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Abstract

The standard mass action, which assumes that infectious disease transmission oc-

curs in well-mixed populations, is popular for formulating compartmental epidemic

models. Compartmental epidemic models often follow standard mass action for

simplicity and to gain insight into transmission dynamics as it often performs well

at reproducing disease dynamics in large populations. In this work, we formulate

discrete time stochastic Susceptible-Infected-Removed models with bi-linear (stan-

dard) and non-linear mass action structures to mimic varying mixing levels. Using

simulations and real epidemic data, we demonstrate the sensitivity of the basic re-

production number to these mathematical structures of the force of infection. Our

results suggest the need to consider non-linear mass action in order to generate

more accurate estimates of the basic reproduction number although its uncertainty

increases due to the addition of one growth scaling parameter.

Key words : discrete time stochastic SIR model, mass action principle, basic reproduction

number, epidemic modelling, early epidemic growth phase
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1 Introduction

Epidemic modeling has for a long time been employed to study transmission and control

mechanisms of the spread of infectious diseases. One useful parameter that quantifies the

transmission potential of an infectious disease during the early take-off of an epidemic

is the basic reproduction number, denoted by R0 [1]. This quantity denotes the average

number of cases generated by one infected case over the course of its infectious period,

in a completely susceptible population. It is useful for its threshold property, if R0 ≤ 1

then the epidemic will die out and, if R0>1 then the epidemic can grow [2]. As such,

this is a key epidemiological parameter for understanding an infectious disease’ ability to

invade a population that can be used to guide epidemic prevention strategies as well as

for gauging the scope of public health interventions aimed at bringing the disease under

control.

Reliable inferences about key transmission parameters and disease forecasts hinges on

the capacity to develop a model that faithfully captures disease dynamics. The most

popular epidemic models are formulated based on the assumption of population wide

random mixing, where, population mixing is represented using the standard mass action

principle [3]. This principle assumes that individuals within a population have an equal

chance of getting infected. Denoting S(t) and I(t) to be the number of susceptible and

infective individuals in a population at time t respectively, and β to be the infection

rate, the principle says that the number of new infections is proportional to I(t) and S(t)

and observed at the rate (incidence rate), βS(t)I(t)
N

, where N is the total population size [4].

Assuming random mixing only provides an approximation for modeling disease transmis-

sion dynamics. For instance, it may be that the contact structure of individuals within

a population does not reflect that of chemical molecules in solution, i.e, it assumes that

healthy and infected individuals are highly mobile, have no movement boundaries and

therefore meet randomly. Although possibly unrealistic, some epidemic models that as-

sume random mixing have performed remarkably well at reproducing disease dynamics

3



particularly in large population contexts [5, 6, 7]. Despite the limitations, these models

continue to provide useful insight into the transmission dynamics and control of infectious

diseases [8].

Departures from standard mass action can be derived by modifying the mathematical

form of the infection rate (see for example [9, 10, 11]). That is, the incidence rate is

modified by introducing growth scaling exponents which aim to capture scenarios where

the number of contacts that an individual has is in fact less than that obtained by the

standard mass action form. Others have deviated from standard mass action by consid-

ering specific contact networks (see for example [12, 13, 14, 15]). These models recognize

that in practice, within a population, an individual has a finite number of contacts and

these contacts are not necessarily distributed randomly. Network models are often math-

ematically and computationally complex due to high dimensionality of the networks and

difficult to parameterize in the absence of detailed contact network datasets (see overview

of challenges of these models in [16]).

Here we investigate compartmental epidemic models to study the sensitivity of R0 to the

mathematical form of the force of infection when the goal is to generate accurate esti-

mates of R0 from early case incidence data. For this purpose, we formulate a discrete time

stochastic Susceptible-Infected-Removed (SIR) model (see for example [17, 18]), with an

incidence rate of the form βS(t)Iγ(t)
N

, where the power 0<γ ≤ 1 captures deviation from

the standard mass action principle, i.e. γ = 1. We begin by studying whether β and

γ as well as other relevant parameters can be well estimated from limited data of the

early epidemic growth phase. We then study the robustness of estimating R0 in a model

formulated based on the standard mass action principle (βS(t)I(t)
N

) on data simulated using

a modified version (βS(t)I
γ(t)

N
). Finally we illustrate this modeling and estimation frame-

work for estimating R0 to three real epidemic outbreaks.
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2 Methods

2.1 Model development

2.1.1 The SIR Model

A simplified version of the original SIR model [19] that is commonly used assumes a

closed population which is divided into three compartments, S(t) - number of susceptible

individuals at time t, I(t) - number of infectious individuals at time t that is capable of

infecting susceptible individuals, and R(t) - number of recovered/removed (immune or

dead) individuals at time t. The idea behind this model is that, initially, there is a single

or few infective(s); during their infectious period they transmit infection to susceptibles;

the disease continues to spread in this manner until there are no more infectives. In

continuous time, the SIR model is described by the following set of ordinary differential

equations:

dS(t)

dt
= −

βS(t)I(t)

N
dI(t)

dt
=

βS(t)I(t)

N
− αI(t)

dR(t)

dt
= αI(t), (1)

where S(t)+ I(t)+R(t) = N (population size), β is the transmission parameter, α is the

removal parameter and t represents calendar time. The transmission parameter describes

the rate at which two individuals come into effective contact per unit time and, the

removal parameter describes the rate at which individuals are removed from the infected

compartment. The initial condition of (1) are known positive integers S(0), I(0), and

R(0) = 0. R0 is given by β/α (see for example [20]).

2.1.2 The discrete time stochastic SIR Model

The model described by (1) is deterministic, i.e., it ignores randomness in the manner in

which individuals move from one compartment to another. This implies that the num-

ber of individuals in a compartment at a given time t is uniquely determined by values
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of model parameters (β or α) as well as by the number of individuals present in rele-

vant compartments at the previous time point. In the context of small population sizes

stochastic models offer a more realistic alternative to deterministic models by allowing

for randomness in the epidemic process [17].

