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Abstract 

Research has been actively looking for alternative feed ingredients to reduce the 

reliance of the aquafeed industry on marine ingredients, namely fish meal (FM) and fish 

oil (FO). In this context, insects, in particular housefly (Musca domestica) and black 

soldier fly (BSF, Hermetia illucens) larvae, have been identified as promising 

candidates. Although a global insect farming industry is emerging, it is for now 

constrained by regulatory and technical bottlenecks that raise the question ‘where and 

how insect-based products could be integrated into aquaculture’. The literature 

indicated a high interspecies variability of the results when replacing FM with insect 

meals in fish diets and previous work failed to consider the existing challenges related 

to the insect production to demonstrate commercial relevance and applicability. In this 

thesis, maggot meals (MM) and frass (insect digestate) were assessed as strategic feed 

ingredients for two commercially important farmed species: Atlantic salmon, (Salmo 

salar) and Nile tilapia (Oreochromis niloticus), in their relevant contexts. Case studies 

showed that both housefly and BSF MM are high quality feed ingredients and suitable 

alternative to FM. Specifically, dietary inclusions of up to 200 g/kg of crude or defatted 

housefly larvae meal did not compromised the feed digestibility and utilisation and the 

growth performance and body composition of salmon parr (freshwater stage), compared 

to a FM-based control diet. Hormone (17α-methyltestosterone) treated diets containing 

between 250 and 1000 g/kg BSF or housefly meal were found as effective as a 

commonly used pure hormone-treated FM in sex-reversal process leading to 99.8 to 

100% males, high survival and evenness of the fish produced. In a commercial diet for 

advanced nursing of Nile tilapia fingerlings, up to 80 g/kg BSF meal was included 

without impairing the fish performance and body composition; dietary inclusion was 

limited by the lipid content of the crude MM. Finally, BSF frass derived from brewery 

spent grains or processed food wastes were found more effective when used as soil bio-

fertilisers with minimum application rate of 10.0 tonnes/ha or 5.0 tonnes/ha, 

respectively (for a spring onion culture), rather than supplemental feeds for tilapia 

farmed in semi-intensive conditions (fertilised pond). The study also indicated that site-

specific conditions should be accounted to support appropriate and sustainable use of 

insect-based products but in any case, juvenile fish should be strategically targeted 

given their requirements. It is expected that this approach, could support the sustainable 

intensification of aquaculture and contribute more broadly to food security whilst 

contributing to the development of a circular economy. 
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1.1 Introduction 

In this introductory chapter, a short overview of the current state of the aquaculture and 

aquafeed industries, including the challenges related to the reliance of the sector on 

finite resources such as marine ingredients, used at unsustainable rates, will firstly 

frame the context of this study. In the literature, the use of alternative feed ingredients 

was suggested as one of the solutions to overcome the issue. Thus, following a 

description of the criteria leading to the selection of suitable alternative sources of 

protein especially, current conventional and unconventional feedstuffs will be reviewed. 

Then, the particular case of insects, identified as promising candidates in the global 

assessment of potential feedstuffs, will be approached from the nutritional, production, 

and regulatory aspects. Finally, focus will be made on dipterans (flies) by reviewing the 

reasons for the recent rising interest from the aquaculture and aquafeed industries, the 

outcomes of the previous research studies on different farmed fish species and the 

remaining bottlenecks and limitations that hamper the full development of this 

emerging industry. From the foregoing discussion, knowledge gaps being identified, 

research hypotheses and objectives of the present study will be presented. 

1.2 Aquaculture and aquafeeds 

1.2.1 Generalities 

Aquaculture is a fast growing industry contributing globally to the food security. Food 

fish production, for instance, has increased at an annual average rate of 6.2% between 

2000 and 2012 (FAO, 2014). The increasing population worldwide, expected to reach 

9.7 billion individuals by 2050 (United Nations Department of Economic and Social 

Affairs, 2015), is driving up the demand for animal source food (ASF) and aquatic food 

in particular (Speedy, 2003; Troell et al., 2014). Wild fish captures have remained 

stable for the last 20 years and are not expected to increase considering the current state 

of the natural stocks; therefore, the demand for food fish is more likely to be supplied 

by aquaculture, through the development, the intensification and the diversification of 

the sector. In 2012, aquaculture contributed to almost the half of the global food fish 

supply and models predicted a contribution of 62% by 2030 (World Bank, 2013; FAO, 

2014). Thanks to technological progress and markets improvements, culture of low-

trophic species such as tilapia, carps and Pangasius/catfish are expecting to expand at a 
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faster rate than high-value species, such as salmon, for which the industry have already 

been through substantial advancements over the last years. Therefore, while salmon 

production is predicted to increase slightly, tilapia production is more likely be 

multiplied by two between 2008 and 2030 (World Bank, 2013). 

Not different from terrestrial livestock, exogenous feeding methods are commonly used 

in aquaculture to support fish growth and economic performance of the farming 

systems. In 2014, a total one billion tonne of animal feed was produced among which 

aquafeeds represented only 4.0 % remaining, therefore, a minor user of exogenous 

feeds (IFIF, 2014). However, between 2010 and 2012, non-fed aquaculture species 

production decreased from 33.5 to 30.8% of the total global food fish production, 

indicating a substantial growth in the farming of fed species (FAO, 2014). Fed-

aquaculture is represented by more than 200 fish and crustacean species among which 

eight species or groups account for 62.2% of the total feed used: carps 

(Ctenopharyngodon idellus; Cyprinus carpio and Carassius carassius), Nile tilapia 

(Oreochromis niloticus), catla (Catla catla), whiteleg shrimp (Litopenaeus vannamei), 

Atlantic salmon (Salmo salar), pangasiid catfishes (Pangasianodon hypophthalmus and 

Pangasius bocourti), and rohu (Labeo rohita) (Tacon et al., 2011; FAO, 2012). In 2008, 

29.2 million tonnes of aquafeeds were produced and shared among 11 groups of farmed 

species as represented in Figure 1.1. 
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Figure 1.1 Share of the total global production of commercial aquafeeds between the 

main farmed group aquatic species of in 2008 (adapted from FAO, 2014) 
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Feeds and feeding practices are various and depend on multiple factors such as the 

purpose of the farming activity (market / profit or home / local consumption), the 

financial resources and/or the availability of the feeds or feedstuffs (price, quantity, 

quality, etc.). Intensive and semi-intensive aquaculture systems rely on the use of 

exogenous feeds that can be formulated commercial diets, farm-made feed mixtures or 

even single feedstuffs. Complete formulated feeds, covering specific nutritional 

requirements, are commonly used to ensure high performances of intensive systems; 

recent advancements and research have led to the development of effective feeds 

improving nutrients utilisation, conversion ratios and production costs. For instance, 

carnivorous species and species cultured in flowing water are being fed with highly 

nutritious extruded pellets whereas species grown in nutrients-rich water (ponds, 

fertilised water bodies), at low density, are traditionally fed with supplementary feeds, 

usually fresh feeds (single feedstuff), farm-made mixes or cheap commercial diet 

(Hardy, 2006; Hasan et al., 2007; Tacon et al., 2011). 

1.2.2 Challenges 

Feeds generally account for 40-60 % of the production costs in intensive and semi-

intensive aquaculture suggesting that volatility of the feeds and feed ingredients prices 

can jeopardised business profitability (Hasan et al., 2007; Rana et al., 2009). The 

animal feed industry is undeniably dependent on resources available and their 

respective market prices, which vary according to the rules of supply and demand. 

Given the expected growth of the worldwide population, the needs for food, water, 

space and energy will continue to pull prices of the commodities upwards. The 

aquafeed industry is highly dependent on fish meal (FM) and fish oil (FO) as high-

quality sources of protein, energy and essential fatty acids (EFA) meeting the 

requirements of the juvenile stages (fry, fingerlings) of several fish species and of 

carnivorous species. Marine ingredients are mainly derived from natural pelagic stocks 

now being over-exploited, by-catches fisheries of fish trimmings or offal processing 

from the food industry (Tacon et al., 2006; IFFO, 2013). It was estimated that in 2008, 

aquaculture was the main consumer of marine ingredients with 60.8% of the global FM 

production (the rest being shared with the pig and poultry farming mainly) and 73.8% 

of the global FO production (the rest being used for human food and supplements 

mainly) going to aquafeeds, contributing significantly to the continuous depletion of the 
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natural resources becoming scarce and expensive (Hardy and Tacon, 2002; New and 

Wijkström, 2002; Merino et al., 2010; Tacon et al., 2011). 

In the aquafeed sector, high-value carnivorous finfish species such as salmonids and 

crustaceans are highly dependent on FM and FO (Figure 1.2). To a lesser extent, 

compound feeds for omnivorous and herbivorous farmed finfish species (carps, tilapias 

and catfishes) often contain FM and FO as a secondary source of nutrients and energy 

or to improve feed palatability (Tacon et al., 2006). Nevertheless, steadily declining 

inclusions levels of FM and FO are reported in most aquatic species compound feeds, in 

response to increasing price (Tacon and Metian, 2008).  

Indeed, similarly to other commodities, FM and FO prices are continuously rising, 

owing to the increasing competition and demand, the limited supply related to the over-

exploitation of finite resources and some environmental aspects (El-Niño) and the 

increasing costs of energy and transportation. According to recent trends, it is expected 

that between 2010 and 2030, FM and FO prices will rise by 90 and 70 %, respectively 

(World Bank, 2013). Pressure on natural resources can also raise questions about 

sustainability, however with proper management and responsible sourcing, current 

production levels could be maintained without affecting further fish stocks (Jackson, 

2012; IFFO, 2013; World Bank, 2013). Nonetheless, given the rapid expansion of 

aquaculture, demand for feed and feed ingredients will certainly increase further. 

Therefore, it is becoming essential to further reduce the aquaculture reliance to marine 

ingredients by reducing the dietary levels in most farmed fish. 

In addition, because the development of the aquaculture production is more likely to be 

in favour of non-carnivorous species, the sustainable supply of animal and plant 

proteins, lipids and carbohydrates sources other than FM and FO will also become 

essential given the multiple uses of these resources (livestock feeding, biofuels, human 

nutrition, etc.) (Tacon et al., 2011). Although dietary requirements differ inter and intra-

species (depending on their life stage), the dispensation of feeds that meet the fish 

specific requirements is essential for optimal growth and health. The challenge of the 

aquafeed industry is, therefore, to identify sustainable, consistent, and cost-efficient 

feed ingredients to meet the high nutritional requirements of each aquatic species. 
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Figure 1.2 Estimated global use of (A) fish meal and (B) fish oil (percentage of as fed 

basis) within compound aquafeeds in 2003 by major species (source: Tacon et al., 

2006) 
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1.2.3 Solutions and future prospects 

Feed volumes and therefore, expensive feed ingredients such as FM and FO, used in 

aquaculture can be reduced by improving the feed efficiency, and more specifically, the 

feeding practices and feed conversion ratios (FCR). Further reductions of marine 

ingredients dietary inclusion levels should ultimately lead to a more efficient use 

(Naylor et al., 2009). FO is an almost unique and the most economically viable dietary 

source of EFA and especially omega 3 long-chain polyunsaturated fatty acids (n-3 

LcPUFA), potential alternatives will not be further discussed here. Nutrients originating 

from FM (amino acids, minerals, etc.) could be obtained by a balanced combination of 

other feed ingredients and although this is challenging it is not impossible as proved by 

the significant progress made over the last decades (Tacon et al., 2011; FAO, 2014). 

Although FM and FO dietary inclusions have already been drastically reduced for 

several finfish and crustaceans cultured species, it is expected that these ingredients 

become more strategically used, at critical stages of the production systems to meet 

high and specific requirements (Tacon and Metian, 2008; Tacon et al., 2011; Jackson, 

2012).  

Over the last years, intensive research has contributed to identify various alternative 

ingredients from different origins (animal, plant or single-cell) which have contributed 

to the decreased use of FM in aquafeeds. Olsen and Hasan (2012) reported a reduction 

in the estimated proportion of FM used in salmon feed from 45 to 22 % between 1995 

and 2010 and a projected further decrease from 22 to 12 % between 2010 and 2020. 

Among non-fish alternatives, soybean meal and its derived concentrates have become a 

common protein supplement in aquafeeds; in 2007, it represented 25 % (in weight) of 

the total compound aquafeeds produced (Gatlin et al., 2007). In 2008, it was reported 

that feeds for herbivorous and omnivorous fish and crustaceans contained in average 25 

% soybean meal (Tacon et al., 2011). In feeds for carnivorous species, especially 

salmonids, inclusion levels are however limited due to nutritional characteristics that 

can negatively impact fish performance (Pratoomyot et al., 2011). Nevertheless, given 

the environmental and socioeconomic impacts related to the production of crop-based 

ingredients such as soy (deforestation, use of agro-chemicals, social displacement, 

geographic sourcing, etc.), concerns about the increasing use for aquaculture are also 

arising (WWF, 2014; Fry et al., 2016). 
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More research is needed to continue identifying high-quality, nutritionally competent 

and safe feed ingredients, that are also produced or sourced sustainably (Tacon et al., 

2011). Complete evaluation including not only the nutritional aspects but also the whole 

value chain (production, processing and costs) and the environmental and human health 

implications of the potential alternatives should be addressed. In order to avoid 

repeating the errors committed in the past, a sustainable management of the resources 

used should also be seriously considered. 

1.3 Alternative sources of proteins 

1.3.1 Selection criteria 

To define the suitability of an alternative feed ingredient, a range of aspects must be 

considered such as nutritional and physical characteristics, functionality, availability, 

sustainability or market price (Glencross et al., 2007; NRC, 2011). Although several 

protein sources might have a nutritional profile similar to FM, it will never be 

completely identical; for instance, plant protein sources present high similarities with 

FM in terms of apparent protein digestibility, however their amino acid (AA) 

composition is limiting and do not match fish dietary requirements. In addition, effects 

on the fish performance are also key criteria; alternative feedstuffs can reduce the 

palatability of a feed or cause heath issues (enteritis for example), subsequently 

resulting in a reduction of the feed intake which compromise the growth (Hardy, 2006). 

Although the nutrient composition is important, so it is the identification of anti-

nutritional factors that can affect the fish physiology on various aspects (Francis et al., 

2001).  

Obviously, if an alternative feedstuff is more cost-effective than FM and does not have 

adverse effects on the fish performance, it is almost directly accepted by feed 

manufacturers. Effectiveness can be manipulated and improved by various processing 

methods, but this often results in overpriced products (protein concentrates, synthetic 

AA, etc.) affecting competitiveness and consequently, leading to more expensive diets 

to manufacture (NRC, 2011; Rust et al., 2011). 

Several alternatives to FM have already been identified and are widely used in 

aquafeeds, but some challenges remain (see 0 above) and there is still a window for new 

markets and novel products, which should be assessed in independent contexts. 
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Identification, evaluation and use of locally available products such as unconventional 

and underutilised protein sources are anticipated (Tacon et al., 2011). 

1.3.2 Alternative sources of protein 

1.3.2.1 Plant protein sources 

So far, plant protein sources have been the main choice to replace FM in fish diets; 

mostly used are oilseed meals (soybean, rapeseed, sunflower and cottonseed), grain 

meals (wheat and corn glutens) and legumes (peas, beans, peanuts and lupin). High 

substitution levels of marine ingredients with plants were achieved for herbivorous and 

omnivorous farmed species whereas, for carnivorous species, it was limited for the 

various reasons stated (see 1.3.1: nutritional deficiencies, reduced digestibility, enteritis, 

effects on growth), even if the nutritional quality has been improved by further 

processing (heating, defatting), pre-treating (enzyme), or by adding dietary supplements 

(AA, antioxidants) (Francis et al., 2001; Hardy, 2006; Gatlin et al., 2007; Olsen and 

Hasan, 2012). 

1.3.2.2 Animal protein sources 

Processed animal protein ingredients, principally terrestrial animal by-products such as 

meat and bone meals, blood meals and poultry by-products, are more comparable to FM 

than plants in terms of AA composition, however, the nutritional composition is highly 

variable depending on the product (NRC, 2011). Despite the relaxation of the European 

restrictions implemented after the outbreak of bovine spongiform encephalopathy in the 

United Kingdom (UK) in the 1980’s, to use animal products in aquaculture and the 

evidence suggesting that risks of contamination through fish is close to zero, there is 

still a continuing mistrust in the sector that limits usage in Europe (Ingrosso et al., 

2006; Dalla Valle et al., 2008; Naylor et al., 2009).  

It is estimated that the global volume of animal by-products meals available is 2 to 3 

times greater than that of FM, resulting in the largest source of animal protein (Tacon et 

al., 2006). Other animal protein sources that have attracted interest lately are fish 

hydrolysates (protein concentrates), that can be derived from by-products, improving 

growth and feed intake of farmed species like the Atlantic salmon (Refstie et al., 2004) 

and krill meal (zooplankton) that requires more investigation in terms processing but 
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has been successfully used as a taste enhancer or pigment in fish feeds (Tacon et al., 

2006; NRC, 2011). 

1.3.2.3 Others 

At last, single-cell proteins from bacteria, yeast and micro-algae have been assessed in 

few studies as FM substitutes for finfish and shrimps. Advantages remain in the high 

nutritive value and productivity of the systems where cells multiply (up to 10,000 

tonnes per year for microalgae for example according to Richmond, 2004) using mostly 

renewable carbon sources derived from agro-industry waste streams (Tacon et al., 

2006). Nevertheless, industrial systems involve high-cost innovative processes resulting 

in very expensive raw materials, in other words, it may not be a viable solution for 

aquaculture yet (Tacon et al., 2006; Olsen and Hasan, 2012). 

1.3.3 Unconventional and underutilised sources of protein 

Undoubtedly, there are still poorly or un-investigated tracks to explore. These are 

underutilised, not efficiently studied, forgotten or sometimes, endemic resources that 

are not widely acknowledged or not commercialised also called unconventional sources 

of nutrients. Being nutrient-rich, a variety of unconventional feedstuffs have been used 

in fish nutrition and previous studies indicated encouraging results; however, all were 

associated with issues that prevented them from breaking through (Table 1.1). It is the 

growing need for ASF in developing countries in Asia and Africa that has revealed the 

potential of these products, commonly used by small-holder farmers through low-cost, 

farm-made, feed formulations (Hasan et al., 2007; PAF, 2011); thus, non-conventional 

feedstuffs have been mainly studied in local context and considered for only low-

trophic levels species such as tilapia and catfish (El-Sayed, 2004; Hasan et al., 2007; 

Sogbesan and Ugwumba, 2008a). Given the growing demand for cost-effective 

feedstuffs, it is becoming critical to develop local opportunities to produce nutritional, 

safe, sustainable and economically viable alternative ingredients to support the 

development of the aquaculture sector, in particular under-utilised sources of nutrients 

(El-Sayed, 2004; Rust et al., 2011; Tacon et al., 2011). In this context, thanks to the 

development of sustainable novel technologies that could be adapted globally, and 

depending on the current identified limitations and cost associated, the standardisation 

and up-scaling production of selected unconventional feedstuffs are probable. 
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Table 1.1 Some examples of unconventional feedstuffs and the associated issues limiting a conventional use 

Unconventional feedstuffs 
Limitations 

 Availability / consistency related aspects Nutritional aspects Cost related aspects 

Type Examples 
Geographic 

specificity 
Seasonality 

Low 

volume 

Inconsistent 

quality 

Low 

digestibility 

Toxic or / 

anti-nutrients 

factors 

Biological / 

chemical 

contamination risks 

Pre-

treatment / 

processing 

Selection / 

collection 

Sold 

(not 

free) 

Leaves 

protein 
Cassava, cucumber, 

squash … • • • 
 • • 

 • 
 • 

Aquatic 

plants 
Duckweed, water 

hyacinth … • 
 • 

 • 
 • 

   

Cakes and 

pulps 

Palm or Jatropha 

kernel cakes, sugar 

beet or coffee 

pulps, olive cake … 

• 
   • • 

 • • • 

Invertebrates 

Earthworms, 

termites, snails, 

marine 

polychaetes… 

• 
 • • 

    • 
 

Other animal 

protein 

sources 

Tadpole and toads, 

feather meal, fish 

silage … 
• 

 • • 
   • • • 

Organic 

wastes and 

by-products 

Table wastes, 

market wastes, 

brewery wastes, 

cereal brans … 

• • 
 • • 

 • 
 • • 

Farmed 

insects 

Maggots, crickets, 

silkworm, 

mealworms … 

  • 
    • 

 • 

Based on Spinelli, 1980; Rojas, 2002; Hasan et al., 2007; Sogbesan and Ugwumba, 2008; Abowei and Ekubo, 2011; Krome, 2014; PAF, 2011; Tacon et al., 2011
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1.4 Insects, an emergent feedstuff 

Invertebrates, in particular insects, have always been considered as non-conventional 

feed ingredients because of their limited usage for rural aquaculture, their limited 

supply (wild capture or small-scale farming) and non-commercialisation (Abowei and 

Ekubo, 2011). Using insects as a source of nutrients is not a novel concept; edible insect 

have been part of human diets for centuries (Bukkens, 1997) and first investigations on 

insects as potential feedstuffs for animals started in the 1970’s mainly for poultry and 

pigs (Teotia and Miller, 1974; Phelps et al., 1975; Newton et al., 1977; Calvert, 1979); 

later in the 1980’s research started to investigate the potential of invertebrate for fish 

(Bondari and Sheppard, 1981, 1987; Tacon et al., 1983; Stafford and Tacon, 1984). 

Since the beginning of the 2000’s, a renewed interest in insects has risen, motivated by 

the global need for alternative feed resources and a diversification of the waste 

management strategies.  

1.4.1 Nutritional aspects 

Numerous studies have demonstrated the suitability of insects as a source of nutrients 

for animals. Moreover, terrestrial and aquatic insects or other invertebrates are part of 

several fish species natural diets stressing their potential as a feed ingredient for farmed 

fish (Henry et al., 2015). Nutritional composition varies widely among species and 

depends also on the life stage and the rearing conditions (Sánchez-Muros et al., 2014). 

Barroso et al. (2014) selected 16 species among the orders Coleoptera, Diptera and 

Orthoptera and compared the analysed nutritional compositions to FM and soybean 

meal, the most commonly used ingredients in aquafeeds. Compared to FM, these 

insects had lower protein contents (40-60 %, on a dry matter basis) and higher lipid 

levels (20 % in average). AA composition was mainly related to the taxonomic groups 

and it appeared clearly that orthopteran and coleopteran essential amino acid (EAA) 

profiles were similar to soybean meal whereas dipteran EAA profiles were better 

balanced than soybean meal and highly similar to FM. The study has also highlighted 

the influence of the insect diets (rearing substrate) on their fatty acid (FA) profile ; this 

was also suggested by St-Hilaire et al. (2007a) who managed to enrich BSF larvae with 

n-3 LcPUFA, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through 

feeding on fish offal. The possibility to manipulate insects FA composition is a great 
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advantage to overcome the lack of LcPUFA, essential for carnivorous and marine fish 

species. At the opposite, defatting process was also suggested to improve the quality of 

insect meals to remove unnecessary lipids and FA not matching with the fish dietary 

requirements and concentrate proteins and AA (Fasakin et al., 2003; Kroeckel et al., 

2012; Henry et al., 2015).  

Although no anti-nutrient factor has been identified in insects, chitin, the main 

constituent of insect cuticles and indigestible polysaccharide for monogastric animals 

including fish (Rust, 2002), may impair the fish performance (Shiau and Yu, 1999; 

Olsen et al., 2006). However, the contradictory results of numerous studies reviewed by 

Henry et al. (2015) suggest that more investigations are required to clarify this aspect. 

In addition, although chitin removal might improve protein quality and feed 

digestibility (Newton et al., 2005; Sheppard et al., 2007; Rumpold and Schlüter, 2013), 

technical and economic feasibility of chitin extraction have yet to be determined 

(Diener et al., 2011). 

Finally, antifungal activity and antibacterial peptides have been detected in numerous 

insect species, potentially improving the shelf-life of insect-based feeds (Ravi et al., 

2011; Zhao et al., 2010). 

1.4.2 Insect farming 

Mass production of insect is fundamental to supply the growing demand for proteins in 

both human and animal nutrition, avoiding thereby, the over-exploitation of wild 

resources (Sánchez-Muros et al., 2014). Insect farming is not a new practice as 

commercial mass production systems already existed in sericulture (silkworms), 

apiculture (bees) or to support the integrated and biological control of pests in 

agriculture (Rumpold and Schlüter, 2013; Morales-Ramos et al., 2014); this knowledge 

was the basis for the development of mass rearing of edible insects. Insect farming is 

essential to ensure quality, safety, traceability and consistency of the insect-based 

products (Rumpold and Schlüter, 2013) and it is not very different than conventional 

livestock in its principle since it is a process converting a source of nutrients (feed) into 

biomass (Defoliart, 1995; Paoletti and Dufour, 2002). Locust and crickets (Orthoptera), 

mealworms (Coleoptera) and black soldier fly (BSF) and common housefly larvae 

(Diptera) are now successfully farmed globally and might be key insects to consider for 
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animal and fish nutrition (van Huis et al., 2013; Barroso et al., 2014; Drew and Pieterse, 

2015). 

The production of a kilogramme of insect biomass result in less greenhouse gas 

emissions and requires less land than conventional livestock production, thereby 

resulting in a smaller ecological footprint (Oonincx et al., 2010; Oonincx and de Boer, 

2012). Insects are highly prolific organisms that grow fast relying on various organic 

substrates. Highly efficient converters, it is suggested that insects fed on low or no-

value organic wastes can reduce the environmental impact of the livestock sector 

(Oonincx et al., 2015; van Zanten et al., 2015). 

1.4.3 Waste remediation and circular economy 

Global concerns are rising toward the amount of waste generated by human activities 

nowadays, in particular organic wastes which include animal manures, crop residues, 

food processing wastes, municipal biosolids and wastes from some industries 

(Westerman and Bicudo, 2005). With 30 to 40% of the food produced globally 

currently wasted or lost (FAO, 2011) and the intensification of the livestock industry 

expecting to generate twice more manures by 2050 (FAO, 2006), sustainable solutions 

are most wanted. The use of waste streams or mass flows of no or low economic value 

not yet harnessed in other value chains (low competition) is the most favourable option 

to consider to farm insects cost-efficiently and sustainably (PROteINSECT, 2016a) and 

thanks to their ability to feed on and benefit from nutrient-poor substrates, insects are 

usually cultured on organic wastes or by-products from the food and agro-industry (van 

Huis et al., 2013). Therefore, mass-rearing systems are developed following the 

integrated bio-systems (IBS) approach (Warburton et al., 2002) where products or mass 

flows of no or low economic value, that could impair the environment if not 

appropriately treated or disposed, are used to generate valuable products in an 

environmentally friendly manner; the latter becoming subsequently inputs of another 

system, thereby closing the loop for nutrients and materials flows, resulting in zero 

wastes (Figure 1.3). 

Although challenges remain, related to selection, transportation or risks of 

contamination, there is a waste remediation opportunity associated with the production 

of insect biomass and by-products (residues or frass), that can be further processed by 
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separating various fraction (oil, protein extract, chitin…), depending on the degree of 

technology, and ultimately used as biofuels, feed ingredients / additives or bio-

fertilisers for crops (Das et al., 2010; Li et al., 2011a; van Huis et al., 2013). The value 

chain that is developing around the emerging insect farming industry is circular and 

based on the relationships between the environment (ecological impacts and benefits) 

and the market demand for alternative feedstuffs (economic activities). Thus, the 

efficient use of insects can close the nutrients loop applying the principles of circular 

economy (Veldkamp et al., 2012; van Huis et al., 2013).  

In Europe, the development of a Circular Economy Strategy has been initiated (EC, 

2016a) and it includes the revision of the regulations concerning waste management and 

recycling strategies and the market for secondary raw materials. This initiative would 

probably contribute to develop further the insect farming industry by integrating it in 

the sustainable European economic growth. 
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Figure 1.3 Schematic representation of the insect-substrate-products integrated bio-

systems (IBS) 
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1.4.4 Regulatory frameworks 

In Europe, since June 2013, under strict conditions, the EC regulation 56/2013 lifted the 

ban on the use of non-ruminant Processed Animal Proteins (PAP) in farmed non-

ruminant, including aquatic species, feeds. As farmed insects are non-pathogenic 

invertebrates species to human or animals, they are considered as Category 3 material 

(EC regulation 1069/2009). Re-authorised PAP (EU regulation 142/2011) are derived-

Category 3 materials and must answer to stringent requirements during collection, 

transport and processing, including slaughter in certified abattoirs which is not 

applicable to insects (Halloran and Münke, 2014). In addition, under the EC regulation 

1069/2009, farmed animals intended for animal feeding can only be reared on 

authorised substrates which do not include animal manures, treated wood and kitchen 

and table wastes. This last condition restricts considerably the list of substrates that can 

be used to produce insects and excludes most evident wastes streams. To prevent cross-

contamination risks, the EC regulation 1069/2009 also requires that animal by-products 

and derived PAP imported from non-member countries follow conditions as strict as 

those applicable to the European Community. 

Finally, only hydrolysed insect PAP and insect oil (derived insect fat) can be used in 

aquafeeds if the insects have been reared on 100 % vegetables and/or eggs and dairy 

products which are not restricted substrates (EC regulation 999/2001; EC regulation 

1069/2009; EU regulation 142/2011). 

In a recent scientific opinion report, EFSA Scientific Committee (2015) highlighted that 

risks of contamination (both biological and chemical) are still high within the whole 

value chain (from the farming to the processed product) and need to be assessed. Given 

the lack of knowledge identified, it was suggested that more studies should evaluate the 

occurrence of biological and chemical hazards when insects are used as food and feed. 

In other countries, such as the USA, Canada, Australia or New-Zealand, insects are not 

listed as acceptable and safe feed ingredients (Halloran and Münke, 2014). In Ghana, 

Mali, Kenya and Uganda there is no legislation that prevents or authorises the use of 

insect in animal feeds whereas in China insect meal and defatted insect powder are both 

listed in the Feed Materials Catalogue as suitable animal feed ingredients (Halloran and 

Münke, 2014; PROteINSECT, 2013). 
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1.5 The particular case of flies larvae (Diptera, Insecta) 

1.5.1 Interest and benefits 

Flies belong to the large order Diptera (from the Greek ‘di’: two, and ‘ptera’: wings) 

and are holometabolous species meaning that their life cycle is divided into distinct 

larval and adult life stages (Wiegmann and Yeates, 2007). 

1.5.1.1 Farming benefits 

With the emergence of an insect industry aiming at producing novel feed ingredients by 

recycling organic materials fly species, in particular the common housefly (Musca 

domestica) and the Black Soldier Fly (BSF, Hermetia illucens) have attracted attention 

thanks to their numerous attributes. First, they are almost globally distributed, which 

permits exploitation without species introduction in most part of the world. Being 

saprophagous, larval stages (or maggots) can fed on various organic resources including 

low or no-value wastes or by-products; they are considered as great recyclers (Larde, 

1990; El Boushy, 1991; Hem et al., 2007; Diener, 2010; Čičková et al., 2012c; 

Veldkamp et al., 2012; Zhang et al., 2012; Wang et al., 2013; Nguyen et al., 2015; 

Oonincx et al., 2015). The adult housefly feeds on sources of carbohydrate and protein 

whereas adult BSF relies only on water to survive (Skidmore, 1985; Tomberlin et al., 

2002). BSF species is not harmful to human and high-controlled rearing systems for 

housefly limit considerably the risks of diseases transmission (Bradley and Sheppard, 

1984; Leclercq, 1997; Rozendaal, 1997; Sanchez-Arroyo, 2011). Adding to that, the 

high prolificacy (resulting in a numerous and efficient offspring) and short life cycle 

(few weeks) of these two species indicate a great potential for mass-rearing. 

Maggot farming might have a positive impact on the environment: fly larvae do not 

compete with human resources, they contribute to waste management or remediation by 

efficiently converting nutrient-poor, low or no-value substrates or wastes that are costly 

to treat or dispose into valuable biomass; while feeding on manures, agro-industrial or 

urban wastes, maggots reduce effectively nutrients, volumes and odours, thereby 

reducing the sanitation issues and risks of pollution (Sheppard et al., 1994; Newton et 

al., 2005a; Myers et al., 2008; Diener et al., 2011b; Lomas, 2012; Lalander et al., 2013; 

Čičková et al., 2015; Tomberlin et al., 2015; van Zanten et al., 2015). In addition, it has 



Chapter 1 

38 
 

been showed that BSF larvae are able to reduce significantly E. coli and Salmonella spp 

in organic wastes (Erickson et al., 2004; Liu et al., 2008; Lalander et al., 2014).  

Substrate residues, or frass, resulting from the larval bioconversion process, consist of 

undigested substrate residues thoroughly mixed with insect excreta (Alvarez, 2012; 

Čičková et al., 2012a). According to the literature, frass represent 80 to 95 % of the 

total outputs (i.e. larval biomass + frass; wet weight) of a bioconversion process with 

fly larvae (Calvert, 1979; Čičková et al., 2012b; Wang et al., 2013; Caruso et al., 2014) 

and several authors suggested possible valorization routes including hydrolysis into 

fermentable sugar suitable for the food industry (ethanol fermentation); processing 

(drying, grinding and packaging) to facilitate handling and storage; further composting 

(reducing conventional composting duration) or vermicomposting with earthworms 

(Newton et al., 2005b; Li et al., 2011c; Čičková et al., 2012c; Zhu et al., 2012). In most 

cases, frass chemical composition was comparable to bio-fertilisers with optimal levels 

of N, P and K to supplement soils (Choi et al., 2009; Zhu et al., 2012; Wang et al., 

2013; Lalander et al., 2014); however, limited and unclear results are available from the 

use of frass as soil amendments or bio-fertiliser (NC State University, 2006; Choi et al., 

2009).  

1.5.1.2 Nutritional benefits 

Dipteran species nutritional attributes indicate several similarities with FM suggesting a 

high potential as feed ingredients, in particular as a source of protein for aquatic 

species. Among other insect species, the AA composition of fly larvae meals or 

“maggot meals” (MM) is the most similar to FM and despite few deficiencies, profiles 

are well-balanced and superior to soybean meal (Barroso et al., 2014). However, lipid 

and FA compositions of MM are devoid of EFA (in particular EPA and DHA) which 

can limit inclusions in marine fish diets. Fortunately, as described in 0 above, FA 

composition of insects can be manipulated through their diet which is possible under 

farming conditions (St-Hilaire et al., 2007a; Biancarosa et al., 2015). It has been 

demonstrated that the nutritional profile of maggots is not only influenced by the 

species and its rearing conditions, but also by the life stage at harvest (i.e. larvae, 

prepupae or pupae) or the post-harvest methods (Henry et al., 2015). Table 1.2 below, 

adapted from Barroso et al. (2014), compares the proximate, AA and FA compositions 

of BSF larvae, housefly larvae, FM and soybean meal. 
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1.5.1.3 Emerging industry 

Compared to other insects such as crickets or mealworms, maggots are more likely to 

be used in animal feeds rather than in direct human nutrition, principally for reasons 

related to the consumer acceptability (Awoniyi, 2007). To date, several commercial 

pilots for the production of housefly or BSF larvae are being tested in Canada, the USA, 

South Africa, Spain, the Netherlands, Switzerland, Malaysia, France and China (van 

Huis et al., 2013; Drew and Pieterse, 2015; Henry et al., 2015; Pastor et al., 2015); 

novel farming and processing methods are developed to produce a range of products 

intended for the animal feed industry (crude or defatted MM, protein hydrolysates and 

oil) and the agriculture/horticulture industry (frass). However, very little information 

about the current production capacity of the maggot farming industry is available, but it 

can be expected that if the market demand for insect meals increases, providing that the 

legislation changes and becomes more flexible towards the use of insect in animal feeds 

using a broader range of substrates, novel technologies will be developed to improve 

and upscale the current pilots. In the literature, only a few systems indicated large 

production capacity because most of the work was conducted on pilot system or in 

laboratories. Burtle et al. (2012) have designed a system in the USA, which could, in 

theory, produce 3,750 tonnes BSF MM per year using 360 tonnes of daily food 

leftovers or swine manure. In China, a housefly larvae bioreactor has also shown 

promising results with a total production of 760-960 tonnes of fresh larvae per year 

(corresponding to 570-720 tonnes MM/year) using swine manure (Wang et al., 2013). 

The development and multiplication of this kind of system could contribute 

significantly to the MM supply globally.  

As for now, given the regulatory restrictions (see 1.4.4 above), MM and derivatives are 

used in pet foods, an industry with a high purchasing power, which has rapidly 

identified the potential of these products as high-quality feed ingredients. Meanwhile, 

research keeps investigating the applicability and safeness of MM-based products as 

feed ingredients for various farmed fish species and livestock in general. 
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Table 1.2 Proximate, amino acid (AA) and fatty acid (FA) compositions of black 

soldier fly larvae (BSF) and housefly larvae compared to fish meal (FM) and soybean 

meal selected and analysed by Barroso et al. (2014) 

 BSF Housefly FM Soybean meal 

Proximate Composition (% Dry Matter) 

Crude protein 36.2±03 46.9±4.1 73.0±0.8 50.4±0.2 

Crude fat 18.0±1.6 31.3±1.6 8.2±0.0 3.0±0.0 

Ash 9.3±0.3 6.5±1.5 18.0±0.2 7.8±0.0 

Nitrogen-free extract 36.5±1.0 15.3±4.0 0.8±0.7 38.8±0.3 

Amino Acid (% total AA)     

Arginine 8.24 6.83 7.42 8.03 

Histidine 5.29 4.68 7.86 3.28 

Isoleucine 5.76 4.89 5.04 5.47 

Leucine 6.87 6.75 7.81 8.01 

Lysine 7.60 8.36 8.78 6.34 

Methionine 1.50 3.00 2.93 1.01 

Phenylalanine 6.88 7.01 5.38 5.79 

Proline 6.16 5.33 4.76 4.99 

Threonine 5.39 4.87 6.26 4.17 

Tyrosine 6.35 5.79 3.91 2.93 

Valine 6.31 6.08 5.56 5.45 

Fatty Acid (% total FA)     

12:0 43.4±0.6 0 0 4.1±1.3 

14:0 7.9±0.1 2.4±0.1 7.9±0.4 - 

16:0 13.2±0.1 23.1±0.5 23.0±0.6 15.1±0.2 

18:0 2.8±0.1 7.2±0.8 5.3±0.1 4.8±0.4 

Total Saturated
1
 67.1±0.6 32.6±0.1 36.1±1.1 24.0±1.9 

16:1n-7 2.3±0.1 15.1±0.8 7.9±0.3 - 

18:1n-7 - 0.3±0.1 4.0±0.7 0.8±0.0 

18:1n-9 14.6±0.3 37.1±0.7 8.4±0.1 14.3±0.3 

20:1n-9 0 0.2±0.0 0.3±0.4 - 

Total monounsaturated
2
 16.9±0.2 52.7±0.2 20.6±0.7 15.1±0.3 

18:2n-6 15.2±0.4 6.5±0.0 1.1±0.1 48.5±0.6 

18:3n-6 - 0.2±0.0 - - 

20:4n-6 - 0.4±0.0 1.4±0.0 - 

Total n-6 PUFA
3
 15.2±0.4 7.1±0.0 2.7±0.2 55.4±0.8 

18:3n-3 0.7±0.1 0.3±0.0 0.2±0.3 6.9±0.2 

18:4n-3 - 0.1±0.0 1.9±0.0 - 

20:5n-3 (EPA) - 0.1±0.1 14.1±0.2 - 

22:5n-3 - - 2.7±0.1 - 

22:6n-3(DHA) - - 16.1±0.1 - 

Total n-3 PUFA
4
 0.7±0.1 0.5±0.1 34.7±0.2 - 

Total PUFA
5
 15.9±0.6 7.6±0.1 37.3±0.0 55.4±0.8 

Values are mean ± SD 
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1.5.2 Previous work with fish 

1.5.2.1 Overview 

Although dipterans larvae are not particularly part of the natural feed intake of aquatic 

species, other invertebrates are, suggesting that farmed fish can benefit from MM as a 

feed ingredient. Comprehensive reviews have already gathered the outcomes of the 

previous research studies assessing the suitability of BSF or housefly MM as substitutes 

to FM in farmed fish species (Makkar et al., 2014; Riddick, 2014; Henry et al., 2015).  

