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Knowledge of mathematical equivalence, the principle that 2 sides of an equation represent the same
value, is a foundational concept in algebra, and this knowledge develops throughout elementary and
middle school. Using a construct-modeling approach, we developed an assessment of equivalence
knowledge. Second through sixth graders (N ! 175) completed the assessment on 2 occasions, 2 weeks
apart. Evidence supported the reliability and validity of the assessment along a number of dimensions,
and the relative difficulty of items was consistent with the predictions from our construct map. By Grade
5, most students held a basic relational view of equivalence and were beginning to compare the 2 sides
of an equation. This study provides insights into the order in which students typically learn different
aspects of equivalence knowledge. It also illustrates a powerful but underutilized approach to measure-
ment development that is particularly useful for developing measures meant to detect changes in
knowledge over time or after intervention.
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The widespread goal of “algebra for all” underscores the im-
portance of making algebra accessible to all students, not just those
who aspire to careers in math and science. For example, high-
school students who completed Algebra II were five times more
likely to graduate from college than those who completed only
Algebra I (Adelman, 2006). There is an emerging consensus that,
to increase students’ success in algebra, educators must reconcep-
tualize the nature of algebra as a continuous strand of reasoning
throughout school rather than a course saved for middle or high

school (National Council of Teachers of Mathematics, 2000). Part
of this effort entails assessing children’s early algebraic thinking.

In the current paper, we describe development of an assessment
of one component of early algebraic thinking: knowledge of math-
ematical equivalence. Mathematical equivalence, typically repre-
sented by the equal symbol, is the principle that two sides of an
equation represent the same value. We employed a construct-
modeling approach (Wilson, 2003, 2005) and developed a con-
struct map (i.e., a proposed continuum of knowledge progression)
for students’ knowledge of mathematical equivalence. We used the
construct map to develop a comprehensive assessment, adminis-
tered the assessment to students in Grades 2 to 6, and then used the
data to evaluate and revise the construct map and the assessment.
The findings provide insights into the typical sequence in which
learners acquire equivalence knowledge. The study also illustrates
an approach to developing measures that are particularly useful for
detecting changes in knowledge over time or after intervention.

Need for Reliable and Valid Measures

Too often, researchers in education and psychology use mea-
sures that have not gone through a rigorous measurement devel-
opment process, a process that is needed to provide evidence for
the validity of the measures (American Educational Research
Association, American Psychological Association, & National
Council on Measurement in Education [AERA/APA/NCME],
1999). For example, Hill and Shih (2009) found that less than 20%
of studies published in the Journal for Research in Mathematics
Education over the past 10 years had reported on the validity of the
measures. As they noted,
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Without conducting and reporting validation work on key independent
and dependent variables, we cannot know the extent to which our
instruments tap what they claim to. And without this knowledge, we
cannot assess the validity of inferences drawn from studies. The
AERA/APA/NCME (testing) standards heavily emphasize the collec-
tion and reporting of such information in research studies. (Hill &
Shih, 2009, p. 248)

The lack of evidence for the reliability and validity of measures
applies to previous measures of mathematical equivalence knowl-
edge. First, there is no standard measure of equivalence knowl-
edge; rather, researchers use their own self-designed measures
(e.g., Baroody & Ginsburg, 1983; Jacobs, Franke, Carpenter, Levi,
& Battey, 2007; Kieran, 1981; Li, Ding, Capraro, & Capraro,
2008; Rittle-Johnson, 2006). Second, we could not find a study
that reported evidence for the validity of a particular measure.
Third, only two studies reported information on the reliability of a
measure, and this was restricted to reporting Cronbach’s alpha on
scales containing about four items (Jacobs et al., 2007; Li et al.,
2008).

These measurement issues may help to explain some discrep-
ancies in past findings. For example, Knuth, Stephens, McNeil,
and Alibali (2006) reported that a majority of middle-school stu-
dents in their study did not understand equivalence, whereas Mat-
thews and Rittle-Johnson (2009) found that a majority of fifth
graders in their sample did. Knuth et al. relied on students’ written
definition of the equal sign; Matthews and Rittle-Johnson relied on
students’ ability to solve equations with mathematical operations
on both sides of the equation (e.g., 3 " 7 " 5 ! 3 " x). Although
both approaches measure equivalence knowledge, providing a
verbal definition is likely more difficult than solving problems, and
differences in how knowledge of equivalence is assessed can lead
to seemingly contradictory claims that may be resolved with closer
attention to measurement.