Let NI(t) and NR(t) be counting processes which denote, at time t, the number of in-

dividuals who have been infected and the number of individuals who have recovered,

respectively. Following the work of [6], a stochastic version of (1) can be formulated as

a bivariate continuous-time Markov process. For t < h, assuming NI(t) and NR(t) are

Poisson processes, the stochastic SIR system is specified by the following infinitesimal

increment probabilities,

P
(

∆NI(t) = 1|NI(t)
)

=
βS(t)I(t)

N
h+ o(h)

P
(

∆NR(t) = 1|NR(t)
)

= αI(t)h+ o(h), (2)

where ∆Ni(t) = Ni(t+h)−Ni(t) i ∈ (I, R) denotes increments of Ni(t) and, o(h) tends to

zero in limit as h approaches zero. The increments of the counting processes are related

with the state variables as,

S(t+ h) = S(t)−∆NI(t)

I(t+ h) = I(t) + ∆NI(t)−∆NR(t)

R(t+ h) = R(t) + ∆NR(t). (3)

A direct consequence of assuming NI(t) and NR(t) are Poisson processes is that the

amount of time until the next individual gets infected as well as the amount of time

until an infected person recovers are exponentially distributed. Since NI(t) and NR(t)
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are assumed to be Poisson processes, we have that,

P
(

∆NI(t) = n1

)

=
exp

(

− βS(t)I(t)
N

h
)(

βS(t)I(t)
N

h
)n1

n1 !

P
(

∆NR(t) = n2

)

=
exp

(

− αI(t)h
)(

αI(t)h
)n2

n2 !
, (4)

or simply,

∆NI(t) ∼ Po
(βS(t)I(t)

N
h
)

∆NR(t) ∼ Po
(

αI(t)h
)

, (5)

see for example [21]. In this way, values of model parameters as well as numbers present

at the previous time points play a role in determining numbers at succeeding time points

while explicitly acknowledging uncertainty in the manner in which individuals transit

from one compartment to another. We refer to the model described by (3 and 5) as the

discrete time stochastic SIR model. Conditional on S(t) and I(t) as well as on model

parameters, the random variables ∆NI(t) and ∆NR(t) are independent.

Due to the unbounded nature of Poisson random variables, S(t) − ∆NI(t) and I(t) −

∆NR(t) can become negative. In the case of S(t) − ∆NI(t), this problem was not en-

countered due to the large value of S(t) as well as due to the set of parameters used in

the simulation analyses. For the latter, we addressed this problem by bounding NR(t) as,

NR(t) = min
(

∼ Po(αI(t)h), I(t)
)

.

The problem can also be addressed by using the Binomial distribution as in [18].

Taking expectations of (2) and (3), diving by h and taking the limit as h → 0 we ob-

tain (1). Also, by the law of large numbers, for large N , (3) approaches (1). Hence,

the meaning of β, α and hence R0 defined in the context of the deterministic model (1)
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carries over, approximately, to the stochastic model (3). However for the latter, there is

a difference in the interpretation of R0 - if R0 > 1 it is not certain that a major epidemic

will take off, in fact, a major epidemic will occur with some probability determined by

model parameters [22].

In practice, epidemic data are oftentimes observed in discrete time intervals rather than

continuous time (e.g. daily, weekly, monthly) and they reflect aggregated information

between consecutive reporting periods. However, the reporting period, hrp say, is never

sufficiently small in the mathematical sense (i.e. close to zero) such that (3) fairly ap-

proximates (1), moreover, it may not be fixed through the reporting period. Here, for

simplicity we assume that h = hrp equal to one day is sufficiently small. Note that it is

not necessary to make these simplifying assumptions as there are inference approaches

available in the literature to address them [23].

The discrete time stochastic SIR model is a special case of the so-called time series SIR

model (TSIR model) introduced by [24] and employed to model measles data assuming

h = 1 = hrp time unit (bi-weekly scale) and that all infected individuals at time t recover

within the next h = 1 time units. In this work we consider epidemic data available on a

daily scale and assume h = 1 = hrp time units.

2.1.3 The standard mass action principle and its modifications

In the development of compartmental epidemic models, the mass action principle plays

an important assumption since it mathematically characterizes the force of infection. The

standard version implies that newly infected cases at time t+h are directly proportional,

jointly, to S(t)I(t). This in turn implies that the incidence rate is linearly increasing with

respect to the number of infectives. In [25], researchers highlighted that this assumption

is unlikely to remain true when the number of infectives is large. For instance, with a

large number of infectives, newly infected cases may emerge more slowly than linearly
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due to, among other reasons, clustering of infectives or reactive behavioral changes which

tend to reduce the number of contacts per unit time. A combination of these mechanisms

could explain slower than exponential growth dynamics during the first 3-5 disease gen-

erations for a number of disease outbreaks [26].

In light of these as well as other features that can be encountered in disease transmission,

several different functional forms for incidence rates have been proposed in the literature

(see overview in [27]). For instance, in [28], researchers studied bovine tuberculosis, by

modifying standard mass action to the form: β
(

N − [I(t)+R(t)]
q

)

I(t) with 0 < q < 1 in

order to account for spatial aggregation of the disease. The constant q, called an aggre-

gation parameter, reduces the number of effective susceptibles per infective. It accounts

for the fact that if the disease is aggregated in space, there will be a lower chance that

an animal encountered by an infectious one will be susceptible. Another modification

is the so called negative binomial transmission term, S(t)ln[1 + βI(t)
k

]k with a small k

corresponding to highly aggregated infections, whereas k = ∞ reduces to standard mass

action [29]. This modification reduces the force of infection or the effective number of

infectives per susceptible.

