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Abstract - The purpose of this study is to quantify the flow and transport model uncertainty for the Central Nevada Test 
Area (CNTA).  Six parameters were identified as uncertain, including the specified head boundary conditions used in the flow 
model, the spatial distribution of the underlying welded tuff unit, effective porosity, sorption coefficients, matrix diffusion 
coefficient, and the geochemical release function, which describes nuclear glass dissolution.  The parameter uncertainty was 
described by assigning prior statistical distributions for each of these parameters.  Standard Monte Carlo techniques were 
used to sample from the parameter distributions to determine the full prediction uncertainty.  Additional analysis is 
performed to determine the most cost-beneficial characterization activities. The maximum radius of the tritium and 
strontium-90 contaminant boundary was used as the output metric for evaluation of prediction uncertainty.  The results 
indicate that combining all of the uncertainty in the parameters listed above propagates to a prediction uncertainty in the 
maximum radius of the contaminant boundary of 234 to 308 m and 234 to 302 m, for tritium and strontium-90, respectively.  
Although the uncertainty in the input parameters is large, the prediction uncertainty in the contaminant boundary is 
relatively small.  The relatively small prediction uncertainty is primarily due to the small transport velocities such that large 
changes in the uncertain input parameters cause small changes in the contaminant boundary.  This suggests that the model is 
suitable in terms of predictive capability for the contaminant boundary delineation. 
 
 

I. INTRODUCTION 

The Central Nevada Test Area (CNTA) is located 
about 95 km northeast of Tonopah and 175 km southwest 
of Ely, Nevada (Figure 1).1 The only underground nuclear 
test conducted at CNTA was Faultless. The Faultless test 
consisted of a 200- to 1,000-kt-yield nuclear detonation, 
which occurred on January 19, 1968.2 Faultless was 
designed to study the behavior of seismic waves 
generated by a nuclear test in Hot Creek Valley and 
evaluate the usefulness of the site for higher-yield tests. 

The Desert Research Institute (DRI) has been tasked 
by the U.S. Department of Energy (DOE) to characterize 
the subsurface hydrogeologic environment and to 
construct a groundwater flow and transport model. The 
purpose of the model is to formalize the conceptual model 
of the flow and transport system, predict future migration 
of test-related solutes, and quantify the uncertainty in the 
model predictions.  

A groundwater flow and transport model was used to 
determine the potential radionuclide transport due to the 
Faultless nuclear detonation.3 A certain degree of 
uncertainty exists in the ability of this model to predict 

solute migration. This output uncertainty is due to 
uncertainty in the conceptual model, input parameters and 
the ability of the mathematical model to effectively 
simulate real-world conditions. A data decision analysis 
(DDA) uses the groundwater model in conjunction with 
known input parameter uncertainties to determine the 
overall prediction uncertainty. Potential characterization 
activities are assessed based on each activity’s ability to 
reduce prediction uncertainty at a reasonable cost.  The 
prediction uncertainty is then assessed to determine if the 
predictive capability of the model is acceptable. If the 
model is deemed acceptable, then contaminant boundary 
predictions are made, and if not, potential characterization 
activities are assessed in terms of their ability to reduce 
model uncertainty through a cost-benefit analysis. 

II. METHODOLOGY 

Uncertain Parameters 

The first step required in the DDA is to identify the 
uncertain model parameters. These parameters were 
identified based on the sensitivity analysis performed 
during the modeling phase.3 Of the many parameters 
required to construct the numerical model, six were 



 

 

identified as uncertain in terms of the model’s ability to 
predict solute migration. These parameters include: 

1. Specified head boundary conditions. 

2. The spatial distribution of the underlying welded 
tuff unit. 

3. Effective porosity. 

4. Sorption coefficients. 

5. Matrix diffusion coefficient.  

6. Geochemical release function (nuclear glass 
dissolution). 

There are other parameters that are uncertain, but 
these were found to be the most important in terms of 
predicting solute migration. It is also important to note 
that although hydraulic conductivity is not listed as an 
uncertain parameter, uncertainty in this parameter is 
included in the model through a stochastic treatment of a 
spatially heterogeneous distribution of hydraulic 
conductivity. 
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Figure 1.  Simplified view of the Railroad Valley region with regional groundwater flow directions. 
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Prior Distributions 