Early studies were mostly carried out using whole, chopped or frozen maggots often 

dispensed to fish with their frass, as supplementary feeds or in combination with other 

feeds or feedstuffs in low-income developing countries (LIDC) in Asia and Africa 

where access to good quality feed and feedstuffs is challenging (1.5.2.2 below). 

Research is now globally focusing replacing FM with MM in nutritionally balanced 

compound diets that meet fish species specific requirements (Figure 1.4). Principally 

because of the high interspecies variability of the results of the studies, findings were 

presented below on a fish group basis according to the species assessed (see 1.5.2.3 to 

1.5.2.6). Thus, unless indicated otherwise, most recent studies looked at crude or 

defatted MM from housefly or BSF larvae, fed on animal manures, as FM substitutes in 

compound diets for juvenile fish. Other factors such as the larval rearing substrate, the 

stage of development of the fly larvae at harvest (i.e. larvae, prepupae, pupae), the MM 

processing methods which might influence its nutritional composition (reviewed by 

Henry et al., 2015), the diet formulations (i.e. other ingredients involved) and the MM 

dietary inclusion levels and the fish nutritional requirements (related to the species and 

its life stage) often make difficult the comparison and generalisation of the outcomes of 

the various case studies.  
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Figure 1.4 Use of maggots and frass as a source of nutrient for fish in intensive or 

semi-intensive aquaculture (adapted from Spinelli (1980) 
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1.5.2.2 Use in semi-intensive farming systems 

Although the use of complete well-balanced diets will certainly increase given the 

development of the aquaculture sector (see 1.1 above), semi-intensive aquaculture 

systems will surely continue to benefit populations from LIDC; therefore, the potential 

of non-processed maggots should not be neglected. Brans (wheat, rice, etc.) and low 

FM or low protein feeds are commonly used in semi-intensive farming (Tacon, 1996; 

Tacon and De Silva, 1997). Several studies showed that chopped, frozen or live 

maggots (housefly or BSF) offered to Blue tilapia, Nile tilapia, Channel catfish, or 

African catfish in supplement of a nutrient-poor or cheap supplementary feed allowed 

significantly better growth performance than the fish fed the supplementary feed (SF) 

only (Bondari and Sheppard, 1981; Ebenso and Udo, 2003; Madu and Ufodike, 2003; 

Oyelese, 2007; Kareem and Ogunremi, 2012). However, Blue tilapia and Channel 

catfish growth were seriously depressed when fed solely whole or chopped BSF 

compared to a commercial diet (Bondari and Sheppard, 1987). To a larger extent, given 

the difficulties that may be associated with the separation of the maggots from their 

growing medium or substrate (see 1.5.3 below), and providing that the substrate is 

nutritionally suitable (feed-grade) and does not present risks for the fish, both maggots 

and frass could be dispensed to fish as a sole SF or blended with other feedstuffs after 

drying and roughly pelletized as indicated in Figure 1.4 (Spinelli, 1980). 

1.5.2.3 Catfish 

Many studies have looked at feeding catfish juveniles (1-10 g, initial weight) for 6 to 10 

weeks with MM-based diets with generally positive outcomes. Dietary inclusions of 

housefly MM between 75 and 250 g/kg did not affect the fish performance of the 

African catfish (Clarias gariepinus) and the hybrid catfish (Heterobranchus longifilis x 

C. gariepinus) compared to FM-based diets (Sogbesan et al., 2006; Aniebo et al., 2009; 

Michael and Sogbesan, 2015); similar results were reported for BSF MM dietary 

inclusion up to 300 g/kg for the Channel catfish, Ictalurus punctatus (Newton et al., 

2005b). On the contrary, darkbarbel catfish (Pelteobagrus vachelli) fed a diet 

containing 390 g/kg housefly MM showed significant reduction of the feed and protein 

efficiencies and the growth compared to fish fed a FM-based diet, probably related to a 

lower antioxidant activity (Dong et al., 2013). Fasakin et al. (2003) reported that at least 

320 g/kg defatted housefly meal could be included in a compound diet for C. gariepinus 
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(25% FM replacement) without impacting the fish performance in comparison with a 

FM-based diet whereas 335-350 g/kg crude MM inclusions were detrimental to the fish 

growth. In FM-free diets (100 % substitution with MM), only Aniebo et al. (2009) 

reported fish performance similar to FM-based diets for C. gariepinus and the 

differences with other studies results (Idowu et al., 2003; Sogbesan et al., 2006) might 

be attributed to the better quality of the MM which was produced from maggots reared 

on a mixture of cow blood and wheat bran. In fact, it is highly probable that the flies 

attracted by this substrate were from various species, including blowflies 

(Calliphoridae) and housefly, leading to MM of better quality thanks to balanced AA 

composition and a different FA composition related to the chosen substrate (Henry et 

al., 2015). 

1.5.2.4 Tilapia 

Assessment of housefly MM has been limited to Nile tilapia fingerlings, Oreochromis 

niloticus (2 to 15 g, initial weight) fed experimental diets for 8 to 10 weeks. BSF larvae 

were only used whole or chopped to feed the blue tilapia, Oreochromis aurea (Bondari 

and Sheppard, 1987, 1981). Results indicated that dietary inclusion of MM comprised 

between 150 and 680 g/kg, thus, replacing between 20 and 100 % FM respectively, did 

not affect tilapia performance compared to FM-based diets and did not have adverse 

effects on the haematology and homeostasis of the fish (Ajani et al., 2004; Ogunji et al., 

2008a, 2008b, 2007; Omoyinmi and Olaoye, 2012). In another study, Ogunji et al. 

(2008c) used a low-protein MM (28.6 % crude protein, on a dry matter (DM) basis, 

compared to 37.5 % DM in previous studies) and reported that fish growth was 

significantly depressed with diets containing 150 and 300 g/kg MM; however, the 

differences between the dietary protein/dietary lipid ratios among experimental diets 

might have biased the results (Henry et al., 2015). 

1.5.2.5 Carps 

Carps have also been subjects of feeding experiment with housefly MM. In particular, 

the growth of 12.2 g juvenile gibel carp (Carassius auratus gibelio) fed for 6 weeks 

with a diet containing 390 g/kg MM (maggots reared on a mixture of wheat and rice 

brans with soya bean dregs) was not affected and antioxidant activity was even 

enhanced compared to fish fed the FM control diet (Dong et al., 2013). Similarly, 72 g 

black carp (Mylopharyngodon piceus) showed an enhanced antioxidant capacity when 
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fed a basal diet supplemented with 25 g/kg MM; results also concluded in an improved 

growth, non-specific immunity of and disease resistance of the fish supplemented with 

MM (Ming et al., 2013). Moreover, MM may enhance nutrient digestibility in common 

carps (Cyprinus carpio) of 100 g compared to Nile tilapia of similar size; the latter were 

found to be poorly efficient in utilising nutrients provided by housefly MM; however 

the spawning activity of the tilapia during the study could have biased the results 

(Ogunji et al., 2009). 

1.5.2.6 Carnivorous species 

More sporadic work was done on carnivorous species, although several species are 

known to naturally ingest insects, particularly in their juvenile stages (Scott and 

Crossman, 1973; Bell et al., 1994; Amundsen et al., 2001). In the Rainbow trout 

(Oncorhynchus mykiss), a dietary inclusion of 92 g/kg housefly MM was found 

detrimental to the fish growth whereas at 150 g/kg BSF MM inclusion seemed to 

perform better since the fish performance were similar to those of the fish fed FM-based 

feeds (St-Hilaire et al., 2007b). However, above this level BSF meal was systematically 

associated with growth and performance reductions (St-Hilaire et al., 2007b; Sealey et 

al., 2011). In addition, it was not advised to lower dietary fish oil levels while 

substituting FM with lipid-rich BSF MM as it resulted in lower trout fillets quality with 

significantly reduced n-3 LcPUFA contents (St-Hilaire et al., 2007b). On the other 

hand, when MM quality was improved through defatting or by improving its FA 

composition (feeding maggots on EFA-rich substrates to increase in particular the n-3 

LcPUFA content), dietary inclusions comprised between 180 and 400 g/kg did not 

affect the fish performance and fillet quality (Sealey et al., 2011; Gasco et al., 2015). In 

Atlantic salmon (Salmo salar) post-smolts however, the defatting method used on BSF 

MM used at 50 and 250 g/kg inclusions have affected the fish performance compared to 

the control diet whereas diets containing up to 250 g/kg crude BSF MM performed 

equally to the FM-based control diet (Lock et al., 2015). Although the nutrients 

digestibility of both crude and defatted BSF meals were reported excellent in Atlantic 

salmon post-smolt, a low protein digestibility of defatted BSF MM was reported for 

young turbot (Psetta maxima). Growth depression was positively related to the MM 

inclusion in turbot diets and above 330 g/kg dietary inclusion, FCR increased 

significantly indicating a low palatability of the diets potentially caused by the high 

chitin content of the insect meal (Kroeckel et al., 2012). 
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1.5.3 Bottlenecks and limitations 

Methods used for the maintenance of fly colonies (dipteran) in captivity within 

laboratory or small-scale farming facilities mainly for research purposes or in mass-

rearing systems for the production of natural enemies, pollinators, or baits for 

recreational fishing are already commercial realities; in the EU they have been 

developed under strict legal frameworks, including strict measures to prevent accidental 

escapes (Leppla and Ashley, 1978; Hardouin and Mahoux, 2003; DEFRA, 2005). 

As stated in 1.5.1.3 above, up-scaled systems to produce fly larvae intended for the 

animal feed industry are developing. Nevertheless, the task is challenging it requires a 

strong knowledge of the species biology and its requirements and an adaptation to site-

specific conditions (controlled environment chambers, management of the resources 

available and public acceptance for instance). Scale and technology level of large-scale 

systems depend on several factors such as some site-specific aspects, the investment 

capacity, the production objectives and the finality of the products. Housefly and BSF 

large-scale farming are relatively new and technical issues are still being progressively 

identified and solved to develop innovative and efficient mass-rearing systems in their 

respective contexts (Sheppard et al., 2002; Zhang et al., 2010; Diener et al., 2011b; 

Čičková et al., 2012c; van Huis et al., 2013; Caruso et al., 2014; Devic and Maquart, 

2015; van Zanten et al., 2015). The major challenges related to the industrialisation of 

the farming processes include the economic viability and the cost-competitiveness 

which should meet or exceed systems producing conventional sources of protein for 

aquaculture. This can be achieved only through optimised production and processing 

processes using economically competitive and sustainable resources (Rumpold and 

Schlüter, 2013; van Huis et al., 2013; Pastor et al., 2015). As previously stated (see 

1.5.1 above), the choice of the substrate on which the maggots will be farmed is 

important as it influences the nutritional composition (in particular the FA profile) of 

the larvae, potentially improving their quality as a feedstuff for fish significantly; 

however, the choice of the substrate should certainly account for other criteria such as 

the sustainability (circular economy, see 1.4.3 above), the consistency of supply and the 

cost (Rumpold and Schlüter, 2013; van Huis et al., 2013). In addition, safety aspects 

concerning the substrates should be considered as the presence of heavy metals or 

pathogens could impair the insect survival, growth, fertility or affect the quality of the 
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final product by bioaccumulation (Borowska et al., 2004; Tylko et al., 2005; Diener, 

2010; Borowska and Pyza, 2011; Diener et al., 2011a), thereby becoming a risk for the 

fish through ingestion (Banjo et al., 2005). On the other hand, good practices including 

the quality control and the traceability of both inputs (substrates) and outputs (insect-

based products) are substantial advantages of farming that ensure the product safety.  

To date, together with the regulatory framework and the nutritional aspects of the MM 

already discussed (see 1.4.4 and 1.5.2 above), the volumes of MM that can be produced 

remain one of the main limitations to its use in aquaculture. Nevertheless, this is related 

to the current production capacity of the emerging insect farming industry which is 

expected to improve and upscale gradually its technology, once the market is ready. 

The economic aspect of the MM production is also an important point to consider as it 

is one of the main drivers of using alternative feed ingredients (Rust et al., 2011). 

Market price is defined by the profit margin and the production costs, and to answer the 

vast market demand of the aquafeed industry, insect-based products have to be supplied 

at a competitive price compared to conventional sources of protein; nevertheless, being 

of animal origin it can be expected that market price would be higher than plant 

proteins thanks to a better digestibility (Table 1.3). Production costs can be high in 

industrialised country if the system is not fully automatized and requires expensive 

labour. Similarly, the use and maintenance of environment control facilities (light, 

temperature, humidity) are expensive but critical to maintain fly colonies under 

temperate climates (Pastor et al., 2015). In Europe, due to the legislation, MM is 

currently sold at high prices to the pet food industry which is a sector less price-

sensitive for raw materials as pet owners are more willing to pay a high price for a 

quality product. Compared to industrialised countries, small and medium-scale 

production systems in LIDC are less demanding economically and might be profitable 

providing some improvements of the current methods used to improve the productivity 

and the costs (Caruso et al., 2014). MM and maggots are considered as cheap 

alternative feedstuffs in LIDC (Gabriel et al., 2007) and several studies have positively 

concluded on the cost-effectiveness of MM as a feedstuff for catfish or tilapia in 

replacement of expensive, inconsistent and often poor quality FM (Ajani et al., 2004; 

Sogbesan et al., 2006; Ezewudo et al., 2015). According to Drew and Pieterse (2015), 

who are developing a large-scale MM production system in South Africa (AgriProtein), 



Chapter 1 

48 
 

once the legislation will change in favour of the use of insect-based products in animal 

feeds, the remaining challenge will be to aligned the market price of bulk insect protein 

to the price of other conventional feed ingredients; in this context, they assumed that 

MM produced for less than $ 1,000 per tonne, would result in a profitable business and 

an immediate incentive to use MM in animal and fish feeds. 
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Table 1.3 Market prices of various protein sources.  

Feed Ingredient 
Market price 

(USD/tonne meal) 

Description and 

port of origin 
Date 

Protein content 

(%, as fed) 

Protein price 

(USD/tonne protein) 
Reference 

Peru Fish meal 1,586 C&F Bremen June 2016 65 2,440 World Bank (2016) 

Soy protein 

concentrate
 940 CIF, n/a June 2016 65 1,446 

Barentz Animal  

Nutrition 

Corn gluten meal 700 - 710 C&F Asia June 2016 60 1,167 - 1,183 Bacon (2016) 

Soybean meal 467 CIF Rotterdam June 2016 48 973 World Bank (2016) 

Meat and Bone 

meal (porcine) 
490 - 510 C&F Asia June 2016 50 980 – 1,020 Bacon (2016) 

Poultry by-

product meal 
580 - 600 C&F Asia June 2016 60 967 – 1000 Bacon (2016) 

Maggot meals -  - 37.5 – 55.8 - Feedipedia (2015) 
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1.6 Research hypothesis and objectives 

The pressing need for the identification of sustainable alternative sources of protein 

supporting the development of the aquaculture sector globally has led to consider 

insects, in particular, the housefly and BSF larvae, as promising candidates. In both 

industrialised and low-income developing countries, the development of a new industry 

producing MM, frass and other by-products when resources and technology allow it 

(oil, chitin extract), has been initiated around the concept of circular economy which 

supposes the valorisation of low or no-value resources (wastes) through a sustainable 

process from which each output (product) is also a resource that can be integrated into 

other processes. Previous research indicated that MM and by-products can be used in 

existing aquaculture systems as a source of nutrients. From the foregoing discussion it 

is clear that the major problems are first related to the current volumes of MM available 

that are not yet sufficient to cover the ever growing demand of the aquafeed industry; 

secondly, although insect-based materials are suitable for fish, the high variability of the 

results from the previous studies does not allow a generalisation. 

Therefore, contextualised and commercially relevant research should investigate where 

and how insect-based products could be integrated into aquaculture. In particular, MM 

and frass, produced in farming systems established under site-specific conditions 

(environmental and socio-economic context), should be assessed as sources of nutrients 

for farmed fish. It is expected that the strategic use of consistent high-quality MM and 

frass can meet the specific requirements of various fish species cultured in different 

aquaculture systems, thereby contributing to food security. Indeed, critical parts of 

intensive aquaculture processes (juvenile stages) could benefit from MM as a suitable 

FM substitute whereas frass could be valorised in low-value farming process (semi-

intensive) and/or in crop culture as a bio-fertiliser. Volumes required in each case 

should also be considered in the assessment. 

As part of the European Union Seventh Framework Programme (EU FP7) project 

untitled PROteINSECT, the main objective of this study was to assess housefly and 

BSF MM and BSF frass as sources of nutrients for two commercially important farmed 

species (imposed by the consortium): Atlantic salmon (carnivorous, intensive farming) 

and Nile tilapia (omnivorous/herbivorous, intensive and semi-intensive farming) in their 

respective contexts. Specifically, the objectives were: 
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• To assess the suitability of crude and defatted housefly MM as a FM substitute 

for Atlantic salmon parr (freshwater stage) by examining the effects of 

increasing dietary inclusion on the fish performance, digestibility and whole 

body composition; 

• To investigate and compare the cost-efficiency of crude and defatted BSF MM 

and crude housefly MM as FM substitutes in Nile tilapia sex-reversal process; 

• To assess the suitability of crude BSF MM as a FM substitute in advanced 

nursing of Nile tilapia diet by examining the effects of increasing dietary 

inclusion on the fish performance and whole body composition; 

• To compare the performance of the BSF frass used either as a supplemental feed 

in semi-intensive Nile tilapia culture or as a soil conditioner (bio-fertiliser) for 

spring onion; 

• To model the main flows of input and outputs of insect production systems in 

relation to the MM requirements of a specific fish farm in pre-define contexts 

and site-specific conditions.  

1.7 Thesis structure 

This thesis is structured into eight chapters as shown in Figure 1.5 below. 
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Figure 1.5 Thesis structure 
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Chapter 2. General materials and methods 
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2.1 Experimental diets and feed ingredients 

2.1.1 Maggot meals and frass 

MM and frass used as feed ingredients / soil conditioner in the following experiments 

were sourced from pilot production systems of common housefly larvae (M. domestica) 

cultured on poultry manure in the United Kindom (Grant Bait Ltd.; Yorkshire, UK; 

Chapters 3 and 4) or black soldier fly larvae (H. illucens) fed on processed food wastes 

in Malaysia (Entofood Sdn Bhd; Kuala Lumpur, Malaysia; Chapter 4) or on a mixture 

of brewery wastes and processing wastes from a fish feed factory in Ghana 

(PROteINSECT production pilot, Ashaiman, Ghana; Chapter 5). Frass derived either 

from processed food wastes or from brewery spent grains digested by BSF larvae in 

Malaysia (Entofood Sdn Bhd; Kuala Lumpur, Malaysia Chapter 6). Insect products 

were selected and used according to their local or regional availability; MM were 

consistently used to substitute FM in simple or complete diets for fish whereas frass 

was used as a supplementary feed and bio-fertiliser. 

2.1.2 Experimental diets 

Housefly larvae meal was used as a FM substitute in complete diets for salmon parr, 

formulated and manufactured at the University of Stirling in the UK (Chapter 3). Sex-

reversal tilapia fry were fed simple diets prepared on-farm, in Thailand, by gradually 

replacing FM with either housefly larvae meal (shipped from the UK for convenience, 

but available in China for instance) or BSF larvae meals (Chapter 4). Advanced nursing 

of tilapia in Ghana were fed diets formulated and manufactured by Raanan Fish Feed 

West Africa (Prampram, Ghana), thereby replacing gradually the FM inclusion of the 

commercial feed formulation with locally produced BSF larvae meal (Chapter 5). 

Finally, the two types of BSF frass were dispensed as supplementary feed (single feed 

ingredients) to juvenile tilapia kept in semi-intensive conditions in green water ponds in 

Thailand (Chapter 6). 

Diets formulation, manufacture and storage were detailed in each relevant chapter. 

Complete diets were formulated to satisfy the nutritional requirements of the species 

according to their life stage (NRC, 2011). 
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2.2 Experimental designs and set up 

2.2.1 On-farm experiments 

All the experiments were conducted on-farm using the facilities and benefited from the 

technical assistance of commercial running systems in the UK, Ghana and Thailand. 

Commercial husbandry practices were reproduced at experimental scale in order to 

demonstrate the commercial relevance of the results.  

Constraints associated with research procedures in commercial conditions were 

numerous. In the first place, precautions were taken for the experiments not to interfere 

physically with commercial farming units (separate ponds dedicated to the experiments, 

distance between commercial and experimental cages, etc.). In addition, because the 

farm staff was involved in the experiment, it was important that research-related 

activities did not impair the farming activities and productivity. Thus, while ensuring a 

scientific approach and validity of the findings, experiments and related activities 

(feeding, samplings, water quality monitoring, etc.), which were time-consuming given 

the size of the trials (large numbers of fish, dimensions of the structures, etc.), were 

carried out simply and efficiently. Moreover, each trial was individually adapted to the 

space, material and fish available (experimental units, ponds and dimensions, feed, 

etc.). 

2.2.2 Experimental design 

In each relevant chapter, the number of treatments, replications and fish chosen for the 

experiment were described in details. Although all the trials were conducted in 

conditions similar to commercial practices, amounts of insect meal were often limiting 

and influenced greatly the size and the design of the experiment. A minimum of three 

replicates per treatment was used in each experiment; fish were maintained in 

experimental units: tanks, cages or hapas of a smaller size compared to commercial 

units and stocked at commercial densities. Appropriate feeding was consistently 

ensured by skilled technicians and feed was distributed using methods representative of 

commercial practices in the relevant systems (feeding rate, distribution method, etc.). 

Atlantic salmon (Salmo salar) and Nile Tilapia (Oreochromis niloticus) were the two 

species considered for these trials due to their economic significance in temperate and 



Chapter 2 

 

56 

 

tropical zones, respectively (see Chapter 1). The duration of the trials varied from 3 

weeks to 3 months depending on the species studied and the farming process or system 

considered. All the investigations were initiated with juveniles (fry or fingerlings) and 

experimental periods allowed a significant increase in body weight of at least 300% as 

recommended in the NRC (2011) guidelines. 

Throughout most trials, fish and treatments were randomly allocated to the 

experimental units (tanks or hapas). In the trial conducted in Ghana (Chapter 5), fish 

were randomly allocated to the experimental cages, but a simple segregation by 

treatment was applied in order to simplify the trial management and to avoid any 

confusion errors from the farm staff when feeding or sampling (i.e. dispensing the 

wrong feed to the wrong cage), which could have led to the invalidation of the results. 

Therefore, the experimental site was chosen very carefully according to the farmer’s 

knowledge and experience of the area; treatments and replicates were strictly 

maintained under similar and optimal conditions to ensure that the design would not 

affect the results of the study (Schank and Koehnle, 2009). Indeed, the dimensions, 

water dynamic and bathymetry of the Volta Lake (Ghana), where the trial was 

conducted, characterised a very well mixed site with little opportunity for 

environmental variation between cages which were separated by a maximum distance 

of 3 meters.  

In all experiments, water quality was monitored using appropriate and available 

equipment (thermometer, DO meter and spectrophotometer) and experimental units 

were maintained clean at all time as appropriate measures were applied to prevent 

excessive fouling (cleaning, nets changes, etc.). 

2.2.3 Experimental sampling 

Fish were systematically weighed at the start of the experimental feeding periods (i.e. 

after the acclimation periods) and on termination of the experiments; frequency of 

intermediate samplings was detailed in relevant chapters. Due to the number of fish in 

all the trials, fish were bulk weighed; in most cases, three sub-samples, representative of 

the total population of each experimental unit, were randomly selected, weighed and 

fish were counted. 
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Fish were euthanised by anaesthetic overdose (using metacaine sulfonate MS-222), for 

the collection of the samples required for the biochemical analysis and on termination 

of the experiments. Fish samples were systematically pooled (on the basis of the initial 

population or the experimental unit), homogenised and stored at -20°C until further 

analysis. 

2.2.4 Fish performance and feed utilisation indicators 

Fish growth performance and feed utilisation efficiency were evaluated according to the 

following indices: 

Weight Gain (WG) 

𝑊𝐺  (𝑔) = 𝐹𝑖𝑛𝑎𝑙  𝑊𝑒𝑖𝑔ℎ𝑡   𝑊𝑓, 𝑖𝑛  𝑔 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑊𝑒𝑖𝑔ℎ𝑡  (𝑊𝑖, 𝑖𝑛  𝑔) 

Specific Growth Rate (SGR) 

𝑆𝐺𝑅  (% body weight/day) = [
ln𝑊𝑓 − 𝑙𝑛𝑊𝑖

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑎𝑦𝑠
] ∗ 100   

Feed Conversion Ratio (FCR) 

𝐹𝐶𝑅 =
𝐹𝑒𝑒𝑑  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  (𝑔, 𝑜𝑛  𝑎  𝐷𝑀  𝑏𝑎𝑠𝑖𝑠)

𝑊𝐺  (𝑔)
 

Protein Efficiency Ratio (PER) 

𝑃𝐸𝑅 =
𝑊𝐺  (𝑔)

𝐴𝑚𝑜𝑢𝑛𝑡  𝑜𝑓  𝑝𝑟𝑜𝑡𝑒𝑖𝑛  𝑓𝑒𝑑  (𝑔, 𝑜𝑛  𝑎  𝐷𝑀  𝑏𝑎𝑠𝑖𝑠)
 

Daily feeding rate 

𝐷𝑎𝑖𝑙𝑦  𝑓𝑒𝑒𝑑𝑖𝑛𝑔  𝑟𝑎𝑡𝑒    (%  biomass/day)

=
𝐹𝑒𝑒𝑑  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑   𝑔, 𝑜𝑛  𝑎  𝐷𝑀  𝑏𝑎𝑠𝑖𝑠

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑒𝑒𝑑𝑖𝑛𝑔  𝑑𝑎𝑦𝑠
∗

100

𝐵𝑖𝑜𝑚𝑎𝑠𝑠  𝑓𝑒𝑑  (𝑔)
] 

Survival rate (%) was determined by difference between the number of fish initially 

stocked and the final count or estimation of fish remaining on termination of the 

experiment. 
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2.3 Biochemical analyses 

Proximate composition of the feedstuffs, experimental diets, fish whole body and faeces 

were analysed at the University of Stirling using methods based on the Association of 

Official Analytical Chemists (AOAC, 1990) or standard methods as detailed below. 

Dry matter determination was carried out on wet samples. Protein, ash and gross energy 

of the whole fish body and faeces samples were evaluated from finely ground and 

homogenised dried samples whereas diets and feedstuffs were systematically analysed 

‘as is’. Two methods were used for the lipid determination as described below. Each 

sample was analysed in duplicates. 

2.3.1 Dry matter 

Approximately 1.0 g feedstuffs or diet; 15.0 g homogenised fish body samples (wet 

weight) or 5.0 g soil samples (Chapter 6) were placed in a drying oven (Gallenkamp 

Oven 300) at 110°C until constant weight was achieved (AOAC, 1990). 

Faeces samples were freeze-dried using a CHRIST Alpha 1-4 LSC freeze dryer 

(Osterode am Hartz, Germany) at -50°C under vacuum for 48 h. 

2.3.2 Crude protein 

The protein content of the samples was determined from the nitrogen (N) content of 

each sample which assumes that protein contains 16% nitrogen, using the automated 

Tecator Kjeltec TM 2300 analyser (Foss, Warrington, UK) according to the standard 

method (Persson, 2008) and the manufacturer’s instructions. Briefly, about 250 mg of 

each sample was placed in a Kjeldahl digestion tube with 2 mercury Kjeltabs and 5 ml 

conc. sulphuric acid and boiled at 420°C for 1 hour. After cooling to room temperature, 

distillation was carried out using the Tecator Kjeltec TM 2300. 

2.3.3 Crude Lipid 

2.3.3.1 Soxhlet method 

Lipid content of the feedstuffs and the diets was determined by Soxhlet extraction with 

petroleum ether (Christie, 2003) following an acid hydrolysis with HCL. Acid 

hydrolysis was performed on 1.0 g finely ground samples using a fully automated 
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hydrolysis apparatus (Tecator Hydrotec
TM

 8000, Foss Analytical, Hillerød, Denmark), 

according to the manufacturer’s instructions. Hydrolyzed samples were then dried at 

60°C for 16-18 hrs and transferred to the Soxhlet apparatus (Tecator Soxtec system 

2050 Auto Extraction apparatus, Foss Analytical, Hillerød, Denmark).  

2.3.3.2 Folch method 

Folch non-destructive method was applied to samples (feedstuffs, diets, fish whole 

body samples and freeze-dried faeces) to extract crude lipid used for subsequent fatty 

acid analyses. Briefly, total lipids were extracted from 0.5 g of sample, by 

homogenising in 20 volumes of ice-cold chloroform/methanol (2:1 v/v) using an Ultra-

Turrax tissue disruptor (Fisher Scientific, Loughborough, UK) according to Folch et al. 

(1957) and determined gravimetrically after an overnight desiccation under vacuum. 

2.3.4 Fatty acid composition 

Fatty Acid Methyl Esters (FAME) were determined after extraction of total lipid from 

samples (feedstuff, diets, whole fish body and faeces) as described in 2.3.3.2 above. 

FAME were prepared from total lipid re-dissolved in chloroform/methanol (2:1,v/v) at a 

concentration of 10 mg/ml by acid-catalysed transesterification at 50
o
C for 16 h 

(Christie, 1993). Extraction and purification of FAME were performed as described by 

Tocher and Harvie (1988) and separated and quantified by gas-liquid chromatography 

using a Fisons GC-8160 (Thermo Scientific, Milan, Italy) equipped with a 

30mx0.32mm i.d. x 0.25µm ZB-Wax column (Phenomenex, Cheshire, UK), ‘on 

column’ injection and flame ionisation detection. Hydrogen was used as carrier gas 

with initial oven thermal gradient of 50
o
C to 150

o
C at 40

o
C.min

-1
 to a final temperature 

of 230
o
C at 2

o
C.min

-1
. Individual FAME were identified by comparison to known 

standards (Supelco™ 37-FAME mix; Sigma-Aldrich Ltd., Poole, UK) and published 

data (Tocher and Harvie, 1988). Data were collected and processed using Chromcard 

for Windows (Version 1.19; Thermoquest Italia S.p.A., Milan, Italy). Fatty acid content 

(g/100g of sample) was calculated using heptadecanoic acid (17:0) as internal standard. 
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2.3.5 Ash 

Total ash content was determined by incineration of the approximately 1.0 g sample 

placed in a pre-weighed porcelain crucibles in a muffle furnace (Gallenkamp 

Gallenkamp Muffle Furnace) at 600°C for 16 hours (AOAC, 1990). 

A similar method (Loss on Ignition) was used to determine soil samples organic matter 

(OM) content (Chapter 6). Approximately 5.0 g samples placed in a pre-weighed 

porcelain crucibles place were loaded in a muffle furnace (Gallenkamp Gallenkamp 

Muffle Furnace) at 430°C for 16 hours. 

2.3.6 Crude fibre 

Crude fibre was determined according to AOAC, AACC and AOAS standards using 

FibreCap 2021/2023 system (Foss application note ASN3801) by removing off all the 

digestible materials from 1.0 g sample placed in Foss FiberCap devices (Foss 

Analytical, Hillerød, Denmark) through successive defatting in petroleum ether, boiling 

in acid and alkali solutions, drying and incineration in a muffle furnace (Gallenkamp 

Gallenkamp Muffle Furnace) at 600°C for at least 4 hours. 

2.3.7 Nitrogen Free extract (NFE) 

NFE was determined by subtracting the sum of the protein, lipid, ash and fibre to the 

dry matter content. 

2.3.8 Gross energy 

Gross energy of the feedstuffs and the diets was measured by bomb calorimetry (Parr 

6200 bomb calorimeter, calibrated with benzoic acid) according to the manufacturer’s 

instructions. Briefly, 1.0 g sample was combusted in a container filled with oxygen; the 

heat released and the temperature variation was used by the instrument to calculate 

automatically the energy content of the sample (in KJ/g). 

2.3.9 Amino acid composition 

The amino acid compositions of feedstuffs and the diets were determined by ALS Food 

& Pharmaceutical (Cambridgeshire, UK) and Eurofins Food and Feed Testing (Moss, 
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Norway) using High-Performance Liquid Chromatography (HPLC) method according 

to their respective commercial procedures. 

2.4 Digestibility analysis 

For the digestibility analysis (Chapter 3), Yttrium oxide (Y2O3), an inert marker was 

added to the diets at a 0.1% inclusion level. Yttrium in diets and faeces (collected by 

stripping on termination of the experiment) was measured using the acid digestion 

technique by Inductively Coupled Plasma Mass-Spectrometry (ICP-MS). Briefly, 0.1 g 

samples were digested in 5 ml of concentrated nitric acid in a CEM Mars Xpress 

microwave digester for 20 minutes at 190°C. Each sample was then filled up to 25 ml 

with distilled water and 400 µL of the solution was then further diluted to 10 ml with 

distilled water. Samples were analysed in a Thermo Scientific Series 2 ICP-MS 

(Cheshire, UK). 

The Apparent Digestibility Coefficients (ADC) for the nutrients and gross energy of the 

diets were calculated as follows (Maynard et al., 1969): 

ADC of dry matter of diet = 1–(Ydiet/Yfaeces) 

ADC of nutrients and energy of diets = 1–(Ydiet/Yfaeces)*(Nfaeces/Ndiet) 

where Ydiet = concentration of yttrium oxide in the diet;  Yfaeces = concentration of 

yttrium oxide in the faeces; Nfaeces = concentration of nutrient (or gross energy) in the 

faeces; Ndiet = concentration of nutrient (or gross energy) in the diet. 

2.5 Statistical analyses 

All statistical calculations were carried out using IBM SPSS Statistics (version 21). A 

significance level of 5% (P<0.05) was chosen for all the analyses. Data were presented 

as the arithmetic mean together with the standard error of the mean (mean ± SE) or as 

arithmetic mean together with the standard deviation (mean ± SD) when stated. 

Normal distribution of the data sets was verified using Shapiro-Wilk test and 

homogeneity of the variance was tested with Levene’s test. Significant differences 

between treatments (P<0.05) were assessed using one-way analysis of variance 

(ANOVA) parametric test or Kruskal-Wallis non-parametric test when preliminary 
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assumptions were violated. In the case of significant differences, Tukey's HSD post-hoc 

test was then applied to rank the groups. 

When significant differences in final body weights (covariate) were identified (Chapter 

3), body compositions were statistically compared between treatments using an analysis 

of covariance, controlling for the effect of the covariate (Shearer, 1994).  

Correlations between the dietary inclusions of crude MM and the performance or 

nutritional results were analysed using Pearson’s coefficient or Spearman’s coefficient 

when preliminary assumptions were violated.  

A significance of P<0.05 was considered for all analyses performed. 
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Chapter 3. Assessing housefly larvae meal 

(Musca domestica) as a substitute for fish meal 

in the diet of Atlantic salmon (Salmo salar) 

parr 
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3.1 Introduction 

Current research on animal nutrition is actively looking at alternative feedstuffs to 

reduce the dependence on the traditionally used marine ingredients (FM and FO) which 

provide quality nutrients to support efficient growth and performance of farmed fish. 

Aquaculture is one of the fastest growing animal food-producing sectors but it is also 

one of the main global consumers of FM and FO for the culture of carnivorous species 

such as Atlantic salmon, Salmo salar (Tacon and Metian, 2008; FAO, 2014). The 

exploration and identification of several alternative protein sources in recent times have 

significantly contributed to the decreased use of FM in aquafeeds (Olsen and Hasan, 

2012). Plant products, such as soybean meal, offer sustainable alternatives to 

conventional sources of proteins and are now widely used within the aquafeed industry 

(Gatlin et al., 2007). However, the inclusion of such products in feeds, especially for 

salmonids, are limited due to their nutritional characteristics that can negatively impact 

fish performance, health and welfare (Francis et al., 2001; Pratoomyot et al., 2011).  

Insects have been identified as promising candidates for fish and livestock in the global 

assessment of potential feedstuffs (Makkar et al., 2014; Sánchez-Muros et al., 2014). 

Indeed, the nutritional profile of insects, in particular dipteran larvae (maggots), are 

similar to FM except for their fatty acid (FA) composition, that is often low in the 

omega-3 (n-3) long-chain polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA; 

20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, typically associated with marine 

ingredients (Barroso et al., 2014). Several studies have been conducted to test the use of 

insect-derived protein in experimental feeds on different species of cultured finfish 

(reviewed by Henry et al., 2015), although limited work has been performed on 

salmonids. Species such as rainbow trout (Oncorhynchus mykiss) and Atlantic salmon 

post-smolts have shown positive responses to diets containing partial inclusion of black 

soldier fly (Hermetia illucens) larvae meal (Sealey et al., 2011; Lock et al., 2015) or 

mealworm (Tenebrio molitor) meal (Belforti et al., 2015). Moreover, in the early 

freshwater stage of Atlantic salmon parr, 85% of the natural diet is composed of 

invertebrates, mainly aquatic and terrestrial insects (Scott and Crossman, 1973; 

Amundsen et al., 2001). Therefore, juvenile salmon represent an ideal candidate with 

which to test FM replacement with insect meal.  
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The common housefly (Musca domestica) is a ubiquitous species that is adapted to a 

wide range of environment conditions. In the framework of the EC FP7 project 

PROteINSECT, housefly mass-rearing systems have been developed in several 

locations, including the United Kingdom (Charlton et al., 2015). Local production (UK 

/ Europe) would be a substantial advantage if maggot meal (MM) is identified as a 

suitable feed ingredient for farmed Atlantic salmon as the aquafeed industry could 

benefit from reduced transport costs and environmental impacts compared to imported 

materials such as soybean meal for instance. In addition, as the Atlantic salmon is a 

high-value species with specific nutritional requirements, the use of refined materials of 

improved quality, such as defatted MM is considered (Fasakin et al., 2003). 