Knowledge of Mathematical Equivalence

Although few previous studies have paid careful attention to
measurement issues, a large number of studies have assessed
children’s knowledge of mathematical equivalence (sometimes
called mathematical equality). It is a fundamental algebraic con-
cept that is accessible in the elementary grades (e.g., Jacobs et al.,
2007; McNeil, 2007). Understanding mathematical equivalence
requires understanding that the values on either side of the equal
sign are the same. This specific knowledge about mathematical
equations is distinct from knowledge of numerical equivalence. By
4 years of age, children can match sets of objects on the basis of
quantity, suggesting that they have knowledge of numerical equiv-
alence (e.g., Gelman & Gallistel, 1986; Mix, 1999). Unfortunately,
students do not seem to link their knowledge of numerical equiv-
alence for sets of objects to interpreting and solving written equa-
tions like 8 " 4 ! x " 5 (Falkner, Levi, & Carpenter, 1999;
Sherman & Bisanz, 2009).

Knowledge of mathematical equivalence is a critical prerequi-
site for understanding higher level algebra (MacGregor & Stacey,
1997). In particular, it is necessary for competently performing the
same operation on both sides of an equation and for understanding
equivalent expressions (Kieran, 1992; Steinberg, Sleeman, &
Ktorza, 1990). For example, middle-school students who correctly

define the equal sign are much more likely than those who do not
to solve equations correctly (Knuth et al., 2006).

Given the importance of mathematical equivalence, it is of
concern that students often fail to understand this concept. Many
view the equal sign operationally, as a command to carry out
arithmetic operations, rather than relationally, as an indicator of
equivalence (e.g., Jacobs et al., 2007; Kieran, 1981; McNeil &
Alibali, 2005b). Evidence for this has primarily come from three
different classes of equivalence tasks: (a) equation-solving items,
such as 8 " 4 ! x " 5; (b) equation-structure items, such as
deciding if 3 " 5 ! 5 " 3 is true or false; and (c) equal-sign-
definition items. To solve equations such as 8 " 4 ! x " 5, most
elementary-school students either add the numbers before the
equal sign or add all the given numbers (e.g., respond that the
answer is 12 or 17; Falkner et al., 1999). Indeed, in a broad range
of studies spanning 35 years of research, a majority of first through
sixth graders treated the equal sign operationally when solving
equations with operations on the right side or both sides of an
equation, sometimes with only 10% of students solving the equa-
tions correctly (e.g., Alibali, 1999; Behr, Erlwanger, & Nichols,
1980; Falkner et al., 1999; Jacobs et al., 2007; Li et al., 2008;
McNeil, 2007; Perry, 1991; Powell & Fuchs, 2010; Rittle-Johnson,
2006; Rittle-Johnson & Alibali, 1999; Weaver, 1973).

Similarly, students tend to not be comfortable with equation
structures without a standard a " b ! c structure (e.g., operations-
equals-answer structure). When asked to evaluate whether equa-
tions are true or false, most elementary-school children indicated
that only equations with an operations-equals-answer structure are
true (Baroody & Ginsburg, 1983; Behr et al., 1980; Falkner et al.,
1999; Freiman & Lee, 2004; Li et al., 2008; Molina & Ambrose,
2006; Rittle-Johnson & Alibali, 1999; Seo & Ginsburg, 2003). For
example, in informal interviews, 6- and 7-year-olds rejected non-
standard equation structures and rewrote them into an operations-
equals-answer structure, such as rewriting 3 ! 3 as 0 " 3 ! 3
(Behr et al., 1980).

Finally, when defining the equal sign, first and second graders
typically define it operationally as “what it adds up to” or “when
two numbers are added, that’s what it turns out to be” (Behr et al.,
1980; Ginsburg, 1977; Seo & Ginsburg, 2003). Students’ re-
sponses are not much more sophisticated in the later grades, with
almost half of middle-school students in two recent studies giving
operational definitions of the equal sign (Alibali, Knuth, Hattiku-
dur, McNeil, & Stephens, 2007; Knuth et al., 2006).

Performance on all three classes of items for tapping children’s
developing knowledge of equivalence suggests that an operational
understanding of equivalence develops as the default knowledge
representation and is not easy to overcome. However, difficulty
understanding equivalence is not universal, as it is not prevalent in
elementary-school students educated in some other countries, such
as China and Taiwan (Li et al., 2008; Watchorn, Lai, & Bisanz,
2009).