The first step in any type of uncertainty analysis is to 
assess the range of potential values that an individual 
parameter can take, and the associated probability 
associated with a given value. A common method of 
defining these ranges and associated probabilities is 
through the use of a probability distribution function 
(PDF). There are various analytic expressions that 
statisticians use to quantify a PDF, some of which include 
uniform, normal, and log-normal.  

A PDF that describes the current state of knowledge 
about an individual parameter is known as a prior 
distribution. A prior distribution represents the degree of 
belief about the parameter prior to collection of additional 
data. Parameter uncertainty is first described by a 
functional PDF (e.g., normal, log-normal, uniform, 
uniform log10) and then by its assumed mean and 
variance.  

All available data were used to assess the current 
state of uncertainty for each of the uncertain parameters. 
If site-specific data were not available, then literature 
values were used to specify a range of possible values. 

The type of distribution chosen to represent the 
uncertainty is based on how the assessment was 
undertaken. For example, if site-specific data were 
available, then a fitting program was used to determine 
the most appropriate distribution that represents the data. 
If data were not available, and literature values were used, 
then a uniform distribution was assumed. If the range 
spanned many orders of magnitude, then a uniform log10 
distribution was used to properly simulate the large range 
in uncertainty. In some cases, the form of the distribution 
was determined based on regression error analysis and/or 
spatial statistics, in which case the distribution form is 
determined directly from the analysis.  

 The uncertainty associated with the specified head 
boundary conditions was determined via an error analysis 
associated with the horizontal and vertical gradients.  The 
specified head boundary conditions applied along the 
northern, southern and lowermost boundaries were 
constant.  A linear regression was performed using the 
hydraulic heads at HTH-1, which is located near the 
center of the model domain, and for which vertical head 

gradients were available. Figure 2 shows the linear 
regression line and the associated 95 percent confidence 
intervals associated with the fit.  The error associated with 
the regression line is normally distributed with the mean 
equal to the regression line and the standard deviation 
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Figure 2.  Vertical hydraulic head measurements and associated prediction uncertainty. 



 

 

being defined by the regression error.  The regression line 
and its associated error were used to randomly sample for 
the hydraulic head at the top and bottom of the model 
domain at the northing position determined by HTH-1.   

 A similar process was performed to determine the 
uncertainty in the hydraulic head gradient at the top and 
bottom of the model domain, using data obtained at UCE-
20, HTH-1, and UCE-18.  The horizontal gradient was 
randomly sampled at the top and bottom of the model 
domain according to the regression analysis.  The gradient 
and the hydraulic head from the previous sampling (at the 
HTH-1 northing position) were used to extrapolate the 
head along the upper and lower boundaries.  The two 
vertical boundary heads were calculated via a simple 
linear interpolation.    

 The simulation of the three hydrogeologic categories 
were generated using a sequential indicator approach.4 
The previous groundwater flow and transport model was 
three-dimensional and this DDA used a two-dimensional  
model domain so three-dimensional fields were generated 
to preserve the spatial statistics, but only the center 
section (along the north-south direction) was used for the 
DDA model. The uncertainty in the location of the welded 
tuff is unique for each realization, except at nodes where 
conditioning data are available.  Realizations where the 
welded tuff is simulated as being near the test location 
have a much larger probability of fast transport as the 
mean hydraulic conductivity of the welded tuff is two- 
and three-orders of magnitude larger than the alluvium 
and tuffaceous sediments, respectively. Although 
hydraulic conductivity is not explicitly stated as an 

uncertain parameter, the simulation of geologic 
heterogeneity is being simulated, which translates into 
spatial variability in hydraulic conductivity as each 
hydrogeologic unit has a unique conductivity.  Therefore, 
for each Monte Carlo realization, a unique pattern of 
hydraulic conductivity is created. 