Thus, the aim of the current study was to investigate the effects of FM substitution with 

crude and defatted common housefly (Musca domestica) larvae meals in the diet of 

Atlantic salmon parr (S. salar), with a particular focus on fish performance, digestibility 

and nutritional composition. 

3.2 Materials and methods 

3.2.1 Experimental diets 

Six experimental diets were formulated so that the main protein source, FM, was 

gradually replaced with insect meal. Housefly larvae (M. domestica) were produced by 

Grant Bait Ltd. (Yorkshire, UK) using poultry manure as a feeding substrate according 

to Charlton et al. (2015). Dried larvae (3 hours at 65°C) were ground into a crude MM, 

with a sub-sample defatted (DMM). Defatting was performed by Nuscience (Drongen, 

Belgium) using a commercial solvent extraction method with hexane (Merck, 

Germany); no hexane residues were identified in the DMM. Other ingredients used in 

the diet preparation were supplied by BioMar Ltd. (Grangemouth, UK). In order to 

assist in diet formulation, the three main protein sources (FM, MM and DMM) were 

analysed at the University of Stirling for proximate composition (Table 3.1).  

A practical control diet (FM100) was formulated with 400 g/kg FM inclusion and four 

of the experimental diets substituted 25, 50, 75 and 100% of the FM (w/w) with MM 

(MM25, MM50, MM75 and MM100, respectively), whereas in the final diet 50% of the 

FM was replaced with DMM (DMM50). Diets were formulated to be isonitrogenous 

and isoenergetic with 530 g/kg crude protein; 160 g/kg crude lipid and 21 MJ/kg gross 
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energy (Table 3.2). Since MM and DMM showed compositions different than FM, the 

other ingredient levels were adjusted to maintain protein, lipid and other essential 

nutrient levels similar to the FM100 control diet. In addition, the diets included yttrium 

oxide (0.3 g/kg) as an inert marker for digestibility determination. Feeds (1.3 mm 

pellets) were produced at the University of Stirling using a compression pellet mill 

(California Pellet Mill; San Francisco, USA), stored at room temperature (feed storage 

room) and used within 3 months from manufacture. All diets were formulated to satisfy 

the nutritional requirements of juvenile salmonid fish (NRC, 2011). Proximate, amino 

acid and fatty acid compositions of the control and experimental diets were analysed as 

described below (Table 3.2). 
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Table 3.1 Analysed composition of the different test ingredients: fishmeal (FM), 

common housefly larvae (M. domestica) crude maggot meal (MM) and defatted maggot 

meal (DMM) 

  Ingredients  

 FM MM DMM 

Proximate Composition (g/kg)    

Dry matter 907.8 956.1 975.7 

Crude protein 710.8 457.4 562.5 

Crude lipid 70.9 242.5 120.5 

Ash 118.3 98.5 79.2 

Crude fibre 2.2 74.7 91.8 

Nitrogen Free Extract (NFE) 5.6 83.0 121.7 

Gross Energy (MJ/kg) 19.3 23.7 21.4 

Essential Amino Acid Composition (g/100g meal) 

Histidine 1.38 1.26 1.61 

Arginine 4.75 2.18 2.99 

Threonine 2.88 1.95 2.45 

Valine 3.11 2.18 2.67 

Methionine 1.60 1.01 1.28 

Lysine 5.19 3.39 4.32 

Iso-Leucine 2.59 1.59 1.96 

Leucine 4.62 2.65 3.36 

Phenylalanine 2.37 2.53 3.38 

Fatty Acid (g/100g meal)    

14:0 0.30 0.37 0.22 

16:0 1.22 4.57 2.66 

18:0 0.19 0.44 0.24 

Total Saturated
1
 1.75 5.49 3.19 

16:1n-7 0.35 2.36 1.40 

18:1n-9 0.95 5.07 2.95 

22:1n-11 0.60 0.00 0.00 

Total monounsaturated
2
 2.87 8.44 5.00 

18:2n-6 0.11 3.57 1.87 

20:4n-6 0.04 0.00 0.01 

Total n-6 PUFA
3
 0.20 3.59 1.88 

18:3n-3 0.07 0.56 0.31 

18:4n-3 0.11 0.07 0.03 

20:5n-3 (EPA) 0.55 0.02 0.01 

22:5n-3 0.06 0.00 0.00 

22:6n-3(DHA) 0.89 0.01 0.00 

Total n-3 PUFA
4
 1.71 0.65 0.35 

Total PUFA
5
 1.99 4.27 2.27 

Total FA content 6.61 18.20 10.48 

Values are presented ‘as is’, based on duplicate analyses 
1
Includes 15:0; 20:0; 22:0 and 24:0; 

2
Includes 16:1n-9; 17:1; 18:1n-7; 20:1n-9; 20:1n-11; 20:1n-7; 22:1n-9 and 

24:1n-9; 
3
Includes 18:3n-6; 20:2n-6; 20:3n-6; 22:4n-6 and 22:5n-6; 

4
Includes 20:3n-3; 20:4n-3 and 21:5n-3; 

5
Includes 16:2; 16:3 and 16:4  
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3.2.2 Experimental design and set-up 

The trial was conducted at the University of Stirling’s Niall Bromage Freshwater 

Research Unit, Stirling, Scotland (56.02°N, 4.00°W) between June and August 2015, in 

accordance with commercial husbandry practices. Three thousand six hundred (3,600) 

Atlantic salmon parr, sourced from Howietoun Fishery (Stirling, UK), with an initial 

weight of 5.19 ± 0.09 g (mean ± SD) were equally distributed (200 fish per tank) among 

eighteen circular glass-reinforced plastic tanks (1 m
3
 water volume) and supplied with 

freshwater of ambient temperature (13.8 ± 0.8°C, range 11.0-14.0°C) by flow-through 

at a rate of 1 L/min. Fish were acclimated for a period of 7 days prior to the 

commencement of the 8-week experimental feeding period, fed a commercial diet for 

Atlantic salmon (EWOS 1P diet), and maintained under constant photoperiod (24L:0D) 

throughout the duration of the experiment. Dietary treatments were randomly assigned 

to triplicate tanks with fish fed daily using automatic belt feeders at a constant rate of 

2.5% of biomass (adjusted weekly by estimation of the biomass from batch test 

weights) over 24 hours. Mortalities were recorded daily. The experiment was subjected 

to ethical review by the University of Stirling’s Ethics Committee and carried out in 

accordance with the UK Animals (Scientific Procedures) Act 1986. 

One day prior to the start of the experimental feeding period and repeatedly every 2 

weeks until the termination of the trial, accurate batch test weights using 3 sub-samples 

per tank (representing 25% of the tank population) were conducted to monitor fish 

growth. Whole fish samples were collected at the start (n=3 fish/tank) and end (n=5 

fish/tank) of the experiment following an overdose of metacaine sulfonate (MS-222) 

anaesthetic. While initial fish were pooled as three separate samples (n=18 fish/pool), 

final fish samples were pooled on a tank basis; samples were then homogenised and 

stored at -20°C until analysis. On termination of the trial, fish from each tank were 

euthanised (MS-222 overdose) and faeces were collected by stripping individual fish, 

between 2 and 4 hours after last feed ingestion (Austreng, 1978; Refstie et al., 1998). 

Faeces were pooled on a tank basis, freeze-dried and used for digestibility analysis. 

3.2.3 Biochemical analyses 

Feed ingredients, diets and whole fish samples were analysed using standard methods 

described in Chapter 2 to determine dry matter (DM), crude protein, crude lipid, ash, 
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crude fibre, gross energy and FA composition. Amino acid compositions of the feed 

ingredients and diets were determined by HPLC (subcontracted by ALS Food & 

Pharmaceutical in UK and Eurofins Food and Feed Testing in Norway).  

The moisture content of faeces samples was determined by freeze-drying (48 hours) 

before samples were homogenised and analysed as described above. 

Yttrium oxide in diets and faeces was measured using the acid digestion technique by 

Inductively Coupled Plasma Mass-Spectrometry (ICP-MS). 

3.2.4 Calculations 

Fish performance and feed utilisation were assessed by determination of the Weight 

gain (g), Specific Growth Rate (SGR, %body weight/day), Feed Conversion Ratio 

(FCR), Protein Efficiency Ratio (PER) and Survival (%) as described in Chapter 2. 

The Apparent Digestibility Coefficients (ADC) for the nutrients and gross energy of the 

diets were calculated as follows (Maynard et al., 1969): 

ADC of dry matter of diet = 1–(Ydiet/Yfaeces) 

ADC of nutrients and energy of diets = 1–(Ydiet/Yfaeces)*(Nfaeces/Ndiet) 

where Ydiet = concentration of yttrium oxide in the diet; Yfaeces = concentration of 

yttrium oxide in the faeces; Nfaeces = concentration of nutrient (or gross energy) in the 

faeces; Ndiet = concentration of nutrient (or gross energy) in the diet. 
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Table 3.2 Ingredients, proximate composition (g/kg), gross energy (MJ/kg), essential 

amino acid and fatty acid compositions (g/100g diet) of the six experimental diets 

 Experimental diets 

 
FM100 MM25 MM50 MM75 MM100 DMM50 

Component (g/kg) 

Fishmeal 400.0 300.0 200.0 100.0 0.0 200.0 

Crude MM 0.0 100.0 200.0 300.0 400.0 0.0 

Defatted MM 0.0 0.0 0.0 0.0 0.0 200.0 

Fish Oil 50.0 50.0 50.0 50.0 46.5 50.0 

Rapeseed oil 60.0 44.0 25.0 8.0 0.0 50.0 

Soy protein concentrate 150.0 170.0 190.0 210.0 230.0 177.5 

Wheat gluten 150.0 170.0 190.0 210.0 231.5 177.5 

Wheat grain 138.0 120.0 109.0 94.0 72.5 95.0 

Vitamin & mineral premix
1 

4.3 4.3 4.3 4.3 4.3 4.3 

Di-Calcium Phosphate 35.0 32.0 25.0 20.0 12.5 34.0 

Histidine 10.0 7.0 4.0 1.0 0.0 9.0 

Antioxidant 0.4 0.4 0.4 0.4 0.4 0.4 

Choline chloride 2.0 2.0 2.0 2.0 2.0 2.0 

Yttrium oxide 0.3 0.3 0.3 0.3 0.3 0.3 

Analysed Composition (g/kg) 

Dry matter 947.3 970.7 970.6 941.2 942.9 940.9 

Crude protein 535.5 526.4 530.9 524.6 525.7 520.7 

Crude lipid 154.3 168.5 160.5 158.7 162.1 160.8 

Ash 99.0 100.0 99.5 82.5 76.9 93.6 

Crude fibre 6.6 13.8 21.3 25.3 31.6 24.5 

NFE 152.0 162.0 158.4 150.1 137.0 141.2 

Gross Energy (MJ/kg) 20.7 21.3 21.5 21.5 21.9 21.4 

Essential amino acid composition (g/100g diet) 

Histidine 1.97 1.8 1.67 1.46 1.29 2.04 

Arginine 2.74 2.66 2.6 2.51 2.41 2.54 

Threonine 1.94 1.91 1.84 1.89 1.86 1.94 

Valine 2.41 2.35 2.34 2.37 2.4 2.38 

Methionine 1.02 0.89 1.02 0.93 0.89 1.06 

Lysine 3.02 2.86 2.74 2.61 2.51 2.81 

Iso-Leucine 2.12 2.07 2.06 2.07 2.08 2.03 
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FM100 MM25 MM50 MM75 MM100 DMM50 

Leucine 3.8 3.66 3.59 3.72 3.68 3.68 

Phenylalanine 2.23 2.37 2.49 2.74 2.92 2.64 

Fatty Acid composition (g/100g diet) 

14:0 0.39 0.37 0.36 0.39 0.37 0.31 

16:0 1.30 1.64 1.77 2.32 2.46 1.48 

18:0 0.22 0.23 0.22 0.25 0.26 0.20 

20:0 0.04 0.03 0.02 0.02 0.02 0.03 

Total Saturated
2
 2.00 2.33 2.43 3.04 3.17 2.07 

16:1n-7 0.45 0.61 0.74 1.05 1.15 0.57 

18:1n-9 3.67 3.49 2.69 2.60 2.56 3.29 

18:1n-7 0.30 0.27 0.21 0.18 0.15 0.24 

20:1n-9 0.61 0.70 0.52 0.53 0.43 0.49 

22:1n-11 0.84 0.89 0.76 0.74 0.61 0.70 

Total monounsaturated
3
 6.08 6.26 5.30 5.53 5.35 5.61 

18:2n-6 1.45 1.60 1.51 1.78 1.95 1.51 

20:2n-6 0.02 0.01 0.01 0.01 0.00 0.01 

20:4n-6 0.02 0.02 0.02 0.02 0.01 0.02 

Total n-6 PUFA
4
 1.51 1.64 1.55 1.81 1.97 1.54 

18:3n-3 0.43 0.40 0.31 0.29 0.29 0.36 

18:4n-3 0.19 0.17 0.15 0.16 0.14 0.13 

20:4n-3 0.04 0.03 0.03 0.02 0.02 0.02 

20:5n-3 (EPA) 0.55 0.45 0.36 0.34 0.28 0.34 

22:5n-3 0.05 0.04 0.04 0.03 0.03 0.03 

22:6n-3(DHA) 0.67 0.53 0.41 0.37 0.29 0.39 

Total n-3 PUFA
5
 1.94 1.64 1.31 1.22 1.07 1.30 

Total PUFA
6
 3.53 3.35 2.92 3.09 3.09 2.90 

Total FA content 11.6 11.9 10.6 11.7 11.6 10.6 

n-3/n-6 1.3 1.0 0.8 0.7 0.5 0.8 

Values are presented ‘as is’, based on duplicate analyses. 

Abbreviations: FM100 – control diet; MM25 – diet where 25 % FM was replaced with housefly maggot meal (MM); MM50 – diet 

where 50 % FM was replaced with MM; MM75 – diet where 25 % FM was replaced with MM; MM100 – diet where 100 % FM 

was replaced with MM; DMM50 – diet where 50 % FM was replaced with defatted MM 
1
Vitamin and mineral premix with limestone carrier added according to the commercial standards of BioMar Ltd. ;

 2
Includes 15:0; 

22:0 and 24:0 ; 
3
Includes 16:1n-9; 17:1; 20:1n-11; 20:1n-7; 22:1n-9 and 24:1n-9 ; 

4
Includes 18:3n-6; 20:3n-6; 22:4n-6 and 22:5n-6 ; 

5
Includes 20:3n-3 and 21:5n-3 ; 

6
Includes 16:2; 16:3 and 16:4  
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3.2.5 Statistical analyses 

Statistical analyses were carried out using IBM SPSS Statistics software (version 21). 

Data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's 

HSD test for unplanned multiple comparisons or using one-way ANOVA on ranks 

(Kruskal-Wallis test) when preliminary assumptions were violated. Due to the 

significant differences in final body weights (covariate), body compositions were 

statistically compared between treatments using an analysis of covariance, controlling 

for the effect of the covariate (Shearer, 1994). Correlations between the dietary 

inclusions of crude MM and the performance or nutritional results were analysed using 

Pearson’s coefficient or Spearman’s coefficient when preliminary assumptions were 

violated. A significance of P<0.05 was considered for all analyses performed. 

3.3 Results 

3.3.1 Growth performance and feed utilisation 

During the 8-week experimental period, fish grew from an initial weight of 5.19 ± 0.09 

g to final weights ranging from 18.15 ± 1.39 g (MM100) to 23.74 ± 1.77 g (MM25) 

(Table 3.3). Growth performance (final weight, weight gain and SGR) of fish fed 

MM25, MM50 and DMM50 did not differ significantly (P>0.05) from the FM100 

control. However, diets with a higher inclusion of MM (MM75 and MM100) appeared 

to suppress growth. Fish fed MM75 and MM100 showed significantly lower weight 

gain and SGR compared to FM100 (P<0.05), although MM75 was not significantly 

different than MM50 and DMM50. The complete replacement of FM with MM 

(MM100) also influenced the feed utilisation resulting in the highest FCR (1.04), which 

was significantly different from FM100 (0.86), and the lowest PER (0.0173). The 

highest PER values were recorded in fish fed MM25 (0.0210) and DMM50 (0.0214), 

although these were not significantly different from the FM100, MM50 and MM75 fed 

groups (0.0208; 0.0197 and 0.0190, respectively). In addition, strong negative 

correlations were observed between the dietary inclusion of MM and weight gain (r -

0.842; P<0.05), SGR (r -0.836; P<0.05) and PER (r -0.712; P<0.05), whereas FCR and 

MM inclusion were positively correlated (r 0.711; P<0.05). No difference in survival 

was found among treatments. 
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Table 3.3 Performance of Atlantic salmon parr fed experimental diets for 8 weeks (n=3). The significance of the correlation (P<0.05) between 

the MM dietary inclusion and the fish performance parameter is indicated in the final column as negative (Neg), positive (Pos) or no correlation 

(-) 

 Dietary treatments 
Pooled SEM P-value Correlation 

 FM100 MM25 MM50 MM75 MM100 DMM50 

Initial weight (g) 5.34
 

5.17 5.16 5.09 5.26 5.14 0.037 0.217 - 

Final weight (g) 22.85
a
 23.74

a
 21.25

abc
 18.96

bc
 18.15

c
 21.83

ab
 0.892 0.000 Neg 

Weight gain (g) 17.51
a
 18.58

a
 16.08

ab
 13.86

bc
 12.89

c
 16.69

ab
 0.888 0.000 Neg 

SGR
1
 (%bw/day) 2.55

a
 2.67

a
 2.48

ab
 2.30

bc
 2.16

c
 2.53

a
 0.076 0.000 Neg 

FCR
2 

0.86
b
 0.88

ab
 0.93

ab
 0.94

ab
 1.04

a
 0.87

ab
 0.028 0.046 Pos 

PER
3 

0.02
ab

 0.02
a
 0.02

ab
 0.02

ab
 0.02

b
 0.02

a
 0.001 0.024 Neg 

Survival rate (%) 100.0 99.8 100.0 99.8 100.0 100.0 0.066 0.514 - 

Means with different superscripts within each row are significantly (P˂0.05) different 

Abbreviations: FM100 – control diet; MM25 – diet where 25 % FM was replaced with housefly maggot meal (MM); MM50 – diet where 50 % FM was replaced with MM; MM75 – diet where 25 % FM was replaced 

with MM; MM100 – diet where 100 % FM was replaced with MM; DMM50 – diet where 50 % FM was replaced with defatted MM 
1
Specific Growth Rate (percent of the body weight per day) 

2
Feed Conversion Ratio 

3
Protein Efficiency Ratio 
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3.3.2 Whole fish body composition 

No significant differences (P>0.05) were observed between the different treatments for 

dry matter, protein and ash contents of whole fish (Table 3.4). The lipid levels of fish 

fed the MM25 and MM100 diets were significantly higher than FM100-fed fish 

(P<0.05). Although no significant differences were reported for the dry matter among 

treatments, crude lipid and moisture were inversely correlated (r -0.820; P<0.05). 

Strong linear relationships were also detected between the dietary inclusion of MM and 

the fish whole body FA profile, with increasing MM inclusion resulting in increased 

levels of total saturated FA (r 0.946; P<0.05) as well as total n-6 PUFA (r 0.924; 

P<0.05) but decreased levels of n-3 FA (r -0.840; P<0.05). However, changes in FA 

composition were also induced by decreasing rapeseed oil dietary inclusions, which 

were negatively correlated to the MM dietary inclusions (r -0.985; P<0.05); thus the 

fish whole body FA levels were found inversely correlated to the rapeseed oil 

inclusions (P<0.05). Except for 18:4n-3, other n-3 PUFA were significantly affected by 

the dietary treatments, in particular, total n-3 PUFA contents for MM50, MM75, 

MM100 and DMM50 (0.95 ± 0.10; 0.97 ± 0.01; 0.91 ± 0.05 and 1.04 ± 0.02 g/100g, 

respectively) were significantly lower (P<0.05) than FM100 and MM25 (1.46 ± 0.15 

and 1.20 ± 0.02 g/100g, respectively). The n-3/n-6 ratio illustrated well the impact of 

the different treatments on these two PUFA with values decreasing with increasing MM 

dietary inclusions (r -0.961; P<0.05) and decreasing rapeseed oil inclusions (r 0.957; 

P<0.05). 



Chapter 3 

 

75 

 

Table 3.4 Whole body compositions (g/kg, on a wet basis) and fatty acid content (g/100g of whole fish body) of Atlantic salmon parr prior to the 

start (initial; mean ± SD) and at the end of the experimental period (n=3)  

  
Initial 

Dietary treatments 
Pooled SEM P-value 

  FM100 MM25 MM50 MM75 MM100 DMM50 

Analysed Composition (g/kg) 

Dry matter 270.3±0.6 277.8 288.8 283 282.7 282.9 284.6 1.447 0.073 

Crude protein 150.0±3.7 156 155.9 155.7 154.7 153.5 155.2 0.388 0.482 

Crude lipid 71.8±3.0 89.6
b
 97.7

a
 93.4

ab
 94.4

ab
 96.9

a
 95.0

ab
 1.176 0.031 

Ash 23.6±1.1 20.9 21.2 20.5 20.6 19.1 20.5 0.295 0.300 

Fatty Acid (g/100g fish body) 

14:00 0.33±0.03 0.27 0.28 0.28 0.28 0.28 0.27 0.002 0.716 

16:00 0.97±0.09 0.93
d
 1.12

c
 1.23

b
 1.31

b
 1.45

a
 1.10

c
 0.074 0.000 

18:00 0.17±0.02 0.22
c
 0.24

bc
 0.26

ab
 0.26

ab
 0.28

a
 0.24

bc
 0.009 0.001 

20:00 0.01±0.00 0.02
a
 0.02

a
 0.01

b
 0.01

c
 0.01

c
 0.02

a
 0.001 0.000 

Tot.Saturated
1
 1.51±0.15 1.46

d
 1.70

c
 1.82

bc
 1.88

b
 2.06

a
 1.66

c
 0.084 0.000 

16:1n-7 0.35±0.04 0.30
e
 0.41

d
 0.49

c
 0.59

b
 0.68

a
 0.40

d
 0.057 0.005 

18:1n-9 0.88±0.12 2.24
ab

 2.30
a
 2.05

bc
 1.88

c
 1.89

c
 2.38

a
 0.088 0.000 

18:1n-7 0.16±0.02 0.22
ab

 0.23
a
 0.21

b
 0.21

b
 0.20

b
 0.22

ab
 0.004 0.002 

20:1n-9 0.56±0.05 0.49
a
 0.52a 0.49

ab
 0.47

ab
 0.42

b
 0.51

a
 0.014 0.005 

22:1n-11 0.66±0.06 0.45
b
 0.49

a
 0.46

ab
 0.43

b
 0.39

b
 0.45

c
 0.013 0.000 

Tot.monounsat.
2
 2.84±0.30 3.83

ab
 4.13

a
 3.91

ab
 3.83

b
 3.86

b
 4.15

a
 0.061 0.014 
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Initial 

Dietary treatments 
Pooled SEM P-value 

  FM100 MM25 MM50 MM75 MM100 DMM50 

18:2n-6 0.30±0.03 0.68
c
 0.78

b
 0.76

b
 0.82

ab
 0.88

a
 0.78

b
 0.027 0.000 

20:2n-6 0.03±0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.001 0.060 

20:4n-6 0.03±0.00 0.02
c
 0.03

ab
 0.02

ab
 0.03

b
 0.04

a
 0.03

ab
 0.003 0.000 

Tot. n-6 PUFA
3
 0.38±0.04 0.82

d
 0.94

bc
 0.93

c
 1.01

b
 1.12

a
 0.95

bc
 0.041 0.000 

18:3n-3 0.07±0.01 0.17
a
 0.17

a
 0.14

b
 0.12

bc
 0.11

c
 0.16

a
 0.010 0.009 

18:4n-3 0.14±0.01 0.11 0.11 0.1 0.11 0.11 0.11 0.002 0.169 

20:4n-3 0.06±0.01 0.04
ab

 0.05
a
 0.04

bcd
 0.04

cd
 0.03

d
 0.04

abc
 0.002 0.014 

20:5n-3 (EPA) 0.23±0.03 0.14
ab

 0.15
a
 0.11

c
 0.11

c
 0.10

c
 0.12

bc
 0.008 0.013 

22:5n-3 0.09±0.01 0.06
a
 0.06

a
 0.05

b
 0.05

b
 0.05

b
 0.05

b
 0.003 0.017 

22:6n-3(DHA) 0.83±0.07 0.64
a
 0.62

a
 0.49

b
 0.52

b
 0.48

b
 0.53

b
 0.028 0.080 

Tot. n-3 PUFA
4
 1.46±0.15 1.20

a
 1.18

a
 0.95

b
 0.97

b
 0.91

b
 1.04

b
 0.050 0.011 

Tot. PUFA
5
 1.93±0.19 2.06

ab
 2.17

a
 1.91

b
 2.03

ab
 2.07

ab
 2.03

ab
 0.033 0.030 

Tot. FA content 6.28±0.37 7.35
b
 8.00

a
 7.64

ab
 7.74

ab
 8.00

a
 7.84

ab
 0.100 0.019 

n-3/n-6 3.82 1.46
 a
 1.25

b
 1.02

c
 0.95

cd
 0.81

d
 1.09

ab
 0.094 0.000 

Means with different superscripts within each row are significantly (P˂0.05) different and comparisons were made between dietary treatments and excluded the initial values. 

Abbreviations: FM100 – control diet; MM25 – diet where 25 % FM was replaced with housefly maggot meal (MM); MM50 – diet where 50 % FM was replaced with MM; MM75 – diet where 25 % FM was replaced 

with MM; MM100 – diet where 100 % FM was replaced with MM; DMM50 – diet where 50 % FM was replaced with defatted MM 
1
Includes 15:0; 22:0 and 24:0 ; 

2
Includes 16:1n-9; 17:1; 20:1n-11; 20:1n-7; 22:1n-9 and 24:1n-9 ; 

3
 Includes 18:3n-6; 20:3n-6; 22:4n-6 and 22:5n-6 ; 

4
Includes 20:3n-3 and 21:5n-3 ; 

5
Includes 16:2; 16:3 and 16:4
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3.3.3 Digestibility 

The apparent digestibility coefficients (ADC) of nutrients and energy in salmon fed the 

experimental diets are presented in Table 3.5. Protein ADC for MM25, MM50 and 

MM100 (0.885; 0.880 and 0.885, respectively) were significantly higher (P<0.05) than 

FM100 (0.86). Crude lipid ADC of MM75 and MM100 (0.876) were significantly 

lower than FM100 (0.949) (P<0.05) and slightly, but not significantly (P>0.05), 

reduced compared to MM25, MM50 and DMM50. ADC of nutrients and energy 

obtained for MM75 were generally lower than MM50 and MM100. Nutrient ADC for 

DMM50 were not significantly different (P>0.05) from other treatments, excepting for 

energy which was significantly higher than MM75. Differences in FA digestibility were 

only observed for the saturated FA as well as for 18:1n-7 and 20:1n-9, where the 

highest FA ADC were reported for FM100 and MM25 for the palmitic acid (16:0). 

However, significant differences observed for 18:1n-7 and 20:1n-9 did not affect the 

digestibility of the total monounsaturated FA. 
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Table 3.5 Apparent Digestibility Coefficients (ADC) of nutrients, gross energy and 

fatty acids of the six experimental diets (n=3) 

 Experimental diets Pooled 

SEM 

P 

value 
 

FM100 MM25 MM50 MM75 MM100 DMM50 

ADC 

Dry matter 0.671
a
 0.659

a
 0.658

a
 0.619

b
 0.647

ab
 0.642

ab
 0.007 0.007 

Crude protein 0.862
c
 0.885

a
 0.880

ab
 0.865

bc
 0.885

a
 0.870

abc
 0.004 0.034 

Crude lipid 0.949
a
 0.914

ab
 0.904

ab
 0876

b
 0.876

b
 0.915

ab
 0.011 0.026 

Gross Energy 0.779
a
 0.773

a
 0.769

a
 0.732

b
 0.752

ab
 0.763

a
 0.007 0.006 

Fatty Acid ADC         

14:0 0.964
a
 0.931

ab
 0.914

ab
 0.884

b
 0.877

b
 0.917

ab
 0.013 0.013 

16:0 0.932
a
 0.905

a
 0.889

ab
 0.852

b
 0.851

b
 0.881

ab
 0.013 0.016 

18:0 0.908
a
 0.864

ab
 0.810

bc
 0.783

c
 0.771

c
 0.815

bc
 0.021 0.017 

20:0 0.935
a
 0.897

ab
 0.857

bc
 0.818

c
 0.811

c
 0.849

bc
 0.019 0.000 

Total Saturated
1
 0.936

a
 0.905

ab
 0.885

abc
 0.850

cb
 0.847

b
 0.879

bc
 0.014 0.002 

16:1n-7 0.975 0.954 0.946 0.942 0.939 0.950 0.005 0.330 

18:1n-9 0.980 0.954 0.936 0.924 0.920 0.949 0.009 0.090 

18:1n-7 0.972
a
 0.938

ab
 0.912

abc
 0.879

bc
 0.855

c
 0.929

abc
 0.017 0.005 

20:1n-9 0.971
a
 0.936

ab
 0.909

ab
 0.901

ab
 0.889

b
 0.917

ab
 0.012 0.044 

22:1n-11 0.973 0.949 0.936 0.921 0.919 0.937 0.008 0.117 

Tot.monounsat.
2
 0.977 0.950 0.934 0.923 0.920 0.943 0.008 0.050 

18:2n-6 0.964 0.964 0.962 0.960 0.964 0.963 0.001 0.832 

20:2n-6 0.885 0.776 0.716 0.660 - 0.737 0.034 0.161 

20:4n-6 0.948 0.957 0.933 0.932 0.911 0.943 0.007 0.129 

Total n-6 PUFA
3 

0.962 0.960 0.957 0.956 0.959 0.960 0.001 0.867 

18:3n-3 0.981 0.975 0.972 0.969 0.972 0.975 0.002 0.290 

18:4n-3 0.985 0.968 0.966 0.967 0.968 0.972 0.003 0.232 

20:4n-3 0.976 0.938 0.936 0.934 0.932 0.945 0.007 0.192 

20:5n-3(EPA) 0.986 0.984 0.983 0.983 0.985 0.984 0.000 0.745 

22:5n-3 0.972 0.943 0.947 0.939 0.938 0.952 0.005 0.229 

22:6n-3(DHA) 0.962 0.956 0.951 0.948 0.949 0.953 0.002 0.864 

Total n-3 PUFA
4 

0.976 0.968 0.966 0.965 0.967 0.969 0.002 0.598 

Total PUFA
5 

0.970 0.965 0.961 0.960 0.962 0.964 0.001 0.731 

Total FA content 0.968
a 

0.945
ab 

0.930
ab 

0.914
b 

0.911
b 

0.936
ab 

0.009 0.013 

Means with different superscripts within each row are significantly (P˂0.05) different. 

Abbreviations: FM100 – control diet; MM25 – diet where 25 % FM was replaced with housefly maggot meal (MM); MM50 – diet 

where 50 % FM was replaced with MM; MM75 – diet where 25 % FM was replaced with MM; MM100 – diet where 100 % FM 

was replaced with MM; DMM50 – diet where 50 % FM was replaced with defatted MM 
1
Includes 15:0; 22:0 and 24:0; 

2
Includes 16:1n-9; 17:1; 20:1n-11; 20:1n-7; 22:1n-9 and 24:1n-9; 

3
Includes 18:3n-6; 20:3n-6; 22:4n-6 

and 22:5n-6; 
4
Includes 20:3n-3 and 21:5n-3; 

5
Includes 16:2; 16:3 and 16:4  
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3.4 Discussion 

The current study aimed to evaluate MM as a FM replacement in juvenile salmon feeds. 

Insect meals have increasingly been studied as an alternative protein source to FM in 

fish feeds (reviewed by Henry et al., 2015), with Diptera species displaying the most 

similar nutritional profile to FM, and therefore the most likely to suit as a substitute in 

fish feeds, among the various insect species examined (Barroso et al., 2014). The 

current study used a housefly larvae meal which was lower in protein and higher in 

lipid content compared to the FM, similar to the findings previously reported by 

Barroso et al. (2014). The amino acid profile of both MM and FM also displayed high 

similarities, although the essential amino acid level was generally higher in FM. 

Moreover, the defatting process of the MM led to the concentration of the proteins and 

amino acids, resulting in DMM exhibiting a similar nutritional profile to FM, 

particularly with respect to the amino acid profile. The FA composition of the FM, MM 

and DMM however, showed some differences in accordance with that previously 

reported by Barroso et al. (2014). For instance, compared to the FM, n-6 levels were 

greater in both insect meals (MM and DMM), whereas total n-3 PUFA was lower as 

well as being devoid of EPA and DHA.  

Accordingly, the nutritional composition of the experimental diets mirrored those of the 

main ingredients. For instance, dietary crude fibre and ash were directly related to the 

MM and DMM inclusions since these two ingredients contained more fibre and slightly 

less ash than FM. Moreover, by substituting FM, the n-3 and n-6 dietary levels 

decreased and increased respectively, despite the dietary lipid source (FO) being 

maintained at a constant level among treatments thereby keeping these essential FA 

present in the diets. FA compositions of DMM50 and FM100 diets were similar to each 

other except for the total n-3 PUFA content which was lower in DMM50. 

Consequently, replacing greater than 25% FM with either MM or DMM in feeds 

resulted in the n-3/n-6 ratio falling below 1.0, which is usually recommended for 

salmonids to support optimal growth and health of the fish (NRC, 2011). Nonetheless, 

this statement may be mitigated for freshwater Atlantic salmon parr. In fact, Bell et al. 

(1994) suggested that feeding salmon parr with a diet that mimics their natural food FA 

composition, namely invertebrates that are relatively low in EPA and DHA (Scott and 

Crossman, 1973; Bell et al., 1994; Amundsen et al., 2001), would benefit farmed 
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smolts by facilitating their transition to seawater. Therefore, unlike the previous study 

on seawater-adapted post-smolts (Lock et al., 2015), the low levels of dietary n-3 PUFA 

detected were of low concern and less effort was required to improve the balance n-3/n-

6 ratio. Moreover, the amino acid composition of the experimental diets indicated that, 

although histidine, lysine and arginine levels decreased slightly with increasing dietary 

levels of MM, essential amino acids were sufficient to meet the requirements for 

Atlantic salmon parr (NRC, 2011). 

As in the study by St-Hilaire et al. (2007b), diets were formulated to contain equals 

amounts of protein, lipid and energy. However, retrospective analyses showed some 

minor differences between diets that could have affected the comparative fish growth 

and nutrient utilisation. As MM gradually replaced FM, soy protein concentrate and 

wheat gluten inclusions were increased to compensate for the protein deficiency. 

Similarly, rapeseed oil was reduced to correct the dietary lipid levels. It is, therefore, 

reasonable to assume that these ingredients may have contributed, to some extent, to the 

overall results of this study. Nevertheless, as 40% of the diet was comprised of FM, 

MM or DMM, these key ingredients were the main factors influencing the results.  

Impaired fish growth and feed utilisation following dietary inclusion of MM were also 

found in other studies (St-Hilaire et al., 2007b; Kroeckel et al., 2012), and only fish 

survival was not affected by the dietary changes. Diets containing up to 200 g/kg MM 

or DMM led to a similar performance observed in the FM-based diet, whereas a total 

substitution of FM resulted in a significantly lower growth and a higher FCR compared 

to FM100. MM75 results, on the other hand, were intermediate between MM50 and 

MM100. This is consistent with Lock et al. (2015) who found that black soldier fly 

(BSF) larvae meal could replace up to 50% FM in post-smolt diets without affecting 

fish growth. Nevertheless, the same authors also reported a decreased FCR with 

increasing dietary inclusions of BSF meal. Similarly, in a study on rainbow trout (O. 

mykiss), Belforti et al. (2015) found an improvement in FCR for the insect meal-based 

diets compared to the FM control, suggesting that the lipid content or the FA 

composition of the insect meal (mealworm, T. molitor) probably reduced the fish 

voluntary feed intake. In the current study, although the feeding response of each 

treatment was considered good (visual assessment), uneaten feed was not collected and 

FCR were calculated according to commercial practices by considering the feed 
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distributed equalled to the feed consumed. Therefore, although FCR values were very 

good across treatments, even for MM100 with the highest FCR (1.04), values may have 

been slightly overestimated. Likewise, PER values may have been slightly 

underestimated and the tendency towards lower PER with increased dietary levels of 

MM suggested that dietary protein was less efficiently used by the fish as the MM 

inclusion increased. 

Overall performance of the fish fed the defatted MM-based diet (DMM50) was 

comparable with the control (FM100), MM25 and MM50 fed fish. Interestingly, and 

although not significantly different, DMM50 performed slightly better than MM50 with 

higher weight gain, SGR, PER and a lower FCR. In contrast, Lock et al. (2015) 

reported that dietary inclusions of defatted BSF meal significantly affected the growth 

of post-smolts; however, it is thought that the high-temperature drying method used 

after the defatting process resulted in lipid oxidation that subsequently led to the 

reduction in the quality of the meal (Henry et al., 2015; Lock et al., 2015). 

Dietary treatments had no significant influence on the dry matter, crude protein and ash 

content of whole body fish. Moreover, in accordance with previous studies, the FA 

composition of the fish reflected that of the diet (Turchini et al., 2009; Sealey et al., 

2011; Belforti et al., 2015). Nonetheless, the lipid deposition was found to be 

significantly higher in fish fed MM25 and MM100 compared to FM100. Whole body 

lipid storage in fish is generally determined by the available the levels of dietary lipid 

and dietary energy or by an imbalance in protein-to-energy ratio (Shearer, 1994) which 

were slightly higher in MM25 (168.2 g/kg) and MM100 (21.9 MJ/kg) respectively, 

compared to FM100 (154.3 g/kg and 20.7 MJ/kg). 

Faecal collection by stripping has been widely discussed in the literature and is often 

considered as a method that results in underestimates of digestibility because the 

material collected (digesta) might not be completely digested (Glencross et al., 2007). 

