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Abstract. This paper presents a model of factors influenc-

ing levels of human losses from natural hazards at the global

scale, for the period 1980–2000. This model was designed

for the United Nations Development Programme as a build-

ing stone of the Disaster Risk Index (DRI), which aims at

monitoring the evolution of risk. Assessing what countries

are most at risk requires considering various types of hazards,

such as droughts, floods, cyclones and earthquakes. Before

assessing risk, these four hazards were modelled using GIS

and overlaid with a model of population distribution in order

to extract human exposure. Human vulnerability was mea-

sured by crossing exposure with selected socio-economic

parameters. The model evaluates to what extent observed

past losses are related to population exposure and vulnerabil-

ity. Results reveal that human vulnerability is mostly linked

with country development level and environmental quality. A

classification of countries is provided, as well as recommen-

dations on data improvement for future use of the model.

1 Introduction

According to available global statistics, least developed

countries represent 11% of the population exposed to haz-

ards but account for 53% of casualties (Peduzzi et al., 2002).

On the other hand, the most developed countries represent

15% of human exposure to hazards, but account only for

1.8% of all victims. Obviously, similar exposures with con-

trasting levels of development lead to drastically different

tolls of casualties. These are general figures, however, in

order to better understand what development parameters are
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associated with risk, each exposure to specific hazard types

should be analysed separately.

This paper presents the methodology and the results of the

Disaster Risk Index (DRI), the central component of the re-

port “Reducing Disaster Risk” by the United Nations De-

velopment Programme (UNDP/BCPR, 2004). The mandate

from UNDP was to analyse potential links between vulner-

ability to natural hazards and levels of development. The

DRI is the first model providing a statistical evidence of such

links at the global scale. By setting reference risk values for

the period 1980–2000, this model will be the basis for com-

parisons with subsequent calculations of the DRI in the 21st

century.

Since the publication of this report, several other global

and regional efforts have been published. The World

Bank/University of Columbia published a report (Dilley et

al., 2005) including numerous hazard- exposure- and risk

maps, also using similar datasets. This study placed more

emphasis on the effect of multiple hazards exposure. Above-

mentioned studies did not try to model and address vulnera-

bility by grouping past losses per exposed by countries and

territories (thereafter referred to as countries+) of similar lev-

els of economic development. At the other extreme, a report

also published by the Inter-American Development Bank

(Cardona, 2005) in 2005 proposed different sets of complex

indicators, e.g. they compared the likely economic loss at-

tributed to a major disaster in a given time period with the

economic coping capacity of the country, resulting in an in-

dicator known as the Disaster Deficit Index (DDI). The DDI

can therefore be considered as an indicator of a country’s

economic vulnerability to disaster. Unfortunately, at present

the indicator has only been applied in Latin America and the

Caribbean, and therefore it is impossible to identify global

trends. There is a need for a global index for comparing

countries, including an identification of human vulnerability,
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which can be used by aid organisations and governments.

Our first version of the DRI was published as on-going work

(UNDP/BCPR, 2004), it included several gaps and recom-

mendations that we try to address in this present paper.

There are different challenges when comparing risk levels

for different countries, e.g. how to compare large countries

with small ones, or how to compare countries affected by

earthquakes and those affected by droughts? Because of the

specific nature of each hazard type (rapidity of onset, spa-

tial extent and destruction potential), exposures to different

hazard types cannot be compared. Being affected by drought

differs drastically from being exposed to earthquakes. In the

first case, infrastructures generally do not suffer, the impact

is slow and gradual, but the duration is long, while the inverse

is true for earthquakes. Complexity is higher than considered

here as primary hazards often unfold into different secondary

hazards (e.g. tropical cyclones triggers storm surges lead-

ing to coastal flooding, tempestuous rains and winds leading

to landslides). However, this is a level of simplification that

has to be accepted once dealing with global risk assessments.

To overcome part of the difficulties associated with different

types of exposures, the model is based on hazard-specific risk

models (cyclones, droughts, earthquakes and floods), which

are further combined in a multiple DRI allowing a classifica-

tion of countries+.

The model is built on both available and newly created

global datasets. Exposure, vulnerability and risk have been

estimated by means of statistical and Geographical Informa-

tion Systems (GIS) methodologies which are presented in

this article.

1.1 Defining and measuring risk

In this research, the term risk follows the definition by the

Office of the United Nations Disaster Relief Co-ordinator

(UNDRO) and “refers to the expected losses from a particu-

lar hazard to a specified element at risk in a particular future

time period. Loss may be estimated in terms of human lives,

or buildings destroyed or in financial terms” (Cardona, 2005;

Burton, 1978).

