous research projects over more than 30 years. As a result, 15 small
reservoirs in the region were instrumented for daily monitoring (stage, rainfall and evaporation)
and regularly surveyed. Results from the remote sensing approach were compared to long-term
hydrometric time series over 1999–2014 for three small reservoirs of different sizes, chosen for their
extensive and reliable time series and the regular updates of their site-specific surface-volume rating
curves. Furthermore, 70 surface-volume rating curves for 15 lakes were analysed below to derive
a suitable common power relation updated over time to account for silting.

2.3. Inventory of Small Reservoirs

An inventory was produced here based on cross-referencing prior records from local authorities
and the literature [1,10,32] with satellite imagery and field visits (Figure 3). Available records notably
suffered from discrepancies due to substantial imprecision (mean 450 m, max. 2330 m) from coordinates
transcribed upon 1:50,000 maps, compounded by different naming conventions and incomplete
metadata. The MNDWI was therefore applied in the first instance to discriminate water bodies on
30-m Landsat imagery. A single cloud-free Landsat image, chosen when water levels were high across
several lakes (autumn 2011) to increase the likelihood of identifying all lakes, was used. Lakes as
small as 0.5 ha were detected, but the process required manual intervention to exclude additional
pixels, essentially river stretches and temporary flooded areas. Additional filters based on shape, size
and turbidity could help automate the process when working over large areas. Similar assessment
of water bodies has notably been carried out, but focussed on larger reservoirs or used 2000 Landsat
(GeoCover) images, meaning recent and small non-permanent water bodies would be omitted [33],
and therefore, could not be used here. Here, the water detection index was calibrated based on ground
truthing over seven reservoirs as described in [12], but where no field data are available, unsupervised
classifications, such as K-means [24], may also be used to detect flooded areas.

High spatial resolution images made available freely through Microsoft Bing as part of the Bing
Global Ortho project, and dating for our region between April 2011 and June 2012 was then used in
a second phase to cross-check the inventory and confirm coordinates. The MNDWI spectral analysis
step was essential to quickly distinguish water bodies, which may not appear on true colour composite
imagery, especially if taken during the dry season. Where high spatial resolution multispectral imagery
is available and affordable, these steps may be combined.

The updated inventory of lakes was then uploaded to mobile devices, and field surveys
undertaken over several months over 2011–2014 allowed confirming the location and coordinates of
each lake. Only one false positive was recorded, due to highly reflective rock formations, and helped
identify 56 lakes in the Merguellil upper catchment (Figure 2), 10 more than the previous inventory.
Due to heavy silting and the absence of initial volume information, five lakes were excluded from the
subsequent analysis. Initial design capacities range between 17,000 and 1,590,000 m3, though most
(83%) do not exceed 250,000 m3 (Figure 19). Despite these vast differences in water volumes, these lakes
were built as part of the same water and soil conservation projects, sharing similar objectives, operation
and management [1], and as a result, were here considered jointly. For the sake of comparison,
the El Haouareb dam at the catchment outlet has a theoretical 95 Mm3 capacity.
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Figure 3. Decision tree for the inventory of small reservoirs.

2.4. Grid Cell Definition for Automation

In order to automate the remote sensing process and allow the calculation of clouds and water
pixels, cells around each lake were delineated. A similar approach was notably used to study flood
dynamics within designated areas of a large wetland [19]. Cells were manually created based on
the high resolution images provided through the Microsoft Bing interface (more recent and spatially
defined for our catchment than on Google Earth). Automated drafting of the cell polygons using
a classified Landsat image was not satisfactory considering the steps required to remove unwanted
polygons (river sections notably) and adding extra polygons (as not all lakes were flooded) and
remodelling to account for very high floods. Likewise, automatic delineation of small reservoirs using
SRTM based on topography was not attempted considering the very flat topography of certain lakes,
the low spatial resolution and the low precision in altitude. Delineation sought to account for large
floods by defining a 10% buffer around geomorphological boundaries of the lake, but meanders were
excluded to conform with the surface-volume laws used.