ADC values determined for MM75, in particular, dry matter, protein and gross energy 

ADC, were not consistent with the pattern suggested from other treatments and were 

probably biased and substantially underestimated. This could result from a 

contamination of the faeces samples during stripping with undigested material or 

endogenous material (Glencross et al., 2007). Disregarding MM75, the protein 

digestibility of the MM-based diets was significantly better than FM100. On the other 
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hand, lipid and gross energy digestibility were inversely correlated to the MM dietary 

levels. These results may also explain the tendency for greater lipid storage in the fish 

fed the MM-based diets. Indeed, well-digested dietary proteins of MM-based diets may 

have compensated for the poorly digested dietary lipid and energy and were, therefore, 

less efficiently used for growth (lower PER). Dietary inclusions of both BSF and 

mealworm meals impaired the protein digestibility of turbot (Psetta maxima) and 

rainbow trout, respectively (Kroeckel et al., 2012; Belforti et al., 2015), whereas in 

post-smolt salmon comparable amino acid digestibility coefficients for BSF and FM-

based diets were reported (Lock et al., 2015). Differences in dietary FA digestibilities 

were principally found for saturated FA as well as for 18:1n-7 and 20:1n-9, contrasting 

the findings of Lock et al. (2015) who found no difference in digestibility of any FA. 

Ingredient composition of the experimental diets has surely contributed to these results. 

Indeed, soy protein concentrate and wheat gluten protein are highly digestible for 

Atlantic salmon with respective ADC equal to 0.90 and 0.99 (NRC, 2011), thus 

increasing dietary levels concomitant with that of the MM may have improved the 

overall protein ADC of the diets. Lipid digestibility, on the other hand, was mostly 

related to MM dietary inclusion as when the latter increased, the levels of rapeseed oil 

decreased. In addition, it has been mentioned that chitin, the main constituent of insect 

cuticle, could interfere with the lipid digestibility in carnivorous species such as 

Atlantic salmon and turbot by inhibiting nutrient absorption in the gastro-intestinal tract 

(Olsen et al., 2006; Kroeckel et al., 2012). 

DMM50 nutrients digestibility was similar to MM50 and FM100, except for the stearic 

(18:0) and arachidic (20:0) acids. In addition, the crude lipid digestibility of DMM50 

(0.92) was slightly better, although not significant, than MM50 (0.90) suggesting that 

defatted meal may slightly improve the digestibility of the dietary lipid.  

The present study is among the first, to our knowledge, to examine crude and defatted 

housefly larvae meal (M. domestica) as a substitute to FM in Atlantic salmon diets. 

Previous studies on African catfish (Clarias gariepinus), Nile tilapia (Oreochromis 

niloticus) and common carp (Cyprinus carpio), have demonstrated that up to 30% of the 

FM inclusion could be replaced with crude housefly larvae meal (Fasakin et al., 2003; 

Ogunji et al., 2008c, 2009; Aniebo et al., 2009). The use of defatted housefly larvae 

meal was also encouraged by Fasakin et al. (2003) who found that the African catfish 
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fed FM-free DMM-based diets performed better (growth and nutrient utilisation) than 

the fish fed FM-free MM-based diets and equal to the fish fed the FM control diet. 

Thus, in addition to the results from the current study it may be of interest to look at 

higher substitution rates with DMM for salmon parr. Fish feeding trials using BSF and 

housefly larvae meal, widely reviewed by Henry et al. (2015) and Makkar et al. (2014), 

highlighted the variability of the results from one fish species to another. The choice of 

insect species used to substitute FM can be dictated by various factors such as the 

availability of the material, but the nutritional requirements of the fish being farmed as 

well as the chemical composition of the insect meal are also essential criteria that must 

be considered. It should be noted that although the FA composition of the MM, devoid 

of essential n-3 PUFA such as EPA and DHA, might have been limiting for carnivorous 

fish species given their requirements in terms of essential FA, this can be remedied 

slightly by modifying the insect rearing substrate (St-Hilaire et al., 2007a). 

Furthermore, differences between the current study and that of Lock et al. (2015) may 

be related to the stage of development of the fish used in the study but also to the insect 

meal itself. 

The findings of the present study suggested that common housefly larvae meal is a very 

good source of protein and a suitable replacement for FM in the diets of salmon parr 

during their freshwater stage in a commercial hatchery setting. Moreover, dietary 

inclusions of up to 200 g/kg are recommended to ensure performance and body 

composition similar to FM-based diets. The results also highlighted the high potential 

of refined meal (defatted) which could probably replace more than 50% FM in salmon 

parr diets (dietary inclusions ≥ 200 g/kg). As Atlantic salmon is an anadromous fish 

species whose nutritional requirements change throughout life, further studies are 

needed to evaluate the suitability of MM and DMM in other life stages.  
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Chapter 4. Efficacy of Nile tilapia (Oreochromis 

niloticus) sex-reversal diets containing maggot 

meals as substitutes to fish meal  
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4.1 Introduction 

Tilapia monosex culture (all-male) is often preferred in grow-out systems as it limits 

recruitment and continuous breeding of this highly prolific species, leading to more 

uniform marketable fish crops produced at a faster rate due to the significant difference 

in growth between males and females (Mair and Little, 1991; Little and Hulata, 2000; 

Phelps and Popma, 2000). Masculinisation methods are various but the oral 

administration of 17α-methyltestosterone (MT), a synthetic male hormone, is mostly 

used because it is the most effective and economically feasible existing method 

(Guerrero and Guerrero, 1988; Phelps, 2006; El-Greisy and El-Gamal, 2012). In 

Thailand, a cost-effective hatchery technology that includes broodstock management, 

seed collection and incubation, larval rearing and fry masculinisation using MT-treated 

fish meal has been developed over several years of research; it is now a commercial 

process in use worldwide to produce millions of sex-reversed tilapia fry (Little, 1989; 

Bhujel, 1997; Turner, 2015).  

Good farming practices have ensured over the years the success of commercial 

hatcheries to produce monosex tilapia fry. Quality of the seed, environment (water 

temperature, level of natural food) and husbandry are important factors to consider; 

however quality and feed management remain key parameters for success (Popma and 

Green, 1990; Phelps, 2006; Little and Hulata, 2000). Daily intake of well-prepared MT- 

feed (including a uniform distribution of the hormone, applied at a dose of 60 mg per kg 

of feed) should start prior to the start of the gonad differentiation, hence right after the 

yolk-sack absorption, of the swim-up fry (D’Cotta et al., 2001). Therefore, high quality, 

palatability and floatability are key drivers that led to the selection of pure FM as the 

hormone carrier. High quality commercial feeds for fish juveniles are also suitable 

when quality FM is not available, however, compounded diets must contain at least 

40% crude protein (usually provided by high levels of FM) and fish oil to enhance 

palatability (Phelps, 2006; NRC, 2011). Global rise of the commodities prices, FM in 

particular, and concerns about sustainability led to the exploration and the identification 

of alternatives feedstuffs that contribute to the decreasing use of FM in aquafeeds 

(Olsen and Hasan, 2012). 

Insect meals have been identified as promising candidates for fish and livestock in the 

global assessment of potential feedstuffs (Makkar et al., 2014; Sánchez-Muros et al., 
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2014). Except for their fatty acid composition, that is often low in essential omega-3 

fatty acids, MM, in particular, seem to have a strong potential for fish thanks to their 

nutritional profile similar to FM (Barroso et al., 2014). Lipid-rich MM could also be 

defatted to improve their nutritional quality and answer better to the fish nutritional 

requirements (Fasakin et al., 2003), which depends on several factors such as the 

species, the rearing substrate or the processing method applied (Henry et al., 2015). 

Although the insect farming industry is developing and progressively moving towards 

industrialisation, current production capacity is far from being able to meet demand for 

the whole aquaculture industry to replace, even partially, FM. A strategic use of this 

ingredient should, therefore, be considered and as such, the specific requirements of 

sex-reversal process in terms of feed quality and amounts required suggest the potential 

for MM to be used. 

The aim of the current study, conducted in a commercial hatchery in Thailand, was to 

investigate the efficacy of diets for sex-reversal of Nile tilapia fry containing various 

levels of crude BSF (H. illucens) MM, defatted BSF MM or crude housefly (M. 

domestica) MM. Quality, floatability and palatability of the MT-treated feeds are key 

drivers ensuring successful sex-reversal process and insect meal-based diets were 

expected to perform as well as the control diet composed of FM only. Indicators of a 

successful sex-reversal process were considered as (ranked by order of importance) (i) 

the male percentage, (ii) the survival rate, (iii) the size homogeneity of the fish 

produced (evenness) and (iv) the fish performance (growth and feed utilisation); the 

profit index (PI) and economic conversion ratio (ECR) were also calculated to assess 

the economic efficiency of the diets. 

4.2 Materials and methods 

4.2.1 Experimental diets 

The fish meal (FM, tuna by-products) used in this experiment was supplied locally from 

T.C. Union Agrotech Co. Ltd. (Bangkok, Thailand). The crude housefly larvae (M. 

domestica) meal (HM) was supplied by Grant Bait Ltd. (Yorkshire, UK) and produced 

according to Charlton et al. (2015) using poultry manure; BSF larvae (H. illucens) 

meals, crude (BM) and defatted (DM), were produced (using a large-scale BSF pilot 

farming system) by Entofood Sdn Bhd (Kuala Lumpur, Malaysia) from processed food 
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wastes. Chemical compositions of the feed ingredients were analysed at the University 

of Stirling (Stirling, UK) as dry matter; crude protein; crude lipid; ash; crude fibre and 

energy as described in Chapter 2 (Table 4.1). 

Hormone-treated diets were prepared on-farm according to the recommended 

procedures (Guerrero, 1975) as a control diet composed of pure FM (F100) along with 

twelve (12) experimental diets where 25; 50; 75 and 100 % of the FM was replaced 

(w/w) with HM, BM or DM (Table 4.1). Briefly, a stock solution of 17α-

methyltestosterone (MT) dissolved in 95% pure ethanol was also prepared at a 

concentration of 250 mg/L and used within a day. Following sieving through a 0.6 mm 

mesh screen, the ingredients were thoroughly mixed together in relevant proportions 

(Table 4.1) before adding 240 ml/kg of MT stock solution in a large stand mixer (Tong 

Hor, Lex product) ensuring a homogenous distribution of the MT at a dose of 60 mg/kg 

diet. Air-dried treated feeds (spread into a thin layer on a mesh rack placed in the shade 

at ambient for 6 hours) were packed in airtight plastic bags, refrigerated (4°C) and used 

within 30 days (Figure 4.1). 
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Table 4.1 Proximate composition (g/kg) and gross energy (MJ/kg) of the fish meal, 

black soldier fly meal (BSF), defatted BSF meal and housefly meal used in the 

composition (g/kg) of the 13 experimental diets 

  
Fish meal 

(FM) 

BSF meal 

(BM) 

Defatted BSF 

meal (DM) 

Housefly meal 

(HM) 

Proximate composition (g/kg) 

Dry matter 911.0 929.8 915.4 956.1 

Crude protein 558.5 334.1 473.4 457.4 

Crude lipid 119.2 415.6 174.8 283.1 

Ash 214.3 84.9 129.8 98.5 

Crude fibre 5.3 56.9 68.9 74.7 

NFE 13.7 38.3 68.4 42.4 

Gross Energy (MJ/kg) 18.3 25.9 20.2 23.7 

Diets formulations (g/kg) 

F100 1000 - - - 

B25 750 250 - - 

B50 500 500 - - 

B75 250 750 - - 

B100 - 1000 - - 

D25 750 - 250 - 

D50 500 - 500 - 

D75 250 - 750 - 

D100 - - 1000 - 

H25 750 - - 250 

H50 500 - - 500 

H75 250 - - 750 

H100 - - - 1000 

Values are presented ‘as is’, based on duplicate analyses. Abbreviations: F100 – control diet made of 100 % MT-

impregnated fish meal (FM); B25, B50, B75 and B100: diets where, respectively, 25; 50; 75 and 100 % FM was 

replaced by Black Soldier Fly larvae (BSF) meal, D25, D50, D75 and D100: diets where, respectively, 25; 50; 75 and 

100 % FM was replaced by defatted BSF meal,  H25, H50, H75 and H100: diets where, respectively, 25; 50; 75 and 

100 % FM was replaced by housefly larvae meal.	  
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4.2.2 Experimental design and set up 

The experiment was conducted on-farm, within the facilities of Nam Sai Farms Co. Ltd. 

(Prachinburi, Thailand) in November 2015. A 2,000 m
2
 earthen pond of 1.2 m depth, 

located at Nam Aig site (13°58'35.29"N; 101°14'50.74"E), was drained, limed (1,875 

kg/ha as Ca(OH)
2
) and sun-dried for a week. The pond was then filled with predator-

free water, screened through a fine mesh, from an on-farm reservoir and 20 kg NPK 

inorganic fertiliser (15-15-15; Saksiam Inter Supply Co. Ltd., Bangkok, Thailand), 

dissolved in a small volume of pond water, was then broadcasted into the pond, one 

week prior to the start and then repeatedly once a week to promote natural productivity 

during the course of the experiment. Treatments were replicated 5 times and randomly 

allocated to 65 hapas (1.0 m
3
) set up in the pond (Figure 4.1). Stage V swim up fry 

(10.5±0.1 mg; mean ± SD, n=3), derived from a single batch of GIFT tilapia strain eggs 

hatched in Nam Sai Farms in a recirculated hatchery system, were stocked at a density 

of 5,600 fry per hapa according to standard practices (Little, 1989; Bhujel, 2014, 2013). 

The sex-reversal process lasted 21 days, during which fry were fed with the control and 

experimental MT-treated diets at 14, 30, 50 and 85 g/day/hapa (total 980 g of feed/hapa 

in total) for the period of days 1-5, days 6-10, days 11-15 and days 16-21, respectively; 

daily feeding rations were divided into five equal portions and fed, by hand, five times a 

day to each hapa (Bhujel, 2014). Aeration of the water was provided by a blower and 14 

homemade diffusers (tubular bags made of textile material) place around the pond. Air 

was turned on twice a day from 21:00 hrs to 08:00 hrs and from 13:00 hrs to 15:30 hrs 

and hapa nets changed once a week to prevent fouling and low dissolved oxygen (DO). 

Water temperature was measured and recorded every 2 hours with RFID (Radio 

Frequency Identification) temperature sensors (LOG-IC® data loggers, American 

Thermal Instruments) placed at 10 and 50 cm under the water surface in the pond. DO 

was measured on alternate days at 08.00 hrs and 15.00 hrs using a YSI 550A digital 

probe and water samples were collected twice a week to measure pH, ammonia, nitrite 

and alkalinity levels using a Hanna HI83200 spectrophotometer. 

Growth was monitored by test weighing the fish at the beginning, halfway through (day 

10) and at the end of the experimental period. The sampling procedure consisted of 

removing three separate sub-samples using a scoop net of fish concentrated in a corner 

of the hapa before counting them and recording bulk weights (Tanita K-200 digital 
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scale, precision: 0-1000gx1g). At the end of the 21-day treatment period, fish were 

graded into 3 sizes (small, medium and large) using hand graders with meshes of 7.5 

mm and 9.0 mm, respectively, to assess the uniformity of the harvested fish. Total 

biomass of each size class was recorded and a sub-sample of fish for each group size 

(scoop-net) was counted and weighed. Survival rate (%) was determined by difference 

between the initial and the final fish stock in each hapa. Simpson’s dominance index or 

evenness index (D) was calculated to assess the uniformity of the fry size distribution 

within each hapa at the end of the 21-day sex-reversal period (Heip et al., 1998): 

𝐷 = (𝑁𝑖/𝑁)!

!

 

where Ni/N is the relative abundance of fish in each size class. Greater D values 

(tending towards 1) indicating greater the homogeneity of the treatment populations. 

Biomass and number of fish at harvest were also determined from the sampling and 

feed conversion ratio (FCR) was calculated as described in Chapter 2. 

4.2.3 Sex determination 

Evaluation of the treatment efficacy was achieved seven weeks after the end of the 21-

day treatment period. 220 fish from each replicate were retained after the treatment 

period and, because the size can be influenced by the sex (Guerrero, 1975), fish sub-

samples were collected randomly using a scoop net and then transferred to 65 new 

hapas-in-pond of 5.0 m
2
 each (Figure 4.1). During this period, fish were fed ad libitium, 

4 times per day with a 32 % crude protein farm-made nursery feed consisting of a 

mixture of FM, soybean meal, corn meal, cassava meal, rice bran and meat and bone 

meal. A representative sample of 100 fish per replicate was sacrificed by an overdose of 

metacaine sulfonate (MS-222) anaesthetic and gonadal examination was performed 

according to Guerrero and Shelton (1974). Slides of squashed gonads were examined 

using a Seek SK-500E microscope (magnification 4x) to identify and record the 

frequency of testicular and ovarian tissue. 
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Figure 4.1 Diagram representing the investigation plan for the study including a detailed protocol for the control and experimental diets 

preparation and the main steps of the experimentation  
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4.2.4 Economic analyses 

A simple economic analysis was performed to assess the cost-effectiveness of the diets. 

The evaluation used the US Dollar (USD) as currency and was conducted for a 

production of 1 m
2
 (5,600 fry initially stocked and 980 g of feed used per m

2
) based on 

the experimental performance results for each treatment. Price of the FM (1.0 USD/kg) 

was based on the Thai market price (conversion rate: 1.0 USD = 35.6 Thai Baht, 

November 2015); however, the lack of commercially traded insect meals led to 

sensitivity analyses being used for each type of insect meal independently, considering 

prices varying between 30% more or less the price of the FM (i.e. from 1.3 to 0.7 

USD/kg). The price for each diet (USD/kg) was calculated according to the assumption 

made on the price of the meals and their relevant inclusions in the diets and further used 

to calculate the cost of the feed required per production unit
 
(USD/m

2
). Value of the 

production accounted for the size of the fry harvested at the end of the 21-day sex-

reversal period; farm-gate prices applied were 14.0 USD/1000 fry for the large fish 

(>300 mg) and 12.0 USD/1000 fry for the medium and small fish (<300 mg) (Turner, 

2015). Assumptions also included that all other variable and fixed costs remained 

constant independently of the diet. 

The economic evaluations were based on the Profit Index (PI) and the Economic 

Conversion Ratio (ECR) (Goddard, 1996; Martínez-Llorens et al., 2012) calculated as: 

• PI (USD/m
2
) = Value of the production (USD/m

2
) / Feed cost (USD/m

2
) 

• ECR (USD/kg of fish)= FCR * Feed price (USD/kg) 

4.2.5 Statistical analyses 

Statistical analyses were carried out using IBM SPSS Statistics software (version 21). 

Data were treated using one-way analysis of variance (ANOVA) or Kruskal-Wallis 

non-parametric test when preliminary assumptions were violated. Tukey's HSD test was 

applied for unplanned multiple comparisons. Differences among means with P<0.05 

were accepted as representing statistically significant differences. Results are presented 

as mean ± standard error (SE) unless otherwise stated.  
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Quadratic regression analyses were applied, where PI and ECR were a function of the 

insect meal inclusion level using the expression Y=c+bX+aX
2
. Optimum insect meal 

inclusion levels that maximised the PI and minimised the ECR were obtained by 

deriving these equations and equalising to zero (Shearer, 2000; Martínez-Llorens et al., 

2012). 

4.3 Results 

4.3.1 Sex-reversal success and performance 

Water temperature and dissolved oxygen varied slightly during the course of the 

experiment and the diurnal periods with values ranging from 28.5 to 34.4°C and 2.4 to 

6.8 g/L, respectively. Water pH (7.7±0.5; mean ± SD) remained stable during the 21-

day experimental period, whereas nitrite, ammonia and alkalinity levels have decreased 

during the first 10 days and then stabilised around 0.6±0.1 mg/L, 0.9±0.5 mg/L and 

66.1±7.2 mg/L, respectively. Nevertheless, all the values were within tolerance limits 

for tilapia (Beveridge and McAndrew, 2000; El-Sayed, 2006). 

A high proportion of males (99.8 to 100 %) was achieved across treatments and 

although only a few females were identified in F100, B75 and H50, the success of the 

sex-reversal process was not significantly affected (P>0.05) by the dietary treatments 

(Table 4.2). Similarly, survival rates ranging between 68.3 % and 84.0 %, were good 

and did not differ significantly between dietary treatments (P>0.05). The grading 

process at the end of the 21-day sex-reversal period led to large, medium and small fry 

with mean individual weights of 458.2±2.6 mg, 263.1±2.9 mg and 147.8±2.1 mg, 

respectively. Groups of fry fed diets containing 25 to 75 % DM or HM and 25% BM 

showed Simpson dominance indexes significantly higher (0.6) than fry fed F100 (0.5) 

(P<0.05), thereby indicating that these treatments led to significantly more homogenous 

size populations than the control. Relative abundance of each size class varied across 

treatments (P<0.05) (Figure 4.1). Groups of fry fed diets containing up to 50 % BM and 

up to 75 % DM or HM were mainly composed of medium size fish (67.8 to 76.6 % of 

the total biomass), hence, their higher evenness indexes (except for B50) compared to 

F100. All the diets containing 25 to 75 % MM led to significantly less fish of small size 

(8.0 to 21.0 %) than the control (36.4 %) (P<0.05), whereas B25-50-75 and H50-75 
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treatments led to significantly more large fish (16.7 to 23.5%) than F100 (6.7 %) 

(P<0.05). 

Diets containing 100 % MM (B100, D100 and H100) led to population distributions 

comparable to F100 (P>0.05) with 2.2 to 6.7 % large fry, 48.0 to 63.5 % medium fry 

and 34.3 to 46.0 % small fry. None of the treatments led to performance results 

significantly lower than the control, F100 (Table 4.3). However, excepting for D75, 

biomass of the fish fed diets containing 25 to 75 % MM were significantly higher than 

F100 (P<0.05). Although feed efficiency was good across treatments, FCR were 

significantly improved (P<0.05) when MM replaced 25 to 75 % FM (0.8 to 0.9) 

compared to F100 (1.1). Accordingly to the survival rates, the number of fish at harvest 

(end of the 21-day sex-reversal period) in each treatment did not differ significantly 

from the control (P>0.05). Performance (biomass and FCR) of the fish fed 100 % MM 

diets were comparable to F100 (P>0.05). 
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Table 4.2 Indicators assessing the success of the 21-day sex-reversal process for each 

dietary treatment compared to the control diet (F100) 

Dietary 

treatment 
Males (%) Survival rate (%) Evenness 

F100 99.8±0.2 74.5±2.5 0.5±0.0 

B25 100.0±0.0 68.3±5.6 0.6±0.0* 

B50 100.0±0.0 73.5±6.8 0.5±0.0 

B75 99.8±0.2 79.6±5.6 0.5±0.0 

B100 100.0±0.0 84.0±4.4 0.5±0.0 

D25 100.0±0.0 78.6±3.1 0.6±0.0* 

D50 100.0±0.0 80.4±2.6 0.6±0.0* 

D75 100.0±0.0 82.9±5.0 0.6±0.0* 

D100 100.0±0.0 75.7±4.8 0.5±0.0 

H25 100.0±0.0 81.8±2.5 0.6±0.0* 

H50 99.8±0.2 79.0±6.7 0.6±0.0* 

H75 100.0±0.0 72.9±5.4 0.6±0.0* 

H100 100.0±0.0 73.7±3.0 0.5±0.0 

Abbreviations: F100 – control diet made of 100 % MT-impregnated fish meal (FM); B25, B50, B75 and B100: diets 

where, respectively, 25; 50; 75 and 100 % FM was replaced by Black Soldier Fly larvae (BSF) meal, D25, D50, D75 

and D100: diets where, respectively, 25; 50; 75 and 100 % FM was replaced by defatted BSF meal,  H25, H50, H75 

and H100: diets where, respectively, 25; 50; 75 and 100 % FM was replaced by housefly larvae meal 
*Mean ± SE (n=5) significantly different from the control, F100 
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Figure 4.2 Relative abundance (% of total biomass harvested) of large (458.2±2.6 mg), medium (263.1±2.9 mg) and small (147.8±2.1 mg) fry at 

the end of the 21-day experimental period. For comparable columns (class size), mean ± SE (n=5) bearing an asterisk (*) were significantly 

different from the control, F100 (P<0.05) 
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4.3.2 Economic analyses 

The price of F100 diet was fixed (1.0 USD/kg); therefore, assuming a production unit of 

1 m
2
 that required 980 g of MT-treated feed for the 21-day sex-reversal period 

(ensuring a daily dose of hormone intake to the fish stocked), the cost of feed amounted 

to 0.98 USD/m
2
. The price of the other diets and, consequently, the cost of the feed 

required per m
2
 varied depending on the price of the MM (0.7-1.3 USD/kg) and the 

dietary inclusion levels (Table 4.3). Costs of the MM-based diets were reduced with 

MM inclusion increasing; in addition, when MM prices were below 1.0 USD/kg, the 

MM-diets cost less than F100. Value of the production (USD/m
2
), based on the relative 

abundance of fish in each class size and their assumed farm-gate prices, indicated that 

none of the dietary treatment led to values significantly different from the control diet 

F100 (P>0.05). PIF100 and ECRF100 were respectively equal to 51.7 USD/m
2
 and 1.1 

USD/kg of fish. Equations (1); (2) and (3) for estimating, respectively, the optimum 

BM, DM and HM levels that maximise PI considering the variation of the MM price 

were developed in the first model. 

(1) 
PI

BMlevel = - 43.356 + 30282 * BMprice + 41.095 * BMprice² 

(2) 
PI

DMlevel = 414.140- 545.542 * DMprice + 183.377* DMprice² 

(3) 
PI

HMlevel = 420.701 + 560.451 * HMprice + 179.991 * HMprice² 

The model 1 indicated two opposite trends depending on the MM considered; the 

optimum inclusion level of BM that maximised PI (
PI

BMlevel) increased with the price 

of the BM whilst optimum 
PI

DMlevel and 
PI

HMlevel decreased with increasing DM and 

HM prices (Figure 4.3A). However, at these optimum inclusions levels, PIBM, PIDM and 

PIHM decreased as the price of the MM increased (Figure 4.3B).When BM was 

considered, it appeared that the maximum PIBM obtained was always lower than PIF100 

suggesting that BM-based diets were less profitable than F100. In addition, below 0.8 

USD/kg, the model 1 recommended to not include BM in the diet in order to maximise 

the profit. Conversely, PIDM and PIHM at optimum DM and HM inclusion levels were 

greater or equal to PIF100 when MM prices were comprised between 0.8 and 1.3 USD/kg 

with values ranging respectively from 76.4 to 51.6 USD/m
2
 and 72.1 to 52.7 USD/m

2
. 

Model 1 suggested that below 0.8 USD/kg, a total substitution of FM with either DM or 

HM would maximise the PI (76.4 and 72.1 USD/m
2
, respectively). 
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Table 4.3 Figures used for the economic analyses based on the experimental performance of the fry during the 21-day sex-reversal period 

(biomass and number of fish at harvest and Feed Conversion Ratio, FCR) under each treatment. Price of the diets (USD/kg); cost of the feed 

required per unit of production (USD/m
2
) and value of the fish produced (USD/m

2
) for each dietary treatment were also calculated 

Dietary treatments 
Biomass 

produced (g) 

Number of fish 

at harvest 
FCR 

Diet price
1
 

(USD/kg) 

Feed cost
2
 

(USD/m
2
) 

Production value
3
 

(USD/m
2
) 

F100 857.0±42.3 4173±141 1.1±0.1 1.00 1.00 50.1±0.8 

B25 1150.3±88.7* 3827±311 0.8±0.1* 0.93 - 1.08 0.91 - 1.05 47.5±3.8 

B50 1203.8±101.6* 4114±380 0.8±0.1* 0.85 - 1.15 0.83 - 1.13 51.2±4.6 

B75 1197.3±98.3* 4456±314 0.8±0.1* 0.78 - 1.23 0.76 - 1.20 53.6±3.1 

B100 831.8±39.5 4707±245 1.2±0.1 0.70 - 1.30 0.69 - 1.27 57.0±3.8 

D25 1200.8±18.6* 4399±173 0.8±0.0* 0.93 - 1.08 0.91 - 1.05 55.4±2.5 

D50 1159.8±35.4* 4500±144 0.8±0.0* 0.85 - 1.15 0.83 - 1.13 54.8±1.8 

D75 1109.5±35.9 4643±280 0.9±0.0* 0.78 - 1.23 0.76 - 1.20 53.6±3.3 

D100 941.0±35.0 4240±270 1.0±0.0 0.70 - 1.30 0.69 - 1.27 52.3±3.1 

H25 1151.6±12.4* 4580±142 0.8±0.0* 0.93 - 1.08 0.91 - 1.05 53.6±3.9 

H50 1241.3±76.5* 4425±377 0.8±0.1* 0.85 - 1.15 0.83 - 1.13 57.3±1.4 

H75 1175.2±62.7* 4080±302 0.8±0.0* 0.78 - 1.23 0.76 - 1.20 36.5±2.7 

H100 847.0±14.8 4127±170 1.2±0.0 0.70 - 1.30 0.69 - 1.27 52.1±2.8 

Abbreviations: F100 – control diet made of 100 % MT-impregnated fish meal (FM); B25, B50, B75 and B100: diets where, respectively, 25; 50; 75 and 100 % FM was replaced by Black Soldier Fly larvae (BSF) meal, 

D25, D50, D75 and D100: diets where, respectively, 25; 50; 75 and 100 % FM was replaced by defatted BSF meal,  H25, H50, H75 and H100: diets where, respectively, 25; 50; 75 and 100 % FM was replaced by 

housefly larvae meal 

*Mean ± SE (n=5) significantly different from the control, F100. 1Price of the diet calculated with the FM price (1.0 USD/kg) and considering the variation of price from 0.7 to 1.3 USD/kg for each MM; 2Cost of the 

feed (USD/m2) calculated from the price of the diet considering 980g of feed required for 1 m2 production unit; 3Value of the fish produced (mean ± SE) per unit of production, assuming farm-gate prices of 14.0 

USD/1000 fry for large fry and 12.0 USD/1000 fry for medium and small fry 
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Similarly, equation (4), (5) and (6) were developed for estimating, respectively, the 

optimum BM, DM and HM levels that minimise the ECR considering the variation of 

the MM prices (model 2). 

(4) 
ECR

BMlevel = 108.333 – 81.164 * BMprice + 21.400 * BMprice² 

(5) 
ECR

DMlevel = 113.266 – 77.569 * DMprice + 16.725 * DMprice² 

(6) 
ECR

HMlevel = 102.161 – 72.822 * HMprice + 18.990 * HMprice² 

As the price of the MM increased, optimum MM dietary inclusion levels that minimise 

ECR (
ECR

MMlevel) decreased; the trends were comparable for the 3 types of MM 

considered (Figure 4.4A). Inclusions of BM and HM that minimise ECR were similar 

with values comprised between 38.9-62.1% and 39.5-60.6 %, respectively when MM 

cost 0.8-1.3 USD/kg whereas 
ECR

DMlevel were slightly higher with values ranging from 

67.2 to 40.7 % as DM price increased (0.8 to 1.3 USD/kg). Although ECRMM increased 

with the price of the MM, up to 1.3 USD/kg, at the optimum MM levels, ECRMM were 

lower than ECRF100 with values comprised between 0.6-0.7 USD/kg at 0.8USD/kg and 

0.8-0.9 USD/kg at 1.3 USD/kg (Figure 4.4B). 
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Figure 4.3 Simulation of (A) optimum inclusion levels of maggot meal (MM) maximising the profit index (PI) and (B) PI for these optimal MM 

levels respectively, according to the MM price variation (USD/kg). MM considered were crude BSF meal (BM), defatted BSF meal (DM) and 

crude housefly meal (HM). F100 reference on graph (B) being the control diet made of 100 % MT-impregnated FM
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Figure 4.4 Simulation of (A) optimum maggot meal (MM) inclusion levels minimising the economic conversion ratio (ECR) and (B) ECR for 

these optimal MM levels respectively, according to the MM price variation (USD/kg). MM considered were crude BSF meal (BM), defatted 

BSF meal (DM) and crude housefly meal (HM). F100 reference on graph (B) being the control diet made of 100 % MT-impregnated FM 
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4.4 Discussion 

Successful sex-reversion of tilapia fry relies on good farming and feeding practices. 

Quality, floatability and palatability of the MT-treated feed are key drivers ensuring 

intake of daily dose of hormone and although pure FM treated with MT is preferred to 

produce monosex Nile tilapia in Thailand (Bhujel, 1997), commercial feeds formulated 

for juveniles fish (crude protein >40%) are also widely used (Phelps, 2006). The type of 

feed chosen depends on its availability, cost and consistency. In the current study, 

although the quality of the FM used was not the highest compared to anchovy, herring 

or menhaden FM, it was considered to be relatively good value for money in Thai 

market (NRC, 2011; Bhujel, 2013). However, just like everywhere else, FM is 

becoming a scarce resource, resulting in increasing prices that undoubtedly stimulate 

adulteration, affecting dramatically the efficiency of the treatment and the hatchery 

reputation which is critical in such a competitive market (W. Turner, pers. 

communication 2016); thus, the importance to identify cost-efficient alternatives.  

High lipid content of the BM led to lumpy diets, in particular for B100 and B75, that 

sank quickly whereas other MM-based diets floatability was comparable to F100; 

floatability of the diets containing BM was improved with increasing levels of FM. 

Nevertheless, the results indicated that, although few females were identified in groups 

of fry fed the control diet (F100), B75 and H50, the sex-reversal process was very 

efficient across treatments with high proportions of male reported (99.8 to 100 %). This 

suggested that all the fish received sufficient hormone dose during the 21-day process 

and that the quality of BM (sinking feed) did not compromise the feeding. Perhaps, the 

latter was highly palatable, encouraging the fry to feed before it sank. Although limited 

work was conducted to compare the effects of different feed mixtures on the efficiency 

of tilapia sex-reversal process (Abucay and Mair, 1997; Bhujel, 2013), the present 

results were consistent with previous research which showed that oral administration of 

androgen was efficient (high percentage of males reported) providing the use of high-

quality and well-prepared feed, including single feed ingredients (FM in most cases), 

commercial diets or simple farm-made mixes (Mair and Little, 1991; Phelps, 2006). 

Sex-reversal is considered ineffective when less than 96 % males are produced (Mair 

and Little, 1991). According to Vera Cruz and Mair (1994), to avoid unwanted and 

significant impacts on grow-out fish crop in ponds, sex-reversed populations counting 
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more than 98 % male are recommended. Indeed, even a small proportion of females can 

lead to substantial recruitment and to heterogeneous growth resulting in non-uniformly 

sized marketable fish. Commercial hatcheries, such as Nam Sai Farms, that sell mainly 

fry for pond culture on a competitive market, aim at producing more than 99 % males 

and below 99.5 %, seed is often considered as a low quality (Bhujel, 2014; Turner, 

2015). Purchase of fry is a major cost for farmers and investment in monosex seed, 

which is more costly than mixed-sex fry, contributes to better performance during 

grow-out, thus the importance of a high quality and in particular, a high percentage of 

males (Little, 1989). 

Survival is also an important parameter to consider, firstly for economic reasons 

(number of fish stocked / bought vs. number of fish harvested) but also because during 

the high-density sex-reversal process, it is a factor that influences indirectly the success 

of the process. High survival is particularly required to maintain the high density of fry 

which first, creates a crowding effect ensuring an active feeding response (Phelps and 

Popma, 2000); secondly, high density may reduce the hierarchical interactions between 

the fish, thereby resulting in a more uniform population (size) and therefore a more 

uniform hormone intake by all the fry (Little (1991) in Vera Cruz and Mair (1994). In 

the present study, survival rates were good and not significantly different across 

treatments (77.3±4.6 % in average); rates were also comparable to those reported by 

Vera Cruz and Mair (1994) when fry was stocked at 6,000 fish/m
3
 (76.1 %). This result 

suggested that a high density of fry was similarly maintained across treatments; 

however, the grading results indicated significant differences in the distribution of the 

fry sizes in the sex-reversed populations depending on the dietary treatment. In fact, fry 

fed diets containing 25 % BM or 25 to 75 % DM or HM led to more uniform 

populations (Simpson dominance index = 0.6) than the control (0.5). Greater evenness 

of these groups was related to the significantly greater abundance of medium size fry 

(70.7-76.6 % of the total biomass) and lower abundance of small size fry (8.0-21.0 %) 

compared to the control (F100). Non-significance of B50 evenness index, a dietary 

treatment that also led to significantly more medium and less small size fry than F100, 

was attributed to a lower difference between the relative abundances of large and 

medium fry (23.5 and 67.8 %, respectively) compared to B25, D25-50-75 and H25-50-

75. Dietary treatments made of MM only (B100, D100 and H100) led to sex-reversed 

population distributed similarly to F100 with mostly medium and small fish. Contrary 
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to Vera Cruz and Mair (1994), the significantly greater abundance of large fish in the 

groups of fry fed B25-50-75 and H50-75 compared to F100, did not lead to the 

establishment of size hierarchies as this would have resulted in higher mortalities 

associated with the aggressiveness and cannibalistic behaviour from the larger fish 

(Dambo and Rana, 1992). In addition, the fact that the treatment was carried out in 

green water, reduced greatly the risks of cannibalism which are worst in clearwater 

systems (D. Little, pers communication 2016). Furthermore, although the fry 

populations were not even in size, the success of the sex-reversal process was not 

compromised, indicating that all the fry had similar access to the MT-treated feed, 

regardless the treatment. 

Among the figures used for the economic analyses, biomass and number of fish at 

harvest mirrored the size distributions and survival rates in each treatment, respectively. 

Indeed, accordingly to the survival rates, number of fish at harvest was not significantly 

different across treatments. Diets that contained both FM and MM inclusions resulted in 

greater biomass than single feed ingredient diets and significantly greater than F100, 

excepting for D75. This result was logically explained by the significantly lower 

abundance of small size fish in the groups of fry fed mixed-ingredient diets compared to 

the fry fed F100. Non-significantly different biomass of D75, a treatment which also 

lead to significantly less small size fish than F100, was attributable to its lower 

abundance of large size fish (4.3 %) compared to the other mixed ingredients treatments 

(9.0 to 23.5%). It has been mentioned that mean individual weights of fry at the end of 

the sex-reversal process, which usually ranges between 100 and 500 mg, was influenced 

by the water temperature and the feed quality (Popma and Green, 1990; Popma and 

Lovshin, 1995); given the design here, the difference in growth was more likely 

explained by the differences in the nutritional composition of the diets. Similarly, FCR, 

which was also calculated from the weight gained during the 21-day process, was 

strongly influenced by the biomass at harvest since the quantity of feed used in the 

experiment did not vary among treatments. With values significantly lower than F100, 

FCR calculated for the diets containing 25 to 75 % MM indicated a better efficiency of 

the mixed ingredients treatments. Finally, it is common knowledge that the combination 

of feed ingredients in fish diets leads to better performance than any single source due 

to an improved nutrient balance provided by the contribution of both ingredients (NRC, 
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2011; Parker, 2011). Hence, it was not surprising to observed improved fish 

performance while feeding with diets mixing insect meal and FM.  