There are different sorts of losses from natural hazards:

human, economic, cultural, etc. However, this study concen-

trates on life losses for two main reasons. First, the number

of killed people is the most reliable and least subjective fig-

ure that can be found in the Emergency Disasters Data Base

(EM-DAT, Centre for Research on the Epidemiology of Dis-

asters, http://www.em-dat.net/), the only publicly available

global database on human impacts from hazardous events.

By comparison, the definition and estimation of other vari-

ables like “homeless”, “affected” and “total affected” are

not reliable and depend largely on gross evaluations. An-

other reason was the difficulty of using economic data since

EM-DAT only records events with estimated losses above

100 000 US$, ignoring many smaller events affecting de-

veloping countries. Yet, the socio-economic impacts of a

100 000 US$ loss is not the same when considering coun-

tries like USA and Bangladesh, thus inducing a statistical

bias since most of the records including economical losses

concern developed countries. It is to be noted that EM-DAT

includes only medium to large-scale disaster events. Thus,

disasters with less than 10 killed are not included.

However, considering the number of killed people does

not solve the problem of comparison between countries+.

If the raw number of killed is taken, more populated coun-

tries+ will always be on the top of the list (e.g. China, India),

whereas several countries+ having in total an equivalent pop-

ulation would not be well represented. If the percentage of

population killed is used, then the reverse problem appears:

small islands and less populated countries+ will always be

ranked first and the equity of one person killed is no longer

ensured. In order to enable relevant comparisons between

hazards and countries+, a risk indicator was computed com-

bining both the total number and the percentage of killed peo-

ple (Dao and Peduzzi, 2003).

1.2 Choice of hazard types and time period

The study focussed on droughts, earthquakes, tropical cy-

clones and floods, the four hazards accounting for 94% of

casualties reported for the period 1980–2006 in the EM-DAT

database. The period 1980–2006 was chosen for its homoge-

nous level of information quality and completeness.

For identifying the period for which the access to infor-

mation is comparable worldwide, a ratio between physically

recorded earthquakes (magnitude > 5.5) on land and reported

earthquakes in EM-DAT was used. The choice of earth-

quakes as a benchmark was made because this hazard is not

suspected of being influenced by climate patterns. The ra-

tio of reported versus physically recorded events is rather

low until 1979 (average of 11%) and suddenly increases in

1979 (average of 26%) and then remains steady around this

value. From the previous observation, a time span of twenty-

one years was chosen (1980–2000), completed by a period

used for comparison (2001–2006). For hydro-meteorological

hazards, the same time span was chosen; however, for tec-

tonic events, frequencies were computed over a longer period

(1965–2006).

An even longer time period would have been relevant for

hazards like earthquakes, but reports on casualties were prob-

ably not as homogenous before the 1980’s and the problem

of finding the corresponding vulnerability variables would

have arisen. Given the significance of the four major hazards,

modelling others would not have had a significant effect on

the final classification of countries+, except for few specific

countries+ affected mostly by tsunamis, landslides, volcanic

eruptions or extreme temperatures (e.g. Equator, Papua New

Guinea). The EM-Dat dataset was split into two parts: 1980–

2000 was used for the calibration of vulnerability to produce

a model. The records 2001–2006 were used for comparison

with recent events.
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2 Modelling risk

By UN definition (Cardona, 2005), the risk of losses is a

function of three components: hazard, element at risk and

vulnerability. In the case of risk of human losses, the ele-

ment at risk is the exposed population. The hazard occur-

rence refers to the frequency of returning period at a given

magnitude, whereas the vulnerability is “the degree of loss

to each element should a hazard of a given severity occur”

(Blaikie et al., 1994).

A hypothesis was made that risk follows a multiplicative

formula as described in the simplified Eq. (1).

R = Hf r Pop Vul (1)

where:

R = number of expected human impacts [killed/year].

Hf r = frequency of a given hazard [event/year].

Pop = population living in a given exposed area [exposed

population/event].

Vul = vulnerability depending on socio-politico-economical

context of this population [non-dimensional number between

0–1].

According to this formula, if there is no hazard, then the

risk is null (the same if population or vulnerability is null).

2.1 Identifying physical exposure

The combination of both yearly average frequency of hazards

and exposed populations provides the physical exposure and

can be computed, depending on cases, using Eqs. (2) or (3).

PhExp =

n∑

i

F Popi (2)

where:

PhExp = yearly average physical exposure for the spatial unit

[exposed population/year].

F annual frequency of a given magnitude event [event/year].

Popi = total population living in the spatial unit for each event

“i” [exposed population/event].

n = number of events considered

PhExp =
∑ Popi

Yn

(3)

where:

PhExp = yearly average physical exposure for the spatial

unit [exposed population/year].