2.5. Chain of Treatments on Landsat Imagery

Selecting satellite imagery remains a compromise between spatial, temporal, spectral resolution
and costs. Based on the size of the small reservoirs and the desire to investigate drought patterns
over several years, Landsat imagery was used here. The Landsat programme, funded and managed
by NASA, launched the Landsat 1 satellite in 1972 and in 2013 placed Landsat 8 in orbit providing
unparalleled cover of the globe at medium resolution over more than four decades. Considering
our interest to monitor lakes since the 1990s, images from Landsat 5, 7 and 8 were used (Figure 4).
Landsat 6 crashed into the sea on its launch day in 1993. With a heliosynchronous near polar orbit at
an altitude of 705 km, Landsat 5 and its successors revisit the same region of the globe every 16 days
and provide multispectral images in 30-m spatial resolution in six or more spectral bands from the
visible to the infrared part of the spectrum.

Five hundred forty six Landsat images over 1999–2014 were acquired freely through the USGS
Earthexplorer platform and treated as follows within R (Figure 5). Digital numbers in the green
and SWIR bands were converted to top of atmosphere (TOA) radiance using parameters provided
in the meta-files and converted to surface reflectance using the top of canopy (TOC) dark object
subtraction (DOS1) method [34–36] and topographically corrected based on the Minnaert [37–39]
algorithm. Clouds and shadows were detected using Fmask [40], and SLC-off pixels on Landsat 7
images post 31 May 2003, resulting from the permanent failure of the scan line corrector (SLC) on the
Landsat TM sensor, were detected by creating a mask where digital numbers were zero. MNDWI,
clouds, shadows and SLC-off values were extracted and compiled for each pixel in each of the 51 grid
cell for each 546 images. Pixels with MNDWI values above −0.09 were considered as flooded based
on calibration and validation against Differential Global Positioning System (DGPS) contours over
seven lakes in conditions of both high and low water levels [12]. Further validated against hydrometric
data for seven different small reservoirs, the negative MNDWI threshold was coherent with values
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found in wetlands [19], which present similar issues of flooded vegetation and shallow waters [26].
Finally, images with more than 40% clouds and 25% SLC off pixels were discarded for each individual
lake [12], leaving on average 282 images, i.e., 1.5 images/month. The resulting remotely-sensed
assessments of flooded surface area were compiled and converted to volumes as below to study flood
dynamics across all lakes. Time series were spline interpolated and smoothed to allow the calculation
of water availability values over time (dry season and whole year).
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Figure 4. Availability of Landsat images for the Merguellil upper catchment.
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Figure 5. Chain of treatments applied to 546 Landsat images (adapted from [12]).

2.6. Surface-Volume Rating Curves

2.6.1. Power Relations

Converting remotely-sensed surface areas into volumetric data requires rating curves, typically
produced through bathymetric surveys or topographic surveys. In the absence of surface-volume (S-V)
curves for multiple ungauged reservoirs, power relations can be developed, but the uncertainties they
introduce must be assessed and minimised. These have been previously used in studies with small
reservoirs [23,41] and are based on the principle that when representing the lake as a half pyramid
(i.e., a triangular shaped lake), volumes (V) and surface area (S) are related as per Equation (2) where
B is a constant and β = 1.5. Similar relations can be defined between height and volume based on
a triangular representation [10]. In practice, the lakes do not follow a true pyramid shape; if slopes
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are convex, β < 1.5, and β > 1.5 if slopes are concave [23]. Equation (4) and Figure 7 reveal that in this
catchment lakes have predominantly concave slopes (β > 1.5).