The primary source of the difficulty that U.S. children have in
understanding mathematical equivalence is thought to be their
prior experiences with the equal sign (e.g., Baroody & Ginsburg,
1983; Carpenter, Franke, & Levi, 2003; Falkner et al., 1999;
McNeil, 2007, 2008). Elementary-school children are thought to
receive little direct, explicit instruction on the meaning of the equal
sign. Rather, students may infer an incorrect meaning of the equal
sign from repeated experience with limited equation structures

2 RITTLE-JOHNSON, MATTHEWS, TAYLOR, AND MCELDOON

tapraid5/zcz-edu/zcz-edu/zcz00111/zcz2293d11z xppws S!1 9/23/10 3:25 Art: 2009-0604



AP
A 

PR
OOFS

(e.g., Baroody & Ginsburg, 1983; Carpenter et al., 2003; Falkner
et al., 1999; McNeil, 2007, 2008). An analysis of two second-grade
textbooks identified very few instances in which the equal sign
was not presented in an operations-equals-answer structure (Seo &
Ginsburg, 2003). Falkner et al. (1999) speculated that

not much variety is evident in how the equals sign is typically used in
the elementary school. Usually, the equals sign comes at the end of an
equation and only one number comes after it. With number sentences,
such as 4 " 6 ! 10 or 67 # 13 ! 54, the children are correct to think
of the equals sign as a signal to compute. (p. 232)

This operational understanding of equivalence is difficult to
overcome. For example, second- and third-grade children received
direct instruction that the equal sign meant “the same as” during an
experimental intervention. If this instruction was presented in the
context of equations with an operations-equals-answer structure,
they continued to solve equations with operations on both sides
incorrectly (McNeil, 2008).

What is less clear is how a correct understanding of mathemat-
ical equivalence develops. Recent research has shown that a sub-
stantial minority (often around 30%) of students in elementary
school can solve equations with operations on both sides of the
equal sign correctly, particularly fourth and fifth graders (e.g.,
Freiman & Lee, 2004; Matthews & Rittle-Johnson, 2009; McNeil,
2007; McNeil & Alibali, 2004, 2005b; Oksuz, 2007; Rittle-
Johnson, 2006). By the end of middle school, a majority gave a
relational definition of the equal sign (e.g., 60% of students in
Alibali et al., 2007). McNeil (2007) noted that topics that contra-
dict an operational view of the equal sign, such as equivalent
fractions, inequalities, and pre-algebra, are discussed in later ele-
mentary grades, and proposed this should help weaken an opera-
tional view and strengthen a relational view of the equal sign. By
sixth grade, students are being exposed to equations in a variety of
formats in their textbooks (e.g., with no operations, such as
12 in ! 1 foot, 2/4 ! 1/2, and x ! 4; McNeil et al., 2006). It is
unclear when such variability in problem structures is introduced
in textbooks, as analyses of how the equal sign is presented in
third- to fifth-grade textbooks have not been reported. Overall,
correct understanding of equivalence may develop through im-
plicit processes and may take many years to develop.

Construct Map for Mathematical Equivalence

Our primary goal in the current study was to develop an assess-
ment that could detect systematic changes in children’s knowledge
of equivalence across elementary-school grades (second through
sixth). To accomplish this, we utilized Mark Wilson’s construct-
modeling approach to measurement development (Wilson, 2003,
2005). The core idea is to develop and test a construct map, which
is a representation of the continuum of knowledge through which
people are thought to progress for the target construct. This con-
tinuum is often broken into different levels to help conceptualize
the knowledge progression, but it is important to note that the
continuous nature of the model means that the levels should not be
interpreted as discrete stages.

Our construct map for mathematical equivalence is presented in
Table 1, with less sophisticated knowledge represented at the
bottom and more advanced knowledge represented at the top. The
four knowledge levels differ primarily in the types of equations
with which students are successful, starting with equations in an
operations-equals-answer structure, then incorporating equations
with operations on the right or no operations, and finally incorpo-
rating equations with operations on both sides (initially with
single-digit numbers and eventually with multidigit numbers that
increase the value of using more sophisticated strategies). Past
research suggests the structure of the equation should be a primary
influence on performance, regardless of item class (e.g., solving an
equation vs. evaluating an equation as true or false), although this
prediction has not been explicitly tested. Prior research also indi-
cates that knowing a relational definition of the equal sign is
related to success on equations with operations on both sides of the
equal sign (Alibali et al., 2007; Rittle-Johnson & Alibali, 1999).

Past research has focused on two levels, a rigid operational view
(Level 1) and a basic relational view (Level 3; see Table 1). We
hypothesized that there would be a transition phase between these
two views, labeled Level 2: Flexible operational view. In partic-
ular, we predicted that students would become less rigid and would
successfully solve equations and evaluate and encode equation
structures that are atypical but remain compatible with an opera-
tional view of the equal sign, such as equations that are “back-
wards” (e.g., __ ! 2 " 5; Behr et al., 1980) or that contain no

Table 1
Construct Map for Mathematical Equivalence Knowledge

Level Description Core equation structures

Level 4: Comparative relational Successfully solve and evaluate equations by comparing the expressions
on the two sides of the equal sign, including using compensatory
strategies and recognizing that performing the same operations on
both sides maintains equivalence. Recognize relational definition of
equal sign as the best definition.