Tilapia fry of approximately 250 mg (1.0 inch) are the standard and most desired 

marketed size because of a lower farm-gate price and the ease of transportation (Nasr-

Allah et al., 2014; Turner, 2015) compared to larger fry. During the sex-reversal 

process, factors such as high-density and restricted feed rations are usually applied to 

stunt the fish growth, thereby leading to evenly small/medium size fish that can be, if 

necessary, further grown to marketable size during additional nursing phases using a 

cheaper feed (Little and Hulata, 2000). For the reasons stated above (dominance, 

aggressiveness, cannibalism) individual large fry are a disadvantage at harvest (Bhujel, 

2014; Turner, 2016), apart from requiring more MT-treated feed (large fish consume 

more feed), which is an expensive input given the price of the hormone (2.8 USD/g) 

and the high quality of the feed.  

Economic evaluation is essential to assess the cost-effectiveness of an alternative 

feedstuff and to determine the optimum substitution level that improves the 

profitability. Other studies looking at alternatives to FM for Nile tilapia focused mainly 

on fingerlings stages and in most cases, the alternative ingredients considered were 

locally available, less expensive sources of protein (El-Sayed, 1999; Ogello et al., 

2014). Thus, when economic evaluations were performed, the costs of the alternative 

ingredient-based feeds were lower than control diets (FM-based diets in general); this 

compensated for the lower fish performance measured, resulting in better economic 

performance (El-Sayed, 1999). Although replacing FM with MM in the diet for sex-

reversal tilapia did not compromise the success of the process and even improved the 

fish performance in some cases, farmers would be more willing to use it if there was an 

economic incentive. MM current market price might be very high due to the limited 

production (volumes) and to the main buyer being the pet food industry, who is willing 

to pay high prices for high-quality products. Therefore, it is not considered as 

representative of the situation where it would be allowed and integrated into fish and 

livestock feeds; indeed, in this case, MM price would have to be competitive with the 

price of FM and its current alternatives (Drew and Pieterse, 2015). Thus, in the present 

study, economic analyses considered MM prices ranging from 1.3 to 0.7 USD/kg, 

which corresponded to 30 % more or less the market price of the FM used in the 
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experiment (i.e. 1.0 USD/kg); moreover, it can be expected that the price of the defatted 

MM might be superior to crude meals given the additional processing steps related to 

the fat removal.  

Obviously, at a price of 1.0 USD/kg or less, total or partial MM inclusion resulted in 

diets prices equal or lower to the price of F100; reciprocally when MM cost more than 

1.0 USD/kg, diets including MM were more expensive than F100. However, the diet 

price was not the only factor influencing the results of the economic analyses which 

accounted also for the performance results of each dietary treatment. In particular, the 

number of fry produced per class size was used to calculate the value of the production 

for each treatment, which was not significantly different than F100 despite the 

differences in the size distributions, and the FCR was turned into an economic index 

(ECR) by integrating the price of the diets. Since the previously discussed results 

clearly showed that MM inclusions did not impair the success of the sex-reversal 

process, the present economic models were used to assess the optimum inclusions of 

MM that either maximised the PI (model 1) or minimised the ECR (model 2) 

considering the variation of the MM prices. Similarly to that previously reported by 

Martínez-Llorens et al. (2012), optimum MM inclusion levels differ depending on the 

economic index considered and varied substantially with the price of the MM. Indeed, 

optimal inclusion levels were more sensible to the price changes when the maximisation 

of the PI was sought (values varying between 0 and 100 % inclusion depending on the 

MM) than for the minimisation of the ECR (values ranging between 38.9 and 67.2% 

inclusion depending on the MM).  

According to the first model, at prices ranging from 0.7 to 1.3 USD/kg, the maximum 

PI obtained for the optimal dietary inclusion of BM were always below PIF100 

suggesting that BM-based diets were less profitable than the control diet, F100. 

Surprisingly, the model also indicated that, as the price of BM increased, greater 

inclusions would maximise the PI although the latter decreased with increasing BM 

price; the positive relationship between the value of the production and the BM 

inclusion level explained this result. The two other MM presented trends opposite to 

BM; with negative relationships between the optimum inclusion levels and the prices of 

the MM. According to this model, at prices below 0.8 USD/kg, a total substitution of 

FM using DM and HM would result in maximum PI (76.4 and 72.1 USD/m
2
, 
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respectively when MM cost 0.7 USD/kg), whereas above 1.2 USD/kg only an inclusion 

of HM would still be slightly more profitable than F100 (52.7 USD/m
2
, when MM cost 

1.3 USD/kg). The results indicated also that DM was more competitive than HM since, 

at the same price, optimum DM dietary inclusions were higher than HM and led to 

greater PI except at prices higher than 1.2 USD/kg. Thus, if hatcheries are looking at 

maximising their profits, the use of BM would not be recommended even at prices 

lower than the FM; on the contrary, up to 1.1 USD/kg inclusion of DM or HM would 

certainly benefit farmers. Previous studies looking at insect meals (termite and housefly 

larvae) as FM substitutes in the diets of catfish have also reported higher PI with insect-

based diets than with FM-based control diets (Sogbesan and Ugwumba, 2008b; Michael 

and Sogbesan, 2015); however, this was certainly related to the lower price of the insect 

meals compared to FM. In the present study, at prices up to 20% more than the price of 

the FM, dietary inclusions of DM or HM were still considered more profitable than the 

100 % FM-based diet because mixed-ingredient diets were found to result in higher 

performance than single ingredients. 

When the ECR was considered (model 2), optimum inclusion levels of MM showed 

similar decreasing trends as the price of the MM increased and corresponding ECR 

values increased with the price of the MM. In this case, the model suggested that at the 

same price, optimum dietary inclusions of BM that minimise ECR were comparable to 

HM, however, ECR values obtained for HM were always slightly better (lower) than 

for BM. On the other hand, optimum dietary inclusions of DM that minimise ECR were 

greater than for the two other MM, and corresponding ECR value were intermediate 

between ECRBM and ECRHM. In all cases, ECR values obtained for the MM were 

substantially lower than ECRF100. Thus, according to this model, at prices between 0.7 

and 1.3 USD/kg, dietary inclusions levels of approximately 39 to 62 % BM or HM and 

40 to 67 % DM would always lead to better ECR than F100. Moreover, consistent with 

the model 1, using DM, if available, would allow the substitution of greater levels of 

FM compared to BM or HM, producing improved economic returns (better PI and ECR 

than F100).  

The higher efficiency of the defatted MM over the two other crude meals (BM and HM) 

was already suggested by (Fasakin et al., 2003) and in Chapter 3. In the present study, 

in addition to the economic results favouring DM over HM and BM, other performance 
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parameters also suggested the higher potential of this MM with levels of 100 % males 

and high survival (75.7 to 82.9%) obtained in all DM-based treatments. Furthermore, 

fry produced with DM-based diets were very homogenous in size (significantly more 

medium size fry and less small size fry for D25-50-75 compared to F100) and D100 led 

to a size distribution very similar to F100 (with relative abundances of large, medium 

and small being 2.2; 63.5 and 34.3 % respectively for D100 and 6.7; 57.0 and 36.4 % 

respectively for F100). On the contrary, although using BM-based diets was not 

detrimental to the efficiency of the sex-reversal process, the economic analysis 

highlighted some limitations, in particular, to improve the profit of commercial 

hatcheries (model 1). At last, HM-based diets also led to efficient sex-reversal process 

but were slightly less attractive economically than DM-based diets. HM has already 

shown great potential as a feed ingredient for tilapia or catfish (Ajani et al., 2004; 

Sogbesan et al., 2006; Ogunji et al., 2008a, 2008b, 2008c; Aniebo et al., 2009; 

Omoyinmi and Olaoye, 2012) and ubiquity of the common housefly could be an 

advantage for sourcing HM. Equations (1) to (6) can be good tools for hatcheries to 

determine the optimal MM inclusion levels that would either maximise the PI or 

minimise the ECR according to the price of the meal considered. 

Although the hatchery technology used at Nam Sai Farms, and in several commercial 

hatcheries globally, is economically viable, the use of FM is questionable in terms of 

sustainability and the evolution of the prices might sooner or later affect the 

profitability of the system. Research for alternatives to FM for sex-reversed tilapia fry 

in Thailand have already identified the potential of insects with the particular case of 

silkworm pupae; however the availability of the product was limited and did not match 

the demand (Bhujel, 2013). In the recent years, the development of the insect industry 

toward the industrialisation of the farming process (various commercial pilots and 

projects emerging worldwide) restored the possibilities of use for aquaculture as the 

quantity, quality and consistency would not be limiting factors anymore. Economies of 

scale should allow the industrialisation of insect farming and development of markets 

with very competitively priced products, especially if the price of FM continues to 

climb. Hatcheries could, therefore, buy insect meal from a local producer or invest in 

the development of their own production system (on-farm) to reduce their costs. 
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Chapter 5. Partial replacement of fish meal with 

Black Soldier Fly (Hermetia illucens) larvae 

meal in commercial diets for advanced nursing 

of Nile tilapia (Oreochromis niloticus) 
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5.1 Introduction 

Farmed fish contribute to food security and represent a rich source of dietary animal 

protein, micronutrients and FA in LIDC; however, per capita consumption levels of fish 

can vary greatly even within the same country and this is often linked to the availability 

(Beveridge et al., 2013). In Ghana, for instance, most aquaculture production (around 

80 %) consisted of Nile tilapia (Oreochromis niloticus) (FAO, 2005-2016), but local 

fish farmers struggle to compete with cheaper imports from China; they are also 

constrained by both availability, quality and cost of pelleted fish feeds and feed 

ingredients (Hecht, 2007; Rurangwa et al., 2015). Conventional feed ingredients such 

as FM and FO and their alternatives (oilseed cakes, soybean meal, poultry by-products 

etc.) are available in LIDCs such as Ghana but consist either of poor quality local 

products or high-cost imported ingredients (Gabriel et al., 2007; Obirikorang et al., 

2015). Moreover, the intensification of the farming methods, relying on complete fish 

feeds, result in an increasing demand for feed and feedstuffs (Tacon and Metian, 2008). 

The importance of quality feeds and feed ingredients, even for omnivorous species such 

as tilapia, makes perfect sense at critical stages (juveniles or broodstock) when fish are 

maintained under intensive clear-water farming conditions and depend entirely on 

nutritionally complete diets (Tacon, 1988). Global research for the identification of 

cost-effective substitutes to conventional feedstuffs continues (El-Sayed and Tacon, 

1997; El-Sayed, 2004; Hasan et al., 2007; Karalazos, 2007; Ayoola, 2010; Obirikorang 

et al., 2015) and interest is rising towards unconventional feedstuffs such as insects 

(van Huis et al., 2013). Fly larvae or maggots (Insecta, Diptera) have been identified as 

a high protein and valuable feed ingredient for livestock in general (Veldkamp et al., 

2012; van Huis et al., 2013; Makkar et al., 2014) and fish specifically, given their 

natural feeding habits (Bailey and Harrison, 1948; Randall, 1967; Odesanya et al., 

2011; Barroso et al., 2014; Henry et al., 2015). The nutritional profile of dipteran larvae 

is highly similar to FM except for the FA composition, that is often low in the omega-3 

(n-3) long-chain polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA; 20:5n-3) 

and docosahexaenoic (DHA; 22:6n-3) acids which are typically associated with marine 

ingredients (Barroso et al., 2014).  

The Black Soldier Fly (BSF, Hermetia illucens) is a non-pest species commonly found 

in tropical or sub-tropical areas, that can be mass-produced using various sources of 
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organic material as a food substrate (Maurice, 1960; Leclercq, 1997). Manures, market 

wastes and brewery wastes, for instance, are available resources in urban and peri-urban 

areas and their disposal via insect conversion to animal feed has been identified as a 

potential strategy (Žáková and Borkovcová, 2013; Nguyen et al., 2015). This could be 

an important part of efforts to enhance food security whilst contributing to the 

development of a circular economy (Veldkamp et al., 2012; Marchant, 2014). 

Previous research on tilapia juveniles has shown that both meal from housefly larvae 

(M. domestica) and blowfly larvae (Chrysomya megacephala) can replace up to 100% 

of the FM in practical diets for tilapia fingerlings without affecting fish performance 

compared to FM-based control diets (Ogunji et al., 2008a, 2008b, 2008c; Sing et al., 

2014). On the other hand, fresh BSF larvae (H. illucens) fed whole or chopped to blue 

tilapia (Oreochromis aureus) significantly reduced the fish growth (Bondari and 

Sheppard, 1987). BSF larvae meal has been used as a substitute to FM in several fish 

species diets except tilapia (Makkar et al., 2014; Henry et al., 2015). 

This study investigated the effects on the performance, feed utilisation efficiency and 

body composition of Nile tilapia (O. niloticus) fingerlings fed commercially formulated 

diets containing BSF MM as a substitution for fish meal and fish oil. 

5.2 Materials and Methods 

5.2.1 Experimental diets 

BSF larvae (H. illucens) meal (BM) was produced within a pilot system located in 

Greater Accra (Ghana) described by Charlton et al., (2015). Larvae were fed on a 

substrate mix composed of 35% spent grain (brewery solid waste) or wheat bran 

(depending on availability), 22% processing wastes from a local fish feed factory, 12% 

yeast slurry (brewery waste water) and 31% water (bringing the moisture content to 

approximately 60%) and were harvested after 13 days of development (prior to the 

prepupae stage). Oven-dried larvae (60-80ºC, 2 hours) were subsequently ground into a 

fine and homogeneous meal (particle size between 600-800 µm) using an artisanal flour 

mill machine. Nutritional composition of the MM was analysed (Table 5.1) in order to 

assist in diet formulation. 
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Table 5.1 Proximate composition (g/kg), gross energy (MJ/kg), essential amino acid 

composition (g/100 g of BM) and fatty acid composition (g/100 g of BM) of the BSF 

larvae meal (BM) 

 Black soldier fly larvae meal 

Proximate composition (g/kg) 

Dry matter 950.3 

Crude protein 416.4 

Crude lipid 232.4 

Crude fibre 76.6 

Ash 116.5 

Gross Energy (MJ kg
-1

) 21.7 

Essential amino acids (g/100 g BM) 

Histidine 1.18 

Arginine 2.00 

Threonine 1.72 

Valine 2.63 

Methionine 0.75 

Lysine 2.70 

Iso-Leucine 1.84 

Leucine  2.90 

Phenylalanine 1.75 

Fatty acid composition (g/100 g BM) 

14:0 1.02 

16:0 3.33 

18:0 0.47 

20:0 0.01 

Total saturated
1
 4.92 

16:1n-7 0.60 

18:1n-9 2.67 

18:1n-7 0.55 

22:1n-9 0.03 

Total monounsaturated
2
 4.08 

18:2n-6 1.86 

18:3n-6 0.03 

20:4n-6 0.02 

Total n-6 1.92 

18:3n-3 0.17 

18:4n-3 0.19 

20:5n-3 (EPA) 0.09 

22:6n-3 (DHA) 0.01 

Total n-3 0.46 

Total Polyunsaturated
3
 2.38 

Total fatty acids 11.39 
Values are presented ‘as is’, based on duplicate analyses 
1
Includes 15:0 and 22:0 ; 

2
Includes 16:1n-9; 17:1 and 20:1n-11 ; 3Includes 16:2; 16:3 and 16:4 
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Diets were formulated and prepared by Raanan Fish Feed West Africa (Prampram 

Fishfeed Factory, Ghana). Raanan PG40 commercial diet, formulated with a 100 g/kg 

FM inclusion, was used as control for the experiment (FM100). In the three test diets, 

25, 50 and 75 % of the FM inclusion in FM100 were replaced (w/w) with BM (BM25, 

BM50 and BM75, respectively). Test diets were formulated to be isonitrogenous and 

isoenergetic with 380 g/kg crude protein, 90 g/kg total lipid and 19 MJ/kg gross energy, 

by adjusting other ingredient dietary levels (Table 5.2); in particular, FO was not 

included the three BM-based diets due to the high lipid content of the crude BM (244.5 

g/kg). Commercially packaged diets were kept on-farm under cool and shaded 

conditions (25°C, 50-60% relative humidity) and used within two months following 

manufacture. Proximate, amino acid and fatty acid compositions of the control and 

experimental diets were analysed as described below (Table 5.2). 
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Table 5.2 Ingredient composition (g/kg), proximate composition (g/kg) and gross 

energy (MJ/kg), essential amino acid and fatty acid compositions (g/100 g of diet) of 

the commercial control diet (FM100) and the three test diets (BM25; BM50 and BM75) 

  Dietary treatments 

  FM100 BM25 BM50 BM75 

Ingredient composition (g/kg) 

Fish meal 100.0 80.0 50.0 30.0 

Soybean meal 200.0 180.0 160.0 130.0 

BSF meal - 30.0 50.0 80.0 

Poultry byproduct meal 50.0 80.0 100.0 130.0 

Fish oil 20.0 - - - 

Corn meal 304.0 304.0 304.0 304.0 

Wheat bran 130.0 130.0 140.0 130.0 

Poultry blood meal 100.0 100.0 100.0 100.0 

Feather meal 90.0 90.0 90.0 90.0 

Vitamin premix 3.0 3.0 3.0 3.0 

Anti-mold 1.5 1.5 1.5 1.5 

Klinofeed ® 1.0 1.0 1.0 1.0 

Methionine 0.5 0.5 0.5 0.5 

Proximate composition (g/kg) 

Dry matter 949.4 957.5 952.5 958.3 

Crude protein 372.8 378.4 371.7 376.7 

Crude lipid 94.8 78.3 77.6 93.4 

Crude fibre 30.5 33.1 35.0 34.4 

Ash 62.9 67.6 68.1 66.8 

NFE 388.4 400.1 400.1 387.0 

Gross Energy (MJ/kg) 19.6 19.2 19.4 19.7 

Essential amino acid composition (g/100 g diet) 

Histidine 2.25 2.37 2.34 2.41 

Arginine 1.36 1.37 1.31 1.33 

Threonine 3.41 3.43 3.44 3.44 

Valine 1.93 1.96 1.96 1.90 

Methionine 1.12 1.17 1.14 1.15 
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  FM100 BM25 BM50 BM75 

Lysine 2.18 2.18 2.15 2.18 

Iso-Leucine 2.17 2.18 2.24 2.22 

Leucine 0.66 0.58 0.51 0.59 

Phenylalanine 1.62 1.57 1.63 1.66 

Fatty acid composition (g/100 g diet) 

14:0 0.10 0.10 0.13 0.16 

16:0 1.44 0.97 1.03 1.07 

18:0 0.36 0.32 0.35 0.36 

20:0 0.03 0.02 0.02 0.02 

Total saturated
1 

1.97 1.44 1.56 1.65 

16:1n-7 0.14 0.12 0.13 0.14 

18:1n-9 2.41 1.69 1.71 1.69 

18:1n-7 0.15 0.13 0.13 0.14 

22:1n-11 0.07 0.04 0.03 0.03 

Total monounsaturated
2 

2.92 2.09 2.09 2.09 

18:2n-6 1.51 1.29 1.33 1.25 

20:2n-6 0.03 0.02 0.02 0.01 

20:4n-6 0.02 0.02 0.01 0.01 

Total n-6
3 

1.58 1.34 1.37 1.29 

18:3n-3 0.17 0.13 0.12 0.11 

18:4n-3 0.02 0.02 0.01 0.01 

20:5n-3 (EPA) 0.08 0.05 0.04 0.04 

22:6n-3 (DHA) 0.18 0.12 0.08 0.07 

Total n-3
4 

0.51 0.35 0.27 0.25 

Total Polyunsaturated
5 

2.11 1.71 1.66 1.55 

Total fatty acids 7.00 5.25 5.31 5.29 

n-3/n-6 0.32 0.26 0.20 0.19 

Values are presented ‘as is’, based on duplicate analyses. Abbreviations: FM100 – Control diet (Raanan PG40 commercial diet); 

BM25 – diet where 25 % fish meal (FM) was replaced by Black Soldier Fly larvae meal (BM); BM50 – diet where 50 % FM was 

replaced by BM; BM75 – diet where 75 % FM was replaced by BM.  
1
Includes 15:0; 22:0 and 24:0 ; 

2
Includes 16:1n-9; 20:1n-11; 20:1n-7; 22:1n-9 and 24:1n-9 ; 

3
Includes 18:3n-6; 20:3n-6 and 22:4n-6; 

4
Includes 20:3n-3; 20:4n-3 and 22:5n-3 ; 

5
Includes 16:2 and 16:3 
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5.2.2 Experimental design and set up 

In order to demonstrate the relevance of the results, the experiment was conducted on-

farm (commercial tilapia producer, Volta Lake, Ghana) under conditions similar to 

commercial husbandry practices. All-male, hormonally sex-reversed Nile tilapia 

fingerlings (O. niloticus) were obtained from a local commercial hatchery following 

advanced nursing procedure as described for hapas- in- ponds (Little et al., 2003). Prior 

to the start of the experiment, twenty-five thousand (25,000) fish were transferred into a 

single floating cage (3x3 m) suspended in Volta Lake where they were fed six times a 

day with a standard diet (480 g/kg crude protein and 50 g/kg total lipid) for 3 weeks as 

an acclimation period to the lake conditions. Twelve floating cages (1.0 m
3
 each), set up 

in the outermost part of the grow-out and nursery site of the farm (500 m from the 

shore, water column of 30-35 m depth), were stocked at random with one thousand five 

hundred (1,500) acclimated fingerlings (5.7±0.5 g; mean ± SE) each. The experiment 

was conducted between the months of September and October 2014, for 32 days which 

was equivalent to the commercial advanced nursing period and allowed a body increase 

of at least 300% recommended for juvenile fish studies (NRC, 2011). Control and test 

diets were distributed daily by hand to triplicates cages; fish were fed to visual satiety, 

over 6 feeding sessions per day (at regular intervals of 2 hours) and amount of feed 

distributed was determined by difference with pre-weighed feed containers prepared 

daily. Water temperature (°C), pH and dissolved oxygen (DO; mg/L) were recorded 

daily at 07:00 hrs and 16:00 hrs using OxyGuard
®

 Handy digital probes (Polaris and 

pH) immersed at 50 cm under the water surface within cages. 

At the start and on termination of the experiment, all the fish in each cage were counted 

and bulk weighed (Tanita KD 200 digital scale, precision: 0-1000gx1g). Growth was 

monitored through intermediate samplings carried out every 10 days, by counting fish 

and recording bulk weights of 3 separate sub-samples from each cage (representing 

approximately 20% of the population), using a scoop net of fish concentrated in the 

corner of the cage. Fish were starved for 24 hours prior to the samplings in order to 

limit stress and mortalities related to handling. Whole fish samples were collected at the 

start (n=20 fish from the initial population) and on termination (n=5 fish per cage) of 

the experiment, following an overdose of metacaine sulfonate (MS-222) anaesthetic. 

While initial fish were pooled as four separate samples (n=5 fish/pool), final whole fish 
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samples were pooled on a cage basis; pooled samples were subsequently homogenised 

and stored under freezing conditions (-20ºC) until further analyses. 

5.2.3 Biochemical analyses 

BSF meal, experimental diets and whole fish samples were analysed using standard 

methods described in Chapter 2 to determine dry matter, crude protein, crude lipid, ash, 

crude fibre, gross energy and FA composition. Amino acid compositions of the feed 

ingredients and diets were determined by HPLC (subcontracted by ALS Food & 

Pharmaceutical in UK and Eurofins Food and Feed Testing in Norway). 

5.2.4 Fish performance and feed utilisation 

Fish performance and feed utilisation were assessed by determination of the weight gain 

(g), Specific Growth Rate (SGR, %body weight/day), Feed Conversion Ratio (FCR), 

Protein Efficiency Ratio (PER), daily feeding rate (% biomass/day) and survival (%) as 

described in Chapter 2. 

5.2.5 Statistical analyses 

Statistical analyses were carried out using IBM SPSS Statistics software (version 21). 

Data were subjected to one-way ANOVA followed by Tukey's HSD test for unplanned 

multiple comparisons. Correlations between the dietary inclusions of MM and the 

performance or nutritional results were analysed using Pearson’s coefficient. A 

significance of P<0.05 was considered for all analyses performed. Values are presented 

as mean ± SE unless otherwise stated. 

5.3 Results 

5.3.1 Growth performance and feed utilisation 

Water temperature and dissolved oxygen varied slightly during the course of the 

experiment and the diurnal periods with values ranging from 26.8 to 30.5°C and 5.1 to 

8.1 g/L, respectively.  

Growth and feed utilisation of the fish fed the control and experimental diets were not 

affected by treatments (Table 5.3). During the 32-day experimental period, fish grew 

from an average initial weight of 5.7±0.1 g to 16.6±0.1 g. Live weight gain and SGR of 
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the fish fed the control and the MM-based diets were not significantly different across 

treatments (P>0.05).  

Overall feeding response was good with total amounts of feed distributed (26.0±0.2 kg 

per cage) and feeding rates (4.2±0.1 % biomass/day) not significantly different between 

treatments (P>0.05). This indicated similar feed intakes for the fish fed the control and 

experimental diets. Feed utilisation efficiency (FCR and PER) was not compromised by 

the dietary treatments (P>0.05). However, BM25 treatment indicated a significantly 

lower survival (81.7±1.1 %) compared to others (P<0.05) and BM75 survival rate 

(90.1±0.3 %) was found significantly higher than FM100 (86.1±0.2 %). 

5.3.2 Whole fish body composition 

Analysed fish body compositions compared between treatments indicated no significant 

differences (P>0.05) for dry matter, crude protein, crude lipid, ash and crude fibre 

(Table 5.4). However, whole body FA composition varied significantly between dietary 

treatments. Strong linear relationships were found between the dietary inclusion of BM 

and selected FA; in particular, BM dietary inclusion was positively correlated to the 

total saturated FA (r 0.672; P<0.05) and a negatively to the n-3 PUFA (r -0.725; 

P<0.05). 
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Table 5.3 Growth performance and feed utilisation indices determined for nursing 

tilapia fingerlings fed control and experimental diets for 32 days 

 
Dietary treatments 

 
FM100 BM25 BM50 BM75 

Initial live weight
 
(g) 5.5±0.1 5.1±0.1 6.1±0.4 6.1±0.2 

Final live weight
 
(g) 16.0±0.4 16.9±1.0 17.0±0.6 16.5±0.5 

Live weight gain (g) 10.4±0.5 11.8±1.1 10.9±0.9 10.4±0.4 

SGR (% bw/day) 3.3±0.1 3.7±0.2 3.2±0.3 3.1±0.0 

Total feed distributed (kg) 25.9±0.5 25.7±0.2 26.2±0.1 26.4±0.3 

FCR 2.2±0.1 2.1±0.2 2.0±0.1 2.1±0.0 

PER 1.2±0.0 1.2±0.1 1.3±0.1 1.2±0.0 

Feeding rate (% biomass/day) 4.4±0.0 4.3±0.2 4.0±0.1 4.1±0.1 

Survival rate (%) 86.1±0.2
b
 81.7±1.1

c
 89.5±1.3

 ab
 90.1±0.3

a
 

Means ± SE (n=3) bearing different superscripts within each row are significantly different (P˂0.05) 

Abbreviations: FM100 – Control diet (Raanan PG40 commercial diet); BM25 – diet where 25 % fish meal (FM) was 

replaced by Black Soldier Fly larvae meal (BM); BM50 – diet where 50 % FM was replaced by BM; BM75 – diet 

where 75 % FM was replaced by BM.  
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Table 5.4 Proximate composition (g/kg of fish, wet weight basis) and fatty acid 

composition (g/100 g of fish) of Nile tilapia fingerlings whole body at the start (Initial; 

mean ± SD; n=4) and on termination of the 32-day experimental period (n=3) 

  
Initial 

Dietary treatments Pooled 

SEM 

P-

value   FM100 BM25 BM50 BM75 

Proximate composition (g/kg) 

Dry matter 238.1±3.4 286.0 278.5 282.0 285.2 1.701 0.071 

Crude protein 148.8±1.5 153.6 152.7 152.9 154.3 0.369 0.653 

Crude lipid 37.0±1.4 107.8 96.1 99.9 102.2 2.452 0.095 

Ash 48.8±0.9 33.1 34.5 33.9 35.7 1.099 0.276 

Crude fibre 0.7±0.2 0.8
 

0.8
 

0.8
 

0.8
 

0.016 0.975 

Fatty acid composition (g/100 g fish) 

14:0 0.05±0.00 0.16
c 

0.17
c 

0.23
b 

0.29
a 

0.031 0.000 

16:0 0.05±0.01 1.59
ab 

1.46
b 

1.67
ab 

1.80
a 

0.072 0.053 

18:0 0.18±0.07 0.48 0.47 0.50 0.52 0.012 0.359 

20:0 0.01±0.00 0.02 0.02 0.02 0.02 0.000 0.435 

Total saturated
1 

0.76±0.03 2.27
ab 

2.13
b 

2.44
ab 

2.66
a 

0.113 0.035 

16:1n-7 0.09±0.00 0.27
b 

0.26
b 

0.29
ab 

0.33
a 

0.016 0.014 

18:1n-9 0.70±0.03 2.54 2.21 2.47 2.57 0.082 0.165 

18:1n-7 0.08±0.00 0.20
ab 

0.20
b 

0.23
ab 

0.25
a 

0.013 0.035 

22:1n-11 0.01±0.00 0.04
a 

0.02
b 

0.02
b 

0.02
b 

0.004 0.000 

Total monounsat.
2 

0.97±0.05 3.30 2.89 3.26 3.43 0.114 0.127 

18:2n-6 0.25±0.02 0.82 0.76 0.82 0.91 0.030 0.125 

20:2n-6 0.02±0.00 0.06 0.06 0.06 0.07 0.002 0.208 

20:4n-6 0.04±0.00 0.06
b 

0.06
b 

0.07
ab 

0.08
a 

0.004 0.033 

Total n-6
3 

0.37±0.03 1.09 1.02 1.11 1.23 0.044 0.110 

18:3n-3 0.02±0.00 0.07 0.06 0.06 0.07 0.003 0.071 

20:4n-3 0.00±0.00 0.01
a 

0.01
b 

0.01
b 

0.01
b 

0.001 0.000 

20:5n-3 (EPA) 0.01±0.00 0.01
a 

0.01
b 

0.01
b 

0.01
b 

0.001 0.002 

22:5n-3 0.02±0.00 0.05
a 

0.03
b 

0.03
b 

0.03
b 

0.004 0.001 

22:6n-3 (DHA) 0.09±0.00 0.19
a 

0.14
b 

0.12
b 

0.12
b 

0.015 0.002 

Total n-3
4 

0.14±0.01 0.36
a 

0.27
b 

0.24
b 

0.26
b 

0.026 0.002 

Total polyunsat.
5 

0.53±0.03 1.48 1.32 1.38 1.52 0.046 0.218 

Total fatty acids 2.26±0.11 7.04 6.35 7.07 7.60 0.258 0.111 

Means with different superscripts within each row are significantly (P˂0.05) different and comparisons were made 

were made between dietary treatments and excluded the initial values. 

Abbreviations: FM100 – Control diet (Raanan PG40 commercial diet); BM25 – diet where 25 % fish meal (FM) was 

replaced by Black Soldier Fly larvae meal (BM); BM50 – diet where 50 % FM was replaced by BM; BM75 – diet 

where 75 % FM was replaced by BM.  
1
Includes 15:0; 22:0 and 24:0 ; 

2
Includes 16:1n-9; 17:1; 20:1n-11; 20:1n-9; 20:1n-7; 22:1n-9 and 24:1n-9 ; 

3
Includes 

18:3n-6; 20:3n-6; 22:4n-6 and 22:5n-6 ; 
4
Includes 18:4n-3and 20:3n-3 ; 

5
Includes 16:2; 16:3 and 16:4 
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5.4 Discussion 

Compared to high-quality FM such as anchovies, herring or menhaden (645-720 g/kg 

crude protein and 76-96 g/kg crude fat; ‘as is’ basis (NRC, 2011), the BSF meal 

produced in Ghana for the purpose of the experiment, had a lower protein and a higher 

lipid content. A similar observation was made by Barroso et al. (2014) for a BSF meal 

which presented even lower levels of crude protein, lipid and ash (362 g/kg; 180 g/kg 

and 93 g/kg, respectively) compared to the present meal. Insect life stage, feeding 

substrate and processing methods influence their nutritional composition (Aniebo and 

Owen, 2010; van Huis et al., 2013) which explains the differences reported here. Also 

similar to that previously found by Barroso et al. (2014), the amino acid profile of BM 

was comparable to conventional FM including 9 out of 10 of the essential amino acids 

(BSF meal is known to be low in tryptophan (Newton et al., 1977; Henry et al., 2015), 

which is a considerable advantage over other common FM substitutes (soybean meal, 

for example) that can be deficient in some EAA (El-Sayed and Tacon, 1997). Although 

individual AA levels of the BSF meal from Ghana were found lower than in 

conventional FM (NRC, 2011), it can be considered as a good source of protein. The 

MM used in the current experiment was also a rich source of FA, in particular saturated 

and monounsaturated and it was slightly richer in EPA and DHA compared to MM used 

in other studies (St-Hilaire et al., 2007b; Kroeckel et al., 2012; Barroso et al., 2014) 

owing to the substrate mix on which the larvae fed (St-Hilaire et al., 2007a). Indeed, the 

enrichment of the BM with essential PUFA is an advantage here as FO was not 

included in any of the BM-based diets. 

Nutritional composition of the control and experimental diets met the requirements for 

tilapia fingerlings (Jauncey, 1998; El-Sayed, 2006; NRC, 2011). The substitution of FM 

with BM required the adjustment of other feed ingredients dietary levels, mainly FO, 

soybean meal and poultry by-product meal, thereby ensuring isonitrogenous and 

isoenergetic diets; however, these adjustments affected other nutrients dietary levels 

such as the crude fibre and ash. Indeed, the high fibre content of the BM-based diets 

was directly related to the increasing inclusions of BM which had substantially more 

fibre (76.6 g/kg) than conventional FM (6.0-10.0 g/kg, as is, NRC (2011). However, the 

ash content of the BM (116.5 g/kg) was comparable or lower than conventional FM 

(102.0-215.0 g/kg, as is, NRC (2011), thus, higher ash levels in the BM-based diets 
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compared to FM100 could be attributable to other feed ingredients. Moreover, in the 

BM-based diets, FO inclusion was reduced to zero due to the high lipid content of BM. 

This resulted in BM25 and BM50 dietary lipid contents being about 18% lower than 

FM100 and BM75. Low-fat diets are preferred for warmwater omnivorous fish such as 

tilapia (El-Sayed, 2006) and the recommended dietary lipid content for tilapia 

fingerlings varies between 80 and 120 g/kg (Jauncey, 1998). The replacement of greater 

levels of FM with BM in such a formulation would have certainly led to lipid levels 

exceeding those recommended for tilapia. Nevertheless, a possible solution could be to 

use defatted MM instead of crude, which would enable higher inclusion levels as 

suggested by Fasakin et al. (2003) and in Chapter 3 and 4. The FA composition of the 

BM-based diets was also affected by the substitution of FM and FO, nonetheless, 

essential FA requirements for optimal growth of tilapia fingerlings (C18 PUFA such as 

18:2n-6 and 18:3n-3) were satisfied (NRC, 2011). 

Considering the design of the experiment, a particular attention was given to the 

location and setting of the experimental cages ensuring no interaction with the 

commercial practices and good water flow and oxygenation throughout each replicate. 

Therefore, the position of the experimental set up was determined in accordance with 

the farmer’s knowledge and experience of the area. Moreover, given the surface 

occupied by the Volta Lake (8,500 km2), the water dynamics and the bathymetry at the 

farm location, the experimental structures were optimally positioned to benefit from 

optimal environmental conditions (van Zwieten et al., 2011). In addition, the water 

quality parameters monitored during the 32-day experiment were similar across cages 

and remained within optimal recommendations for tilapia farming (Beveridge and 

McAndrew, 2000; El-Sayed, 2006). 

Fish performance were acceptable for tilapia farmed in cages (El-Sayed, 2013) and not 

significantly different among treatments, indicating that the dietary treatments did not 

compromise the fish growth. In accordance with these results, up to 100 % FM was 

replaced with housefly (M. domestica) or blowfly (C. megacephala) larvae meals in 

practical diets for tilapia fingerlings without compromising the fish growth compared to 

a FM-based control diet (Ogunji et al., 2008a, 2008b; Sing et al., 2014). Also, similar to 

that previously reported in other studies (Fasakin et al., 2003; Ogunji et al., 2008c; 

Karapanagiotidis et al., 2014; Sing et al., 2014), overall survival was good during the 
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32-day experimental period. The significant differences reported among the treatments 

survival rates were more likely explained by the stress related to the frequent sampling 

and handling (every 10 days) that would have more deeply affected the smaller fish 

than the larger one (MacNiven and Little, 2001; Bolivar et al., 2004). Indeed, despite 

the initial weights not being significantly different among treatments (ANOVA and 

Tukey's HSD test failed to detect differences with a P-value=0.05, close to the 

significance level though), the fish that were stocked at a slightly smaller size (namely 

BM25 and FM100) had significantly lower survival rates than the larger fish (BM50 

and BM75). Moreover, compared to the other treatments, the significantly lower 

survival of BM25-fed fish can explain the slightly (but not significant) greater weight 

gain and SGR reported (11.8±1.9 g/fish and 3.7±0.4 % biomass/day, respectively), 

probably the competition for the resources was reduced with the number of fish. 

The feeding method applied in the experiment (manual distribution), which is common 

practice in countries where labour costs are low, limits feed wastage and prevents 

starvation as it is based on the fish feeding response (El-Sayed, 2013). Multiple feeding 

can also improve growth and feed efficiency in species such as tilapia with relatively 

small stomachs and a continuous foraging behaviour (Shiau, 2002; NRC, 2011). Feed 

utilisation efficiency, measured through feeding rates, FCR and PER, was comparable 

between treatments. Feed intake was not affected by the BM dietary inclusions and the 

retroactively calculated feeding rates indicated that the fish were appropriately fed. 

Indeed, at 28°C, it is recommended to feed 5 to 20 g tilapia fingerlings at 6-4 % 

biomass/day (Shiau, 2002; Ng and Romano, 2013). Palatability of feeds containing 

insect meal seems to be related to various factors such as the fish species and its feeding 

response but also the insect meal characteristics (species, farming and processing 

methods) (Henry et al., 2015). For instance, a diet containing defatted BSF meal 

seemed to be poorly palatable for juvenile turbot, Psetta maxima (Kroeckel et al., 

2012), whereas inclusion of blowfly meal in feed for juvenile red tilapia did not affect 

the feed intake (Sing et al., 2014). In Chapter 4, fish performance results suggested that 

Nile tilapia fry feeding response towards crude and defatted BSF meals (produced in 

different conditions) was good, indicating a high palatability of the material used as a 

single feed ingredient or mixed with FM. Also consistent with other studies using BM-

based diets for tilapia fingerlings (Ogunji et al., 2008a, 2008c; Sing et al., 2014), PER 

values were comparable between dietary treatments. The latter indicated that dietary 
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proteins were similarly and efficiently used by the fish fed the different diets (Steffens, 

1989; De Silva and Anderson, 1994). Thus, the replacement of up to 75% FM with BSF 

meal in a commercially formulated diet for nursing tilapia did not affect the dietary 

protein quality. This result was expected as the BM used in the present study was 

provided with a set of essential amino acids similar to FM. 