A more general modification of the infection rate can be found in [9, 10, 11]: βSδ(t)Iγ(t)
N

,

where 0 ≤ δ, γ ≤ 1 are positive constants called mixing parameters. Depending on the

values of δ and γ, it allows a variety of epidemic behaviors by reducing both the num-

ber of effective susceptibles per infective as well as the effective number of infectives per

susceptible. As such, δ and γ can be interpreted as describing how susceptible and in-

fective numbers influence the generation of new cases, independently of each other. In

[9] researchers provide an intuitively appealing argument for using mixing parameters -

a slowly growing epidemic could be due to a very small β, however, if I(t) is greatly

increased while incidence remains relatively low, then this could be accounted for by

choosing a value of γ less than 1. Conversely, a rapidly growing epidemic could be due to

a very large β, however, if I(t) is greatly increased while incidence increases more rapidly
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than linearly, then this could be accounted for by choosing a value of γ greater than 1.

When the number of susceptibles is very large then, a value of δ<1 accounts for the pos-

sibility that the chance of an infective to get in contact with all the susceptibles may be

reduced. A value of δ close to one explains less dependence on the number of susceptibles

for a susceptible to become infected whereas, δ = 1 indicates similar dependence as in

classical mass action.

In this paper we work with the more general form [9, 10, 11], the main motivation being

ease of interpretation. While the modifications used in [28, 29] can capture deviation

from standard mass action, their interpretation may be less appealing in the context of

human infections. For instance, in the former, it may be difficult to justify the assumption

that the number of susceptible individuals scales with the sum of infected and recovered

individuals. In the latter modification, in theory, the parameter k reflects the degree of

spatial clustering of infectives, however, spatial effects are not the only cause of deviation

from standard mass action. On the other hand, with the modification of [9, 10, 11], the

mixing parameters capture non-linear effects of a subpopulation (susceptibles or infec-

tives) without making extra assumptions about how numbers in one subpopulation scale

with numbers in other subpopulations; also, the interpretation of mixing parameters is

broad as they capture and reflect possible spatial and non-spatial heterogeneities.

In particular, we consider a simplified version, βS(t)Iγ(t)
N

, hereafter referred to as non-linear

mass action, where the role of γ is to capture, approximately, effects of heterogeneous

mixing. When γ = 1, incidence follows exponential growth during the early epidemic

growth phase in the absence of susceptible depletion while, 0<γ<1 supports early sub-

exponential growth dynamics [30]. In [11], it is established that the wide range of dynamic

behaviors induced by this incidence rate are mainly determined by β and γ, and to a lesser

extent by δ. As such, it is reasonable to expect that this simplification will, to a large

extent, allow to capture disease transmission non-linearities in real life settings. We sup-

port this reasoning by noting that raising a number to a power less than one has smaller
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impact on a larger number (S(t)) compared to a lower number (I(t)), as such, fixing δ = 1

appears reasonable. Moreover, when it comes to model estimation it is to be expected

that estimating both δ and γ can lead to identifiability issues.

For purposes of illustration, we also consider the standard mass action principle, βS(t)I(t)
N

,

hereafter referred to as bi-linear mass action. Note that the terminology bi-linear/non-

linear mass action indicates that incidence rate is bi-linear/non-linear in S(t) and I(t)

respectively.

2.2 Model estimation

As in [18], the Bayesian Markov chain Monte Carlo (MCMC) framework is used for

estimating model parameters. This approach is chosen mainly for its ability to deal with

the typically unobserved process, ∆NR(t), by averaging over its probability distribution;

this way the uncertainty of the unobserved process is properly taken into account (see

for example [18, 31, 32]). Let Θ = {β, γ, α} denote the vector of all model parameters

to be estimated. Given initial conditions {S(0) = N − I(0), I(0) = 1, R(0) = 0}, when

both ∆NI(t) and ∆NR(t) are observed at fixed time intervals of length h then, the state

variables {S(t), I(t)} are completely determined by (3). Due to conditional independence

of ∆NI(t) and ∆NR(t), the likelihood, L, is given by:

L
(

∆NI ,∆NR|Θ
)

=
T
∏

t=0

gI

(

∆NI(t)| ·
)

gR

(

∆NR(t)| ·
)

, (6)

where gI and gR represent the Poisson densities (5) conditioned on Θ as well as on

all information {S(t), I(t)} up to time T . Assigning independent priors to each of the

parameters, the posterior distribution of Θ is given by:

P
(

Θ|∆NI(t),∆NR(t)
)

∝ L
(

∆NI(t),∆NR(t)|Θ
)

p(Θ), (7)

where, p(Θ) is a product of prior distributions for {β, γ, α}. The corresponding MCMC
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algorithm proceeds as follows:

1. initialize Θ;

2. update Θ from Θ|∆NI(t),∆NR(t);

3. repeat step (2) until the chain has converged.

When only ∆NI(t) is observed, unobserved data ∆NR(t) are imputed and the posterior

distribution is given by:

P
(

Θ,∆NR(t)|∆NI(t)
)

∝ L
(

∆NI(t),∆NR(t)|Θ
)

p(Θ). (8)

where in this case, L is the augmented likelihood and p(Θ) is as before. The MCMC

algorithm proceeds in the following steps:

1. initialize the unobserved vector ∆NR(t) and construct the series {S(t), I(t)} using

(3);

2. initialize Θ;

3. update ∆NR(t) from ∆NR(t)|∆NI(t),Θ and construct the series {S(t), I(t)} using

(3);

4. update Θ from Θ|∆NI(t),∆NR(t);

5. repeat step (3) and (4) until the chain has converged.

Note that R0 = β/α is monitored within the MCMC chain, thus, we obtain its posterior

distribution from which summary statistics can be calculated. In both simulation studies

and real outbreak data applications (Sections 3.1 and 3.2), minimally informative priors

are specified for β and γ. For α, minimally informative and informative priors are used.

The posterior distribution is evaluated in OpenBUGS [33]; the code is provided in Ap-

pendix D. Though the Bayesian framework enables carrying out inference given partial

data, the described MCMC algorithm may not be efficient since it does not examine
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whether proposed values of the unobserved process ∆NR(t) are consistent with the size

of the observed epidemic until time t. A modified algorithm which addresses this issue

was proposed in [18]. However, this modification has to be implemented outside the

OpenBUGS environment where the user can define own sampling rules.