 The uncertainty in the effective porosity is determined 
through a combination of literature values and site-
specific data.  Total porosity estimates were determined 
for cores within the welded tuff, tuffaceous sediments and 
alluvium.  Although total porosity estimates determined 
within the laboratory measure only the void space within 
the pores, it was assumed that this was a good 
approximation of effective porosity for the alluvium and 
tuffaceous sediments.   Lognormal distributions were used 
to describe the uncertainty for these units.  A uniform 
log10 distribution was used to describe the effective 
porosity for the welded tuff unit with the range being 
determined from literature values. It was assumed that 
flow and transport within the welded tuff was dominated 
by fracture flow and as such effective porosities need to 
describe the void space due to the fractures and not the 
matrix.  Table 1 lists parameters used to define each of the 
three distributions. 

The sorption process was simulated using a linear 
isotherm, which is described via a retardation coefficient 
within the transport model.  Of the two solutes analyzed 
within the DDA, strontium-90 is the only one that sorbs.  
Laboratory batch experiments were performed to 
determine the retardation coefficients for strontium-90 for  

 
Table 1.  Parameters used to describe the uncertainty in effective porosity for the three hydrogeologic units. 

Parameter Units Distribution Type Source Mean Standard 
Deviation 

Effective Porosity 
(Alluvium) m3/m3 Lognormal CNTA Database 2.92 0.30 

Effective Porosity (Welded 
Tuff) m3/m3 Uniform Log10 Literature -2.50 0.08 

Effective Porosity 
(Tuffaceous Sediments) m3/m3 Lognormal CNTA Database 2.78 0.42 

Note: Mean and standard deviation are presented in natural log space for lognormal distributions and log10 space for uniform  log10 distributions 

 

 



 

 

each of the three hydrogeologic units.5  The retardation 
term for alluvium and tuffaceous sediments is calculated 
as: 

where ρb is the bulk density (g/cm3), Kd is the distribution 
coefficient determined as a ratio of the mass of sorbate 
sorbed per sorbed mass of sorbent to the aqueous 
concentration of sorbate (cm3/g), and θ (cm3/cm3) is the 
porosity.  Fracture  flow systems (e.g. welded tuff) 
typically require a modification to the retardation 
calculation as: 

where Ka (cm) is the surface-based sorption constant (Ka = 
Kd/Asp), b is the fracture aperture (cm), and Asp is the 
specific surface area of the sorbent (cm2/g). 

The Kd values are determined via linear regression of 
the equilibrium concentration versus sorbed 
concentration, with the slope being the Kd.  Uncertainty in 
the Kd estimates is performed by standard linear 
regression error analysis.  The Kd is only one component 
of the retardation term, so the stochastic terms (Kd, 

porosity or fracture aperture) are sampled from their 
respective distributions and then the retardation term is 
calculated using either equation (1) or (2).  Table 2 lists 
the parameters used to define the uncertainty for the four 
retardation terms (alluvium, tuffaceous sediments, welded 
tuff - fracture, welded tuff - matrix). 

Matrix diffusion is a potentially important mass 
transfer process by which solutes are removed from high-
velocity fracture flowpaths into the surrounding matrix.  
Matrix diffusion is only defined for the welded tuff units, 
as it is assumed that matrix diffusion does not occur in the 
alluvium and tuffaceous sediments.  The matrix diffusion 
parameter is defined as:4 

where θm is the matrix porosity (cm3/cm3), Dm
* is the 

effective diffusion coefficient in the rock matrix 
(cm2/day), Rm is the dimensionless retardation coefficient 
in the rock matrix, and b is the fracture half aperture (cm).  
All of the parameters in equation (3) are assumed to be 
random, so the distribution of κ is determined by 
sampling from each of the parameter distributions and 
then calculating κ.  The retardation term is assumed to be 
unity except when simulating strontium-90.  Table 3 lists 
the parameters used to define the uncertainty in the matrix 
diffusion parameter.   

 
Table 2.  Parameters used to describe the uncertainty in the retardation coefficient for the three hydrogeologic units. 