Popi = population living in affected area for each event “i”

[exposed population/event].

Yn = length of time [year].

The frequency and geographical extent of each hazard

were modelled and further used for extracting the exposed

population (Fig. 1). Equation (1) for risk was then trans-

formed into Eq. (4) for computing the physical exposure:

R = PhExp Vul (4)

2.2 Approaching human vulnerability

2.2.1 The use of indicators

The last component, vulnerability, is less easily ap-

prehended. It is a concept to be quantified using

indicators. A selection of 32 socio-economical and

environmental variables (Supplementary material A:

http://www.nat-hazards-earth-syst-sci.net/9/1149/2009/

nhess-9-1149-2009-supplement.pdf) was introduced in a

database for further statistical analysis.

A correlation study (matrix-plot and correlation-matrix)

was performed to ensure that the variables were indepen-

dent before applying the regression analysis. This was for

instance not the case for the highly correlated Human Devel-

opment Index (HDI) and Gross Domestic Product per capita

(at Purchasing Power Parity). In order to keep a valid sam-

ple size, a preference was given to variables with the lowest

number of missing values.

2.2.2 Parametric model used

A generalisation of the multiplicative approach (Eq. 4) was

defined with the following parametric model (Eq. 5):

K = C (PhExp)α V
α1
1 V

α2
2 . . . V

αp
p (5)

where:

K = number of persons killed by a certain type of hazard.

C = multiplicative constant.

PhExp = physical exposure : population living in exposed ar-

eas multiplied by the frequency of occurrence of the hazard.

Vi = socio-economical variables.

αi = exponent of V i, which can be negative (for ratio).

Taking the logarithms in Eq. (5) gives Eq. (6):

ln(K) = ln(C)+α ln(PhExp)+α1 ln(V1)+α2 ln(V2)

+ . . . + αp ln(Vp)
(6)

Significant socio-economical variables Vi (transformed

when appropriate, see below) and exponents αi were deter-

mined by means of linear regressions that were carried out

for each hazard. The variable K to be estimated was the

number of killed people as reported by EM-DAT.

2.2.3 Transformation of variables

Since socio-economical indicators fluctuate across time, a

weighted average was computed for each variable:

V ′=(V1980K1980V1981K1981+ . . . +V2000K2000)/Ktot (7)

where:

V ′ = weighted average of a given variable.

Vi = value of the variable for the year i.

Ki = number of recorded casualties for the year i.

Ktot = total number of recorded casualties for all years.
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Fig. 1. Example of physical exposure extraction (tropical cyclones). Once the spatial extents of individual cyclones are modelled, each cell is

used to count the average cyclone frequency over the available period. The average frequency is then multiplied by the population identified

in each cell (population distribution) in order to obtain the physical exposure. This cell-by-cell physical exposure is further aggregated

(summed) at national level.

The result of Eq. (7) is an averaged value that is obtained

from yearly values weighted according to the number of ca-

sualties in each year. For example, this process avoids taking

the Gross Domestic Product of a selected year if the bulk of

the victims occurred 10 years before or after (see example in

Table 1).

Since the population is also changing through time, this

affects the computation of the physical exposure (PhExp).

The same formula was applied to the physical exposure.

For the variables with unlimited positive values (e.g. popu-

lation) the logarithms were computed directly, but for others

expressed in percent, a logistic transformation was applied,

V ∗=V ′/(1−V ′), so that their logarithms range between −∞

and +∞. This appeared to be relevant as some of the trans-

formed variables proved to be significant in the final results.

For others, no logarithm was needed: for instance the urban

growth Ug already behaves in a cumulative way.

3 Calibration of the risk model hazard per hazard

In the regression analysis, physical exposure (PhExp) was

considered as an explanatory variable and proved to be statis-

tically significant in all cases detailed below, thus validating

the methodology developed for obtaining PhExp.

3.1 Tropical cyclones

Exposed populations to each cyclone were estimated by com-

puting buffers along the cyclone track, where windspeed is

greater than a certain threshold [42.5 m/s]. These buffers

had to be generated for the study by modifying a wind pro-

file model initially developed by Greg Holland (Holland,

1980). The modification adds the movement of cyclone’s

centre, leading to asymmetric buffers (Mouton et al., 2002).

A global dataset was produced using tracks of tropical cy-

clones available on the internet from different meteorological

centres. Information on latitude/longitude, date, hour, wind-

speed and central pressure are usually included, although

each centre has its own way and units for measuring cyclone

characteristics. The PreView Global Cyclones Asymmetric

Windspeed Profile dataset developed for this study provides

Table 1. Cyclone casualties and HDI in El Salvador (1980–2000).