V = B × Sβ (2)

ln(V) = ln(B) + β × ln(S) (3)

A common inter lake (interSR) power relation was derived here based on a subset of
11 surveyed lakes in and around the catchment. Initial rating curves were used as silting introduces
additional complexity and irregularities in the shape of lakes and therefore errors on rating curves.
The progressive modification of the parameters due to silting was accounted for separately as discussed
below. The full range of values provided in the rating curves was exploited unlike other studies [10,42]
where lower values (corresponding to under 15% maximum volume) were removed and points
weighted by their volume. These seek to remove the points where the lake profiles are less reliable
and lead to improved estimation at the upper range and therefore R2 (as similar % errors on large
values affect R2 more strongly), but at the lower range leads to larger errors. Considering the fact
that water levels on several lakes never reach the theoretical upper range of the rating curve and are
typically within the lower half (when not completely dry), we chose to favour the representation of
the lower volumes in the power relation. On Gouazine lake, this method leads to errors of 8% above
4 m (4.6 ha) and 19% at 1 m (1.05 ha), respectively, against 1% and 40% when excluding lower values.
The parameters of the interSR power relation were derived by linear regression of Equation (3) using the
surface and volume data from instrumented lakes, which yields the values of β as the slope and ln(B)

as the intercept, as illustrated in Figure 6. The optimal β for each lake varied moderately (coefficient of
variation of 19%), while values for B varied significantly (CV = 137%) (Figure 7). Deriving a single
linear model to minimise errors (and optimise Nash–Sutcliffe efficiency) between the interSR predicted
volume and rating curves of all 11 lakes was preferred over averaging the parameters from each
lake [10], which would give greater importance to extreme parameter values.

V = 0.0039352 × S1.6282 (4)

y = −5.6 + 1.6 x   r2 = 0.97

0
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Figure 6. Relationship between surface area and volume based on rating curves from 11 small reservoirs
and the interSR relation (blue line) derived from linear regression.
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Figure 7. B and β parameters for each of the 15 lakes.

2.6.2. Validating a Common S-V Power Relation

R2 values for the interSR relation were high (0.97), in line with values found by previous
studies [23,41]. The poor fit of power relations derived for other regions (Table 1) confirms the
need for locally-derived relations that reflect the local geomorphology of lakes. Relationships
from Limpopo performed remarkably poorly, indicating that lakes there were much shallower than
in the Tunisian context, while those for açudes in Brazil showed the greatest similarity with the
Tunisian context.

Using a single interSR relation nevertheless introduce errors, as geomorphological differences
remain especially between shallow oval-shaped lakes situated in floodplains (e.g., Gouazine) and
deeper triangular lakes situated within stream channels (e.g., Morra) of lakes. Tested on 15 reservoirs
(including four not used to derive the relationship, Es Senega, Sadine 1, Baouejer and Dekikira, to
confirm the relevance of the sample), mean errors over the range of floods experienced by these lakes
reached 33%. These varied significantly remaining below 25% on eight out of 15 lakes, but reaching up
to 100% on two lakes (Figure 8). The relationship notably performed poorly on small lakes where the
slopes were concave (β > 1.5) (Sadine 1, Sadine 2, Fidh Ben Nasseur). Higher β values correspond to
lakes with steep banks, where errors in the power relation are greater as minor shifts in surface area or
the parameters lead to greater volume errors [23]. No correlation could be identified between β and B

parameters and lake characteristics (surface area, volume, mean depth) to further refine the parameter
values for each lake, presumably as these do not sufficiently account for the slope of lake banks and
other geomorphological differences. Furthermore, using a different relationship for the lakes where
β is known to congregate around the lower pole of 1.4–1.7 (Figure 7) and for lakes where β values
congregate above 1.7 did not improve performance. Despite significant differences in the ability of
a single power relation to model individual lakes’ rating curves, errors remain comparable to those
from other methods, such as the Fowler and Nelson relations [41].
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Figure 8. Lake-specific S-V power relations against the interSR power relation (in grey).

Table 1. B and β values for S-V power relations for small reservoirs.