The proximate composition of the whole fish body was also not affected by the dietary 

treatments. However, the FA profile mirrored that of the diets and strong correlations 

between selected FA and the dietary inclusions levels of BM indicated that the latter 

influenced the FA composition of the whole fish body. The total substitution of the FO 

in the 3 experimental diets explained the n-6 and n-3 PUFA levels (respectively 

increasing and decreasing with increasing MM inclusions). Sánchez-Muros et al. (2015) 

made similar observations while replacing 50 % FM and 100 % FO with a Tenebrio 

molitor larvae meal in a diet for Nile tilapia fingerlings. At the juvenile stages, farmers 

prioritise, in general, optimal growth and survival of the fish, using cost-effective and 

sustainable feeds and ingredients, and therefore, the FA composition of the fish whole 

body is less concerning at this stage than for a market-size fish (Turchini et al., 2009). 

To restore the n-3 PUFA levels, which have beneficial effects on human health (Ruxton 

et al., 2004), finishing diets containing essential PUFA could be used during the last 

weeks of farming (fattening stage), thereby improving the nutritional quality of the 

marketable fish (Karapanagiotidis et al., 2007). 

Commercial aquafeed manufacturers continue to produce feeds for tilapia including 20 

to 250 g/kg FM in their formulations because of its high nutritional quality and the high 

feeding response that it elicits (FAO, 2012); but this also suggests that the market price 

may still too low to avoid it completely and inclusion is retained to improve the feed 

quality (palatability) in a highly competitive feed market. In the present study, the 

absence of differences between the fish growth, feed utilisation and body composition 

was also probably related to the low inclusions of BM in the test diets (between 30 and 

80 g/kg). However, in comparison with other studies (Ogunji et al., 2008a, 2008b, 

2008c; Sing et al., 2014) where the FM dietary inclusions considered were greater, 

leading to higher inclusions of MM when used as FM substitute, and although farm-

made feed are still widely used in LIDC, the present study and results seem more 

economically relevant due to the application to a commercial feed formulation. As 
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previously stated, with the intensification of the fish farming systems, commercial 

compound diets are increasingly used. Although no economic evaluation was 

conducted, given the results of the study, it can be expected that, up to 80 g/kg, a 

dietary inclusion of BM could benefit both feed manufactured and fish farmer. Indeed, 

providing that MM market price is competitive, feed production costs would be 

alleviated by the reduction of FM, FO and soybean meal dietary levels (expensive 

feedstuffs). The strategic use of quality ingredients such as MM for juvenile tilapia, 

containing essential nutrients comparable to FM (Barroso et al., 2014), could support 

the sustainable intensification of aquaculture and contribute more broadly to food 

security. 
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Chapter 6. Evaluation of frass performance 

when used as supplementary feed in semi-

intensive tilapia farming or as a soil 

conditioner (bio-fertiliser) 
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6.1 Introduction 

Frass, secondary product of fly larvae production systems, consists of undigested 

substrate residues thoroughly mixed with insect excreta (Alvarez, 2012; Čičková et al., 

2012a). Compared to the initial substrates offered to the larvae to ensure their growth 

and development, frass are homogenous, odour-free, friable and stable materials with a 

moisture content usually reduced by half (Čičková et al., 2012c; Zhu et al., 2012; Wang 

et al., 2013). Dry matter and volume reductions of between 50 and 80% were reported 

for animal manures, municipal organic wastes, faecal sludge or agricultural by-products 

treated with maggots, thereby leading to a material containing soluble and available 

nutrients, such as nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) 

(Calvert, 1979; Newton et al., 2005b; Myers et al., 2008; Diener et al., 2011a; Čičková 

et al., 2012c; Gobbi et al., 2013; Lalander et al., 2013; Wang et al., 2013; Caruso et al., 

2014). Noteworthy, the maggot bioconversion process is dependent on the 

environmental parameters (temperature, relative humidity), the type and composition 

(chemical and physical) of the substrate and the larval density or feeding rate applied. 

Frass is not a negligible by-product since, according to the literature (Calvert, 1979; 

Čičková et al., 2012b; Wang et al., 2013; Caruso et al., 2014), amounts produced 

represent 80 to 95 % of the total outputs of a bioconversion process by weight (i.e. 

larval biomass + frass; wet weight); therefore it seems important to find a suitable 

application for this by-product (van Zanten et al., 2015). Li et al. (2011c) indicated that 

maggot digested dairy manures can be further hydrolyzed into fermentable sugar, 

suitable for the food industry (ethanol fermentation). Čičková et al. (2012c) suggested 

that frass derived from swine manure could be further processed (dried, ground and 

packaged) in order to stabilised the product, thereby facilitating handling and storage, 

whereas Zhu et al. (2012), proposed to use fly larvae bioconversion process as a cost-

efficient way to shorten the composting period usually necessary for swine manure 

through a 2-stage composting process. According to Newton et al. (2005b), frass 

derived from animal manures could be used for vermicomposting, thereby converting 

frass into earthworm castings, a valuable product in horticulture. In most studies, frass 

composition was compared to organic fertilisers owing to their optimal levels of N, P 

and K (Choi et al., 2009; Zhu et al., 2012; Wang et al., 2013; Lalander et al., 2014); 

however, limited and unclear results are available from the use of frass as soil 



Chapter 6 

 

131 

 

conditioners or organic fertilisers (NC State University, 2006; Choi et al., 2009). In 

fact, maggot frass could be a competitive product on the overall composts/bio-fertilisers 

market due to its availability (large amounts) and thanks to a composition comparable 

to compost or vermicompost, which are high-value products but available in limited 

quantities (NC State University, 2006). Hypothetically, when feed-grade materials 

(food industry by-products; oil cakes; food, kitchen or market wastes, etc.) are used as 

rearing substrates for maggots, resulting frass might still be suitable feedstuff for 

omnivorous fish species. 

Freshwater fish in the tropics, mostly herbivorous and omnivorous species, are still 

predominantly farmed under semi-intensive conditions (Bostock et al., 2010). Semi-

intensive farming usually occurs in ponds with fish, stocked at low density, relying 

primarily on natural food productivity enhanced through fertilisation (using manures or 

chemical fertilisers) and/or supplementary feeding to supply nutrient deficiencies and 

improve carrying capacity (De Silva, 1993; Tacon and De Silva, 1997). Good 

management practices suggested the application of supplementary feeding once a 

critical standing crop (CSC) is reached (Hepher, 1978), in order to simulate fish growth 

which would decline if relying solely on natural food (Figure 6.1). Supplemental feeds 

(SF) are various, from single feed ingredients to more complex mixtures and can be 

dispensed in a powder form, dough or pellets that are either broadcasted manually or 

placed in feed dispensers of various types (trays, perforated bags, etc.). The choice for 

suitable SF depends on various factors such as cost, availability, processing and 

handling requirements prior to feeding (minimal) and nutritional value; nonetheless, it 

is in general selected according to availability which, is in turn, related to surrounding 

agricultural activities (by-products) (De Silva, 1993; Jauncey, 1998). 
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Figure 6.1 Schematic representation of changes in natural food supply (NFS) and fish 

yields (Y) in ponds, in relation to standing crop of the farmed species and the ensuing 

protein needs of the supplemental feeding (SF) once critical standing crop level (CSC) 

is reached (modified after De Silva (1993) 
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Global intensification of aquaculture systems is also reflected in semi-intensive 

practices by the change from subsistence to income-generating enterprises of even 

small-scale farmers’ activities, increasing the competition for primary resources such as 

land, water and nutrients sources (De Silva, 1993). In this context, supplementary 

feeding is important because it permits to almost double the yields and production rates 

compared to a pond fertilisation only; therefore, cost-efficiency is a key factor.  

The aim of this study is to compare the performance of two types of feed-grade derived 

insect frass used as supplementary feed for Nile tilapia (O. niloticus) farmed under 

semi-intensive conditions or used as a soil organic fertiliser for spring onion, an 

important cash-crop relevant for relevant farmers in Asia and West-Africa. 

6.2 Materials and methods 

6.2.1 Frass 

The frass used in the following experiments were sourced from a large-scale pilot 

farming system of BSF located in Malaysia (Entofood Sdn Bhd; Kuala Lumpur, 

Malaysia). Two types of frass were compared, one was derived from processed food 

wastes (FW) and the other from brewery spent grains (BW) fed to BSF larvae. 

Following the bioconversion process and the separation of the larvae from the residues, 

both frass types were dried for 2 to 3 hours at 70°C. 

Both frass and rice bran were analysed for proximate, fatty acid and mineral 

compositions at the University of Stirling (Stirling, UK). Dry matter, crude protein 

(total N), crude lipid, ash, crude fibre, gross energy and fatty acids were analysed as 

described in Chapter 2. Amino acid (AA) compositions of the frass and rice bran were 

determined by HPLC (subcontracted by Eurofins Food and Feed Testing in Norway). 

Mineral analysis was carried out by ICP-MS analysis, similarly to Yttrium analysis (see 

paragraph 2.4 above). Chemical compositions of the frass and rice bran are detailed in 

the Table 6.1 below.  
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Table 6.1 Proximate, essentials and total amino acid, fatty acid and macro-mineral 

compositions of the rice bran and the two types of Black Soldier Fly frass derived from 

brewery wastes (BW) and food wastes (FW) 

 Rice Bran BW Frass FW Frass 

Proximate composition (g/kg) 

Dry Matter 865.4 875.5 923.3 

Crude protein 122.2 207.2 184.6 

Crude lipid 125.4 22.9 22.6 

Ash 59.3 59.2 204.7 

Fibre 34.6 234.0 228.5 

NFE 523.9 352.2 283.0 

Gross energy (MJ/kg) 18.7 24.1 23.2 

Amino Acid composition (g/100 g meal) 

Histidine 0.32 0.18 0.21 

Arginine 0.91 0.41 0.51 

Threonine 0.45 0.39 0.44 

Valine 0.66 0.53 0.62 

Methionine 0.27 0.11 0.17 

Lysine 0.56 0.42 0.51 

Isoleucine 0.43 0.42 0.45 

Leucine 0.85 0.71 0.77 

Phenylalanine 0.54 0.46 0.47 

Total amino acid 10.99 8.63 10.60 

Fatty acid composition (g/100g meal) 

Total saturated 2.10 0.38 0.40 

Total monounsaturated 3.35 0.27 0.32 

Total n-6 PUFA 2.68 0.62 0.53 

Total n-3 PUFA 0.10 0.08 0.03 

Total PUFA 2.78 0.70 0.56 

Total FA content 8.23 1.35 1.28 

Macro-mineral composition (g/kg) 

Calcium (Ca) 8.2 17.6 361.2 

Magnesium (Mg) 72.1 23.9 14.5 

Sodium (Na) 214.1 253.5 484.3 

Potassium (K) 144.3 31.4 192.6 

Phosphorus (P) 151.8 102.6 148.7 

Values	  are	  presented	  ‘as	  is’,	  based	  on	  duplicate	  analyses.	   	  
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6.2.2 Supplemental feeding trial 

6.2.2.1 Experimental design and set up 

The experiment was conducted on-farm at Nam Sai Farms Co. Ltd. (Prachinburi, 

Thailand) between December 2015 and March 2016 (14 weeks). A 2,260 m
2
 earthen 

pond (1.2 m depth), located on Nam Sai main site (13°59'19.95"N; 101°12'58.50"E) 

was primarily drained, limed (1,875 kg/ha as Ca(OH)
2
) and dried for a week. The pond 

was then filled with fish-free water, screened through a fine mesh, from an on-farm 

reservoir and conditioned with 30 kg 15-15-15 NPK inorganic fertiliser (Saksiam Inter 

Supply Co. Ltd., Bangkok, Thailand) and 150 kg Marl (CaCO3), 10 days before 

stocking the fish, in order to promote natural productivity. Fertilisation and liming 

operations were then repeated every 10 days with 40 kg of 15-15-15 NPK and 150 kg of 

Marl during the first 4 weeks of experimentation or 40 kg of 15-15-15 NPK and 150 kg 

of Dolomite (CaMg(CO3)
2
) to provide magnesium (Mg) from week 5 and until the end 

of the experiment. A paddle wheel system (2.24 kW), located on one side of the pond, 

was activated daily from 09:00 PM to 08:00 AM and 01:00 to 03:30 PM to improve 

water circulation, oxygenation and productivity of the pond.  

Four dietary treatments consisting of supplementary feeding with single feed 

ingredients, namely rice bran (RB), BSF frass derived from brewery wastes (BW) or 

BSF frass derived from processed food wastes (FW), or no supplementary feeding 

(Control) were randomly allocated to 16 hapas nets (40 m
2
), as 4 replicates per 

treatment. Each experimental unit (hapa) was stocked with 97 monosex Nile tilapia 

(17.6±0.8 g initially, mean ± SD) and the pond (outside hapas) was stocked with 1,362 

mixed-sex Nile tilapia (individual weight of 30g, approximately). Hapa nets were 

changed every 2 weeks. After a week of acclimation (week 1) during which no feed was 

distributed in order to allow the fish get used to the natural feed supply, supplementary 

feeding was started (week 2) by dispensing daily RB, BW or FW using feeding trays 

(30*30*5 cm) immersed at 30 cm depth in the designated hapas. During the first 

feeding week (week 2), hapas were supplemented with 50 g (3% of the biomass) SF in 

order to accustom the fish. From week 3 and until termination of the experiment (end of 

week 14), fish were fed to apparent satiation, over a one-hour feeding session (9:30 to 

10:30 AM). Briefly, each day, fish were first served the same amount of feed offered 

and consumed the day before, after 30 minutes trays were checked and more feed was 
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distributed if necessary (quantity added was left at the at the feeder’s discretion). 

Appropriate feeding was ensured by a skilled farm technician in response to the fish 

feeding response. At the end of the day, all the trays were lifted up to prevent fouling. 

The amount of feed distributed daily was determined by the difference between the 

weight of daily prepared feed containers before and after the feeding session.  

Growth and survival of the fish under different treatments were evaluated at the start 

(stocking day), at mid-term (week 7) and on termination (end of week 14) of the 

experiment. Samplings involved of weighing all the fish of each hapa in batches of 10 

fish/batch or less depending on the number of fish remaining in the last batch (UWE 

DW-3000E digital scale, precision: 0-3000gx1). Fish stocked outside the hapas were 

counted and bulk weighed at the start of the experiment (initial biomass = 40.6 kg); on 

termination of the experiment, the pond was drained and captured fish were weighed in 

batches of 10 as described previously. 

Weight gain (g); SGR (% body weight/day); FCR; feeding rate (% body weight/day) 

and survival rate (%) were determined as described in Chapter 2. 

Water temperature was measured and recorded every 2 hours with RFID (Radio 

Frequency Identification) temperature sensors (LOG-IC® data loggers, American 

Thermal Instruments) placed at 10 and 50 cm under the water surface in the pond. 

Dissolved oxygen (DO) was measured twice a week at 07:00 AM and 03:00 PM using a 

YSI 550A digital DO meter. Due to a delay in the procurement of the reagents for pH, 

ammonia, nitrite and alkalinity on one hand (Hanna HI83200 spectrophotometer) and 

filtering equipment for Total Suspended Solids (TSS) on the other hand, measurements 

were started on week 8 until termination of the experiment. Water samples were 

collected in 4 locations in the pond (within hapas) and analysed weekly for pH, 

ammonia, nitrite and alkalinity; TSS was determined following Stirling et al. (1985)’s 

method, thereby collecting every two weeks 5 water samples of 0.5 L each from 

different 5 locations in the pond (in and outside hapas); samples were immediately 

filtered through dried, pre-weighed 47-mm Whatman GF/C papers, using a filter funnel 

placed on a 1.0 L Buchner flask connected to a venture suction pump fitted to the water 

tap; paper filters were subsequently dried in an artisanal oven (temperature ≤ 40°C) in 

aluminium foil for 5 - 6 hours until constant weight. The difference in weight of the 

filters divided by the volume of water filtered corresponded to the TSS. 
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6.2.2.2 Justification of the design 

The experiment was designed to keep variability, cost and management to the 

minimum; hence the choice of placing all the treatment replicates within a single pond. 

A minimum of twelve ponds (4 treatments in triplicates) would have been necessary 

otherwise. Fish farmed under semi-intensive conditions are generally stocked at low 

density (0.5 to 3 fish/m
2 

(Yi et al., 2008) directly in the pond, but in order to keep 

different treatment replicates independent fish had to be stocked in enclosed structures. 

Large hapas (40 m
2
) permitted to apply dietary treatments to a significant number of 

fish (97 fish per hapa), stocked at 2.4 fish/m
2
. In addition, in order to balance the overall 

pond density, maintain the water quality even and contribute to fouling control on the 

hapa nets, larger fish were stocked in the pond, outside the hapas (1 fish/m
2
). 

A preliminary test indicated that both frass and rice bran sink quickly when broadcasted 

(0. 1-0.2 m/min) leading to the use of feeding trays to dispense the feed daily. Single 

ingredient SF were preferred to simple feed formulation, again, to minimise 

management but also to compare, as a preliminary experiment, the fish performance 

without interaction with other ingredients. 

6.2.3 Agronomy trial 

A pot trial was conducted within the Controlled Environment Facility (CEF) of the 

Biological and Environmental Sciences Department, University of Stirling (Stirling, 

UK) between the months of March and May 2016. Unamended brown earths soil was 

collected from the University of Stirling grounds in a place with no fertiliser history. 

Dried soil (72 hours, ambient temperature in CEF) was sieved (0.8 mm) in order to 

remove stones and unwanted materials. BSF frass derived from brewery wastes (BW) 

or BSF frass derived from processed food wastes (FW) were respectively rehydrated at 

1:1 and 1:0.8 (frass:water) rehydration ratios, in order to adjust the moisture content to 

approximately 50 % (comparable with compost) and applied during soil preparation at 

5.0; 10.0 and 15.0 tonnes/ha (BW5, BW10 and BW15; FW5, FW10 and FW15, 

respectively). A positive control with commercial 15:3:15 NPK fertiliser (Dobbies 

Garden Centres Ltd, Lasswade, UK) applied at 0.3 tonne/ha (NPK) and a negative 

control with no amendment were also prepared (NF). For each of the 5 treatments, 4 

replicate pots (10 cm diameter; 350 cm
3
 volume) were placed in individual watering 
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saucers and were filled with the respective soil mixture, seeded with 7 to 10 spring 

onion seeds (Allium cepa, variety White Lisbon) and watered. Pots were subsequently 

arranged in a completely randomised design in a climate-controlled cabinet 

(Microclima Jumo Imago F3000, Snijders Scientific) at 24.0°C and 70.0 % relative 

humidity with a light-dark regime of 16:8 hrs (irradiance 400 µmol/m
2
/sec). 

The experiment was conducted for 8 weeks according to the seed distributor’s 

instructions (Thompson & Morgan, Ipswich, UK). Plants were watered from below 

every 3 to 4 days and weeds were removed when necessary. On termination of the 

experiment, plants were harvested by removing delicately the soil from the root system. 

Soil samples were stored under refrigerated conditions (-4°C) until further analysis. 

Shoots (including the onion bulbs) and roots were separated and pooled on a pot basis; 

individual shoot length (cm) was recorded immediately after harvest. Pooled shoot and 

root dried weights (g) were determined after drying in an oven (Gallenkamp Oven 300) 

for 48 hours at 70°C in order to calculate the root to shoot ratios (root:shoot), a good 

indicator commonly used to assess the plant health and culture conditions (Bernier et 

al., 1995; Andrews et al., 1999). Expected yield (tonnes/ha) was determined on a dry 

matter (DM) basis and accounted for the whole plant (shoots+roots) since whole spring 

onion plants are usually sold in West-African markets to allow fast rehydration and 

increase shelf life (C. Adeku, pers communication, April-May 2016).  

Soil analyses were conducted at the end of the experiment. Moisture content and soil 

organic matter (OM) were determined from 5.0 g soil samples using the standard 

methods described in 2.3.1 and 2.3.5 above, respectively. Electrical conductivity and 

soils pH were measured on 5.0 g samples in solution in 30 ml deionised water using 

Hanna HI 98311 and HI 2550 digital probes, respectively. 

6.2.4 Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics software (version 21). 

Data were subjected to one-way ANOVA followed by Tukey's HSD test for unplanned 

multiple comparisons or using one-way ANOVA on ranks (Kruskal-Wallis test) when 

preliminary assumptions were violated. Correlations (agronomy trial) between the frass 

application rate and the performance of the plants were analysed using Pearson’s 
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coefficient. Data are presented as mean ± SE, unless otherwise stated and a significance 

of P<0.05 was considered for all analyses performed. 

In the supplemental feeding trial with tilapia, the aerator (paddle wheel) located at one 

extremity of the pond had a significant but not homogenous effect on the growth of the 

fish stocked in the 4 closest hapas (one replicate of each treatment). No significant 

correlation was found between the growth of the fish and the distance from the aerator, 

therefore some unexplained random effects might also explain the differences. A 

statistician was consulted and advised to exclude these 4 hapas (outliers) from the 

statistical analyses comparing the treatment effects and the discussion. The completely 

randomised design of the experiment ensured that the remaining treatments kept on a 

balanced design allowing an ANOVA followed by post-hoc test to be applied as 

described above.  

6.3 Results 

6.3.1 Supplemental feeding trial 

Water temperature and dissolved oxygen (mean ± SD) varied slightly during the course 

of the experiment and with the diurnal periods with average values ranging between 

28.0±2.1°C and 2.6±0.6 g/L in the morning (07:00 AM) and 30.6±2.2°C and 7.6±0.1 

g/L in the afternoon (03:00 PM). Water pH, ammonia, nitrite and TSS levels remained 

stable during the last 7 weeks of the experiment with values ranging from 8.3-8.5; 1.9-

3.9 mg/L; 0.6-0.8 mg/L and 5.2-10.3 mg/L, respectively. Alkalinity indicated 

decreasing values between week 7 and 14 (from 211.3 to 97.5 mg CaCO3/L) despite the 

regular application of marl and dolomite. 

Because no feed was dispensed during the first week of the 98-day experimental period, 

fish were fed during 91 days in total. Fish performance indicated significant differences 

among dietary treatments (Table 6.2). Growth performance (final weight, weight gain 

and SGR) and feed utilisation indicators (FCR and feeding rate) of fish fed with RB 

were significantly higher than for BW and FW treatments (P<0.05). FCR and feeding 

rates were not calculated for the Control treatment as no SF was dispensed. The growth 

performance of the fish fed the frass (BW and FW) were not significantly different 

(P>0.05) from those of the fish relying on the natural food supply (Control). A 

significantly greater amount of RB (2.5 more, on a dry matter basis) was dispensed to 
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the fish compared to the frass (P<0.05). Overall survival was good and not affected by 

the dietary treatments (P>0.05). 

A total of 890 fish were captured from the pond (fish outside the hapas) on termination 

of the experiment, with a final individual weight of 240.8±24.1 g (mean ± SD). Weight 

gain of these fish was, therefore, higher than for the fish hold in hapas (210.8 g 

compared to 145.8-94.2 g in hapas). On the contrary, survival (65.3 %). was lower than 

for the fish in hapas. 

Total biomass in the pond on termination of the experiment was 406.7 kg (including 

also the replicates that were excluded from the statistical comparisons and the fish 

outside the hapas). The adjusted yield was equivalent to 2,033.5 kg/ha. 
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Table 6.2 Performance of Nile tilapia fed rice bran, brewery wastes (BW) frass or food wastes (FW) frass and those kept in hapas (Control) 

relying on natural food 

 
Dietary treatments 

 
Rice bran BW frass FW frass Control 

Initial weight (g) 17.8±0.4 17.6±0.5 17.4±0.5 17.7±0.5 

Final weight (g) 163.6±0.8
a 

124.0±2.8
b 

117.7±3.6
b 

117.5±4.3
b 

Weight gain (g) 145.8±1.1
a 

106.5±3.2
b 

94.2±3.5
b 

99.9±3.9
b 

SGR (% body weight/day) 2.4±0.0
a 

2.1±0.1
b 

2.0±0.0
b 

2.1±0.0
b 

Total feed distributed (kg DM/hapa) 25.3±0.1
a 

9.6±0.4
b 

10.3±0.1
b 

- 

FCR 2.1±0.1
a 

1.1±0.1
b 

1.3±0.0
b 

- 

Feeding rate (% body weigh/day) 2.0±0.1
a 

1.0±0.1
b
 1.2±0.0

b
 - 

Survival (%) 86.6±2.4 84.9±3.5 90.4±1.8 87.4±2.1 

Means± SE (n=3) bearing different superscripts within each row are significantly different (P˂0.05) 
1
Fish outside the hapas, initial biomass = 40.6 kg for a total of 1,362 fish 
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6.3.2 Agronomy trial 

Both frass showed great water retention and absorption capacity when water was added 

to the dried materials during rehydration process. In addition, the application of 5, 10 or 

15 tonnes/ha frass (50% moisture) to the brown earths soil resulted in a growth medium 

more aerated than the unamended soil; on the contrary, NPK application resulted in a 

more compact growth medium compared to the NF control. 

Significant differences were identified in the growth performance of the spring onion 

plants under the different fertilisation treatments, measured 8 weeks after sowing 

(Figures 6.2 and 6.3). Shoot length measurements indicated that NF treatment resulted 

in significantly smaller plants (13.5±0.3 cm) than all other treatments (P<0.05) whereas 

FW15 fertilisation led to shoots significantly longer (27.9±1.0 cm) than NPK (22.8±0.6 

cm), BW5 (20.5±0.5 cm), BW10 (22.0±1.5 cm), BW15 (19.6±1.4 cm) and NF 

treatments (P<0.05). Dried shoot and root biomasses were used to determine the root to 

shoot ratios. NF treatment led to the greatest root:shoot ratio (0.95) which was also 

significantly different from BW5 (0.54), BW15 (0.51) and all the FW-based treatments 

0.58; 0.55 and 0.53 for FW applied at 5, 10 and 15 tonnes/ha, respectively) (P<0.05). 

The root:shoot ratios calculated for NPK (0.67) and BW10 (0.62) were not significantly 

different from all the other treatments (P>0.05). The numbers of plant per pot (3.7±0.1 

plants/pot) were not significantly different among treatments (P>0.05); thus the 

expected yields per hectare were extrapolated from the experimental results and 

indicated that FW10 and FW15 treatments resulted in significantly higher yields 

(0.34±0.01 and 0.35±0.05 tonne/ha, respectively) than NF and all the BW-based 

treatments (P<0.05). NPK fertilisation led to a yield substantially higher (0.27±0.02 

tonne/ha) than NF and BW5 (P<0.05), but comparable to the other treatments (Figure 

6.3). 
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Figure 6.2 Effect of soil fertilisation treatment (NF: no fertiliser; NPK: 0.3 tonne/ha 

commercial NPK fertiliser; BW: brewery waste frass applied at 5; 10 or 15 tonnes/ha 

and F: food wastes frass applied at 5; 10 or 15 tonnes/ha) on the spring onion shoot 

length (cm); root:shoot ratio and expected yield (tonnes/ha, on a dry matter basis) 
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Figure 6.3 Comparison between spring onions (Allium Cepa, White Lisbon) plant 

growth, 8 weeks after sowing in unamended (NF) soil or soil fertilised with NPK (0.3 

tonne/ha), brewery waste frass (BW) applied at 5, 10 or 15 tonnes/ha (A) or food wastes 

frass applied at 5, 10 or 15 tonnes/ha (B) 
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Significant positive correlations (P<0.05) were identified between the FW and BW 

application rates and the shoot length (r 0.817 and 0.591, respectively) and the expected 

yield (r 0.812 and 0.861, respectively) whereas significant negative relationships 

(P<0.05) were found between the FW and BW application rates and the root:shoot 

ratios (r -0.710 and -0.573, respectively). 

Soil analyses also indicated significant differences among treatments (Figure 6.4). 

Among all the treatments, NF (6.7±0.1 %) and NPK (6.6±0.1 %) had the significantly 

lowest soil organic matter (OM) content (P<0.05). No significant difference (P>0.05) 

was identified between BW5 and FW5 (7.4±0.1 and 7.2±0.1 %, respectively); BW10 

and FW10 (8.4±0.1 and 8.3±0.1 %, respectively) and BW15 and FW15 (9.0±0.2 and 

9.1±0.1 %, respectively); however, strong positive correlations were found between 

BW and FW application rates and the OM content of the soil (r 0.978 and r 0.974, 

respectively) indicating that increasing levels of frass increased substantially the soil 

OM (P<0.05). The pH of the soil fertilised with 0.3 tonne/ha NPK was significantly 

more acidic (5.6±0.0) than the other fertilisation treatments (pH values ranging between 

6.4±0.1 and 6.6±0.1) (P<0.05). Electrical conductivity varied widely with the 

treatments; low electrical conductivity was found in NF soils (53.3±7.3 µS) and in the 

soils fertilised with 5, 10 and 15 tonnes/ha BW (142.0±25.4; 191.3±19.3 and 

168.3±34.5 µS, respectively). NF electrical conductivity was significantly lower than 

NPK (702.8±97.2 µS); FW5 (538.5±96.92 µS); FW10 (958.8±164.22 µS) and FW15 

(1393.3±192.22 µS) (P<0.05). FW5 and FW10 electrical conductivities were not 

significantly different from NPK (P>0.05). In addition, a strong positive relationship 

was found between the soil electrical conductivity and the FW application rate (r 0.904; 

P<0.05) indicating that increasing FW frass level in soil improved the soil conductivity. 
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Figure 6.4 Effect of soil fertilisation treatment (NF: no fertiliser; NPK: 0.3 tonne/ha 

commercial NPK fertiliser; BW: brewery waste frass applied at 5; 10 or 15 tonnes/ha 

and F: food wastes frass applied at 5; 10 or 15 tonnes/ha) on the soil organic matter, pH 

and electrical conductivity after the harvest of the spring onions, 8 weeks after sowing 
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6.4 Discussion 

The circular economy strategy considers that all outputs of a production system are 

valuable resources and must become inputs of other processes. In the case of insect 

farming, frass, which might be a lower-value product compared to the insect biomass or 

meal, represent however the main output in term of weight and have been suggested as 

good soil conditioner, source of fermentable sugar or suitable material for further 

vermicomposting (Newton et al., 2005b; Choi et al., 2009; Li et al., 2011c; Čičková et 

al., 2012c; Zhu et al., 2012). In the current study, frass derived from feed-grade 

materials (brewery and processed food wastes) showed compositions which led first, to 

the idea of using them as SF for tilapia farmed under semi-intensive conditions. Indeed, 

both types of frass were substantially higher in protein (total N) and gross energy than 

the RB. Nevertheless, the protein content of the frass might have been overestimated by 

the Kjeldahl method which assumes that the total nitrogen measured in a sample is 

related to the AA that compose the proteins. Indeed, when Kjeldahl protein contents 

(total N multiplied by a conversion factor; i.e. 6.25) were compared to the total AA 

contents of the frass (often considered as a better measure of the protein), substantial 

differences were reported (82.4 and 54.1 % differences for BW and FW, respectively), 

thereby indicating large proportions of non-protein-nitrogen in both frass. For the RB, a 

difference of only 10.6 % between total N and total AA was measured. The comparison 

of the total AA contents of the three SF indicated, therefore, similar protein levels for 

RB and FW (11.0 and 10.6 g/100 g meal, respectively) and slightly lower content for 

BW (8.6 g/100 g meal). The high crude fibre contents of both frass were concerning 

because fish do not possess the appropriate enzyme set to digest cellulose-rich materials 

and high dietary fibre might reduce the gut transit time and therefore the digestibility 

(Jauncey, 1998). However, low lipid and thus, FA contents, of the frass could be an 

advantage for the frass compared to the RB, firstly during storage under ambient 

tropical conditions as it reduces the risks of rancidity but also because low-fat diets are 

usually preferred for warmwater omnivorous fish such as tilapia (El-Sayed, 2006). 

Nevertheless, FA serve also as energy sources for fish (NRC, 2011), thus low content 

could also impact negatively the growth. Minerals are essential elements of fish 

nutrition contributing to the maintenance of normal metabolic and physiological 

functions (Jauncey, 1998), contents varied widely between the three SF used in the 

feeding trial. According to Dato-Cajegas and Yakupitiyage (1996), except phosphorus, 
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which improve significantly the growth and the feed utilisation of tilapia in semi-

intensive systems, the supplementation of other minerals is not essential because the 

requirements are usually satisfied by the levels of minerals available in the pond water 

and the natural food.  

The fundamental principle of using SF at low stocking density in fertilised ponds is to 

complement the high protein levels of the natural food, which availability decreases as 

the fish grow, with an additional substrate for the energy metabolism as it becomes 

limiting using exogenous feeds (Jauncey, 1998). Thus, the nutritional composition and 

the nutrient availability for the fish of the SF is crucial to ensure effectiveness of the 

method.  

Evaluation of the water quality during the course of the experiment led to values within 

tolerance limits for tilapia (Beveridge and McAndrew, 2000; El-Sayed, 2006). Fertiliser 

and lime were added according to commercial practices in order to maintain optimum 

water quality and natural productivity for the fish growth. Liming was initially applied 

to increase the response to fertilisation and to neutralise water acidity, which leads 

generally to increasing alkalinity and hardness (Boyd, 1982). However, according to 

Wurts and Masser (2013), once the pH and alkalinity stabilise above 8.0 and 50.0 mg/L, 

respectively, limestone does not dissolve properly and regular application might be 

ineffective and unnecessary, which explains the results observed in this study. In 

addition, as previously reported by Diana et al. (1994), the declining levels of alkalinity 

were also probably due to the carbon use by photosynthesis or other natural processes in 

the pond. Although the natural food level could not be measured in the present study, it 

was assumed to remain constant thanks to the regular fertilisation and liming and the 

relatively stable water quality. 

The good growth (2.1 - 2.3 % body weight/day) of the fish that were not fed (inside and 

outside the hapas) indicated that natural food was abundant and sufficient to support the 

fish dietary requirements at the density stocked. These growth rates were, comparable 

to, or higher than the value reported for semi-intensive conditions in other studies 

(Green, 1992; Thakur et al., 2004). The slightly better growth (weight gain and SGR) of 

the fish outside the hapas compared to the unfed fish kept in-hapas (Control treatment) 

was probably related to several factors such as the lower density of fish and a better 
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access to the natural food, in particular periphyton developing at the bottom of the pond 

(Jauncey, 1998). 

The growth performance of the fish under the different dietary treatments indicated that 

the fish fed RB grew significantly better than the fish fed the frass (BW and FW). In 

addition, the growth performance of the frass-fed fish and unfed fish (in-hapas) were 

not significantly different. These results suggested that the production rates were not 

improved by the supplementation with frass in comparison to the fish relying only on 

the natural foods and, therefore, that the BSF frass were not suitable and cost-effective 

single-ingredient SF for tilapia. Moreover, comparable performance of the fish fed BW, 

FW and the Control treatment suggested that these fish benefitted only from the natural 

foods available in the pond. Nevertheless, at the end of each day, when the feeding trays 

were lifted out of the water to dry overnight, there was systematically some feed 

remaining from the morning feeding session but the amounts were residual. Although 

further investigations are required to explain this result, it supposes two hypotheses:  

(i) The fish have not ingested the frass, which would have then filtered through 

the mesh of the feeding tray, due to a poor palatability. Indeed, farmed 

tilapia in semi-intensive ponds usually prefer SF to natural foods (Schroeder, 

1983), but the low palatability of the frass could explain the non-interest 

from the fish. Although these frass derived from feed-grade materials, the 

bioconversion by the larvae followed by the drying process could have 

affected the palatability of the materials.  

(ii) The fish have ingested the frass but did not assimilate the nutrients properly. 

Poor nutritional quality of the frass related to low lipid contents, high levels 

of non-protein N or high fibre contents which could have led to a poor 

digestibility (Jauncey, 1998; Liti et al., 2006), could explain the poor 

nutrient utilisation and assimilation. 

FCR values obtained for BW and FW were significantly better than for RB because the 

amount of frass distributed to the fish were significantly lower than the RB, thus the 

FCR was not considered as a good feed utilisation indicator in the present study since 

the fish under BW and FW treatments did not rely on the frass as a source of nutrients 

supporting their growth, as discussed above. 
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The experimental design could have also influenced the results of the study; indeed, 

comparisons with previous studies suggested that various factors might have 

contributed to the frass inefficiency as SF. For instance, although farmers often start 

supplementary feeding 2 weeks after stocking the fish in pond (El-Sayed, 2008, 2007), 

previous research showed that supplemental feeding is more cost-effective if started at 

fattening stages, once the CSC is reached, namely 75-80 days post-stocking or when 

fish reach 100-150 g (Diana, 1996; Brown et al., 2000). Thus, other experiments were 

usually conducted for 21 to 23 weeks to allow sufficient time to reach CSC before 

dispensing SF (Green, 1992; Diana et al., 1994; Green et al., 2002; Thakur et al., 2004). 

Proper timing when adding SF have also proved to avoid wastage of resources (El-

Sayed, 2008). In the current study, the experiment was terminated 14 weeks after 

stocking due to a time constraint, which seemed to correspond to the CSC threshold as, 

at this time, the fish average individual weights varied between 164 g (RB) and 124-118 

g (BW, FW and Control) and the production yield was equivalent to 2,000 kg/ha. 

Therefore, during the first 14 weeks of the experiment, the fish could have neglected the 

poorly palatable frass and rely solely on the abundant and not limiting natural food 

without compromising growth (hypothesis (i) above), whereas the fish fed the RB 

would have been encouraged to feed on the SF thanks to its high palatability. An 

extended experimental period could have probably led to different results because, as 

the fish grow, they would have found themselves in an environment with limiting 

natural resources and may have been forced to feed on the frass to support their 

requirements. However, in the case where frass nutrients were not available and 

digestible (hypothesis (ii)), an extended experimental period would have probably 

depressed the fish growth and resulted in poor survival but clearer experimental 

outcome.  

The method used to dispense the SF to the fish in the present study is debatable and 

could have also affected the results. In fact, as hypothesised earlier, frass particles and 

nutrients could have leached throughout the mesh of the feeding trays before the fish 

fed after some time in the water, and the use of feeding trays might not have been the 

best method to encourage a good feeding response. In semi-intensive farming systems, 

SF that are in a powdery form such as RB, are usually broadcasted manually once or 

twice a day but the use of feeding trays or perforated bag suspended above the water 

surface is also common practice (De Silva, 1993; Tacon and De Silva, 1997). However, 
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according to De Silva (1993), there is little knowledge on the efficacy of these forms of 

feeding and it is always difficult to determine the amount of feed wasted or really 

ingested by the fish. Farm-made feeds consisting of simple ingredient mixtures, 

dispensed as pellets or dough, are also commonly used in semi-intensive aquaculture 

systems and might reduce nutrients leaching and feed wastage (New et al., 1994). 