2.3 Simulation study

We simulate multiple datasets incorporating effects of noise based on the discrete time

stochastic SIR model assuming h = hrp = 1 day, where model parameters are fixed to

some true values and then, fit model (3) to each simulated dataset. The simulation study

is based on epidemics that take off and resemble a uni-modal shape similar to the deter-

ministic model (1) (see Section 3.1).

Using simulated data we evaluate the performance of the estimation procedure. This

step involves exploring the sensitivity of the estimation procedure to the choice of prior

distributions as well as starting values.

When fitting dynamic non-linear models to data, it may be that parameters cannot be

estimated uniquely [34], in such a case, different combinations of model parameters lead

to a similar fit. When non-linear mass action is assumed, it may well be that the same

epidemic curve can be described by, on the one hand, a small value of β and a large value

of γ and, on the other hand, a large value of β and a small value of γ. Therefore, another

goal is to study whether parameters can be uniquely estimated and their uncertainty. In

this work, we examine pairwise correlations from posterior samples of parameters since

the pairwise relationship appeared fairly linear. Note that in order to capture non-linear

dependencies between variables, a more general measure is that of mutual information

[35].

Moreover, since real outbreak data often does not include all SIR states, it may well be

that information required to estimate some parameters is not contained in the observed
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states [18]. As such, another goal is to note whether or not posterior estimates are, to

a large extent, a reflection of information contained in the prior distributions; this is

checked by inspecting trace plots and systematically comparing prior and posterior esti-

mates of each parameter.

3 Results

3.1 Simulation study

For our simulation studies, we set initial conditions and parameters as follows: N =

70, 000, T = 20 days, β = 1.1, α = 0.4467, I(0) = 1 corresponding to R0 = 2.46.

We analyze 6 scenarios with different growth scaling parameters, γ = {0.90, 0.92, 0.94,

0.96, 0.98 and 1.00}. The value of β is chosen to be in the region of estimates which

were obtained from preliminary real outbreak analyses. Values of γ are chosen ≤ 1 to

deviate from the standard bi-linear mass action assumption yielding early exponential

growth scenario as well as slower than exponential growth scenarios (Appendix A); for

the considered range, the sensitivity of R0 to the mathematical structure of the force of

infection is apparent. The value of α is chosen to model an average infectious period of

about 2.2 days. Holding β and γ constant, the impact of α on the epidemic curve is that,

longer average infectious periods result in larger epidemics and hence, earlier peak times

as well as extinction times (see Appendix A). For each scenario, a total of 250 datasets

are simulated.

[Figure 1 about here.]

We evaluate the posterior distribution across simulated datasets using 15,000 values with

a thinning of 25. On summarizing the distribution, a burn-in of 5,000 iterations is re-

moved. The remaining 10,000 samples used for analyses appear to have converged.
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The rationale for using data up to day 20 is that R0 is defined in the context of a com-

pletely susceptible population, i.e., in the absence of behavioral changes or interventions.

In real life, as an epidemic progresses the population does not remain completely suscep-

tible due to infection, behavioral changes and intervention measures which mitigate the

transmission rate, as such, R0 is estimated from the early onset of the epidemic. Note

that there was no theoretical motivation for fixing the cut-off at day 20, nevertheless,

it is to be expected that considering longer phases (using more data) may improve the

estimation in terms of bias and precision, and vice-versa.

3.1.1 How well are model parameters estimated?

The extent to which model parameters were well estimated is studied by inspecting cov-

erage, bias and precision. We start by investigating whether all model parameters (and

hence R0) can be well estimated simultaneously. The idea is to compare the estima-

tion when only ∆NI(t) is observed to the case where both ∆NI(t) and ∆NR(t) data

are observed. In the former, minimally informative priors are assigned to β and γ, i.e.

U(0.1, 10) for each parameter and, for α, a minimally informative prior is assigned i.e.

U(0.1, 1); an informative prior is also assigned i.e. U(0.4, 0.5) and; the parameter is also

fixed to the true value. In the latter, only the minimally informative priors are assigned

to all parameters. The results are shown in Table 1.

[Table 1 about here.]

Generally, whether or not ∆NR(t) is observed, β and γ are estimated reasonably well

within the range of their true values as is seen from the magnitude of bias and standard

errors as well as coverage. On the other hand, comparing the two results where α is

assigned a minimally informative prior, U(0.1, 1), the results indicate that the estimation

of α is greatly affected by the absence of ∆NR(t) as is seen from an increase in bias and

variability of α and consequently in R0. This is not surprising because the component

of the likelihood involving the parameter α depends only on the unobserved ∆NR(t).
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As a result, a posteriori, α largely reflects its prior distribution thus increasing bias and

variability of R0. However, when α is assigned an informative prior or fixed to the true

value, bias and variability in R0 are about the same compared to the case where ∆NR(t)

is observed. As such, in the absence of ∆NR(t), it appears justifiable to either assign α

an informative prior or fix it to the true value.

Table 2 presents results for all different values of γ considered while the parameter α

is fixed to the true value. In all cases, as before, β and γ as well as R0 are estimated

reasonably well within the range of their true values as is seen from the magnitude of

bias and standard errors as well as coverage which is above 95% for all scenarios. It is

worth noting that in general, bias and variability decrease as γ increases. This is to be

expected since more data improves estimation in terms of bias and precision.

[Table 2 about here.]

Figure 2 summarizes pairwise correlations between the posterior samples of β and γ

obtained from one of the 250 repeated simulations for two scenarios (γ = 0.9 and γ = 1).

Strong negative correlation is observed between β and γ; a low value of β corresponds

to a high value of γ and vice versa. Intuitively this is expected since similar epidemic

curves can be constructed by taking, on the one hand, a low value of β and a high value

of γ, or on the other hand, by taking a high value of β and a low value γ. Although the

true parameter values are well recovered, it is difficult to estimate these two parameters

separately. This can lead to small bias in the estimation of β and, hence in the calculation

of R0 as observed in Tables 1 and 2. Also, it can lead to loss of precision since each value

of γ corresponds to a specific region of β values, and the specific regions vary widely

depending on the value (uncertainty) of γ. As such, we can expect that credible intervals

of β, and hence of R0, will become wide when β and γ are estimated together using

non-linear mass action formulation.