Year K V (HDI) V∗K

1988 28 0.781 21.879

1996 3 0.810 2.429

1996 51 0.810 41.300

1998 8 0.815 6.523

Total 90 72.132

V = 72.132/90 = 0.801

users with a standardised version, with units converted into

the metric system. Using the areas derived from the asym-

metric windspeed profiles, it was possible to extract the phys-

ical exposure using Eq. (3).

The variables highlighted by the statistical analysis are Ph-

Exp, the GDPcap and the percentage of country+ area ded-

icated to cropland. According to the analysis, the number

of killed people is growing with PhExp and decreasing with

the GDPcap. The percentage of cropland can also be under-

stood as a proxy of the type of population/habitat, i.e. rural,

scarcely distributed population being more vulnerable than

urban population. This statistical result is in line with what

was expected by consulted experts (IWTC-V, 2002). After

a tropical cyclone, an economy relying on the tertiary sec-

tor is less affected than one relying on agriculture, the fields

having been devastated. These results confirm that poor pop-

ulations are more vulnerable to tropical cyclones. With a

considerable part of variance explained by the regression

(R2=0.81), a high degree of confidence in the selected vari-

ables (p-values < 0.05) over a sample of 34 countries+ and

a residual analysis showing no particularity or abnormality,

the model achieved is robust. Notice that although the con-

sequences of hurricane Mitch (in 1998) could easily be de-

picted, Honduras and Nicaragua were far off the regression

line (significantly underestimated) and were not used for the

model. This is explained by the incredible difference of in-

tensity between Mitch and other hurricanes. Cuba’s success
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in risk reduction (i.e. by evacuating population exposed to a

coming cyclone) is confirmed by the analysis: observed ca-

sualties are so much lower than the expected values, that this

country was identified as an outlier. The partial correlation

analysis highlights that the physical exposure explains the

major part of the casualties, followed by GDPcap and then

percentage of country dedicated to cropland.

The plot of observed versus expected values delineates a

linear distribution as seen in Fig. 2. The model is the follow-

ing (see Table 2):

ln(K) = 0.621 ln(PhExpCy) − 0.534 ln(GDPcap)

+0.347 ln(CROPpca) − 0.487
(8)

where:

K = number of estimated killed.

PhExp = physical exposure to tropical cyclones.

GDPcap = transformed value GDP purchasing power parity

per capita.

CROPpca = transformed value of the percentage of the coun-

try dedicated to Crop land.

3.2 Droughts

Drought is a complex process to model as it is not clear when

a drought starts both in spatial and temporal terms. The same

deficit in precipitation may not induce similar impacts de-

pending on types of soil, vegetation and agriculture as well as

on differences in irrigation infrastructures. Moreover, casu-

alties are not directly induced by physical drought but rather

by food insecurity which is not purely a natural hazard as it

includes human induced causes (such as conflicts, poor gov-

ernance, etc.). However, a global approach on risk to human

development would not be achieved without drought, as most

of Africa is affected mainly by food insecurity.

A first attempt to identify physical drought was devel-

oped by Brad Lyon and his team (Dilley et al., 2005) from

the International Research Institute for Climate Prediction

(IRI), who produced several methods with different thresh-

olds on duration (3 and 6 months) and shortage of precipi-

tation (50%, 25% and 10%) at 2.5◦ resolution. For this re-

search, their method was re-applied to a 0.5◦ resolution raster

dataset from the Climatic Research Unit (University of East

Anglia, Norwich). This proved to significantly improve re-

sults as compared to the original IRI data at 2.5◦ resolution.

Secondly, physical exposure was computed on a cell-by-cell

basis using Eq. (2) and was further aggregated at the national

level. During this research, a calibration using reported casu-

alties identified the best global match with the thresholds set

at 50% of precipitation shortage during a period of 3 months.

The indicators identified by the statistical analysis are Ph-

Exp, GDPcap and the percentage of arable land. This latter

variable was computed in order to take into account the per-

centage of arable land excluding deserts.

3.2.1 Computing the percentage of arable land

(for droughts)

The original figure for percentage of arable land came from

the FAO database. It was modified in order to take into ac-

count the percentage of arable land excluding deserts.

mAL pc =
ALA

(TA − DA)
(9)

where:

mAL pc = modified percentage of arable land.

ALA = arable land area (in km2).

TA = total area (in km2).

DA = desert area (in km2).

The desert areas were identified using the Global Land

Cover 2000 dataset. This is to avoid the case of countries+

largely covered by deserts where populations are concen-

trated on a small portion of the territory.