Compounding the frass with other ingredients as pellet or dough could have eventually 

contributed to better outcomes as suggested by Thompson et al. (2016) who found that 

BSF frass from distiller’s dried grains with solubles (DDGS) can replace FM in diets 

for tilapia juveniles when combined with highly digestible animal (poultry by-product 

meal) and plant proteins (soybean meal). 

Frass was often compared to compost or vermicompost due to its chemical composition 

and in an earlier study, Edwards et al. (1983) found that compost could be used as a 

supplementary feed for Nile tilapia and that uneaten compost would contribute to the 

pond fertilisation. Unlike compost, frass used in the current study had been dried to 

improve shelf-life and storage, thereby removing microorganism activity and probably 

reducing significantly the nutritional quality for fish. Nevertheless, it could be 

interesting to look at the possibility of using these frass to fertilise the pond (organic 

fertiliser such as compost and animal manures are often used in semi-intensive farming) 

rather than using them as direct SF. 

Indeed, in line with previous research claims about the potential of insect frass as bio-

fertiliser (Newton et al., 2005b; Lalander et al., 2013, 2014; Wang et al., 2013), the 

results of the agronomy trial presented here indicated clearly the positive effects of the 

frass on the soil fertility and on the plants growth. Consistently with Singer et al. 

(1998)’s observations related to the use of organic fertiliser, the soil structure was 

improved (more aerated) by the addition of frass compared to the unamended soil (NF) 

and the soil fertilised with NPK. Improvement of the soil structure is a characteristic of 

organic soil conditioners that usually encourages the development of the root system 

and therefore the growth of the plants (Singer et al., 1998).  

Root to shoot ratio, which is influenced by a range of environmental factors (weather, 

aeration, nutrient supply, etc.), is a good indicator of the quality of the culture 

conditions and of the plant health (Bernier et al., 1995; Andrews et al., 1999). High 

values (highest value being 1.0) indicate equivalent root and shoot biomasses (dry 
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weights) which are often related to a soil nutrient deficiency (Wilson, 1988); low values 

indicate that the plants have developed a greater shoot biomass compared to the root 

system. In the present study, root:shoot ratios of the spring onions cultured in the soil 

fertilised with BW or FW were significantly lower than the plants cultured on 

unamended soil (NF treatment) and NPK treatment showed a ratio intermediate 

between NF and the frass treatments; thus, growing conditions were improved by 

application of fertiliser, particularly the organic frass. Because the plants were cultured 

under strictly controlled environment, the improvement of the culture conditions was 

mostly related to a better soil fertility (Harris, 1992). Plants rely, inter alia, on soil 

nutrients to ensure their growth and development; ammonium, nitrate, potassium and 

phosphorous are available nutrients to plant (Horneck et al., 2011) and N-based 

nutrients, in particular, stimulate top growth at the expense of the roots (Harris, 1992; 

Andrews et al., 1999). Soil nutrients levels and availability of the previously cited 

nutrients couldn’t be determined in this study, but the results suggested that frass 

improved the growing conditions by increasing the nutrients available to the plants in 

the soil. In addition, the results indicated that increasing levels of frass (up to 15 

tonnes/ha) increased significantly the nutrients availability in soil. Because shoot length 

and yields were positively correlated to the frass application rate, it is assumed that 

frass supplied, in particular, nitrogen-based nutrients in soil. Abdissa et al. (2011) also 

reported that N improved significantly growth, quality and yield of A.cepa. According 

to Lalander et al. (2014), it can also be assumed that most of the non-protein N 

measured in the frass was mainly ammonium nitrogen (NH4-N).  

Soil OM (representing the soil carbon content) and electrical conductivity (representing 

the soil soluble salts content) are known to be positively correlated; thus, high OM 

content in soil induces a high cation exchange capacity and subsequently a high 

electrical conductivity, thereby suggesting excellent growing conditions (Horneck et al., 

2011; Valente et al., 2012). Frass, like other organic residues or composts, increased 

significantly the OM content and electrical conductivity of the soil, leading to higher 

soil fertility compared to unamended soil, thereby contributing to the plant growth 

(Horneck et al., 2011). This result corroborates with the previous assumption as a soils 

with high OM content contain also more total N and intuitively more plant-available N 

(Horneck et al., 2011). Management of soils OM is crucial to ensure long-term soil 

productivity and, therefore, sustainable agriculture practices (Chander et al., 1997). 



Chapter 6 

 

153 

 

Increasing the soil OM by using organic rather than inorganic fertilisers have several 

benefits, including economic benefits, as it improves the soil water-holding capacity 

(reducing irrigation requirements), microbiological activity (nutrient turnover) and 

stability (reducing nutrient leaching). Another advantage highlighted by the present 

study was the non-influence of the frass application rate on the soil pH. Indeed, unlike 

the NPK, which led to a moderately acidic soil (pH 5.6), the application of frass did not 

significantly alter the soil pH in comparison to the unamended treatment (NF). 

Moreover, contrary to NPK, the soil pH of both NF and frass treatments were within the 

values recommended for most crops, namely between 6.0 to 8.2 (Horneck et al., 2011).  

Excepting for BW5 treatment which led to a yield comparable to the unamended (NF) 

treatment, significantly lower than the yield obtained under NPK fertilisation, in most 

cases, growth performance of the spring onion cultured on FW or BW amended soils 

were not significantly different from those of the plants growing on NPK fertilised soil, 

although growing conditions (OM content and pH mainly) were improved by the use of 

the organic residues compared to the inorganic fertiliser. This indicates a minimum of 

10.0 tonnes/ha BW or 5.0 tonnes/ha FW is required to expect yields comparable to 

those obtained with conventional inorganic fertiliser. The results (correlations) have 

also highlighted that increasing levels of frass, from 5 to 15 tonnes/ha, resulted in 

increasing OM and electrical conductivity and therefore, better yields. Moreover, the 

yields achieved with soil amended at 10 and 15 tonnes/ha FW were significantly greater 

than the yields obtained with BW suggesting that applied at 10 tonnes/ha, FW frass 

performed better than BW frass as bio-fertilisers, probably related to the significantly 

lower electrical conductivity (soluble salts) reported in the soil amended with BW 

compared to FW10 and FW15. This could encourage farmers to choose to apply higher 

rates of frass, in particular FW frass, if available at a price competitive with other 

conventional fertilisers. According to the present study, up to 15 tonnes/ha, the 

application of frass as soil organic fertiliser is suitable for spring onion and may benefit 

the farmer by improving the soil fertility, nutrient stability (less fertiliser would be 

needed for the next crop) and productivity. Nevertheless, if frass becomes marketable as 

fertiliser, nutrients analysis will be essential in order to define recommended and 

maximum application rates. This is important to limit the risks of pollution related to 

nutrient leaching in water (D’Haene et al., 2014), but also because, at high 
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concentrations, nutrients such as N-based elements may become toxic and suppress 

plants growth (Gerendás et al., 1997; Jaynes et al., 2004).  

Previous studies with frass were mostly limited to nutrient composition analyses and 

very few agronomy trials using frass as bio-fertiliser were reported in the literature. 

Similarly to the present study, in Korea, Choi et al. (2009) reported that BSF frass, also 

derived from food wastes and used as an organic fertiliser for cabbages led to growth 

performance and yields similar to those obtained with a commercial fertiliser; however 

the study did not detail the application rates used and the type of fertiliser used as 

control (assumed to be inorganic). Another study showed that BSF frass derived from 

swine manure did not perform as well as a commercial potting soil mix for basil 

(Ocimum basilicum) when applied at increasing rates comprised between 5 and 50 % 

mixture with sand or clay soil (nutrient poor growth medium) or for sudan grass 

(Sorgham sundanense) when applied at increasing rates comprised between5 and 20 % 

mixture with sand or clay soil (Newton et al., 2005b). Although data were not 

compared statistically, results of the latter study suggested that growth of basil was 

suppressed with BSF frass mixed with sand soil whereas above 10 % frass in clay soil 

plants growth was blocked (hypothetically the nutrients levels provided by the frass 

became toxic); similarly above 5% frass in soil, growth of sudan grass was suppressed 

compared to the control (commercial potting soil mix). Comparison with the present 

study outcomes is difficult due to the different application methods (rates); however it 

is likely that despite the nutrient reduction achieved through the bioconversion process 

with fly larvae (NC State University, 2006; Myers et al., 2008), frass derived from 

swine manure may contain higher nutrient levels than FW and BW, and was probably 

toxic for plants even at low application rates in soil. Thus, it is important to proceed to 

nutrient composition analysis prior to the application as a soil fertiliser, as suggested 

earlier. 

In most countries, inorganic and organic fertilisers are subjected to regulations; thus, 

comprehensive assessment using standard procedures for quality and safety testing will 

be surely required for frass to be marketed as bio-fertilisers. In Europe, the current 

circular economy strategy might be a significant programme promoting frass as bio-

fertilisers because it aims at revising, inter alia, the current legislations on wastes and 
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fertilisers, thereby allowing a better waste management and waste recycling into 

valuable resources to which access to market would be facilitated (EC, 2016a, 2016b). 

In conclusion, although the outcomes of the feeding trial did not satisfy the first 

hypothesis, further investigations might be considered in order to determine with more 

certitudes if frass can be valuable source of nutrients for tilapia farmed under semi-

intensive conditions. On the other hand, the results of the agronomy trial confirmed that 

both FW and BW frass derived from BSF bioconversion processes, based on feed-grade 

substrates, are relatively good organic fertiliser improving soil fertility and stability and 

leading to yields comparable to those achieved with inorganic products. This is 

encouraging as it could contribute to reduce the use of inorganic fertiliser in crop 

culture and to encourage better soil and crop management practices providing that frass 

market price is competitive with conventional fertiliser. These results suggested that, 

similarly to manures or composts, frass could probably be used as organic fertilisers in 

ponds (extensive and semi-intensive farming) to support the development of sustainable 

aquaculture. Thus, frass are definitely valuable products and should not be considered 

as wastes but rather as resources that can provide nutrients for other food-producing 

systems. 
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Chapter 7. Modelling the requirements for the 

strategic use of insect-based products 
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7.1 Introduction 

Global concerns are rising toward the amount of waste generated by human activities 

nowadays, in particular organic wastes. Indeed, with a global population expected to 

reach almost 10 billion individuals by 2050, it is anticipated that, together with rapid 

urbanisation and rising incomes, food demand (in particular for Animal Source Food, 

ASF) will continue to rise (United Nations Department of Economic and Social Affairs, 

2015). Paradoxically, 30 to 40 % of the food produced globally is currently wasted or 

lost (FAO, 2011). In addition, the livestock industry which produces ASF, is expected 

to double the production by 2050, generating therefore twice more animal waste 

(manures) which can be a great source of pollution and cause significant damages to the 

environment if suitable treatment or disposal strategies are not implemented (FAO, 

2006). In fact, as wastes of any sort increasingly represent costs for those who generate 

them; their re-use or recycling can be a win-win solution. Wastes streams can become 

resources and provide additional incomes. As previously suggested, maggots efficiently 

convert organic resources into a nutrient-rich insect biomass that can be used as feed 

ingredient for farmed fish once it is processed into a meal (Chapter 3, 4 and 5) and a 

valuable by-product (frass) recoverable in crop culture as bio-fertiliser (Chapter 6). In 

order to limit the impacts on the environment and the costs (transport), a sustainable 

aquaculture industry should consider using locally produced materials (MM) and frass 

could also be integrated into local agriculture / horticulture depending on the demand 

(cash-crops, gardening, etc.). However, application of this strategy, based on the 

circular economy principles, may differ depending on the geographic and economic 

contexts considered. 

In this concluding study using both primary and secondary data, two different contexts 

were considered as examples: (1) the United Kingdom (UK), where Atlantic salmon (S. 

salar) farming is predominant in tonnage and value (Ellis et al., 2015) and (2) Ghana, 

where the aquaculture sector is dominated by Nile tilapia (O. niloticus) culture (FAO, 

2005-2016). Housefly MM and BSF MM production systems developed, respectively, 

in the UK and Ghana within the project PROteINSECT were used to support the 

models. This analysis aims to model first the volumes of MM required in each relevant 

aquaculture system and to determine and discuss the implications in terms of production 
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with a focus on the fly species, the amounts of substrates required and the potential 

applications for the frass in each context. 

7.2 Materials and methods 

7.2.1 General 

Two simple models based on the annual production of commercial fish farms in two 

locations (UK and Ghana) were developed to determine the amount of MM 

(tonnes/year) that would be required according to the recommended FM substitution 

(w/w basis) defined in the previous experiments of the present study (Chapter 3 to 5) 

and the literature. In addition, primary data from the maggot farming systems developed 

in UK and Ghana, within the project PROteINSECT, to produce housefly or BSF MM, 

respectively, were applied to the models to determine the annual quantity (tonnes/year) 

of fresh maggots to produce and consequently the prerequisite amount of substrate 

(tonne/year) to grow the maggots. Finally, the amounts of frass resulting from the 

bioconversion process were estimated also from primary knowledge. Substrate 

opportunities, processing methods of the MM and frass produced and sale opportunities 

for frass were further discussed. 

All the calculations were carried out using Microsoft Excel 2010. 

7.2.2 United Kingdom 

This model (1) is based on secondary data from the largest Atlantic salmon company in 

the UK (Marine Harvest Scotland) producing almost one-third of the total volume of 

salmon in the UK (179,022 tonnes of salmon produced in 2014 in Scotland); the leading 

supplier of salmonid feeds in Scotland (Ewos) and the literature (Bergheim et al., 2009; 

Crampton et al., 2010; Taylor et al., 2011; Marine Harvest, 2015; Munro and Wallace, 

2014; Tacon and Metian, 2015). Data related to the MM production were sourced from 

the housefly production system developed in the UK (Grant Bait Ltd.; Yorkshire, UK) 

through the project PROteINSECT (2015) and the results from the study on Atlantic 

salmon parr (Chapter 3) and Lock et al. (2015) were applied to model the fish 

performance. 

Marine Harvest Scotland is a well-established company which produced 48,900 tonnes 

Atlantic salmon in 2014 Scotland. Mostly imported (75.8 %; Munro and Wallace, 
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(2014), ova are hatched in-house and fish are then farmed up to market size (between 

4.0 and 6.0 kg, individual weight) at several sites. The model built in the present study 

simplified the reality by simplifying the production stages, thereby considering parr 

from 5 to 30 g; smolts from 30 to 100g (in Scotland, smolts are generally transferred to 

the sea between 70 and 120 g; (Munro and Wallace, 2014) and grouping the post-smolt 

stage to the rest of the production under ‘grow-out’ stage in seawater (from 100 g to 5.0 

kg, average market size).  

The current model considered the replacement of 50 % FM in diets for parr (according 

to Chapter 3), smolt and grow-out (assumed from Lock et al., 2015) with defatted 

housefly MM. Lock et al. (2015) showed that a 100 g/kg dietary inclusion of crude BSF 

MM (50 % FM substitution) in post-smolt diets led to fish performance similar to FM-

based control diet; therefore, the model here assumed that defatted housefly MM, which 

had a nutritional profile comparable to crude BSF (except for the lipid content, 

significantly lower in defatted housefly MM) would reasonably perform like BSF MM 

for smolt and grow-out as modelled here. 

MM was produced from housefly larvae fed on poultry manure (60 % DM) generated 

by the broiler farming industry as described by Charlton et al. (2015); specifically, from 

1.0 tonne of manure (fresh), 0.02 tonnes of defatted MM (97.5 % DM) were produced 

and 1.0 tonne of fresh maggots resulted in 0.2 tonne MM after processing (drying, 

grinding, defatting). Finally, substrate weight was reduced by 70.0 % through the 

bioconversion process, resulting after drying, in a frass assumed to be suitable as a 

high-quality soil conditioner (Chapter 6; Miller et al., 1974; Teotia and Miller, 1974; 

Morgan and Eby, 1975; Čičková et al., 2012c). The model considered that frass was 

subsequently dried (2-3 hours at 70°C, as described in Chapter 6) following 

bioconversion process in order to reduce the moisture to approximately 10 % which 

facilitates storage and improves shelf life of the product. The model assumed also that 

the housefly MM was defatted as described in Chapter 3, using a solvent method with 

hexane as commonly applied in the industry (Russin et al., 2011). 

All the data required to build the model (1) are summarised in Table 7.1. 
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Table 7.1 Primary and secondary data (yearly production figures) used to build the model based on Scottish salmon industry and housefly pilot-

scale production system in the UK  

 Ova Fry Parr Smolt
4 

Grow-out
5 

Total production (t/year) - 67.6 401.8 1,326.1 48,900.0 

Individual average weight (g) - 5.0 30.0 100.0 5000.0 

Number of individuals 19.3x10
6
 13.5x10

6
 13.4x10

6
 13.3x10

6
 9.8x10

6
 

Survival (%) 70.0 99.0 99.0 - - 

Feed Conversion Rate (FCR) - - 0.9 1.0 1.1 

Total feed required (t/year)
1 

- - 361.7 1,326.1 53,790.0 

FM inclusion in feed (g/kg)
2
 - - 400.0 200.0 200.0 

Maggot meal
3 

- - Defatted housefly Defatted housefly Defatted housefly 

FM substitution with MM
2
 

(%) 
- - 50.0

 
50.0 50.0 

1
Calculated	  as	  Feed	  required	  (tonne/year)	  =	  FCR	  *	  total	  production	  (tonne/year);	  

2
Adapted	  from	  Crampton	  et	  al.	  (2010)	  and	  Lock	  et	  al.	  (2015);	  	  

3
Adapted	  from	  Chapter	  3	  and	  Lock	  et	  al.	  (2015);	  

4
Smolts	  are	  transferred	  to	  the	  sea	  between	  70	  and	  120	  g;	  

5
Includes	  post-‐smolts;	  

4
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7.2.3 Ghana 

This second model (2) is based on secondary data from the literature (Little et al., 1997; 

New and Wijkström, 2002; Bhujel, 2014). Primary and secondary data from the main 

aquafeed manufacturer in Ghana (Raanan Fish Feeds West Africa, Ghana) and primary 

data collected from a pilot-scale production system set up in Accra periphery (Ghana) 

to produce BSF MM. Moreover, secondary data from hatchery, nursery, and grow-out 

tilapia operations, at various locations were used to model the production figures of the 

largest commercial tilapia farm in Ghana (Volta region) which harvest more than 6,000 

tonnes fish annually.  

The modelled tilapia farm includes a hatchery site where broodstock is maintained all-

year long and all-male fingerlings are produced through hormonal sex-reversal process 

in hapas as described in Chapter 4. Following a first nursing phase (I) also achieved in 

hapas, set up in fertilised ponds, using a farm-made feed made of rice bran and FM (2:1 

ratio), advanced nursing (as described in Chapter 5) and grow-out operations were 

considered in cages-in-lake using commercial feeds (Raanan feeds).  

This model considered the replacement of 100 % FM with defatted BSF MM in MT-

treated feed for sex-reversal Nile tilapia fry in earthen ponds according to Chapter 4’s 

recommendations (better economic performance than crude MM). Substitution of 75 % 

FM using crude BSF MM was then applied to nursing (I and advanced) fry and 

fingerlings according Chapter 5’s results and reasonably, although not supported by 

experimental results, the model assumed a dietary inclusion of 37.5 g/kg crude BSF 

MM (representing a dietary substitution of 75 % FM, similarly to nursing phases) in 

compound diets fed to food-fish fish up to commercial size (approximately 400 g). This 

study did not consider the use of MM in the diets for broodfish.  

MM was produced from BSF larvae fed on a substrate mix composed of brewery 

wastes and processing wastes from a local fish feed factory as described in Chapter 5; 

specifically, from 1.0 tonne of substrate mix (40 % DM), 0.012 tonnes of MM (95 % 

DM) were produced and 1.0 tonne of fresh maggots resulted in 0.3 tonne MM after 

processing (drying, grinding and defatting of necessary). Finally, substrate weight was 

reduced by 66.0 % through the bioconversion process, resulting after drying process, in 

a frass assumed to be comparable to BW frass described in Chapter 6. The model 
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considered that frass was dried (sun drying) following bioconversion process in order to 

facilitate storage and improve shelf life reducing moisture to approximately 10 %. 

Defatted MM was assumed to be processed using the solvent method with hexane 

described in Chapter 3 for housefly MM and defatted material was applied only to sex-

reversal fry feeding since small amounts of meal are required for the process. Defatting 

larger amounts was not applicable in the conditions of production in Ghana (medium-

scale artisanal process). 

All the data required to build the model (2) are summarised in Table 7.2. 

 



Chapter 7 

 

164 

 

Table 7.2 Primary and secondary data (yearly production figures) used to build the model based on tilapia commercial farm and BSF pilot-scale 

production system in Ghana 

 Broodstock
1 

Sex-reversal fry Nursing I Advanced nursing Grow-out 

Total production (t/year) 6.0 9.0 112.5 405.0 6,480.0 

Individual average weight (g)
2 

200.0 0.3 5.0 20.0 400.0 

Number of individuals 30,000 30.0x10
6
 22.5x10

6
 20.3x10

6
 16.2x10

6
 

Survival (%) - 75.0 90.0 85.0 - 

Feed Conversion Rate (FCR)
3 

- 1.0 1.2 2.0 1.5 

Total feed required (t/year)
4 

- 9.0 135.0 810.0 9,720.0 

FM inclusion in feed (g/kg)
3,5 

- 1000 333.3 100.0 50.0 

Maggot meal
5
 - Defatted BSF Crude BSF Crude BSF Crude BSF 

FM substitution with MM (%)
5
 - 100.0 75.0 75.0 75.0 

1
Adapted	  from	  Little	  et	  al.	  (1997);	  

2
Adapted	  from	  Bhujel	  (2014);	  

3
Adapted	  from	  New	  and	  Wijkström	  (2002);	  	  

4
Calculated	  as	  Feed	  required	  (tonne/year)	  =	  FCR	  *	  total	  production	  (tonne/year);	  

5
Adpated	  from	  Chapters	  4	  and	  5	  
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7.3 Results and discussion 

7.3.1 General 

In this chapter, the use of MM for aquaculture was studied using a site-specific 

approach because the socioeconomic and environmental conditions related to a 

particular geographic area influence substantially the aquaculture sector (species, 

farming methods, development, etc.) but also the potential for the insect farming (scale, 

substrates, requirements, processing, etc.). Therefore, following the logic and the results 

of the previous studies, defatted housefly MM produced in the UK from poultry manure 

was integrated into a model (1) where it was used to substitute FM in Atlantic salmon 

feeds and BSF MM produced in Ghana from a mixture of agro-industrial wastes was 

integrated into a model (2) where it was used to substitute FM in Nile tilapia feeds. 

Results and recommendations from the previous studies on the optimum MM dietary 

levels to apply at the different stages (i.e. fry, fingerlings or grow-out) were considered 

for both models respectively and reasonably extrapolated for the stages for which no 

experimental results were available.  

For instance, model (1) was based on the use of housefly MM for the Atlantic salmon 

as primary data were available for parr (Chapter 3) and for the insect production system 

(PROteINSECT, 2015). For the other production stages (smolts and grow-out), the 

results of Lock et al. (2015)’s study on post-smolt were considered although BSF MM 

was used as a FM substitute rather than housefly MM. Because housefly MM and BSF 

MM from both studies had different nutritional profiles, it was decided to model the FM 

substitution with defatted rather than crude MM in order to minimise the differences. In 

addition, it was assumed that most of the differences between BSF and housefly MM 

lied mainly in their respective FA compositions which were strongly related to the 

nutritional composition of the substrates used to grow the maggots (St-Hilaire et al., 

2007a); thus, defatting process lessened the differences as it reduced the FA levels by 

half, approximately. Although Lock et al. (2015) did not recommend the use of defatted 

meal because of the poor quality of the material used in their study, the results of 

Chapter 3 showed, on the contrary, that defatted meal might actually be more suitable 

than crude MM given that a solvent method with hexane, preserving the quality of the 

meal processed and widely used for other feed-grade material such as soy products 

(Russin et al., 2011), is applied. Furthermore, the insect fat extracted during the 
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defatting process (not accounted in the models) can also be refined into a very stable oil 

and sold to the animal feed industry or further processed into biodiesel (Li et al., 2011b; 

Zheng et al., 2012; Mariod, 2013; Byrne, 2016), thereby generating additional income. 

Despite the study modelled the largest operating fish farms in both contexts, the 

comparison between the volumes of MM required for salmon and for tilapia is difficult 

because of the differences in the production methods, the scales and the fish 

requirements. Indeed, with the present models, annual salmon tonnage harvested 

(48,900 tonnes/year) was 7.5 times greater than tilapia (6,480 tonnes/year). Considering 

this, it was estimated that 55,478 tonnes of feed would be required annually to support 

the production described for salmons against 10,674 tonnes/year for tilapia (Table 7.2). 

In both cases, the volumes of feed required for fry and juveniles were significantly 

lower than for the grow-out operations because feeding rates are usually based on the 

fish body weight; however, FM inclusions in feeds decreased as the fish grow bigger. 

As a result, the quantities of MM required to substitute between 50 and 100 % FM in 

salmon and tilapia diets were significantly lower for the juvenile stages than for the for 

grow-out.  

7.3.2 MM requirements 

According to the assumption made on the FM dietary inclusions in Atlantic salmon 

diets and the levels of substitution with defatted housefly MM suggested by the 

previous studies (50 % replacement), the total amount of MM required to cover the 

annual requirements equalled to 5,583 tonnes (Table 7.3). Specifically, 72; 133 and 

5,379 tonnes of MM/year were required to substitute 50 % FM in parr, smolt and grow 

out salmon diets, respectively. In the case of tilapia (model (2)), it was estimated that 

9.0 tonnes of defatted BSF MM would be required to ensure the total substitution of the 

FM used for the production of 30 million monosex fry annually (Table 7.4). 

Reasonably, a substitution of 75 % FM in farm-made and commercially formulated 

diets for nursing and fry and fingerlings and for grow-out tilapia with crude BSF MM 

was assumed; thus, the model (2) estimated an additional 459 tonnes of crude BSF MM 

required to support the production system, making a total of 468 tonnes of MM 

annually. 
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The salmon system required nearly 12 times more MM than the tilapia system, which is 

understandable given that 5 times more feed was necessary for salmons with greater 

dietary inclusions of FM to substitute with MM. However, even if the model (1) was 

adjusted to a foodfish production of 6,500 tonnes salmon/year, which can be the case of 

smaller operators in Scotland (Munro and Wallace, 2014), it would still require 1.6 

times more MM than the tilapia system. Thus, salmon farming is more demanding than 

tilapia in terms of insect protein to supply. In addition, the estimated figures in both 

models indicated clearly that fry and juveniles required less MM than grow-out 

accounting for 96.3 % and 77.9 % of the total MM tonnages estimated for salmon and 

tilapia, respectively. Consequently, similar observations were made on the volumes of 

larvae to produce, substrates required to grow the larvae and the resulting volumes of 

frass (Tables 7.3 and 7.4). Model (1) estimated that a total of 27,920 tonnes of housefly 

larvae (fresh biomass) would need to be farmed and processed annually to cover the 

volumes of MM required whereas according to model (2), 1,560 tonnes of BSF larvae 

would need to be produced. 

The production of hundreds or thousands tonnes of MM per annum still seems to be an 

ambitious objective for the emerging insect industry. Very little information about the 

current production capacity of the insect farming industry developing globally is 

available, but it can be expected that if the market demand for insect meal increases, 

providing that the legislation changes and becomes more flexible towards the use of 

insect in animal feeds using a broader range of substrates, production levels will not be 

an issue for commercial companies who will certainly develop novel technologies to 

tackle the problem. Very few systems described in the literature were, however, capable 

of producing large volumes of maggots as most work was conducted on pilot system or 

in laboratories. Burtle et al. (2012) have designed a system in the USA which could, in 

theory, produce 3,750 tonnes BSF MM per year using 360 tonnes of daily food 

leftovers or swine manure. The development and multiplication of this kind of system 

could contribute significantly to the MM supply globally. In China, a housefly larvae 

bioreactor has also shown promising results with a total production of 760-960 tonnes 

of fresh larvae per year (corresponding to 570-720 tonnes MM/year) using swine 

manure (Wang et al., 2013). Pilot systems developed in the UK and Ghana within the 

project PROteINSECT produced respectively, 364-520 kg of housefly MM and 416-

780 kg of BSF MM annually, which is far from the requirements modelled in this study. 
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Private company Enviroflight, located in the USA, stated on its website 

(www.enviroflight.net) that they can produce about 300 tonnes of BSF MM per year 

from 6.0 tonnes of organic material per day. 

The automation of the most handling tasks and a good control of the production 

parameters (temperature, humidity, light), in brief, the development of a specific novel 

technology, adapted to site-specific conditions, would probably be the most favourable 

options to consider to increase the production levels. In addition, models (1) and (2) 

estimated only the requirements for one large-scale farm in each location; thus it must 

be expected that the volumes of MM and substrate would be significantly greater if 

applied to the whole salmon or tilapia industries. Thus, until the insect farming industry 

increases its production capacity, a strategic use of MM, in particular, must be 

considered. From the previous results, it is clear that MM could be used in priority for 

young fish (fry, fingerlings, parr and smolts) given the lower amounts of MM required 

and the specific requirements at these stages (nutritional requirements, quality, 

palatability, etc.). However, the incentive to use MM in fish diets will rely on its market 

price, which will be determined mainly by the production costs, which are site-specific 

dependant. It is critical that insect based-products market prices are competitive with 

conventional feed ingredients and remain low with production costs preferably not 

exceeding 1,000 USD/tonne for the MM, according to Drew and Pieterse (2015). In the 

case of the systems developed in the UK and in Ghana within the project, production 

costs were estimated to 13.1 USD/kg of housefly MM and 4.3 USD/kg of BSF MM, 

respectively, which can be considered as excessive and not competitive compared to 

market price of conventional feed ingredients (Table 1.3). Labour, costs related to the 

processing (drying, grinding) and substrate accounted in both cases for the most of the 

estimated costs; in the UK context the energy related costs ranked fourth 

(PROteINSECT, 2016b). Nevertheless, these systems were far from being industrial 

and required substantial technical improvements such as automation, control of the 

environmental parameters, etc.. On the contrary, in China, the full-scale housefly larvae 

bioreactor described above showed profitable performance by selling both MM (1,430 

USD/tonne in 2010) and composted frass (6.5 USD/m
3
) to local feed manufacturers and 

fertiliser dealers (Wang et al., 2013). Economies of scale and technological 

improvements will certainly contribute to reduce the production costs resulting in the 

production of competitive insect-based products. 
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Table 7.3 Adjusted dietary inclusion levels (%) of FM and MM, quantities of MM, fresh maggot and substrate (poultry manure) required 

(tonne/year) and amount of frass produced (tonne/year) resulting from the substitution of FM in Atlantic salmon parr, smolt and grow-out diets. 

 Parr Smolt Grow-out Total 

Total feed required (t/year) 361.7 1,326.1 53,790.0 55,477.7 

Maggot meal Defatted housefly - 

FM substitution with MM (%) 50.0 50.0 50.0 - 

Corrected FM inclusion in MM-based feed 

(g/kg) 
200 100 100 - 

MM dietary inclusion (g/kg) 200 100 100 - 

Quantity of MM required (t/year) 72.3 132.6 5,379.0 5,583.9 

Quantity of fresh maggot required (t/year)
1
 361.7 663.0 26,895.0 27,919.7 

Quantity substrate required (t/year)
2 

4,339.8 7,956.4 322,740.0 335,036.2 

Frass produced (t/year)
3 

1,302.0 2,386.9 96,822.0 100,510.9 
1
Assuming	  1.0	  tonne	  fresh	  housefly	  larvae	  =	  0.2	  tonne	  housefly	  MM;	  

2
Assuming	  1.0	  tonne	  poultry	  manure	  (60%	  DM)	  =	  0.02	  tonne	  MM;	  	  

3
Assuming	  a	  substrate	  weight	  reduction	  of	  70.0	  %	  into	  frass	  
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Table 7.4 Adjusted dietary inclusion levels (%) of FM and MM, quantities of MM, fresh maggot and substrate (mix) required (tonne/year) and 

amount of frass produced (tonne/year) resulting from the substitution of FM in Nile tilapia sex-reversal fry, advanced nursing and grow-out 

diets. 

 Sex-reversal fry Nursing I Advanced nursing Grow-out Total 

Total feed required (t/year) 9.0 135.0 810.0 9 720.0 10,674.0 

Maggot meal Defatted BSF Crude BSF Crude BSF Crude BSF - 

FM substitution with MM (%) 100.0 75.0 75.0 75.0 - 

Corrected FM inclusion in MM-based feed (g/kg) 0.0 83.3 25.0 12.5 - 

MM dietary inclusion (g/kg) 1000.0 250.0 75.0 37.5 - 

Quantity of MM required (t/year) 9.0 33.7 60.75 364.5 468.0 

Quantity of fresh maggot required (t/year)
1
 30.0 112.4 202.5 1,215.0 1,559.9 

Quantity substrate required (t/year)
2 

750.0 2,809.7 5,062.5 30,375.0 38,997.2 

Frass produced (t/year)
3 

255.0 955.3 1,721.3 10,327.5 13,259.0 
1
Assuming	  1.0	  tonne	  fresh	  maggot	  =	  0.3	  tonne	  MM;	  

2
Assuming	  1.0	  tonne	  fresh	  substrate	  (40%	  DM)	  =	  0.012	  tonne	  MM;	  

3
Assuming	  a	  substrate	  weight	  reduction	  of	  66.0%	  

into	  frass	  
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Both housefly and BSF species can be farmed in the UK and in Ghana, or more widely 

under temperate or tropical conditions. The farming methods are not widely different 

between both species; under temperate climates, the maintenance of the optimum 

parameters (temperature, light, humidity) for the fly survival and productivity are 

essential and required controlled environment facilities and substantial levels of energy 

compared to tropical conditions. The choice of a species over another, under site-

specific conditions, might be therefore driven by factors other than the climate, such as 

(i) the final use of products (MM mainly) or (ii) the substrate availability. Because the 

frass resulting from the bioconversion process with one species or the other is assumed, 

according to the results of Chapter 6 and other authors, to be a suitable soil conditioner 

it is not likely to influence the choice of the insect species.  

(i) The final use of the MM (i.e. used as feed ingredient for salmon or tilapia) is 

not influencing much the choice of the insect species to grow as both MM 

are good protein sources with nutritional profiles highly similar to FM 

(Barroso et al., 2014 and previous studies), thus likely to be suitable for any 

fish species. Despite the fact that the number of studies comparing housefly 

and BSF MM for a particular fish species and in similar conditions (i.e. 

same FM substitution levels) is reduced to that of St-Hilaire et al. (2007b) 

on Rainbow trout (O. mykiss) and that of Chapter 4 on sex-reversal Nile 

tilapia, it can be assumed that both MM led to comparable fish performance. 

Additional processing (i.ie defatting) or feed formulation adjustment 

(balancing nutrients levels using an ingredient blend) can also contribute 

significantly to use efficiently the MM selected (Chapter 4).  

(ii) Rearing substrates that are essential to grow the maggots can influence the 

choice of the fly species due to the availability related to site-specific 

conditions. Firstly, as highlighted in numerous studies, housefly larvae 

perform more efficiently on animal manures whereas BSF larvae are more 

resilient to a wider range of organic substrates (Čičková et al., 2015). As 

already stated, the use of waste streams or materials with no or low 

economic value, not yet harnessed in other value chains (no/low 

competition), is the most favourable option to consider to farm maggots 

cost-efficiently and sustainably (PROteINSECT, 2016a). However, mass 
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flows that are considered as wastes in a particular context can be considered 

resources in another. That is, for instance, the case of animal manures which 

are, on one hand, costly to treat or dispose in industrialised countries 

because of the their abundance (intensive livestock industry) and the limited 

usage options associated with a high risk for the environment (DEFRA, 

2013) but are, on the other hand, valuable resources in LIDC, where the 

livestock industry is limited and dispersed (making it difficult to collect) 

resulting in low volumes and poor availability but high demand of these 

materials commonly used as bio-fertiliser (for cash-crops or aquaculture 

ponds). Therefore, it seems more relevant to farm housefly larvae in 

industrialised contexts, such as in the UK, using manures and BSF larvae in 

LIDC, where the type of substrates available might be broader and 

availability less consistent, requiring, therefore, a greater adaptability. That 

said, because in Europe the precautionary approach in application does not 

authorise the use of animal manures or kitchen and table wastes in the diet of 

farmed animals intended for animal feed (EC regulation 1069/2009) further 

research is still required to assess the risks of biological or chemical 

contamination when insects farmed on manures are fed to fish and livestock 

(EFSA Scientific Committee, 2015). 

7.3.3 Substrate requirements and implications 

To farm the housefly larvae in the UK and the BSF larvae in Ghana to meet the 

requirements as feed ingredients to local aquaculture, it was estimated that 335,036 

tonnes of poultry manure and 38,997 tonnes of substrate mix (brewery wastes and feed 

factory wastes), respectively, were a prerequisite (Tables 7.3 and 7.4). 

In 2015, in the UK, 929.9 million broilers were farmed with approximately 84 % of the 

production being in England and Wales (DEFRA, 2016a). Assuming that 1,000 broilers 

produce 0.42 tonne of manure per week and that they are farmed for 42 days (6 weeks), 

a total of 2.343 million tonnes manure was produced in 2015 (Chambers et al., 2001). 

This represents about 7 times the amount (335,000 tonnes/year) required in the model 

(1). Thus, poultry litter is generated in large quantity in the UK and requires to be 

properly managed in order to avoid public health and environmental risks (Burton and 

Turner, 2003). Currently poultry litter is mainly spread on lands as a fertiliser (700,000 
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tonnes/year), but that represented only 2 % of the farms in the UK in 2015 which 

preferred cattle or pig slurries (consistent and easy to manage and spread) to poultry 

wastes (DEFRA, 2016b), or it is used to produce energy in power stations (670,000 

tonnes/year according to Slade et al. (2010). Lower volumes are also recycled in 

anaerobic digestion plants (approximately 30,000 tonnes/year) or in mushroom culture 

(approximately 10,000 tonnes/year) (P. Metcalfe, pers. communication 2016). Since 

2014, an European Commission regulation (EU 592/2014) authorised farmers to use 

poultry manures as fuel in on-farm combustion plants, however this is still considered 

as negligible given the newness of the amendment (estimated < 10,000 tonnes/year). 