[Figure 2 about here.]
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3.1.2 Impact of mass action mis-specification

In this section we investigate the impact of mis-specifying the mass action term modeling

the force of infection. In particular, we assume that the true underlying mass action

is non-linear, however, when fitting the model we specify bi-linear mass action, i.e. we

naively fix γ = 1. The removal rate α is fixed to the true value. The results are presented

in Table 3.

[Table 3 about here.]

Results indicate that estimation of β and hence of R0 is sensitive to mis-specification

of the force of infection, i.e., when the underlying mass action is non-linear, assuming

bi-linear mass action has a large impact on the estimates. Extremely low coverage and

severe bias are observed for β. The reason being that the model is mis-specified, a true

value of γ<1 results in a slowly growing epidemic and hence, when γ is omitted from

the model, β hides this mis-pecification by biasing downwards, hence the negative bias

observed. This in turn affects the calculation of R0, which is underestimated.

However, if focusing on precision of the estimates, it turns out that bi-linear mass action

yields considerably smaller standard errors compared to non-linear mass action for both

the case when the model is mis-specified (i.e. when true γ = 0.90, 0.92, 0.94, 0.96, 0.98)

as well as for the case when the true value is γ = 1. This is expected since β and γ are

highly correlated; it follows from Figure 2 that, regardless of the true value of γ, if γ is

fixed, β values become restricted to a narrow range. Thus, when bi-linear mass action is

assumed (i.e. fixing γ = 1), narrow credible intervals will be obtained, however, they do

not necessarily indicate that estimates are closer to their true values.

Focusing on the predictive ability to estimate the epidemic curve, it turns out that the

mis-specified model can compensate for the omitted γ parameter ensuring that a fairly

good fit to the data can still be obtained (Figure 3). However, in terms of MSPE the fit
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does not outperform the one obtained when γ is included in the model (Tables 2, 3 and

Figure 3).

[Figure 3 about here.]

In conclusion, simulation studies show that β and γ, and hence R0, can be estimated

fairly well within range of their true values using data of the early epidemic growth phase

if the non-linear mass action model is used. When the true underlying mass action is

non-linear, bi-linear mass action can lead to underestimation of R0 although it yields an

acceptable fit.

3.2 Applications to real outbreak data

We fitted Model (3) to incidence data of the early epidemic growth phase. In practice,

gauging the period during which the epidemic grows “freely” (i.e. in the absence of

intervention measures) is a non-trivial task which requires field data about the time at

which intervention measures are put in place - such data are usually unavailable or are

available but subjective. In the absence of this information, ad-hoc approaches were used

to select the length of the early growth phase. A comparison of estimates obtained here

and those obtained in previous studies is beyond the scope of this paper, as we aim to

highlight potential differences in estimates obtained assuming bi-linear vs. non-linear

mass action.

3.2.1 Influenza Epidemic in the city of San Fransisco, California, 1918 to

1919

The city of San Francisco is located in Northern California and covers a land area of

about 121 km2. This city was significantly affected by the 1918 influenza pandemic. At

that time, it is estimated that the city had a population of about 550,000 [36], and 28,310

cases were recorded over a period of 63 days between September and November [37].
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The data, obtained from [37], are available in the form of newly infected cases for the

September - November influenza wave. In the analyses presented in this section, case

data up to day 17 of the epidemic were used. Since ∆NR(t) is not observed the model

is fitted with the removal rate assigned an informative prior, U(1/6, 1/3) i.e., average

infectious period of 3-6 days [38]. Table 4 shows the results.

[Table 4 about here.]

Larger β values are obtained with non-linear mass action, consequently, R0 estimates are

markedly larger too. Compared with simulation study results, these findings seemingly

suggest that during the initial phase, the epidemic had a potential to grow fast, however,

due to inhomogeneous population mixing, behavior changes or a combination of factors,

it grew at a slower pace than what it would have if the population mixed homogeneously,

in other words, the effective reproduction number decays rapidly. As in simulations, the

decrease of β in the bi-linear mass action is the result of the model compensating for the

omitted γ consequently leading to a smaller R0. Also, R0 exhibits large uncertainty when

estimated using the model with non-linear mass action - this is expected as the correlation

between β and γ induces uncertainty (section 3.1.1). While the model based on bi-linear

mass action fits reasonably well it did not outperform the one based on non-linear mass

action (Table 4; Figure 4).

[Figure 4 about here.]

3.2.2 Ebola outbreak in Congo, 1976

In 1976 Congo experienced an outbreak of Ebola, the outbreak was concentrated in the

north-west part of the country in the Bumba Zone. At that time the zone had a popu-

lation of about 275,000. The index case was observed in Yambuku village and most of

the infected cases were recorded within a radius of 70 km of the village. About 318 cases
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resulting in 280 deaths were reported over a period of about 2 months [39].

The outbreak data are available in the form of daily number of newly infected cases

[40, 41]. Note that though the SIR model is not best suited for diseases with a long

incubation period such as Ebola, we use it for illustration purposes. We use case data

up to day 19 of the epidemic. Since ∆NR(t) is not observed, the model is fitted with the

removal rate assigned an informative prior, U(1/6, 1/5), i.e, average infectious period of

about 5-6 days. Table 5 shows the results.

[Table 5 about here.]

Similar findings are observed as before, more importantly, smaller R0 estimates are ob-

tained for bi-linear mass action compared to non-linear. In terms of goodness of fit, the

model based on bi-linear mass action yields a good fit though the fit is slightly poor

compared to the one based on non-linear mass action (Table 5; Figure 5).

[Figure 5 about here.]

3.2.3 Common cold outbreak on the island Tristan da Cunha, 1967

Tristan da Cunha is an island in the south Atlantic Ocean covering a land area of 98km2.