According to the analysis, the number of killed people

from physical drought grows with PhExp, decreases as the

GDPcap grows and decreases if the percentage of arable

land grows. The interesting point is that, as opposed to the

other hazards, the main contribution to casualties is poverty

(low GDP) followed by physical exposure and percentage of

arable land.

A country with a large portion of arable land is less likely

to be totally affected by a drought and might still be able to

provide enough food for its inhabitants.

Again, the part of variance explained by the regression

(R2 = 0.70) is important and p-values are smaller than 0.05.

The plot can be seen on Fig. 2. The residual analysis shows

no abnormality or particular structure (see Table 3), which

validates the regression:

ln(K) = 1.373 ln(PhExpDr) − 1.322 ln(mAL pc)

−4.535 ln(GDPcap) + 10.536
(10)

where:

K = number of estimated killed.

PhExpDr = physical exposure to drought.

GDPcap = GDP purchasing power parity per capita.

mAL pc = modified percentage of arable land.

It is worth noticing that Sudan and Swaziland were re-

jected by the model. The food shortage in Sudan is more

likely due to conflict rather than climatic conditions. The

case of Swaziland is a problem of country size. The raster

layer at 0.5◦ resolution was not precise enough to provide an

accurate model for this country.

3.3 Earthquakes

Earthquakes affecting seismic hazard zones were modelled

using the seismic catalogue of the CNSS (Council of the

National Seismic System). Hypocentres records of the last

40 years (1965–2004) with magnitude equal to, or higher

www.nat-hazards-earth-syst-sci.net/9/1149/2009/ Nat. Hazards Earth Syst. Sci., 9, 1149–1159, 2009
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Fig. 2. Regressions between observed and modelled casualties (log/log scale). Observed casualties are the number of people killed per year

during the period 1980–2000, according to the EM-DAT database (CRED). Modelled casualties are derived from the statistical model based

on socio-economical indicators of vulnerability and physical exposures for each hazard.

Table 2. Model for tropical cyclones.

Variables Coefficients St. Err. t Stat P-value

Intercept −0.487 1.897 −0.257 0.799278

GDPcap −0.534 0.197 −2.719 0.010767

CropPC 0.347 0.152 2.283 0.029714

PhExp 0.621 0.067 9.301 0.000000

than, 5.5 on the Richter scale were used to generate circu-

lar buffers of Modified Mercalli Intensity (IMM). The radius

of each buffer was based on intensity derived from depth of

hypocentre and magnitude based on Kawasumi Eqs. (16).

Table 3. Model for drought.

Variables Coefficients St. Err. t Stat P-value

Intercept 10.536 6.637 1.588 0.138375

GDPcap −4.535 1.087 −4.172 0.001294

PhExp 1.373 0.408 3.365 0.005620

mAL pc −1.322 0.478 −2.764 0.017148

3.3.1 Kawasumi equation (earthquakes)

IJMA=−0.3+2M−4.6 log(d)−0.0018d when d<100 km

IJMA=−4.0+2M−2.0 log(X)−0.0167X when d>100 km

where:

IJMA = intensity of Japan Meteorological Agency.

M = magnitude.

d = distance from epicentre (km).

X = distance from hypocentre (km).
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For each buffer, the whole range of intensity (1–12) was

taken into account. This is a general approach that does not

take into account any regional effects, for instance soil condi-

tions or geotectonic characteristics (JSSMFE, 1993). Phys-

ical exposure to earthquakes was then calculated and aggre-

gated at country levels.

Physical exposure to earthquakes was then calculated and

aggregated at country levels using Eq. (3). The variables re-

tained by the regression are PhExp, Ug (rate of urban growth)

and percentage of forest cover.

A high exposure and a high urban population growth be-

ing positively correlated to high risk of casualties, whereas a

high forest coverage was correlated with less risk of casual-

ties. This can be interpreted as high rates of population influx

to cities as a synonymous of low quality urban planning and

building standards. Or newcomers are living in areas previ-

ously empty because of the risk from earthquakes (unstable

land, slopes, etc.). The percentage of forest, although with a

low significance in the model, can be understood as the con-

sequence of deforestation on slopes, thus leading to higher

risk of landslides in earthquake prone areas.

The model is the following (see details in Table 4):

ln(K) = 1.097 ln(PhExp40Eq.)+25.696 Ug

−0.425 ln(WoodPC)−17.344
(11)

where:

K = number of estimated killed.

PhExp40 = average population exposed to earthquakes

(1964–2004).

Ug = percentage of urban growth (computed using a three-

year moving average).

WoodPC = percentage of country forest coverage.