Study Region β B

Gourdin et al. [43] Cote d’Ivoire 1.4953 0.00405
Cadier [42] Brazil 1.5882 0.003549

Lacombe [10] Tunisia 1.7299 0.001413
Liebe et al. [23] Ghana 1.4367 0.00857

Sawunyama et al. [41] Limpopo 1.3272 0.002308
Ogilvie (this study) Tunisia 1.6282 0.003935

2.7. Accounting for Silting in Power Relations

Intense rains, high runoff combined with degraded and uncovered soils lead to significant
erosion in semi-arid and Mediterranean areas. Associated silting reduces the capacity and lifespan
of small reservoirs, which must be accounted for when considering drought and water availability
assessments. Though the frequency of events and the land use conditions (cropping) during strong
rainfall events are determinant, local studies [31,44,45] pointed to the difficulty in identifying and
modelling the vulnerability to erosion and rate of silting and decidedly in data-poor ungauged
catchments. Erosion is very heterogeneous as a result of localised rainfall events, as well as differences
in the local lithology and pedology, catchment size, land cover (cropland, forest, etc.) and efforts to
reduce soil erosion notably through contour benches. The influence of water and soil conservation
works is also not constant, as these are shown to degrade with breaches potentially increasing erosion
processes [46], while farmland abandon and forest expansion as seen in other Mediterranean areas
can also in time modify erosion patterns and their amplitude [47]. Based on successive surveying of
lakes, studies showed that specific erosion rates varied from 1.8 to 24.2 t/ha/year [30,31] on Gouazine
and Fidh Ali respectively over the 1990–1999 period, as a result of lower crop development, clayey vs.
marly soils, greater forest cover and greater contour bench development.
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Considering the impossibility of multiple surveys over time across all lakes within a catchment,
the interSR power relation rating curve was here adapted for silting through a progressive shift in
the parameters [10,42]. Based on analysis of the β and B parameters for 70 S-V power relations
on all 15 lakes over the 1990–2007 period (Figure 9), β is shown to follow a linear trend over time,
increasing gradually by 0.03119/year, which is coherent with increased concavity from deposition.
Lacombe [10] had also noted the particularity of Mouidhi and Sadine, whose rapid silting and small
size are understood to lead to these discrepancies. In the absence of a clear trend for B, the mean
decline rate in lake capacities (Vmax) was used to constrain the value of B. By supposing that the
maximum surface area at the spillway does not evolve over time, which is acceptable based on the
true rating curves, B for each lake and year was calculated based on the annual increase of β and
an annual reduction of Vmax by 2930 m3/year. Initial Vmax was here known from the inventories and
Smax calculated based on the initial interSR B and β parameters. Albergel et al. [3], based on successive
observations between 1988 and 1998 on 19 small dams, showed that the decline in capacity could be
modelled through linear regression despite the heterogeneous silting processes.

In practice, silting is not a linear incremental process, but the result of individual discrete events,
meaning lakes may fill faster than expected due to a single large event [48] and can reach 8700 m3/year
on certain lakes [1,3]. Tested on four small reservoirs, the interSR power relation adapted over 25 years
(i.e., 1990–2014) for silting succeeded in containing errors around 50%. After 11 years on Dekikira, the
estimated power relation modelled the decline remarkably well with relative errors remaining around
55%. On Gouazine (Figure 10), after 17 years relative errors remained below 80%.
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Figure 9. Modelled evolution (black line) of the B and β parameters over time.
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3. Results and Discussion

3.1. Method Performance on Ungauged Lakes

The performance of remote sensing in assessing droughts within ungauged lakes was investigated
against long-term hydrometric data available for three regularly-surveyed small reservoirs. Specifically,
the sensitivity of the approach to uncertainties from the interSR and silting models when assessing
daily water volumes and mean annual availability was assessed.