It was observed that epidemics, such as common cold, occur on the island after arrival of

ships from Cape Town. Data from a common cold outbreak that occurred over a period

of 21 days in 1967 are available in [42, 43]. At the time of the outbreak the island had a

population of approximately 300 inhabitants [42].

The data are available in the form of I(t) and R(t). In order to fit the discrete time

stochastic SIR model, since the population size is known, we reconstruct ∆NI(t) and

∆NR(t). We use case data up to day 11 of the epidemic; Table 6 shows parameter es-

timates obtained. Note that for these data a minimally informative prior is used for α
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since simulation studies showed that α can be reliably estimated when data on removed

cases are available (Table 1).

[Table 6 about here.]

As before, smaller β estimates are observed for bi-linear mass action compared to non-

linear, as a result, smaller R0 estimates are obtained. Also, in terms of goodness of fit,

the model based on bi-linear mass action fits acceptably good though not outperforming

the one based on non-linear mass action (Table 6; Figure 6).

[Figure 6 about here.]
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4 Discussion and Conclusions

The sensitivity of R0 to model assumptions has been investigated in prior studies (see for

example [44, 45]). Here, we demonstrate the sensitivity of R0 to the mathematical form

of the force of infection when it is estimated from incidence data of the early epidemic

growth phase. We formulate a discrete time stochastic SIR model [17, 18] with non-linear

mass action [9, 10, 11]. Since non-linear mass action introduces an extra parameter on

the classical bi-linear mass action incidence rate, we begin by studying how well this

extra parameter as well as other model parameters can be estimated from early incidence

data. Thereafter, we use simulated and real epidemic data to demonstrate how the choice

between non-linear and bi-linear mass action impacts the estimation of R0.

Our simulation studies indicate that β and γ can be estimated altogether from the early

epidemic phase with relatively low bias and variance. However, the removal rate α cannot

be reliably estimated in the absence of data on removed individuals, in which case its

estimation is largely informed by the prior distribution (Table 1). Results indicate that

more accurate inference on β and γ (and hence on R0) can however be achieved when α

is fixed to the true value a priori, or, when assigned a prior distribution centered about

the true value. In practice, information about α is usually available from the literature,

therefore, it can be utilized to obtain more accurate R0 estimates. On the other hand,

for non-linear mass action, a high correlation is observed between β and γ. This leads to

wider credible intervals in our estimates. Nevertheless, it should be noted that narrower

credible intervals obtained when bi-linear mass action is assumed are not necessarily

an indication of closeness to the truth. The high correlation may also raise concerns

about the interpretability of β and γ, individually. Nevertheless, the two parameters are

estimated considerably well within range of their true values and therefore, reasonable

inferences can still be made.

With regards to structure of the force of infection, simulation results indicate that R0

is sensitive to the type of mass action assumed (Tables 2 and 3). It is observed that
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when γ < 1, assuming bi-linear mass action leads to severe underestimation of R0 even

though it yields an acceptably good fit (Figure 3). Assuming bi-linear mass action in the

analysis of real outbreak data leads to results well in-line with simulation findings - in

comparison with non-linear mass action, smaller R0 estimates are obtained for bi-linear

mass action, (Tables 4, 5 and 6). Moreover, bi-linear mass action results in acceptably

good fit which however does not outperform that of non-linear mass action - the difference

is small though and MPSE does not penalize for the additional parameter used in the

non-linear mass action formulation (Figures 4 - 6).

Previous studies have employed non-linear incidence rates in modeling human infectious

diseases (see for example [24, 46, 47, 48]). In particular, the time-series SIR (TSIR) model

has been employed to study measles dynamics. By incorporating non-homogeneous mix-

ing using mixing parameters, their analyses are able to more accurately capture endemic

cycles and episodic outbreaks in measles [49]. Our work differs from [24, 46, 47, 48] in

that we study the sensitivity of R0 to the chosen form of mass action whereas, the above

studies employed non-linear mass action to capture non-linearities in disease transmission

and reproduce observed dynamics in measles data. Moreover, we focus on the dynamics

of the early growth phase, whereas the above studies explore long-term epidemic dynam-

ics.

In [28], researchers study bovine tuberculosis using “mixed population” models based on

a negative binomial transmission term. They also find out that accounting for heteroge-

neous mixing by modifying bi-linear mass action allows a higher value for the transmission

parameter and consequently, a higher R0. Nevertheless, this message has not gained trac-

tion as far as human infectious disease modeling using “mixed population” is concerned.

This is evidenced by a large number of publications where such models are formulated

based on bi-linear mass action. However, recently, [50] proposed a new quantity called the

“empirically adjusted reproductive number”. It is demonstrated that the quantity, unlike

the traditional reproduction number, takes into account non-linear effects in population
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mixing and can be expected to be larger for active epidemics. In this study, non-linear

effects are accounted for by conditioning on the number of contacts between a person and

other individuals in the population.

Recent research has highlighted that early sub-exponential (e.g., polynomial) growth dy-

namics is a common phenomenon across a range of infectious disease outbreaks including

influenza, Ebola, foot-and-mouth disease, HIV/AIDS, plague, measles and smallpox [26].

While our focus here is on estimating the basic reproduction number, R0, that char-

acterizes transmission potential at the onset of the epidemic, the effective reproduction

number, Rt, is another useful quantity to monitor temporal changes in transmission po-

tential during the course of an outbreak. In particular, Rt remains invariant during the

early growth phase of an epidemic characterized by early exponential growth dynamics

whereas in the context of sub-exponential growth epidemics, Rt declines over disease

generations asymptotically towards the epidemic threshold of 1.0 [30]. This decline in

Rt is more pronounced for sub-exponential growth dynamics. Hence, our work here on

estimating key transmission parameters based on a flexible SIR framework incorporating

the possibility of slower than exponential epidemic growth is timely. At the same time,

these observations underscore the importance of understanding the underlying mecha-

nisms behind early polynomial growth dynamics, which could include reactive behavioral

changes and the role of spatial heterogeneity.