Parameter Unit 
Distribution 

Type 
Currently Available 

Data Mean 
Standard 
Deviation 

Effective Porosity (Alluvium) m3/m3 Lognormal CNTA Database 2.92 0.30 
Effective Porosity (Welded Tuff) m3/m3 Uniform Log10 Literature -2.50 0.08 

Effective Porosity (Tuffaceous 
Sediments) m3/m3 Lognormal CNTA Database 2.78 0.42 

Kd - Alluvium m3/g t1 distribution Laboratory experiments 1.32E-02 1.30E-03 
Kd - Tuffaceous Sediments m3/g t1 distribution Laboratory experiments 1.16E-03 1.14E-04 

Kd - Welded Tuff - Kd (Matrix) m3/g t1 distribution Laboratory experiments 6.11E-04 2.22E-05 
Ka - Welded Tuff - (Fracture) (m) t1 distribution Laboratory experiments 9.79E-05 3.56E-06 

Fracture Half-aperture m Uniform Log10 Literature 1.00E-04 0.58 
All distribution coefficients are in the space as defined by the distribution (i.e., lognormal in natural log space, uniform log10 are in log10 space, etc.) 
All sorption and retardation parameters refer to strontium 
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Table 3.  Parameters used to describe the uncertainty in the matrix diffusion parameter for the welded tuff unit. 

Parameter Unit 
Distribution 

Type 
Currently Available 

Data Mean 
Standard 
Deviation 

Retardation - Welded Tuff 
(Matrix) (dimensionless) numerical Laboratory experiments ---- ---- 

Effective Diffusion Coef. m2/day Uniform log10 Literature -5.91E+00 0.087 

Fracture Half-aperture m Uniform log10 Literature 1.00E-04 0.58 

Matrix Porosity (Welded Tuff) m3/m3 lognormal CNTA Database 2.68 0.39 

All distribution coefficients are in the space as defined by the distribution (i.e., lognormal in natural log space, uniform log10 are in log10 space, etc.) 
All sorption and retardation parameters refer to strontium 

 

The rock, fission products, and device components 
that are vaporized by the tremendous heat and pressure of 
a nuclear reaction quickly begin to condense and coalesce 
into nuclear melt glass.  This glass contains much of the 
radioactivity produced by a nuclear test and radionuclides 
must be removed from the melt glass to be transported by 
groundwater. The dissolution of the glass can be 
described by : 

where Mr is the amount of solute released at time t (g), Mg 
is the total mass of glass, kg is the  geochemical release 
rate (1/day), which can be calculated as: 

where kl is the linear rate constant used to describe the 
linear mass transfer from the solid to the liquid phase 

(moles/cm2), Asp is the specific surface area of the glass 
matrix (cm2/g), and Gfw is the gram formula weight of the 
glass matrix (g/mole).  The prior distributions for kg are 
determined by randomly sampling from the distribution 
for specific surface area and then calculating kg using 
equation (5). A uniform log10 distribution (µ=1.5, σ=.08) 
was used to describe the uncertainty for the specific 
surface area. 

III. FLOW AND TRANSPORT MODEL 

The three-dimensional model was converted to a two-
dimensional model for use in the DDA.  Figure 3 shows 
the two-dimensional representation used in the modeling 

process.  A vertical cross section aligned north-south was 
selected as one that represents the centermost x position 
within the three-dimensional model. This process of 
converting a three-dimensional model to a two-
dimensional model was straightforward, as the boundary 
conditions in the three-dimensional model were constant 
along the x-direction (east-west).    