According to this, it is estimated that about 930,000 tonnes of poultry litter 

(approximately 40 % of the annual production) are stored on-farm annually (Figure 7.1) 

and despite the recommendation from the Food Standards Agency to store manure for 

no more than 8 weeks to reduce the risk of spreading resistant bacteria, it is often 

stacked for an average period of 7 months (DEFRA, 2010a, 2016b). 
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Figure 7.1 Uses of poultry litter produced within the UK in 2015 
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Manures stored on-farm may still be considered as potential sources of hazards 

(Nicholson et al., 2011) and represent the portion really available for the insect 

industry. On the farms where manure is stacked because it is produced during the 

period when manure cannot be spread (i.e. from October to April, according to DEFRA, 

2009) or in excess with respect to the surface available for the application as a fertiliser 

(defined by the Department for Environment, Food and Rural Affairs and the European 

regulations), there are environmental and economic benefit to transfer / sell these 

wastes to another user such as insect farms which are able to recycle nutrients. Indeed, 

effective storage methods that reduce nitrogen losses from solid manure involve 

substantial investments (capital cost ~ 11,000 USD) and average annual cost are 

estimated at approximately 1,000 USD/farm (N-TOOLBOX, 2011; converted from 

British pounds as 1.0 USD = 0.70 GBP). Given the average nutrient composition of 

broiler litter (33; 22 and 34 kg of nitrogen phosphate and potash per tonne of manure, 

respectively) and the value of these nutrients (0.52; 0.42 and 0.30 USD/kg, 

respectively) manure surplus could be sold at 36.6 USD per tonne and generate 

additional incomes for the farm (DEFRA, 2006, 2010b). If one of the largest poultry 

farms in the UK is considered, producing 5.6 million broilers annually and 8,500 tonnes 

of manure subsequently; with 115 ha of arable land where 920 tonnes of broiler litter 

are spread annually (at a rate of 8.0 tonnes/ha/year to supply 250 kg/ha of total nitrogen 

as recommended by DEFRA (2003) and a biomass heating plant where 2,700 tonnes of 

manure are burnt as fuel annually (Clements, 2016; Uphouse Farm Ltd.) that means 

4,880 tonnes of litter required storage annually, equivalent to 178,600 USD additional 

income if sold at 36.6 USD/tonne. However, to maintain production costs as low as 

possible, manure intended for insect production would have to be sold for less, 

especially considering that transportation by Heavy Goods Vehicle (HGV) might also 

be involved (1.14 USD/tonne/km in the UK (P. Metcalfe, pers. communication 2016). 

In 2007, Thetford power station (Norfolk, UK) was supplied with 420,000 tonnes of 

poultry litter per year from about 100 farms at a price of 14.3 USD/tonne, including 

transport (Metcalfe, 2007), suggesting that insect farms could consider paying less than 

36.6 USD/tonne. Any co-location with the livestock farming industry would greatly 

limit the costs and proximity to concentration activity would certainly facilitate the 

tradability and value of the frass (discussed below). A similar approach could be 

applied to swine manure, also suitable for housefly larvae farming (Pastor, 2011; 

Čičková et al., 2012c; Zhu et al., 2015). When scientific evidences is available to 
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satisfy the EFSA standards, the environmental and economic benefits related to the 

conversion of manure into MM and frass will be additional incentives for policy makers 

to change the current regulation, thereby leading to the development of the insect 

farming industry in accordance with a circular economy strategy.  

Leading actors of the insect sector have recently organised as a non-profit organisation 

called IPIFF (International Platform of Insects for Food and Feed) which aims at 

promoting insects as a sustainable solution to the global growing protein deficit. In 

Europe, IPIFF has made the case for the EU Regulation 999/2001 to change in order to 

facilitate the use of PAP of insects in aquaculture, providing the use of vegetal origin 

substrate only; they also indicate that insect companies are planning to invest more than 

€100 million once PAP of insects will be allowed for aquaculture (IPIFF, 2014). BSF 

larvae can be reared on vegetal origin substrates, which can come from the food wastes, 

for example. In the UK, despite the efforts made to continuously reduce wastage, it is 

estimated that 15 million tonnes of food waste are produced per annum including 7.0 

million tonnes/year from households, 3.9 million tonnes/year from the food 

manufacturing industry (not including 4.2 million tonnes of food and animal by-

products that are already diverted to animal feed manufacture or rendering derived), 0.9 

million tonnes/year from the hospitality and food services and 0.2 million tonnes/year 

from the retail & wholesale sector (WRAP, 2013). Among those, only the food wastes 

from the retail & wholesale are currently authorised for the production of insects (EC 

regulation 1069/2009) and although not yet authorised, it would also be interesting to 

use the wastes from the hospitality and food services sectors and from households (i.e. 

table wastes). However, several problems related to the consistency and the collection 

remain; in fact, most of the food wastes generated by the household in the UK (92.0 %) 

are still not properly separated from the general waste (DEFRA, 2015) which make is 

difficult to access.  

In Ghana, many wastes are often turned into resources: demand and price of animal 

manures, used as bio-fertiliser, are high (76 USD/tonne; considering 1.0 USD = 3.94 

GHS) as availability is low and scattered (estimated to 64,000 tonnes/year), agro-wastes 

from large plantations (banana, pineapple, etc.) are often recycled in-house through 

composting; however, market wastes (fruits and vegetables) and organic wastes 

originated from the breweries, the abattoirs (18,000 tonnes/year of rumen content 
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estimated), etc. are free for whom is interested, in particular farmers who collect it to 

feed their livestock (C. Adeku, Osei-Boaten, A. Pile, N. Danion and M. Kape, pers. 

communications, 2013-2014). In addition, local conditions make waste selection, 

collection and transportation (25.3 USD/tonne delivered within 50 km from the 

collection point) difficult and expensive; thus, similarly to the situation in the UK and 

also applicable to other geographic contexts, proximity to substrate sources must be 

seriously considered to reduce the costs. Considering these constraints (cost, quantity, 

consistency of the substrates), it seemed that small or medium-scale production systems 

would be more suitable for the local conditions and therefore it is unlikely that amounts 

of MM produced would be sufficient to cover the demand of a large fish farm. 

However, small insect production units could focus on quality rather than quantity and 

MM produced could target the critical stages of intensive and semi-intensive 

aquaculture system such as fry and juveniles where specific requirements could be met 

with MM (Chapter 4 and 5). Thus, the final use and quality of the MM to produce, in 

this case, will drive the choice of the substrate since it influences the nutritional 

composition, in particular the FA composition, of the larvae. In LIDC it is more likely 

that processing methods such as defatting would be limited to very small amounts of 

MM owing to the quantity of solvent and equipment required but also the safety 

measures related to the handling and the process which might require large investments 

that cannot be considered at small or medium production scale. Cheaper and more 

applicable alternatives defatting methods, such as the use of a mechanical press, could 

be considered in these conditions, however no information is available on the efficiency 

of this method with insect material. Moreover, it is assumed that the mostly herbivorous 

and omnivorous fish species (tilapia, catfish, etc.) farmed in the tropics would cope well 

with crude MM. Moreover, as showed in Chapter 5, although MM couldn’t be defatted, 

the enrichment of its nutritional quality with essential FA (n-3 PUFA) benefitted the 

feed manufacturer who alleviated his formulation by 75 % FM and 100 % FO without 

compromising the performance of tilapia fingerlings. In the latter study, enrichment was 

possible thanks to the addition of n-3 PUFA-rich processing wastes in the BSF larvae 

rearing substrate mix sourced from the local fish feed plant and clearly this was 

questionable in terms of sustainability and relevance (using fish feed processing wastes 

to produce a fish feed ingredient) but time constraints motivated this choice. 

Nevertheless, as previously demonstrated by St-Hilaire et al. (2007a) and Caruso et al. 
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(2014), fish offal sourced on local markets can be used instead. This enriched MM 

demonstrated the successful strategic use for tilapia fingerlings (Chapter 5).  

The bioconversion processes with insects contribute in all cases to waste remediation by 

reducing volumes, dry matter, nutrients and pathogen organisms such as E. coli, 

Salmonella spp. of the considered substrates, lowering thereby public health and 

environmental risks associated with excess production, poor disposal and management 

and the related costs (Erickson et al., 2004; Newton et al., 2005a; Liu et al., 2008; 

Diener et al., 2011a; Wang et al., 2013; Lalander et al., 2014). So, cost and 

environmental benefit are incentives that encourage the development of the sector. 

The development of small or medium-scale insect farms in LIDC could contribute to 

diversify rural incomes and may improve livelihoods. This approach opens opportunity 

for further research looking at the social aspects of the insect farming development. 

Nevertheless, such rural development raise an important question related to the 

technology transfer: how would the technological package required will be made 

available to farmers? Local examples such as existing operational sites (for example 

cricket farming or sericulture in South East Asia or maggot farming in Africa) or pilots 

developed in research projects would certainly contribute as knowledge platforms.  

7.3.4 Frass 

Finally, models (1) and (2) estimated that the bioconversion process of the respective 

substrates into MM would also result in 100,511 tonnes and 13,259 tonnes of frass, 

respectively (Tables 7.3 and 7.4). The volumes of frass generated are therefore 

substantial and consistent with previous studies (Calvert, 1979; Čičková et al., 2012b; 

Wang et al., 2013; Caruso et al., 2014), frass represented 94.4 and 96.5 % of the total 

weight of the products (i.e. MM + frass) generated by the bioconversion processes in 

models (1) and (2), respectively. Thus, it is critical to find appropriate applications and 

markets for the these by-products, to ensure the profitability and maximise the 

operational and environmental performance of insect farms (PROteINSECT, 2016a). 

According to the previous results (Chapter 6), frass are efficient fertilisers, but the 

tradability of these materials depends also on site-specific markets. Nevertheless, it is 

assumed that in every context considered, frass can become a competitive product on 

the organic fertilisers market. In the UK and other industrialised countries, frass would 
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probably need to be officially assessed (nutrient composition) in order to be listed as 

authorised organic fertilisers and to allow the development of recommendations. In 

Europe, as a Circular Economy Strategy is being developed (EC, 2016a), innovative 

bio-fertilisers produced according to the revised regulation (EC, 2015, 2016b) will be 

most favoured to contribute to the expected 30 % reduction of the inorganic fertiliser 

usage. Therefore, there is an opportunity here, for insect frass, to obtain the 

authorisation to access the market (CE-marked), thereby benefiting the economy (insect 

and crop industry) but also the environment. End-users could range from large-scale 

agriculture / crops sector to niche markets such as organic agriculture, small-scale or 

backyard horticulture and vegetable gardening. In Ghana, and more broadly in LIDC 

where inorganic fertilisers are intensively used for crops due to the limited availability 

and the cost of organic fertiliser such as manures (C. Adeku, pers. communication 

2014), buying incentive towards frass may develop rapidly among small-holder farmers 

that cultivate crops near insect farming sites because the proximity is also important 

with respect to organic fertiliser sourcing (Owusu-Bennoah and Visker, 1994). Another 

solution for the frass, in particular in temperate areas, is the use as fuel in biomass 

heating systems as already applied for chicken manure. For instance, in the UK, as the 

use of fertiliser on arable land is limited and seems already saturated as farms are 

stocking excess manure, other solutions should be considered. Although this would 

induce additional investments, it would certainly be paid back within few years as the 

energy produced could be re-invested in a system warming up the facilities during 

cooler seasons (using a water boiling system) and to produce electricity, thereby 

reducing considerably the energy-related costs. According to processes previously set 

up in the UK (BHSL, 2016; Broiler Guide, 2011), about 1.3 million USD should be 

considered to set up a 500 kWth biomass burner which has a burning capacity of 10 

tonnes biomass per day to provide 300 kWth of thermal and 40 kW of electricity. This 

would result in a cost saving of approximately 95,000 USD/year for gas (heating) and 

31,500 USD/year for electricity; in addition, the ash produced can also be sold as a soil 

conditioner. 

7.3.5 Conclusion 

To summarise, although MM is a suitable feed ingredient that can be used in aquafeeds 

in particular as a source of protein, simple models developed in this study have 
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highlighted some remaining challenges related to the production capacity of the 

emerging insect farming industry and to site-specific related conditions. In the models 

presented here, figures were estimated only for one large-scale farm in each location; 

therefore, volumes of MM, substrate and frass to consider would be significantly 

greater if a wider approach was considered. It would be recommended to consider BSF 

farming in LIDC because the species is more resilient to adapt to a wide range of 

substrate sources, whereas, in industrialised contexts housefly or BSF would be both 

suitable. In both cases, the production of MM and frass, ultimately used in food 

production systems (aquaculture and crop culture), lead to waste remediation 

opportunities, economic and environmental benefits which contribute, thereby, to the 

development of sustainable circular economies. Moreover, as highlighted in this study, 

a strategic use of MM is recommended by targeting in priority fry and juvenile stages 

rather than grow-out, given that MM is a consistent high-quality raw material that can 

meet specific requirements at these critical stages but also to show proof of commercial 

concept.
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Chapter 8. General discussion, conclusions and 

future perspectives 
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8.1 General 

In the present study, different insect-based products, namely maggot meals (MM) and 

frass, produced in pilot-scale operation systems, were assessed as strategic feed 

ingredients for two major farmed fish species, Atlantic salmon (Salmo salar) and Nile 

tilapia (Oreochromis niloticus). Specifically, crude and defatted housefly larvae meals 

were first used to replace FM in diets for Atlantic salmon parr (Chapter 3). Then, cost-

efficiency of crude and defatted Black Soldier Fly (BSF) larvae meals and crude 

housefly larvae meal were compared when replacing FM in simple diets for sex-

reversal tilapia (Chapter 4). In Chapter 5, locally produced BSF meal was assessed as a 

FM and FO substitute in commercial diets for advanced nursing of tilapia. Efficacy of 

BSF frass derived from two different waste sources (food and brewery wastes) were 

also compared when used as supplementary feeds for tilapia in semi-intensively 

managed ponds or as soil bio-fertiliser for spring onions (Chapter 6). Finally, results of 

the previous studies were integrated in two contextualised models to estimate the 

volume of MM required for the aquaculture systems considered (Atlantic salmon in the 

UK and Nile tilapia in Ghana); this was further used to determine and discuss the 

implications for the production of the insect-derived products, with a focus on the 

volumes of MM and substrates required and the potential applications for the frass in 

each context (Chapter 7). 

8.2 Quality of insect-based products 

The aquafeed industry is relatively small compared to the livestock feed industry as 

compound feeds manufactured for the aquaculture sector represent only 4.0 % of the 

one billion tonne global annual production of animal feed (IFIF, 2014). However, 

aquaculture represents the largest consumer of marine ingredients with 60.8% of the 

global FM production and 73.8% of the global FO production in 2008 going to 

aquafeeds (Tacon et al., 2011). Reliance on marine resources as important sources of 

essential amino acids and fatty acids has become a major issue over the last decades due 

to the volatility of the commodity markets related to the collapse of natural stocks 

(Naylor et al., 2009; FAO, 2014). Growth rate and intensification of the aquaculture 

sector, including a rapid increase of the proportion of fed fish and crustacean species, 

created a pressing need for alternative feed ingredients (Tacon and Metian, 2015). 
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In the global assessment of alternative feedstuffs, insects have been identified as 

candidates with a great potential. In particular, research recently acknowledged the 

similarities between the nutritional composition of fly larvae (Diptera Order; Insecta) 

and FM, and therefore the potential of maggot meals as feed ingredients for aquaculture 

species (Barroso et al., 2014). In the present study, different insect-based products, 

namely BSF and housefly MM, have been assessed as potential feed ingredients for two 

major farmed species: Atlantic salmon (S. salar) and Nile tilapia (O. niloticus). These 

products, originating from pilot-scale farming systems located in the UK, Ghana and 

Malaysia, showed very interesting nutritional profiles.  

In the first place, as previously reported by Henry et al. (2015), the MM used in the 

different studies had different nutritional compositions mainly due to the rearing 

substrates on which the larvae have fed and the processing method (Table 8.1). 

Specifically, MM lipid contents and FA compositions were strongly influenced by the 

rearing substrates; this was either advantageous (enrichment with essential FA, Chapter 

5) or disadvantageous (FA composition that does not meet fish dietary requirements, 

Chapter 3 or high lipids levels complicating handling or affecting floatability, Chapter 

4) depending on the context. However, the studies also showed that these issues can be 

overcome by using suitable processing methods to remove excessive fat; indeed, 

contrary to Lock et al. (2015) who reported the poor quality of a defatted BSF MM 

dried at high temperature, in Chapter 3, a solvent extraction method (hexane) followed 

by drying at low temperature led here to a MM of high quality (housefly). Nevertheless, 

in line with the findings of Barroso et al. (2014), MM from both fly species (housefly 

and BSF) used in the present study, were excellent sources of protein with 

comprehensive essential amino acid profiles comparable to FM (Chapter 3, 4 and 5). 
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Table 8.1 Substrates and nutritional compositions of the MM used in the study 

compared to fish meal (tuna, Thailand). 

Meal 
Crude 

housefly 

Defatted 

housefly 

Crude BSF 

(Malaysia) 

Defatted BSF 

(Malaysia) 

Crude BSF 

(Ghana) 

Fish meal 

(Tuna, 

Thailand) 

Substrate 
Poultry 
manure 

Poultry 
manure 

Processed 
food wastes 

Processed 
food wastes 

Brewery + feed 
processing 

wastes 
- 

Proximate Composition (g/kg) 

Dry matter 956.1 975.7 929.8 915.4 950.3 911.0 

Crude protein 457.4 562.5 334.1 473.4 416.4 558.5 

Crude lipid 242.5 120.5 415.6 174.8 232.4 119.2 

Ash 98.5 79.2 84.9 129.8 76.6 214.3 

Crude fibre 74.7 91.8 56.9 68.9 116.5 5.3 

NFE 83.0 121.7 38.3 68.4 108.4 13.7 

Gross Energy (MJ/kg) 23.7 21.4 25.9 20.2 21.7 18.3 

Essential Amino Acid Composition (g/100g meal) 

Histidine 1.26 1.61 1.21 2.10 1.18 1.59 

Arginine 2.18 2.99 2.29 3.27 2.00 3.31 

Threonine 1.95 2.45 1.48 2.39 1.72 2.42 

Valine 2.18 2.67 2.43 3.85 2.63 2.76 

Methionine 1.01 1.28 0.72 1.18 0.75 1.38 

Lysine 3.39 4.32 2.21 3.53 2.70 3.93 

Iso-Leucine 1.59 1.96 1.83 2.86 1.84 2.26 

Leucine 2.65 3.36 2.79 4.11 2.90 3.86 

Phenylalanine 2.53 3.38 1.67 2.51 1.75 2.24 

Fatty Acid (g/100g meal) 

14:00 0.37 0.22 2.05 0.85 1.02 0.41 

16:00 4.57 2.66 5.85 2.49 3.33 1.79 

18:00 0.44 0.24 0.80 0.33 0.47 0.51 

Total Saturated
1
 5.49 3.19 16.94 7.11 4.92 2.86 

16:1n-7 2.36 1.40 0.79 0.31 0.60 0.49 

18:1n-9 5.07 2.95 5.50 2.36 2.67 1.11 

22:1n-11 0.00 0.00 0.00 0.00 0.03 0.12 

Total monounsat.
2
 8.44 5.00 6.73 2.75 4.08 2.29 

18:2n-6 3.57 1.87 2.51 1.19 1.86 0.23 

20:4n-6 0.00 0.01 0.00 0.03 0.02 0.11 

Total n-6 PUFA
3
 3.59 1.88 2.58 1.22 1.92 0.47 

18:3n-3 0.56 0.31 0.18 0.08 0.17 0.08 

18:4n-3 0.07 0.03 0.09 0.02 0.19 0.07 

20:5n-3 (EPA) 0.02 0.01 0.13 0.06 0.09 0.44 

22:5n-3 0.00 0.00 0.00 0.00 0.00 0.07 

22:6n-3 (DHA) 0.01 0.00 0.02 0.00 0.01 0.96 

Total n-3 PUFA
4
 0.65 0.35 0.42 0.16 0.46 1.67 

Total PUFA
5
 4.27 2.27 3.02 1.39 2.38 2.23 

Total FA content 18.20 10.48 26.70 11.25 11.39 7.39 

Values	  are	  presented	  ‘as	  is’	   	  
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Frass, the second insect-based product considered in this study, consisting of undigested 

substrate residues thoroughly mixed with maggots’ excreta, also showed interesting 

nutrient profile (Chapter 6). First, the nutritional approach suggested that these BSF 

farming residues, derived from feed-grade materials (brewery spent grain or processed 

food wastes), could be suitable feedstuffs for low-trophic level fish such as tilapia 

cultured in semi-intensive conditions. Indeed, compared to rice bran, the common 

supplementary feed for tilapia, frass had roughly similar protein contents and gross 

energy levels but high fibre levels as well. However, further analyses indicated that 

both frass were actually low in protein-nitrogen (total AA), suggesting that the nutrient 

compositions of both type of frass were more similar to those of organic soil 

conditioners (compost or vermicompost). This corroborated studies from other authors 

(Choi et al., 2009; Zhu et al., 2012; Wang et al., 2013; Lalander et al., 2014), 

highlighting the high quality of frass as bio-fertilisers. 

Although some challenges still remain in terms of production (Chapter 7), the emerging 

insect farming industry is, however, able to supply consistently and almost globally 

high-quality products (MM and frass) to food producing systems such as aquaculture 

and agriculture, thereby contributing significantly to food security. 

8.3 A strategic use of maggot meals 

Numerous studies have demonstrated the suitability of insect meals, in particular MM, 

as feed ingredients for fish (see paragraph 1.5.2). Nevertheless, the interspecies (fish 

and insects species studied) variability of the results makes a generalisation difficult. In 

the present study, MM were assessed as FM substitutes in the diets for Atlantic salmon 

parr, Nile tilapia fry and fingerlings because they are considered as critical stages in 

intensive farming processes. At these stages, the nutritional requirements are usually 

high and specific; thus, it was assumed that MM could contribute to reduce the reliance 

on FM because of their consistency and high-quality. Moreover, all the experiments 

described in this study were conducted on-farm in order to demonstrate the commercial 

relevance of the results. 

8.3.1 Atlantic salmon 

Although research has contributed to the decrease of FM in salmon diets over the last 

few years by identifying alternative sources of proteins, FM dietary inclusion remains 
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high in salmon feeds (200 to 500 g/kg (Tacon and Metian, 2008), especially in feeds 

intended for juveniles. After marine shrimp and fish, farmed Atlantic salmon is among 

the top consumers of FM, as the ingredient is considered ideal owing to its nutritional 

composition, meeting the fish dietary requirements (Tacon and Metian, 2008; NRC, 

2011). In the present study (Chapter 3), the replacement of up to 50 % FM with crude 

or defatted housefly MM in a diet formulated for Atlantic salmon parr (containing 

initially 400 g/kg FM) led to growth performance (final weight, weight gain and SGR) 

and feed utilisation (FCR, PER, digestibility) similar to those observed with the FM-

control diet. This is consistent with Lock et al. (2015) who found that BSF larvae meal 

could replace up to 50 % FM in post-smolt diets without affecting fish growth. 

However, lipid storage was greater in fish fed MM-based diets compared to the control 

and whole body FA composition mirrored that of the diets with higher saturated and n-6 

PUFA levels and lower n-3 PUFA levels with increased levels of MM in the diet, 

similar to that previously reported by other authors (Turchini et al., 2009; Sealey et al., 

2011; Belforti et al., 2015). Despite the main dietary lipid source (fish oil) being 

maintained at a constant level among treatments, thereby keeping essential FA present 

in the diets, apparent digestibility of the lipids and saturated FA decreased with 

increasing MM inclusions; this suggested that the MM lipid and FA composition might 

affect the quality of salmon parr diets. On the other hand, the trend of the results 

reported with the diet containing 200 g/kg defatted housefly MM, demonstrated slightly 

better fish performance and lipid digestibility than the diet containing 200 g/kg crude 

MM. The use of defatted MM as feed ingredient for fish was already encouraged by 

Fasakin et al. (2003) but the present results were contrary to those of Lock et al. (2015) 

who used a defatted BSF MM whose quality might have deteriorated during the drying 

process. This point to a requirement for refinement in meal processing technologies for 

any industrial scale-up. 

This is the first time MM is used in Atlantic salmon parr diets and the results obtained 

are really encouraging. In addition, protein digestibility of the MM-based diets was 

significantly improved compared to the control, confirming the high quality of the MM 

proteins. Although in this study the diets were formulated to represent modern 

formulations for Atlantic salmon parr, it is expected that further improvements 

according to the aquafeed industry standards (least-cost formulation and nutrients 

balance) could lead to better performance. 
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According to these results and assuming that housefly MM could substitute 50 % FM in 

farmed Atlantic salmon diets throughout the whole life cycle, it was estimated that for a 

farm producing nearly 49,000 tonnes salmon per annum, about 5,600 tonnes of MM 

would be required (Chapter 7). The model also predicted that 335,000 tonnes of poultry 

manure (60 % DM) would be required to grow the maggots (28,000 tonnes/year). 

Although some concerns about the production capacity of the emerging insect farming 

industry remain, it is likely that if MM is authorised as feed ingredient in aquaculture, 

this issue will rapidly be overcome. Meanwhile, because the largest amounts of MM 

would be required for the grow-out stages (estimated to more than 95 % of the total 

amount of MM required for the whole process), it would be recommended to start using 

this feed ingredient strategically. Thus, freshwater stages (fry and smolt), which are 

more likely to perform well with insect meals considering their natural feeding 

behaviour (Scott and Crossman, 1973; Amundsen et al., 2001), should be considered 

first; then, post-smolt, which showed good response as well, according to Lock et al. 

(2015), could also be included. The lack of data for the post-smolt stage (number of fish 

produced annually) did not allow the estimation of MM required for this stage. In 

addition, this would be a start to show proof of commercial concepts. 

Furthermore, according to secondary data (national surveys), it seems that the resources 

(substrates) needed to farm the insects are available in large quantities and consistently 

in the UK, and probalbly more broadly in other industrialised countries. In fact, with the 

development of a Circular Economy Strategy in Europe (EC, 2016a), it is expected that 

enterprises developing solutions to convert wastes into valuable products, such as the 

maggot farming industry which contributes to waste remediation and food security, will 

be encouraged. The use of waste sources to farm maggots is encouraged; poultry 

manure for instance can be used to farm housefly larvae as demonstrated in a pilot 

system developed in the UK. Large volumes produced each year are mainly spread on 

arable lands (30%), turned into energy in power stations (30%) or stored on-farm 

(40%). The recycling of stored manures, which can represent a source of risks for the 

environment (pollution) or for the public health (Nicholson et al., 2011), through 

bioconversion processing involving fly larvae can contribute significantly to the 

development of waste remediation strategies. Related economic and environmental 

benefits would certainly be significant incentive encouraging both farmers and policy 

makers to engage in this novel industry, thereby contributing to the development of 
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sustainable circular economies. Moreover, implication for the Scottish salmon industry 

might be significant as it would reduce its dependency on imported soy and fish meal 

while integrating local livestock industry (i.e. poultry farming) into a more wider 

economy.  

8.3.2 Nile tilapia 

Low-trophic omnivorous and herbivorous fish species such as the Nile tilapia are more 

flexible in terms of feed ingredients and require less FM than carnivorous fish species 

(Tacon and Metian, 2015). Nevertheless, FM is often included in tilapia diets, 

particularly for fry and fingerlings because it is considered as an excellent source of 

essential nutrients and improve the feeding response, which an important criteria in the 

competitive feed industry (Jauncey, 1998). This also suggest that FM is still too cheap 

despite its increasing price? Because tilapia has a low market value, the feed related 

costs in farming systems are restricted. Moreover, considering that most tilapia are 

produced in LIDC, where high-quality FM is expensive and poorly available or 

inconsistently, locally produced alternative sources of protein such as MM, could 

contribute to support the development of sustainable and economically viable tilapia 

aquaculture. 

In the present study, BSF and housefly MM were used to substitute FM in the diets of 

sex-reversal fry and nursing Nile tilapia in commercial set up in Thailand and Ghana, 

respectively. In the first experiment (Chapter 4), the results indicated that, at the end of 

a 21-day period, successful sex-reversal was achieved (99.8 to 100 % males) with fry 

fed MT-treated diets containing 25 to 100 % crude or defatted BSF MM or crude 

housefly MM. High survival was reported for all the treatments indicating no influence 

of the MM dietary inclusions; survival rates were also comparable to those reported by 

Vera Cruz and Mair (1994). This means that, similarly to FM which commonly used as 

hormone carrier in commercial hatcheries, MM are of high quality and highly palatable 

feed ingredients for fish. However, evenness of the fish harvested and fish performance 

results suggested that mixed ingredient diets performed better than single ingredients 

(FM or MM alone); the better nutrient balance resulting from the ingredients blend 

explained this result (NRC, 2011; Parker, 2011). A simple economic study was also 

conducted in order to compare the cost-effectiveness of the different MM, assuming 

that MM market price ranged between 30 % more or less the current price of the FM 
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(1.0 USD, Thai market price, November 2015). Results suggested that, although in the 

experiment it performed well as a hormone carrier and similarly to FM, crude BSF meal 

was economically less attractive than crude housefly and defatted BSF MM and, thus 

not recommended for sex-reversal fry. Moreover, in line with Fasakin et al. (2003) and 

Chapter 3’s results, the economic analysis highlighted the great potential of defatted 

MM as it led to the better economic performance than the two types of crude MM. 

Therefore, this study also recommended the use of defatted MM. Depending on the 

market price, crude housefly MM or defatted BSF MM can be used as a single 

ingredients (substituting totally FM) or key ingredients in a formulated diet for Nile 

tilapia sex-reversal fry; similarly, silkworm pupae meal was suggested as potential 

alternative to FM for sex-reversal tilapia fry in Thailand, but the limited availability of 

the product could not match the demand and the research were stopped (Bhujel, 2013).  

The experiment presented in Chapter 5 was conducted in Ghana, over 32 days, to 

evaluate the suitability of crude BSF MM, as partial substitute to FM (25 to 75 % 

substitution) in commercially formulated diets for advanced nursing of Nile tilapia, 

containing initially 100 g/kg FM. Due to the high lipid content of the MM, sufficient to 

cover tilapia juvenile dietary lipid requirement for (NRC, 2011), FO was not included 

in the test diets. Similarly to that reported in other studies where FM was replaced by 

housefly or blowfly MM in practical diets for Nile tilapia fingerlings (Ogunji et al., 

2008a, 2008b, 2008c; Sing et al., 2014), growth performance (final weight; weight gain 

and SGR); feed utilisation efficiency indices (FCR and PER) and feed intake of the fish 

cultured in cage-in-lake were not significantly different between treatments. Despite the 

differences in survival between the treatments, which were more likely related to the 

stocking size of the fish (smaller fish were probably less resistant to frequent handling) 

than being a treatment effect, overall survival was good. Fish whole body composition 

(dry matter, crude protein, lipid, ash and fibre) was also not affected by the treatments, 

except for the FA compositions, which mirrored that of the diets, especially by 

increasing the n-6 PUFA and decreasing the n-3 PUFA levels consequently to the FO 

substitution. This was also reported in Chapter 3 and by Sánchez-Muros et al. (2015) 

while replacing 50 % FM and 100 % FO with a Tenebrio molitor larvae meal in a diet 

for Nile tilapia fingerlings. Judging by the results of Ogunji et al. (2008a, 2008b, 

2008c) and Sing et al. (2014), MM could probably be included in tilapia fingerlings 

diets at rates greater than 75.0 g/kg (present study), thereby substituting other sources of 
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protein concurrently to FM. Unlike these studies, higher inclusions could not be tested 

due to limited amounts of MM available; thus further investigations would be required 

to test greater inclusion levels in least-cost diets. 

According to the results of the two latter discussed experiments (Chapter 4 and 5) and 

assuming that the substitution of 75 % FM is applicable to first nursing and grow-out 

stages, it was estimated that, about 500 tonnes of BSF MM per annum were necessary 

to manufacture the 10,700 tonnes of feeds required by a tilapia farm producing nearly 

6,500 tonnes fish annually (Chapter 7). The model also predicted approximately 40,000 

tonnes of substrate (40 % DM) would be required to grow the maggots (1,600 

tonnes/year). Contrary to the expectations of development in industrialised countries, it 

is suggested that small or medium-scale insect farming systems would be more suitable 

in LIDC given to the economic and local constraints and the limited availability of 

substrates/wastes to grow the maggots (PROteINSECT, 2016a). Indeed, what is usually 

considered as wastes in industrialised area is often a valuable resource in developing 

countries, restricting substantially the list potential substrates available to farm maggots 

cost-efficiently. In addition, local conditions make waste selection, collection and 

transportation difficult and expensive. Therefore, it is unlikely that amounts of MM 

produced would be sufficient to cover the demand of large fish farm; for example, the 

production capacity of the BSF pilot developed in Ghana was estimated at 416-780 kg 

MM/year. Nevertheless, by selecting the substrates cautiously (St-Hilaire et al., 2007a; 

Caruso et al., 2014), small-holder farmers could focus on quality rather than quantity 

and the small amounts of high-quality MM produced could be used as key ingredients 

targeting strategically the critical stages of intensive and semi-intensive aquaculture 

systems, such as fry and juveniles where, like for salmons, the requirements for high-

quality feeds and feed ingredients are significantly higher but the volumes required are 

substantially lower than for food-fish. As this perspective is an opportunity to diversify 

local rural incomes and improve livelihood, technology transfer plans would have to be 

implemented, using, for example, traditional operation already existing (i.e. cricket 

farming or sericulture in South East Asia) or the pilots developed in related projects 

(PROteINSECT in West Africa). 
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8.4 Recommended applications for frass 

First assessment of BSF frass derived from two feed-grade materials, namely brewery 

spent grains (BW) and processed food wastes (FW), suggested a potential application in 

aquaculture feed (Chapter 6). Therefore, frass were used as supplementary feeds to 17.0 

g tilapia in green water pond (semi-intensive-like conditions) for 3 months and fish 

performance were evaluated in comparison to unfed fish (relying on the natural 

productivity) or to those fed rice bran. This was the first time insect frass were fed 

directly to fish as single feed ingredients but the results did not satisfy the hypothesis. 

Indeed, frass-fed fish performed similarly to the fish relying on the pond natural food, 

whereas, rice bran fed fish performed significantly better than those fed the frass or 

relying on the natural food. These results indicated that frass might not be a direct 

source of nutrients for fish owing to high fibre and non-protein nitrogen levels making 

its value as an organic fertiliser and soil conditioner greater than as a feedstuff.  

Even if frass could be used as a feed ingredient or a supplementary feed for fish, the 

amounts required would be negligible compared to quantities of frass that result from a 

maggot farming system (Chapter 7). Operational results and environmental 

performance of maggot farms rely on the tradability of these co-products 

(PROteINSECT, 2016a); thus, like MM, a strategic use should be considered. 

In the second experiment presented in Chapter 6, the same BSF frass used in the first 

experiment with tilapia were also assessed as soil organic conditioners. The results of 

this pot trial, conducted under climate controlled conditions, indicated that frass are 

effective organic fertilisers; similar observations were reported by Choi et al. (2009) 

with cabbages. However, the study suggested that efficacy and minimum application 

rates might depend on the type of frass (i.e. type of substrate initially used to grow the 

maggots) which might influence the frass nutrients composition. Yields comparable to 

those obtained with a soil fertilised with NPK inorganic fertiliser, were achieved with a 

minimum of 5.0 tonnes/ha FW frass or 10.0 tonnes/ha BW, but contrary to the NPK, the 

use of frass did not alter the soil pH and improved the soil organic matter (OM) and 

electrical conductivity. In addition, the results highlighted that increasing levels of frass 

resulted in increasing soil OM and electrical conductivity and therefore, increasing 

yields and that FW frass performed better than BW frass as bio-fertilisers. Thus, soil 
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fertility, stability and productivity (crop response) were positively related to the organic 

fertilisers’ application rates.  

This is could encourage farmers to apply greater amounts of frass to achieve better 

productivity; nevertheless, if frass becomes marketable as fertiliser, it will become 

crutial to define recommended and maximum application rates in order to limit the risks 

of pollution related to nutrient leaching in water (D’Haene et al., 2014), but also 

because, at high concentrations, nutrients such as N-based elements may become toxic 

and suppress plants growth (Gerendás et al., 1997; Jaynes et al., 2004). In most 

countries, inorganic and organic fertilisers are subjected to regulations; thus 

comprehensive assessment using standard procedures for quality and safety testing will 

be surely required for frass to be marketed as bio-fertilisers. In Europe, the current 

Circular Economy Strategy might be a significant programme promoting frass as bio-

fertiliser as it aims at revising, inter alia, the current legislations on wastes and 

fertilisers, thereby allowing better waste management through recycling into valuable 

resources to which access to market would be facilitated (EC, 2016a). In Chapter 7, it 

has been showed that in countries like Ghana, large plantations usually recycle their 

own wastes to produce compost (A. Pile; N. Danion, pers. communications 2013- 2014) 

whereas small-holder farmers rely mostly on inorganic fertilisers and applied organic 

soil conditioner if the resources are locally available because of the prohibitive 

transportation costs (Owusu-Bennoah and Visker, 1994; IFDC, 2012). Considering the 

evolution of the commodities prices (manures, inorganic fertilisers, etc.), it is likely that 

frass market prices will be competitive with those of the local, commonly used, organic 

fertilisers, thereby suggesting that this secondary insect-based product could also be 

marketable in LIDC. 

8.5 Future perspectives 

This study highlighted the high potential of housefly and BSF MM as quality feed 

ingredients for farmed fish, specifically during the first life stages where low amounts 

of MM can meet the specific requirements of fry and fingerlings. Accounting for site-

specific socioeconomic and environmental conditions, the production of consistent 

high-quality MM and frass, based on a circular economy strategy that allows the 

recycling of wastes sources into valuable products, can support the development of 

sustainable aquaculture globally and, through making the by-product frass available as 
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high-quality organic fertiliser for soil, improve sustainability and profitability of 

surrounding crop culture.  

That said, further investigations are required to better assess the potential of defatted 

MM in particular. The outcomes of this study suggested that greater inclusion rates and 

better performance could be achieved using defatted MM rather than crude MM. 

Research could investigate further the cost-benefits of using this highly processed 

material over crude MM for different fish species in commercial settings. 

For omnivorous and herbivorous species, such as tilapia, further research could 

consider higher dietary inclusions of MM than those applied here. The use of MM in 

marine ingredients-free diets, as a feedstuff that can provide essential nutrients such as 

EAA and EFA, could greatly benefit the aquafeed industry. 

Insect frass are undeniably suitable soil fertilisers; nevertheless more research is needed 

to assess this valuable by-product. Further investigations could look more deeply at the 

nutrient composition of frass derived from various organic materials in order to define 

sustainable and optimum use in soil. Furthermore, there is still an opportunity for frass 

to contribute to fish farming if used as an organic fertiliser in ponds and this is yet to be 

tested. 

Finally, although the Atlantic salmon and Nile tilapia are two economically relevant 

species in aquaculture, future research should extend towards other species such as 

shrimps and prawns, intensively farmed in various countries. Also, ornamental fish 

market may represent an interesting niche for high-value applications of insect based 

products. 
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