It is worth pointing out that the SIR model we use in this work could be further im-

proved to incorporate more realistic assumptions about the biological processes that are

thought to be behind the transmission dynamics of an infectious disease. In particular,

this model embeds several simplifying assumptions which may be invalid in practice and

hence possibly lead to inaccurate estimates of R0. For instance, it ignores the latent

period, assumes exponentially distributed waiting times as well as a constant transmis-

sion rate. In [44], it is shown that ignoring the latent period or assuming exponentially

distributed latent and infectious periods always leads to underestimation of R0. Here we
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highlight that different assumptions in incidence rates can lead to substantially different

R0 estimates. An important extension is to investigate the impact of incorporating more

realistic assumptions in the context of non-linear mass action based “mixed population”

models.

Though the non-linear mass action based SIR model is rather simplistic, it explains ob-

served epidemic data fairly well and, since the role of its parameters is clearly understood

it is useful in several regards. For instance, since it allows disentangling disease trans-

missibility and population interaction, through β and γ respectively, it can be used to

evaluate model complexity in general, providing insights as to whether deviation from

bi-linear mass action is necessary. In the same vein, it can also be used to investigate the

phenomenon of sub-exponential growth by testing the hypothesis, H0 : γ = 1.

Another limitation of our results, particularly the simulation studies, could arise from

employing a model that ignores over-dispersion; a phenomenon which could arise due to

stochastic effects which are unpredictable or insufficiently understood or non-measurable

[51]. As such, early sub-exponential growth could arise due to the interplay between

stochasticity and deterministic effects capturing contact structure of the population rather

than due to deterministic effects alone [52]. It could also arise due to other unknown

and/or unmodeled processes (see for example [51] and [52]). Nevertheless, our simulation

results demonstrate the sensitivity of R0 estimates to the form of mass action, they un-

derscore the importance of considering deviating from bi-linear mass action when the goal

is to generate a reliable estimate of the transmission parameter and hence, of R0. Sen-

sitivity analysis of real-life outbreaks showed no evidence of over-dispersion (Appendix

C), nonetheless, short time series are unlikely to reveal sufficient information to separate

stochasticity and the underlying dynamics [53, 54].

Another potential source of bias in our results, particularly in the real life data sets, is the

assumption that h = hrp = 1 day is sufficiently small for (3) to provide a fairly accurate
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approximation of (1). Note that this assumption is not a concern in the simulation stud-

ies since data are generated assuming h = hrp = 1 day. Sensitivity analyses performed

in the inference framework for partially observed Markov processes [23] choosing h to

be small (h = 0.01) and different from hrp show that parameter estimates do not differ

substantially (see Appendix C).

Overall, our results demonstrate using simulations and real epidemic data the sensitivity

of R0 to the mathematical structure of the force of infection, e.g., bi-linear vs. non-linear

mass action. In this regard, our results demonstrate that, in comparison to non-linear

mass action, a good fitting SIR model based on bi-linear mass action may not guarantee

a reliable R0 estimate. Since bi-linear mass action is a sub-case of non-linear mass action,

we emphasize that the latter is worthwhile and should be considered for its ability to

yield more reliable R0 estimates as well as for its inherent property of revealing deviation

from the classical bi-linear mass action assumption. In fact, when bi-linear mass action is

a good approximation, inferences based on the non-linear mass action formulation allow

data to speak for itself.
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Figure 1

Figure 1: 250 epidemic curve simulations using N = 70, 000, β = 1.1, α = 0.4467, I(0) = 1 and different values of γ {0.90,
0.92, 0.94, 0.96, 0.98 and 1.00}. The dark colored part of the curves appearing before the dotted vertical line show the
early epidemic growth phase used in the analyses; the light colored part shows the trajectories beyond the early growth
phase. The lower the value of γ, the slower the epidemics take off and the longer they take to reach peak time, and vice
versa.
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Figure 2: Scatter plot of β and γ posterior samples (light coloured dots). Left: true value of γ is 0.9; Right: true value of
γ is 1.0. The dark coloured dot represents the true values.
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Figure 3: Non-linear and bi-linear mass action fitted to an epidemic curve simulated with γ = 0.9. Solid lines represent
observed data and the fitted models. Shadings represent 95% credible interval of the fitted models.
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Figure 4: Comparison of fitted vs observed: bi-linear and non-linear mass action. Solid lines represent observed data and
the fitted models. Shadings represent 95% credible interval of the fitted model.
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Figure 5

Figure 5: Comparison of fitted vs observed: bi-linear and non-linear mass action. Solid lines represent observed data and
the fitted models. Shadings represent 95% credible interval of the fitted model.
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Figure 6: Comparison of fitted vs observed for Inew(t) and Rnew(t): bi-linear and non-linear mass action. Solid lines
represent observed data and the fitted models. Dotted lines represent 95% credible interval of the fitted model.
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Table 1: Simulation summary: The simulation studies estimation of all model parameters simultaneously assuming both
∆NI(t) and ∆NR(t) are observed as well as when only ∆NI(t) is observed with model quantities and parameters set to
N = 70, 000, T = 20 days, β = 1.1, γ = 0.9, α = 0.4467, I(0) = 1 corresponding to R0 = 2.46.