All parameters not listed above as being 
stochastically represented are deterministic and identical 
to the previous model.  The only exception is the time 
step lengths (dt).  The time steps were altered to preserve 
courant numbers less than one, given the revised velocity 
fields.  This ensures that particles in the transport model 
do not move a distance greater than one grid cell (50 m) 
in any one time step.  Two solutes were used for the 
transport modeling to assess the transport features for a 
conservative (tritium) and reactive (strontium-90) solute. 
The transport was simulated over a period of 1,000 years 
over which time the contaminant boundary was 
calculated. The initial mass is the mass as presented in 
unclassified documents.  A contaminant boundary is 
calculated such that it represents an area whereby the 
simulated concentration exceeded the maximum 
contaminant level as defined by the U.S. Environmental 
Protection Agency (EPA) at any time during the 1,000-
year simulation. The maximum radius was then calculated 
by measuring the distance between the center of the test 
area and the center of the cell furthest away. The 
maximum radius was used to determine the uncertainty in 
the predictive capability of the model and how this 
uncertainty would be reduced if other characterization 
activities were employed.   
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IV. COST-BENEFIT ANALYSIS 

In an effort to determine the efficacy of the potential 
characterization activities, a cost-benefit analysis was 
performed.  Eleven potential characterization activities 
were chosen such to reduce the uncertainty in the six 
uncertain input parameters.  An expert panel is used to 
provide a subjective assessment of the ability of an 
activity to reduce input parameter uncertainty.  This 
information is used in a Bayesian analysis to calculate the 
posterior distributions for each input parameter assuming 
an activity was performed.  The posterior distributions are 
then used in a Monte Carlo analysis to determine the 
reduction in prediction uncertainty for a given 
characterization activity. The cost-benefit analysis is 
performed by plotting the uncertainty reduction versus 
cost to determine the activities that provide the largest 
uncertainty reduction per unit cost. 

Characterization Activities and Costs 

Eleven characterization activities were identified to 
potentially reduce the uncertainty in the identified 
uncertain parameters.  These activities include: 

1. Hydrogeologic characterization well: The 
purpose of this activity is to obtain information 
on vertical hydraulic head and lithology to a 
depth of 1,300 m.   

2. Tracer test - alluvium: The purpose of this 
activity is to perform a forced-gradient dipole 
tracer test to determine the effective porosity and 
other transport properties within the alluvium. 

3. Tracer test - welded tuff: The purpose of this 
activity is to perform a forced-gradient dipole 
tracer test to determine the effective porosity and 
other transport properties within the welded tuff. 

4. Tracer test tuffaceous sediment: The purpose of 
this activity is to perform a forced-gradient 
dipole tracer test to determine the effective 
porosity and other transport properties within the 
tuffaceous sediments. 

5. Barometric test - alluvium: The purpose of this 
activity is to measure water level changes and 
barometric pressure in a well completed within 

Category 1, Alluvium

Category 2, Low-K Volcanic Rocks

Category 3, High-K Volcanic Rocks

Location of Faultless Cavity

Simulation
of Hydrogeologic

Categories
(3D – 2D)

Category 1, Alluvium

Category 2, Low-K Volcanic Rocks

Category 3, High-K Volcanic Rocks

Location of Faultless Cavity

Simulation
of Hydrogeologic

Categories
(3D – 2D)

Figure 3.   Model conversion from three-dimensional to two-dimensional domain. The spatial
distribution of lithologic categories is one of the many equiprobable realizations. 



 

 

the alluvium (e.g., HTH-1) such that an estimate 
of  the effective porosity within the alluvium can 
be made.  

6. Cavity drillback: Core samples within the test 
cavity would be collected to evaluate glass 
composition and dissolution, and search for 
reaction products that may mantle surfaces.  
Groundwater samples would reveal the dissolved 
component coexisting with the solid phase. 

7. Matrix diffusion analogues: An extensive 
literature review would be performed to 
determine the most appropriate value and 
expected range for the matrix diffusion 
coefficient for a welded tuff unit. 

8. Core studies for matrix diffusion: Additional 
laboratory experiments on welded tuff would be 
performed to determine the most appropriate 
value and expected range for the matrix diffusion 
coefficient for a welded tuff unit. 

9. Yucca Mountain analogues for retardation: An 
extensive literature review would be performed 
to determine the retardation coefficients for the 
three hydrogeologic units. 

10. Bullion test analogues for effective porosity: 
Additional research to ascertain the most 

appropriate value for the effective porosity for 
the three hydrogeologic units. 