3.1.1. Daily Flood Dynamics and Water Volumes

Figure 11 illustrates the ability of Landsat-derived flooded areas to monitor flood dynamics and
droughts on larger lakes (5–10 ha) even in the absence of site-specific S-V. The method provides vital
information on the magnitude, frequency and timing of major floods, restituting flood peaks and
decline phases, and reaches a skill level of R2 = 0.93 on Gouazine. The interSR power relation adapted
for silting over time leads to a shift in the estimated volumes and an average increase in RMSE on daily
values around 50% on all three lakes from 17,800 to 26,400 m3. Mean RMSE errors rose by a further
65% to 45,900 m3 on Gouazine when not accounting for silting, confirming the value and importance
of modelling silting over time in this context. Errors were prevalent at the high end of the range,
as seen in the S-V relations and Figure 12, which as a result amplified the remote sensing outliers.
These residual uncertainties are notably caused by difficulties in detecting cirrus clouds and shadows
and can lead to significant overestimations [12].
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Figure 11. Daily volumes for Gouazine lake over 2000–2014 based on: (i) observed stage data;
(ii) Landsat data using a site-specific rating curve; (iii) Landsat data using the power relation adapted
for silting; (iv) Landsat data using the power relation not adapted for silting.

Smaller reservoirs like Fidh Ali were more affected by residual uncertainties due to the greater
proportion per lake of mixed pixels, including flooded vegetation and waters, as well as the
proportionally greater error from clouds and their shadows. Furthermore, the absence of frequent
observations reduced the performance, leading to irregular flood rises and rapid declines due to rapid
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infiltration or smaller volumes (50,000 m3), which were not reliably monitored [12]. Figure 12 highlights
the somewhat lower skill (R2 = 0.66), as well as the systematic underestimation of the volumes on this
smaller reservoir, due to the inherent difficulties in modelling the morphology of individual lakes and
the heterogeneous silting over time (Figure 10). RMSE errors for ungauged smaller reservoirs rise by
35% to 19,200 m3, which when normalised over the mean volume become significant (NRMSE = 0.4)
(Table 2). These results remain however drastically superior to those obtained through conventional
hydrological modelling, due largely to the high spatial (and temporal) variability in semi-arid areas,
which are poorly captured even in gauged catchments [12].

Dekikira Fidh Ali Gouazine
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Figure 12. Correlation on daily water volumes in three lakes between field data and remotely-sensed
data using the power relation adapted for silting.

Table 2. RMSE and NRMSE values on daily volumes and mean annual volumes when using the
site-specific surface-volume rating curves and the interSR power relation adapted for silting.

Lake
Daily Volume Mean Annual Volume

RMSE (m3) NRMSE RMSE (m3) NRMSE

Gouazine (2000–2014)
site specific S-V 17,700 0.17 14,400 0.14
interSR & silting 27,900 0.27 16,300 0.16

Fidh Ali (2000–2005)
site specific S-V 14,200 0.30 13 100 0.28
interSR & silting 19,200 0.41 17,900 0.38

Dekikira (2000–2008)
site specific S-V 21,500 0.19 36 600 0.33
interSR & silting 32,200 0.28 28,100 0.25

3.1.2. Quantifying Mean Annual Water Volumes/Availability

To analyse water availability and droughts, the remotely-sensed flood assessments were converted
to mean annual volumes. Over all years and three lakes, R2 reached 0.72 and mean RMSE across the
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three lakes reduced from 26,400 down to 20,600 m3 compared to daily water volumes (Figure 13 and
Table 2), due to outliers being effectively smoothed over time [12]. RMSE values increased on two
lakes (by 13% and 36%) compared to using the site-specific S-V, but in one case, even decreased (by
24%), as a result of beneficial uncertainty, as the overestimation from the interSR with the silting model
compensated for the remote sensing errors, notably certain floods being undetected or underestimated.
The steep rise in RMSE error when not accounting for silting over time (+95% on Gouazine) confirms
the suitability and importance of the silt module being included on mean annual assessments.

The influence of remote sensing outliers on mean annual volumes is apparent certain years
(Figure 13) and depends on their amplitude, but also the lag between successive observations, which
correct the error (i.e., temporal resolution of images). As before, errors remain more significant for
small lakes, due to several low periods where overestimation errors from clouds have a proportionally
greater influence on the uncertainty. Nevertheless, when accounting for the mean volume of each lake,
NRMSE errors from using the interSR adapted for silting over time remained low and below 0.5 in all
three lakes (Table 2). The level of accuracy demonstrated here confirms the suitability of the approach
to provide tangible information about water availability patterns of small reservoirs, especially when
comparing inter-lake and interannual variability of resources.
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Figure 13. Correlation on mean annual volumes for three lakes between field data and remote sensing
data using the power relation adapted for silting.