Operations on both sides with multidigit
numbers or multiple instances of a
variable

Level 3: Basic relational Successfully solve, evaluate, and encode equation structures with
operations on both sides of the equal sign. Recognize and generate a
relational definition of the equal sign.

Operations on both sides:
a " b ! c " d
a " b # c ! d " e

Level 2: Flexible operational Successfully solve, evaluate, and encode atypical equation structures
that remain compatible with an operational view of the equal sign.

Operations on right: c ! a " b
No operations: a ! a

Level 1: Rigid operational Only successful with equations with an operations-equals-answer
structure, including solving, evaluating, and encoding equations with
this structure. Define the equal sign operationally.

Operations on left: a " b ! c
(including when blank is before the
equal sign)

Note. Italics indicate ideas that may need to be revised, based on the current data.
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operations (e.g., 3 ! 3). By second grade, students have moderate
levels of success solving these types of equations (Freiman & Lee,
2004; Weaver, 1973) and accepting statements with no operations
as true (Seo & Ginsburg, 2003). In addition, Carpenter et al. (2003)
proposed using equations in these formats to help transition stu-
dents to understanding equations with operations on both sides.
We did not expect children at this level to define the equal sign
relationally.

We also hypothesized that some elementary-school students
would be developing knowledge of equivalence that went beyond
a basic relational understanding. This Level 4: Comparative Rela-
tional thinking captures success solving equations and evaluating
equation structures by comparing the expressions on the two sides
of the equal sign. As a result, the students’ reasoning need not be
tied to specific computations. For example, students with a com-
parative understanding know that doing the same things to both
sides of an equation maintains its equivalence, without needing to
verify the equivalence relation with full computation (e.g., “If
56 " 85 ! 141, does 56 " 85 # 7 ! 141 # 7?”; Alibali et al.,
2007; Steinberg et al., 1990). They also use compensatory strate-
gies to ease calculations with large numbers, such as quickly
solving 28 " 32 ! 27 " x by recognizing that 27 is 1 less than
28, so the unknown must be 1 more than 32 (Carpenter et al.,
2003). We also expected that a relational definition of the equal
sign would be dominant at this level, with students considering a
relational definition of the equal sign to be the best definition, and
that students would have an explicit awareness that the equal sign
divides the equation into two sides (Rittle-Johnson & Alibali,
1999).

Although the construct map is presented as having four levels
for descriptive purposes, our conception of the construct, as well as
our statistical model, is continuous. Knowledge change is expected
to follow a gradual and dynamic progression, with less sophisti-
cated knowledge sometimes coexisting and competing with more
advanced knowledge (Siegler, 1996). For example, an operational
view of equivalence can even be elicited from adults in certain
circumstances (McNeil & Alibali, 2005a, 2005b).

Current Study

We used our construct map to guide creation of an assessment
of mathematical equivalence knowledge, with items chosen to tap
knowledge at each level of the construct map with a variety of item
classes. We administered an initial long version of the assessment
to children in Grades 2 through 6, and 2 weeks later we adminis-
tered a revised, shorter version of the assessment. We used an item
response model to evaluate our construct map in addition to using
classical test theory methods to provide additional evidence for the
reliability and validity of the assessment (e.g., internal consistency,
test–retest reliability). To provide some insights into a potential
source of knowledge change, we also analyzed the textbooks used
at the participating school for frequency of presentation of differ-
ent equation structures.

Method

Participants

Second- through sixth-grade students from 10 classrooms at an
urban parochial school participated. There were 184 participants

with parental consent who completed the initial assessment, but 9
of these students were absent when we administered the revised
assessment. Of the 175 students who completed the revised as-
sessment, 37 were in second grade (17 girls, mean age ! 7.7
years), 43 were in third grade (27 girls, mean age ! 8.9 years), 33
were in fourth grade (14 girls, mean age ! 9.8 years), 34 were in
fifth grade (17 girls, mean age ! 10.7 years), and 28 were in sixth
grade (13 girls, mean age ! 11.7). The students were from a
working- to middle-class community, and approximately 20% of
students in the participating grades were from minority groups
(approximately 8% African American and 5% Hispanic).