11. Additional sorption laboratory experiments: 
Additional laboratory batch experiments to 
determine the most appropriate value for the 
sorption/retardation coefficients for the three 
hydrogeologic units. 

The estimated costs associated with each activity are 
provided in Table 4.   

Expert Panel 

An expert panel was organized to provide input on 
how well a field activity may reduce the uncertainty in the 
input parameters.  To simplify the procedure the expert 
panel was asked to provide a reliability factor for each 
parameter that is impacted by a particular field activity.  
The reliability factor is a number between 0 and 1 such 
that a value of one would indicate the field activity 
provides complete uncertainty reduction, while a value of 
zero would imply no information gain. 

The individual factors where tallied from the panel 
and then were averaged to eliminate bias.  The averaged 
results are provided in Table 5.  These reliability factors 
are then used to calculate the posterior distributions.

  

  
Table 4.  Estimated costs for the proposed charactization activities  

# Characterization Activity Total Cost 
1 Hydrogeologic characterization well $3,550,300 
2 Tracer test - alluvium $1,692,167 
3 Tracer test - welded tuff $1,992,906 
4 Tracer test - tuff sediments $2,488,231 
5 Barometric test in alluvium $57,953 
6 Post-test hole for glass sample $2,165,780 
7 Matrix diffusion analogues? $10,000 
8 Core studies for matrix diffusion? $50,000 
9 Yucca Mtn. analogues for retardation? $10,000 

10 Bullion test analogues for effective porosity? $10,000 
11 Additional sorption laboratory experiments $144,000 

 

 

 



 

 

Table 5.  Average reliability coefficients as determined by the expert panel. 
Characterization 

Activity 

Effective 
Porosity 

(Alluvium) 

Effective 
Porosity 
(Welded 

Tuff) 

Effective 
Porosity 

(Tuffaceous 
Sediments) 

Retardation 
Effective 
Diffusion 

Coef. 

Fracture 
Half-

aperture 

Matrix 
Porosity 
(Welded 

Tuff) 

Matrix 
Retardation 

Linear 
Dissolution 

Rate 
Const. 

Specific 
Surface 

Area 

Hydrogeologic 
characterization 

well 
0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 

Tracer test - 
alluvium 0.73 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00 

Tracer test - 
welded tuff 0.00 0.72 0.00 0.53 0.77 0.57 0.60 0.53 0.00 0.00 

Tracer test - tuff 
sediments 0.00 0.00 0.73 0.63 0.00 0.00 0.00 0.00 0.00 0.00 

Barometric test 
in alluvium 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Post-test hole for 
glass sample 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.63 

Matrix diffusion 
analogues 0.00 0.00 0.00 0.00 0.57 0.47 0.50 0.50 0.00 0.00 

Core studies for 
matrix diffusion 0.00 0.00 0.00 0.00 0.70 0.00 0.73 0.73 0.00 0.00 

Yucca Mtn. 
analogues for 
retardation 

0.00 0.00 0.00 0.53 0.00 0.00 0.00 0.57 0.00 0.00 

Bullion test 
analogues for 

effective 
porosity 

0.00 0.57 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Additional 
sorption 

laboratory 
experiments 

0.00 0.00 0.00 0.77 0.00 0.00 0.67 0.00 0.00 0.00 

 

Posterior Distributions 

The reliability coefficients are used to calculate the 
posterior distributions by a simple transformation of the 
standard deviation: 

 where σpost is the posterior distribution standard 
deviation, σprior is the prior distribution standard deviation, 
and λ is the reliability coefficient. The type (i.e., normal, 
uniform, etc.) and the mean of the posterior distribution 
are assumed to be identical to the prior distribution.  This 
assumption implies that the field activities will not 
produce a significantly different mean than is specified by 
the prior distributions.  Equation (6) was used to derive 
the posterior distributions for all of the parameters except 
the constant head boundary condition and distribution of 

the welded tuff.  The posterior distributions were derived 
by sampling the hydraulic head and lithologic distribution 
from a hypothetical well.  The hypothetical well is located 
at a northing position of 430000 m and was sampled over 
the entire vertical section of the domain.  The hydraulic 
head information gained from the hypothetical well was 
used to constrain the upper- and lowermost head values 
such that the uncertainty in the boundary conditions was 
then dominated by the horizontal gradients and not the 
vertical gradients previously determined from HTH-1.  
The lithologic information was used to further condition 
the simulation of the hydrogeologic categories via 
sequential indicator simulation.   