The part of explained variance is smaller than for droughts

or cyclones (R2=0.74); however, considering the small

length of time taken into account (36 years as compared to

earthquakes long return period), the analysis delineates a rea-

sonably good relation. Physical exposure is as relevant as in

previous cases.

3.4 Floods

Although floods can be modelled using GIS, they request

highly detailed data and complex procedures. For this study,

a more generalised model was achieved by using the “com-

ments” information in the EM-DAT database (Burton et

al., 1978). The locations found in EM-DAT were used to

select the watersheds in the HYDRO1k Elevation Deriva-

tive Database (US Geological Survey, http://edc.usgs.gov/

products/elevation/gtopo30/hydro/) as approximations of the

flooded areas as explained in previous study (Burton et al.,

1978). This constitutes a global flood dataset taking into ac-

count 21 years covering 82.2% of the events (the one that had

the necessary information) and 85.4% of the victims. Once

the watersheds were identified, a computation of physical ex-

posure was performed using the Eq. (3).

Table 4. Model for earthquakes.

Variables Coefficients St. Err. t Stat P-value

Intercept −17.344 1.934 −8.970 0.000000

WoodPC −0.425 0.135 −3.141 0.002856

Ug 25.696 4.342 5.918 0.000000

PhExp 1.097 0.126 8.714 0.000000

The variables identified by the statistical analysis are Ph-

Exp and GDPcap. Once again, GDPcap being highly corre-

lated with HDI, this latter could have been chosen as well.

The GDPcap was chosen due to a slightly better correlation

between the model and observed casualties, and also due

to lower p-values. Not surprisingly, the regression proves

that highly exposed and poorer populations are more sub-

ject to suffer casualties from floods. The part of explained

variance (R2=0.73) associated with significant p-value on

90 countries+, as well as correct residual analysis, confirma

solid confidence in the selection of the variables.

The model is the following (see details in Table 5):

ln(K)=0.905 ln(PhExpF l)−0.697 ln(GDPcap)4.799 (12)

where:

K = number of estimated killed.

GDPcap = normalised Gross Domestic Product per capita

(purchasing power parity).

PhExpFl = average number of persons living in watersheds

affected by floods.

4 Multiple risk and categories

Multiple risk figures were computed by summing up mod-

elled human losses from droughts, earthquakes, floods and

tropical windstorms. For 16 out of 38 countries+ with miss-

ing data (i.e. either socio-economic parameters or expo-

sure data), an estimated risk value of 0 was assigned be-

cause the exposure was considered to be negligible (less than

1000 people or 2% of the total population of the country ex-

posed).

The DRI was computed for each country by taking into

account both the absolute (killed per year) and the relative

multiple risk figures (killed per year as percentage of the to-

tal country population). First of all, the log value of the two

variables were normalised into 0–1 scales using the follow-

ing thresholds : 0.5–500 killed per year and 0.1–10 killed per

million per year (Fig. 3).

Then, the two normalised absolute and relative variables

were averaged and classified using an equal-interval classifi-

cation scheme (see Table 6), which was also applied to the

observed data from EM-DAT for further comparison.
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Fig. 3. Two dimensional classification in categories of risk.

5 Discussion

5.1 Identifying human vulnerability

Although a significant database was generated on vulnera-

bility parameters (32 indicators) only five of them were fi-

nally retained by the multiple regression analysis (i.e. GDP

purchasing power parity per capita, modified percentage of

arable land, percentage of urban growth, percentage of coun-

try forest coverage, transformed value of the percentage of

the country dedicated to Crop land). The selection was made

by statistical tests (hence without subjectivity). Poverty (low

GDPcap) is the most selected indicator, many other indica-

tors are strongly correlated with poverty (such as Human

Development Index (HDI), Urban Growth, number of physi-

cians per inhabitants, etc.). Given that we cannot place two

indicators that are strongly correlated in the same model, the

selected indicators are those that provided the best R2, the

smallest p-value and also the best countries+ and time cover-

age. However, GDPcap can most often be replaced by HDI

or other correlated indicators, also with less precision in the

model or with less countries+ covered).

5.2 Geographical distribution

The DRI could be computed for 215 countries+ (86% of

the 249 countries+, representing 96% of the world popula-

tion and 79% of the killed from EM-DAT). The main coun-

tries+ not included in the multiple model were: North Korea,

Afghanistan, Somalia, Taiwan, Puerto Rico (missing socio-

Table 5. Model for floods.

Variables Coefficients St. Err. t Stat P-value

Intercpt −4.799 1.055 −4.551 0.000015

GDPcap −0.697 0.102 −6.812 0.000000

PhExp 0.905 0.057 15.824 0.000000

Table 6. DRI classes.