α
prior

β γ α R0

Estimation using both ∆NI(t) and ∆NR(t)

α ∼ U(0.1, 1)

coverage (%) 85.7724 86.9919 91.8699 90.2439
bias 0.1682 -0.0212 0.0038 0.2208

variance 0.0678 0.0018 0.0005 0.1246
st.error 0.2603 0.0427 0.0234 0.3529
RMSE 0.3099 0.0477 0.0237 0.4163

Estimation using ∆NI(t) only

α ∼ U(0.1, 1)

coverage (%) 94.4000 97.2000 99.6000 99.2000
bias 0.1404 -0.0325 -0.0478 1.2842

variance 0.0688 0.0023 0.0146 1.1794
st.error 0.2623 0.0478 0.1207 1.0860
RMSE 0.2975 0.0578 0.1298 1.6818

α ∼ U(0.4, 0.5)

coverage (%) 97.2000 96.0000 100.0000 97.2000
bias 0.1419 -0.0159 0.0012 0.1971

variance 0.0494 0.0016 0.0000 0.1188
st.error 0.2223 0.0397 0.0028 0.3447
RMSE 0.2637 0.0427 0.0030 0.3971

α = 0.4467

coverage (%) 97.2000 96.0000

-

97.2000
bias 0.1409 -0.0159 0.1945

variance 0.0494 0.0016 0.1177
st.error 0.2222 0.0397 0.3431
RMSE 0.2631 0.0427 0.3944
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Table 2: Simulation summary: the simulation studies simultaneous estimation of β and γ for different values of γ when
only Inew(t) is observed; α is fixed to its true value. In data simulation other model quantities and parameters were set to
N = 70, 000, T = 20 days, β = 1.1, α = 0.4467, I(0) = 1 corresponding to R0 = 2.46.

γ property β γ R0 median MSPE

0.90

coverage (%) 97.2000 96.0000 97.2000

110.9000
bias 0.1409 -0.0159 0.3154

variance 0.0494 0.0016 0.2475
st.error 0.2222 0.0397 0.4975
RMSE 0.2631 0.0427 0.5891

0.92

coverage (%) 97.6000 96.8000 97.6000

173.5000
bias 0.0831 -0.0065 0.1860

variance 0.0368 0.0011 0.1843
st.error 0.1917 0.0336 0.4293
RMSE 0.2090 0.0342 0.4678

0.94

coverage 97.6000 97.6000 97.6000

287.7000
bias 0.0435 -0.0024 0.0974

variance 0.0237 0.0006 0.1187
st.error 0.1539 0.0245 0.3445
RMSE 0.1599 0.0246 0.3580

0.96

coverage (%) 95.6000 94.8000 95.6000

562.9000
bias 0.0219 0.0008 0.0490

variance 0.0182 0.0006 0.0910
st.error 0.1348 0.0240 0.3017
RMSE 0.1365 0.0240 0.3056

0.98

coverage 95.9839 96.3855 95.9839

1167.0000
bias -0.0012 0.0019 -0.0028

variance 0.0097 0.0002 0.0485
st.error 0.0984 0.0133 0.2202
RMSE 0.0984 0.0135 0.2203

1.00

coverage 97.2000 96.8000 97.2000

2703.0000
bias -0.0028 0.0013 -0.0062

variance 0.0064 0.0001 0.0319
st.error 0.0798 0.0095 0.1787
RMSE 0.0799 0.0096 0.1788
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Table 3: Summary of simulation results when bi-linear mass action is assumed given that γ =
0.90, 0.92, 0.94, 0.96, 0.98 and 1; α is fixed to its true value. In data simulation other model quantities and
parameters were set to N = 70, 000, T = 20 days, β = 1.1, α = 0.4467, I(0) = 1 corresponding to R0 = 2.46.

scenario property β R0 median MSPE

γ = 0.90

coverage (%) 0.0000 0.0000

124.5000
bias -0.4304 -0.9634

variance 0.0008 0.0040
st.error 0.0282 0.0632
RMSE 0.4313 0.9655

γ = 0.92

coverage (%) 0.0000 0.0000

193.9000
bias -0.3892 -0.8712

variance 0.0008 0.0040
st.error 0.0283 0.0634
RMSE 0.3902 0.8735

γ = 0.94

coverage (%) 0.0000 0.0000

330.9000
bias -0.3365 -0.7534

variance 0.0006 0.0031
st.error 0.0247 0.0553
RMSE 0.3375 0.7554

γ = 0.96

coverage (%) 0.4000 0.4000

624.8000
bias -0.2597 -0.5814

variance 0.0006 0.0030
st.error 0.0246 0.0551
RMSE 0.2609 0.5840

γ = 0.98

coverage (%) 0.0000 0.0000

1228.0000
bias -0.1543 -0.3453

variance 0.0004 0.0018
st.error 0.0188 0.0421
RMSE 0.1554 0.3479

γ = 1.00

coverage (%) 92.4000 92.8000

2678.0000
bias -0.0016 -0.0036

variance 0.0002 0.0009
st.error 0.0135 0.0302
RMSE 0.0136 0.0304
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Table 4: Parameter estimates of bi-linear and non-linear mass action models for the influenza epidemic in the city of San
Fransisco. The removal rate α is assigned an informative prior (U(1/6, 1/3)).

mass action
posterior mean (HPD interval)

MSPE
β γ α R0

bi-linear 0.486 (0.379, 0.582) - 0.273 (0.191, 0.333) 1.801 (1.451, 2.210) 54.352
non-linear 1.173 (0.559, 1.846) 0.789 (0.659, 0.923) 0.254 (0.176, 0.333) 4.748 (2.219, 7.983) 51.013
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Table 5: Parameter estimates of bi-linear and non-linear mass action models for the ebola outbreak in Congo. The removal
rate α is assigned an informative prior (U(1/6, 1/5)).

mass action
posterior mean (HPD interval)

MSPE
β γ α R0

bi-linear 0.295 (0.223, 0.372) - 0.180 (0.168, 0.191) 1.644 (1.245,2.077) 12.080
non-linear 1.420 (0.525, 2.478) 0.496 (0.258, 0.741) 0.178 (0.166, 0.190) 7.970 (3.039, 14.130) 10.600
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Table 6: Parameter estimates of bi-linear and non-linear mass action models for the common cold outbreak on the island
Tristan da Cunha. The removal rate α is estimated with non-informative prior (U(0, 1))

mass action
posterior mean (HPD interval)

MSPE
β γ α R0

bi-linear 0.393 (0.264, 0.533) - 0.182 (0.100, 0.270) 2.287 (1.112, 3.717) 7.969
non-linear 1.640 (0.540, 2.818) 0.381 (0.100, 0.707) 0.183 (0.102, 0.274) 9.530 (2.300, 18.090) 6.186
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