Hydraulic head values were also used to weight the 
Monte Carlo realizations such that models with head 
values that were in better agreement with the sampled 
head values were given more weight.  The methodology 
to properly weight the stochastic simulations has 

)6(( )λσ σ −= 1priorpost



 

 

predominantly been used in rainfall-runoff modeling but 
is easily extended to groundwater models.6-7 The 
sampling procedure is based on a combination of 
Bayesian and Monte Carlo techniques.  A large number of 
Monte Carlo model runs are made, each parameterized 
with random values selected from posterior distributions 
described above for each field activity.  In the case of the 
hydrogeologic characterization well activity, the 
simulated hydraulic heads are compared to heads sampled 
from the hypothetical well.  A likelihood measure is used 
to compare the effectiveness of a particular realization to 
represent the sampled head values as: 

where L(Y | θi) is the likelihood of the simulated the head 
values Y given the parameter set θi for realization i, σi

2 is 
the variance of the errors, and N is a shaping factor, 
which was set to a value of two in this numerical 
experiment.  The likelihood equation is then combined 
with Bayes equation in the form: 

where L0(θi) is the likelihood measure for each parameter 
set, which is defined by the posterior distributions for 
each characterization activity, L(θi|Y) is the posterior 

likelihood for the simulation of Y given θi, and C is a 
scaling constant such that the weights sum to one.   

The ability of each characterization activity to reduce 
prediction uncertainty is tested by performing the Monte 
Carlo analysis with the posterior distributions defined for 
each activity.  In the case of activity 1, the Bayesian 
Monte Carlo analysis was used.  The reduction in 
parameter uncertainty is calculated as: 

 

 

 

where Φi is the reduction in relative model uncertainty 
between the total input uncertainty case and the case 
where input parameter uncertainty is reduced due to a 
single characterization activity i, ∆90

activity
i is the 90 

percent confidence range in maximum contaminant radius 
calculated for an individual activity, and ∆90

base
i is the 90 

percent confidence range in maximum contaminant radius 
calculated for the total uncertainty case. 

V. RESULTS 

The total uncertainty in the contaminant boundary 
radius for tritium and strontium-90 is presented in Figures 
4 and 5, respectively.  The 90 percent confidence interval 
for maximum contaminant boundary stabilized after 
approximately 200 realizations and for the base model 
ranged between 234 to 308 m and 234 to 302 m, for 
tritium and strontium-90, respectively. The range between 
the upper and lower 90 percent confidence intervals was 
used as an uncertainty measure for comparison with the 
other simulations. The uncertainty range is 74 and 68 m 
for tritium and strontium-90, respectively.  
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Figure 4.   Histogram of maximum contaminant distance for tritium. 



 

 

These results indicate that although there is a large 
amount of uncertainty in the input parameters, the 
uncertainty in the prediction of the contaminant boundary, 
within a 1,000-year time period, is relatively certain, with 
the error being less than 100 m. The relatively high 
degree of prediction certainty is primarily due to the low 
transport velocities. Solutes are not migrating large 
distances within the 1,000-year time period that defines 
the contaminant boundary. As such, relatively large 
changes in the input parameters cause small changes in 
the contaminant boundary. The only exception to this is in 
the rare event that welded tuff is simulated as being near 
the working point with a very small effective porosity. 

The relatively small prediction uncertainty suggests 
that the model is suitable in terms of predictive capability 
for contaminant boundary delineation. As expected, these 
activities will further reduce the uncertainties, but 
reducing the current error in the uncertainty range in the 
contaminant boundary radius to values less than 74 and 
68 m for tritium and strontium-90, respectively, may 
provide little value regarding management of the site. 