3.1.3. Timing and Duration of Droughts

Remote sensing observations (the 546 treated images) also allowed for accurate estimates
of periods when the lake is dry or below a given level, as shown in Figure 14 and applied in
Figures 17 and 18. Associated errors remained below 10%, including when using the interSR relation
adapted for silting. Clouds only lead to an overestimation of flooded areas, facilitating the assessment
of periods without water. The method performed best when using a low volume (>1000 m3) rather than
zero due to residual uncertainties and interferences in the remote sensing, which can lead to solitary
commission errors. The influence of individual outliers depends on sufficient temporal resolution
to rapidly correct remote sensing outliers, but their influence is less detrimental than in volumetric
assessments, and the method performed well even on small lakes [12].
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Figure 14. Error in the number of days water levels fall below a given volume for Gouazine (1999–2014).

3.2. Monitoring and Quantifying Droughts

The original insights provided by applying this approach across 51 reservoirs in a semi-arid
catchment are presented here. The hydrological variations observed between years and lakes are
discussed to highlight the extent of droughts and accordingly inform stakeholders about the potential
of small reservoirs to support agricultural practices.

3.2.1. Water Availability Variability across Lakes and Years

Figure 15 illustrates the results of the approach applied across 546 Landsat images and multiple
ungauged reservoirs. Reproducing coherent flood dynamics across lakes of all sizes, the method allows
rapid identification of reservoirs subject to limited resources and regular droughts. We also note its
ability to identify when lakes were commissioned and first flooded (e.g., Mdinia), as confirmed by
local records. Interpolated over time and converted to a mean daily volume, observations reveal the
vast differences in interannual water availability, which reached over 200,000 m3/day on large lakes,
but remained close to zero for many of the small reservoirs over 1999–2014. Across all lakes and years,
mean availability reached 36,000 m3.

Interannual variability, expectedly high on small lakes (e.g., Fidh Ali), was also remarkably high
on large lakes, such as Kraroub, which enjoy large floods and where mean daily volumes exceed
150,000 m3 (Figure 16). The variation coefficient reaches 0.76, contrasting with other large lakes, such
as Morra and Mdinia, where it remains significantly lower at 0.23. On smaller lakes, mean daily
volumes are limited (below 20,000 m3) and naturally more prone to droughts, but exceptions, such
as Fadden Boras, were observed. On the smallest lakes, flood amplitudes were extremely limited
(10,000 m3), leading to very short floods and lengthy droughts.
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Figure 15. Landsat-derived volumes for the subset of 12 ungauged lakes over 1999–2014. (a) Daily
volumes; (b) mean daily volumes per year.

These stark differences across all sizes of lakes have a substantial influence on their ability to
provide both substantial and consistent water resources. To support irrigation, farmers indeed require
a sufficient quantity (volume), at the right time (timing) and for the right length of time (duration).
Here, this was addressed by looking at the mean number of days each lake can support farmers with
a given water volume during the dry season (April–September) when watering needs are greatest.
In this context, a threshold of 5000 m3/month was determined through user interviews, as the minimal
requirement to practice intensive irrigated activities, based on watering requirements, technical aspects
(i.e., sufficient depth to operate a pump) and methodological requirements (i.e., at least 0.5 ha, i.e.,
six Landsat pixels, thereby reducing the presence of single outliers [12]). Under this threshold, farmers
effectively suffered from drought conditions.
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Figure 16. Mean interannual availability over 2007–2014 per lake over the whole year displayed as the
mean ± 1 standard deviation.