DRI value DRI class

− ∝ 0 (no killed)

]− ∝, 0] 1

]0.0, 0.2] 2

]0.2, 0.4] 3

]0.4, 0.6] 4

]0.6, 0.8] 5

]0.8, 1.0] 6

>1.0 7

economic data), Swaziland, Tanzania (bad exposure data).

These seven countries+ account for 99.7% of the missing

killed from EM-DAT that could not be modelled. Other miss-

ing countries+ include several small island territories (see Ta-

ble 7).

Without much surprise the top countries at risk in

terms of killed per year are the most populated countries

(China, India, Indonesia, Bangladesh), whereas small islands

states (Vanuatu, Dominica, Mauritius, Antigua and Barbuda,

St Kitts and Nevis, Solomon Islands, Grenada, etc.) come

first in terms of killed per million inhabitants per year. Once

the two indicators are combined to obtain the DRI, six of the

top 10 countries are in Africa, the other countries+ being lo-

cated in Asia. Islands states rank high in the DRI (Fig. 4).

Some countries could not be modelled due to lack of data

(see Table 7). All the DRI values are provided in Supplemen-

tary material B: http://www.nat-hazards-earth-syst-sci.net/9/

1149/2009/nhess-9-1149-2009-supplement.pdf.

For nine countries (in bold in Fig. 5) the weights have little

influence on the DRI since they are ranked high (in the top

25 countries+) in both indicators.

5.3 Unexpected DRI values

Although more than 90% of the modelled classes have a dif-

ference of less than classes (50% with no difference, 30%

with a difference of one class, and 9.3% with a difference

of 2). There are some unexpected values. When comparing

DRI classes based on the models with those derived from ob-

served data (EM-DAT), 9 countries show a difference greater

than 3 classes (see Table 8). This does not necessarily reflect

limits of the models. Underestimated values rather highlight

Nat. Hazards Earth Syst. Sci., 9, 1149–1159, 2009 www.nat-hazards-earth-syst-sci.net/9/1149/2009/
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Fig. 4. Spatial distribution of DRI classes.

Table 7. List of countries+ that could not be modelled due to lack

of data.

independent Micronesia, Tonga

states

territories American Samoa, Anguilla, Bermuda,

British Virgin Islands, Cook Islands,

Guadeloupe, Guam, Martinique, Montserrat,

Netherlands Antilles, Niue, Puerto Rico,

Reunion, Turks and Caicos Islands, United

States, Virgin Islands, Wallis and Futuna

countries affected by extraordinary events (such as cyclone

Mitch in 1998, earthquake in Armenia in 1988, floods in

Venezuela in 1999). Overestimated values concern countries

that are either drought prone areas or cyclone prone islands:

in these cases, there were problems when computing phys-

ical exposure and/or in the classification of the victims in

EM-DAT (e.g. the dubious value of 0 reported killed from

droughts in Mali). Spatial comparisons between modelled

and observed values can be seen in Fig. 6.

5.4 Comparison of the model with 2001–2006 observed

casualties

The DRI cannot be used for estimating future number of ca-

sualties, e.g. it underestimated Pakistan (2005 earthquake)

and Iran (Bam, 2003) or Haiti (hurricane Jeanne, 2004).

However, these three countries were correctly classified

(based on 1980–2000 data) as countries facing very high

risk (class 6). The comparison of modelled and observed

Fig. 5. Top 25 countries+ according to DRI (in bold: countries+

with both indicators in the top 25).

categories of risk shows that 71% of the countries have

1 class or less difference. Six countries show a differ-

ence of 4 classes: Morocco (underestimated, earthquakes in

2004), Congo, Papua New Guinea, Mali (overestimated for

drought), Mauritius, Laos (overestimated for cyclones).

www.nat-hazards-earth-syst-sci.net/9/1149/2009/ Nat. Hazards Earth Syst. Sci., 9, 1149–1159, 2009
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Fig. 6. Maps of differences between DRI modelled and DRI observed.

Table 8. Major class differences between observed data and model.