The simulated range in the 90 percent confidence 
bounds and relative uncertainty reduction estimates are 
provided in Table 6 for tritium and strontium-90.  The  

 

 
Table 6.  Simulated range in the 90 percent confidence bounds and relative uncertainty reduction for tritium and strontium-90. 

Number  Activity 
Tritium  
Range 

Sr-90      
Range 

Unc. Red 
Tritium (%) 

Unc. Red     
Sr-90 (%) 

Base --- 74 68 --- --- 
1 Hydrogeologic characterization well 6 5 91.9 92.6 
2 Tracer test - alluvium 67 48 9.5 29.4 
3 Tracer test - welded tuff 74 48 0.0 29.4 
4 Tracer test - tuffaceous sediments 74 47 0.0 30.9 
5 Barometric test in alluvium 41 35 44.6 48.5 
6 Post-shot hole for glass sample 48 35 35.1 48.5 
7 Matrix diffusion analogues 48 35 35.1 48.5 
8 Core studies for matrix diffusion 68 48 0.0 29.4 
9 Yucca Mtn. analogues for retardation 68 48 0.0 29.4 

10 Bullion test analogues for effective porosity 73 35 1.4 48.5 
11 Laboratory sorption experiments 72 41 0.0 39.7 
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Figure 5.   Histogram of maximum contaminant distance for strontium-90. 



 

 

results clearly indicate that the hydrogeologic 
characterization well significantly decreases the 
uncertainty in the prediction of the contaminant boundary.  
The hydrogeologic characterization well is also the most 
expensive task, so it is important to understand the 
relative value given that the uncertainty is already small. 

To ascertain the relative cost-benefit of additional 
characterization activities, one can plot the cost versus 
uncertainty reduction.  These plots are provided in 
Figures 6 and 7 for tritium and strontium-90, respectively.  
Those activities that plot in the upper left-hand corner can 
be considered the optimal activities in terms of cost 
versus benefit as they have the largest uncertainty 
reduction per unit cost.  The optimal activities include the 

barometric test, matrix diffusion analogues, and the 
hydrogeologic characterization well for both tritium and 
strontium-90 contaminant boundaries.  The Bullion test 
analogues for effective porosity proved to be optimal, but 
only for the strontium-90 contaminant boundary.  The 
activities that were not found to be optimal were either 
too expensive or simply not important in terms of 
predicting the contaminant boundary. 

Although the optimal activities represent the greatest 
uncertainty reduction per unit cost, the current level of 
uncertainty for the contaminant boundary is small and 
may be deemed acceptable, thereby not requiring 
improvement. 
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Figure 7.  Expected model uncertainty reduction (strontium-90) versus cost for potential field activities. 
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Figure 6.  Expected model uncertainty reduction (tritium) versus cost for potential field activities. 



 

 

VI. CONCLUSIONS 

A three-dimensional numerical groundwater flow and 
transport model was developed to estimate radionuclide 
migration from the CNTA.  The model indicated limited 
transport, but large uncertainties were recognized in a 
number of important parameters.  A quantitative analysis 
of the uncertainty was performed in a process known as a 
Data Decision Analysis (DDA).  The goal of the DDA 
was to provide decision makers with the ability to make 
informed decisions regarding the best course toward site 
closure.   

The DDA identified six uncertain parameters 
including the specified head boundaries, the spatial 
distribution of the underlying welded tuff, effective 
porosity, sorption coefficients, matrix diffusion 
coefficient, and geochemical release function for the 
nuclear glass dissolution.  Combining the uncertainty in 
these parameters listed above propagates to a prediction 
uncertainty in the maximum radius of the contaminant 
boundary of 234 to 308 m and 234 to 302 m, for tritium 
and strontium-90, respectively.  Although the uncertainty 
in the input parameters is large, the prediction uncertainty 
in the contaminant boundary is relatively small, with the 
range of the 90 percent confidence bounds being 74 and 
68 m, for tritium and strontium-90, respectively. 
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