The 546 Landsat observations were therefore used to derive quantitative assessments of the
number of days droughts were experienced on all 51 lakes (Figures 17 and 18). Results highlight
the vast disparities between reservoirs, with only a handful (eight) capable of providing users with
sufficiently reliable access to water (Figures 18 and 19). These include four large lakes (Figure 19)
with close to constant water availability during the dry season. Two other large lakes (En Mel and
Kraroub), subject to high interannual variability, as already seen in the high standard deviation values
(Figure 16), suffer from a greater number of droughts (on average, one month per dry season). Finally,
two smaller lakes (Dekikira and Fadden Boras) appear subject to similarly low drought frequencies.
These appear able to provide farmers with more reliability than certain larger lakes (e.g., Maiz) for
these minimal watering requirements.
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Figure 17. Number of days for each lake that water volumes fell below a designated volume
(up to 150,000 m3).
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Figure 18. Number of drought days per lake (here, drought refers to days below 5000 m3 over the
dry season). Pale red refers to results with silting, while dark red represents a best case scenario
without silting.
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Figure 19. Relationship between the initial capacity of each lake and water availability parameters.
(a) Correlation between initial maximum capacity of lakes and mean daily volumes over
April–September; (b) correlation between the initial maximum capacity of lakes and the mean number
of drought days/year (here, droughts refer to volumes <5000 m3).

3.2.2. Quantifying Drought Frequencies

Drought periods increase rapidly as capacities decline further, and 27 lakes out of 51 suffer
from drought over more than 140 days, i.e., are flooded less than 45 days during the six dry months
and therefore less than the minimal growth cycle of any standard crop, compromising any potential
irrigated dry season cropping.

3.2.3. Uncertainties over Silting

Interestingly, on 20 of these lakes, silting is not responsible for the limited water resources, as
results based on initial capacities highlight that these continue to provide a low agricultural potential
(Figure 18). Results for these lakes are therefore not sensitive to silting uncertainties, pointing to
low availability due to catchment and lake characteristics rather than silting. On 13 lakes, we do see
a noticeable shift in the results, and this therefore highlights where updated information on the lake’s
silting would be most valuable to improve the results. These combine some (though not all) of the
oldest lakes and smaller lakes where uncertainties from the aggregated incremental silting over time
(sometimes since the late 1960s for Skhira lakes) become most significant.

Landsat flood dynamics observed on these lakes also pointed to their ability to provide insights
into the silting of lakes. Increased silting leads to lower depths, meaning the same surface area
over time will evaporate or infiltrate faster, which can be observed from the surface area dynamics.
Certain lakes with minimal storage are not or are no longer able to maintain resources for a sufficient
length of time, and their floods become both minimal in amplitude, but also in duration, up to
a stage where they are not even detected. This was clearly observed on four lakes, which field visits
confirmed were silted (Ben Houria, Garia 2, Bouchaha B and Raouess). The 13 lakes where silting
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uncertainties were significant continued to display large and extended flood periods based on Landsat
surface assessments, confirming that despite the age of some of these lakes, their silting level merits
further investigation.

3.2.4. Relationship between Capacity and Droughts

Figures 18 and 19 show that greater capacities ensure greater reliability in this context of low erratic
rainfall where storage is essential. Above the 500,000 m3 threshold, reliability increases significantly
in this semi-arid catchment. Lakes with substantial storage (250,000 m3) are subject to significant
floods, raising their mean availability to 50,000 m3, but this remains insufficient to maintain long-term
availability, i.e., remain flooded between successive floods or through the dry season with droughts up
to three months reported during the dry season on Gouazine. In all of these cases, withdrawals are
minimal and therefore influence the availability patterns during the dry season [12].