Country DRI DRI Diffe- Main

(model) (with rence cause of

CRED under/over-

(model) data) estimation

U
n

d
er

es
ti

m
at

io
n

Armenia 2 7 −5 Earthquakes

Chad 4 7 −3 Droughts

Mauritania 4 7 −3 Droughts

Venezuela 4 7 −3 Floods

Sudan 4 7 −3 Droughts

Italy 3 6 −3 Earthquakes

Morocco 2 5 −3 Floods

Georgia 2 5 −3 Earthquakes

O
v
er

es
ti

m
at

io
n

Mali 6 2 +4 Droughts

Mauritius 6 2 +4 Cyclones

Eritrea 4 0 +4 Droughts

Senegal 4 0 +4 Floods

Grenada 5 0 +5 Cyclones

Zambia 5 0 +5 Droughts

Barbados 5 0 +5 Cyclones

Congo 7 1 +6 Droughts

6 Conclusion: a flexible classification system to use

with care

The DRI takes into account both an absolute and a rela-

tive risk indicator, allowing to consider populated and small

countries+ in different manners. The somewhat arbitrary

choice was to place a similar weight on killed per year and

killed per inhabitant; any other combination would be pos-

sible according to the users’ choice since the two indicators

are provided along with the DRI.

For other countries+, the flexibility of the DRI classifica-

tion system allows the users to specify whether more weight

should be given to killed per year or to killed per inhabi-

tant. Typically, the users interested in Small Island Develop-

ing States (SIDS) will obviously choose the second solution.

This model also remains open to adding future components

to the DRI, such as the economic losses once the input data

are improved.

Correlations between modelled and observed risks for

each hazard type were surprisingly high and relevant, given

the heterogeneity of the data sources and the coarse resolu-

tion of the data at the global scale. They successfully demon-

strate a correlation between high levels of development and

low numbers of casualties from these four types of hazards.

This correlation can be understood both ways: low develop-

ment may lead to high casualties, and high disaster occur-

rence may also lead to low economic development as it de-

stroys infrastructure and crops as well as deterring investors.

As EM-DAT does not include small-scale disasters, the

models calibrated on past events cannot address these kinds

of events, which are more frequent and may cumulate, to be

of concern for the developing process in poor countries. Fur-

ther studies might be carried out on more detailed databases

(e.g. based on DesInventar) to identify patterns of small dis-

aster hazards.

There is a gap between the resolution of the hazard and

exposure (5×5 km cells) and the vulnerability parameters

(country level). Some indicators are now being generated

at sub-national level, but so far only for a limited number of

countries+ and indicators. Given that the DRI is provided at

a national level, this is less of an issue. However, in large

countries+ with significant discrepancies, (e.g. China, India)

more disaggregated figures should be used in the future.

Even though the model was designed for understanding

past casualties (1980–2000), by using modelled losses based

on 2005 physical exposure and vulnerability parameters (as

opposed to recorded losses), the DRI offers a picture of risks

(due to natural hazards) at a specific time. This provides a

risk level that is comparable; it doesn’t depend on quality of

country reporting and demographic changes are taken into

Nat. Hazards Earth Syst. Sci., 9, 1149–1159, 2009 www.nat-hazards-earth-syst-sci.net/9/1149/2009/
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account. However, this model should not be used in a predic-

tive way to estimate potential casualties that are usually also

highly dependent on proximal parameters such as the time of

the day (working hours, people asleep, etc.). The DRI does

not differentiate risk from rare severe events and equivalent

risk resulting from less severe, yet more frequent events. To

overcome this issue, future modifications to the model should

focus on less aggregated analyses and use event-based anal-

ysis to include hazard severity. Additionally, models should

be made at sub-national levels with much higher resolution

data, leading to danger maps for planning prevention and re-

lief. In some cases, early warning systems and prevention

measures can be implemented, while in others, the country

is affected too frequently for coping with the new event : the

high recurrence makes each new event worse than the previ-

ous ones, leading to what is called the ratchet effect.

The DRI is being used by UNDP\BCPR to identify coun-

tries+ in highest need for prevention and development. This

study sets the basis of risk status for the period 1980–2000.

Risk (from natural hazards) is likely to increase in the com-

ing decades, since higher exposure to hazardous events will

occur following population increases. However, exposure

is not the only risk component that is likely to increase:

depletion of natural resources and increasing gaps between

rich and poor populations, political unrest and AIDS will

probably have an impact on human vulnerability. Hydro-

meteorological hazard frequencies and magnitudes might

also change in the near future due to climate change and/or

environmental degradation. To better understand where risk

might increase in the future and to prepare for these future

risk patterns, further refined analysis should be carried out

on the three risk components. DRI can be used to prioritize

where such detailed studies should be carried out and where

improvements on data collection are needed; this is, however,

not a final goal per se. Rather, final results will be achieved

when proper risk reduction measures are implemented lead-

ing to an observed decrease in casualties.

Hazard and exposure data

Hazard and exposure data created for this study can

be freely accessed at: http://www.grid.unep.ch/activities/

earlywarning/preview/data/.

They can be visualised using the PREVIEW – Global

Risk Data Platform: http://preview.grid.unep.ch/.

Edited by: T. Glade

Reviewed by: two anonymous referees
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