The initial capacity of lakes can however only provide a vague estimate to stakeholders of
the potential mean availability of lakes (Figure 19). Correlation remains limited (R2 = 0.6), as can
be expected considering the spatial rainfall and associated runoff variability, as well as differences
in catchment runoff coefficients and lake characteristics (notably high infiltration). Part of these
will has been accounted for during the dimensioning of dams; however, Garia S., though reliable,
shows relatively low mean water volumes compared to other lakes of its capacity and may have
been over-dimensioned considering its reduced catchment size (5 km2 compared to 20 km2 for other
large lakes). Conversely the superior reliability of Garia S. compared to lakes such as Gouazine
of similar mean availability may be explained by the observed differences in geomorphology.
Further hydrological analysis can exploit the spatialized volumetric data derived from the Landsat
observations to identify the drivers of high water availability through sub-catchment modelling and
reservoir water balance (Figure 20).
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Figure 20. Mean water availability of lakes within the Merguellil upper catchment.
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4. Conclusions

Based on free medium-resolution remote sensing observations, this paper highlights the
operational potential of Landsat satellite imagery to monitor resources in 51 scattered, ungauged small
reservoirs over 1999–2014. The results confirm the growing value of satellite imagery in hydrology
and specifically confirm the feasibility of studying multiple, small water bodies (1–10 ha) using
medium-resolution free imagery by adapting and automating a method across 546 images using the
MNDWI band ratio index [12]. Validated against extensive hydrometric time series for three reservoirs,
results confirm the good skill (R2 up to 0.9) of the method to reproduce flood variations of lakes of
medium size and sufficiently slow flood dynamics. Mean RMSE on daily volumes across all three
lakes reaches 26,400 m3.

Errors from modelling lake morphologies and silting over time were contained and inferior to
other uncertainties (mean RMSE increase by 50%) thanks to an interSR power relationship adapted
over time to account for silting derived from 15 reservoirs in the area. Significantly, RMSE on mean
annual volumes reduced to 20,600 m3, and the method displayed its potential to provide spatialized
assessments of water availability and insights across reservoirs and years. Furthermore, for 20 lakes in
the basin, interannual water availability was not sensitive to these silting uncertainties due to the very
small and sparse volumes available.

Results also highlighted the inadequacy of imported power relations and the need to derive
local S-V relations to account for the morphology of small reservoirs when converting surface area
assessments into volumes. Residual uncertainties from using a single power relation across lake
morphologies are exacerbated through silting, which though incremental, is not gradual and varies
widely from one lake and year to another. Suitable ways to measure and update S-V for several lakes
are therefore essential to assess their capacity to support agriculture or attenuate floods. Greater spatial
resolution and increased access to low cost imagery (including stereoscopic/multi-view) to derive
DEMs will help reduce these uncertainties. Likewise, reduced costs and adapted legislation for UAVs
(unmanned aerial vehicles such as drones) can facilitate field-based acquisition of multiple rating
curves over time [49]. Continuous improvements in satellite sensors and cloud detection will reduce
remote sensing uncertainties and increase the importance of reducing these additional uncertainties.

Applied to 51 ungauged small reservoirs, the method provided initial insights into their flood and
drought patterns and highlighted the extreme disparities between lakes and years. Importantly, results
reveal the limited availability, except on a handful of lakes (eight), predominantly of large capacity
(>500,000 m3), confirming the importance of storage in semi-arid basins where events are rare and
spread out. All other lakes, despite significant capacities and mean interannual availability, suffer
from significant variability leading to unreliable water access and drought periods on average three
months of the dry season. Twenty seven lakes (i.e., 53%) suffer from significant droughts, allowing
crop irrigation for less than 45 days, i.e., less than the shortest crop cycle. These substantial constraints
highlight the limited agricultural potential of these smallest reservoirs and the need to maintain at most
a supplementary irrigation objective. Combined with additional field data, volumes captured by small
reservoirs can be analysed to investigate the role of catchment and reservoir characteristics (rainfall,
evaporation, land use and land cover, etc.) in reducing drought risks and help stakeholders optimise
the location, sizing and management of these vital sources of rural water supply. A clear limiting factor
here, water is rarely a sufficient factor to explain agricultural development around small reservoirs or
its decline. Further investigation must then seek to understand to what extent water availability has
shaped agricultural development around small reservoirs and how other socioeconomic factors have
influenced water use [12]. Replicable at multiples scales across ungauged reservoirs, this approach
may allow stakeholders to understand the hydrological constraints experienced by millions of small
holder farmers across semi-arid countries [2] and optimise practices and investments accordingly.
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