The school used the Iowa Tests of Basic Skills (ITBS; see
http://www.education.uiowa.edu/itp/itbs/) as a standardized mea-
sure of educational progress. Students’ percentile ranks and grade
equivalent scores in math and reading on the ITBS were obtained
from student records. On average, students scored in the 60th
percentile in math (range ! 4th to 99th percentile) and the 67th
percentile in reading (range ! 14th to 99th percentile).

Each teacher completed a brief survey on how much time her
students had spent on five activities related to equivalence during
the current school year, using a 4-point scale ranging from none to
a week or more. The most common activity was comparing num-
bers, and many students had also spent a week or more solving or
seeing equations without an operations-equals-answer structure
(see Table 2). The second graders had spent a fair amount of time
discussing the meaning of the equal sign, but the older students had
not. Finally, some second and third graders had solved equations
with literal variables, and all the fourth- to sixth-grade students
had.

Test Development Procedure

Overview. We developed a pool of possible assessment items
from past research on mathematical equivalence. Items were se-
lected and modified so that each level of the construct map was
covered by at least two items in each of the three common item
classes identified in the literature review: solving equations, eval-
uating the structure of equations, and defining the equal sign. We
piloted potential items with 24 second- to fourth-grade students at
a local afterschool program (servicing a different school) to screen
out inappropriate items. We worked with these pilot students
one-on-one, and, on the basis of their responses and input, we
eliminated or reworded confusing items and created an initial
assessment instrument that could be administered within a single
45-min class period. This initial assessment was administered to 10
classes of second- to sixth-grade students. Analyses of these results
and input of a domain expert informed the creation of two shorter,
comparable forms of a revised assessment, which were adminis-
tered to the same students 2 weeks later. All versions of the
assessment had three sections based on the three item classes.

Equation-solving items. These items tapped students’ abili-
ties to solve equations at the four knowledge levels and were taken
from four previous studies (Carpenter et al., 2003; Jacobs et al.,
2007; Matthews & Rittle-Johnson, 2009; Weaver, 1973). The
Level 4 items were adapted from the work of Carpenter and
colleagues. For example, to solve 67 " 84 ! x " 83, students can
compare the expressions and know they need to add 1 to 67,
because 83 is 1 less than 84, and answer 68. Students were
encouraged to “try to find a shortcut so you don’t have to do all the
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computation. At this level, they can also compare sides to simplify
and solve equations with multiple instances of a variable. For
instance, given the equation n " n " n " 2 ! 17, they can solve
it by first recognizing that n " n " n must equal 15 and then using
the fact that three 5s are 15 to solve the problem (Jacobs et al.,
2007). The initial assessment had 28 equation-solving items, and
the revised assessment had 11.

Equation-structure items. These items were designed to
probe students’ knowledge of valid equation structures, and the
equations varied according to the criteria outlined in Table 1. A
majority of items asked students to evaluate equations as true or
false, sometimes with follow-up prompts to explain their evalua-
tions, and were taken from four previous studies (Baroody &
Ginsburg, 1983; Behr et al., 1980; Carpenter et al., 2003; Warren,
2003). Other items asked students to reconstruct equations from
memory (to measure encoding of the equation structure) or to
identify the two sides of an equation (Matthews & Rittle-Johnson,
2009; McNeil & Alibali, 2004; Rittle-Johnson & Alibali, 1999).
The most advanced items assessed whether students would (a)
compare the expressions on either side of the equal sign to deter-
mine whether an equation such as 89 " 44 ! 87 " 46 was true
(e.g., explain “true, because 89 is 2 more than 87, but 44 is 2 less
than 46”) or (b) accept doing the same thing to both sides of an
equation, based on items from three studies (Alibali et al., 2007;
Carpenter et al., 2003; Steinberg et al., 1990). The initial
assessment had 31 equation-structure items; the revised assess-
ment had 18.

Equal-sign items. These items were designed to probe stu-
dents’ explicit knowledge of the equal sign. A core item asked
students to define the equal sign (e.g., Behr et al., 1980; Rittle-
Johnson & Alibali, 1999; Seo & Ginsburg, 2003). Students were
also asked to rate definitions of the equal sign (McNeil & Alibali,
2005a; Rittle-Johnson & Alibali, 1999) and to select the best
definition of the equal sign; these questions were inspired by
methods used in the psychology literature to assess people’s
knowledge of concepts (Murphy, 2002). Two easier items probed
if students could recognize that the equal sign can be used to
indicate equivalent values when no operators are involved (Sher-
man & Bisanz, 2009) and could recognize the equivalence of
symbolic expressions (e.g., 5 " 5 is equal to 6 " 4; Rittle-Johnson
& Alibali, 1999). The initial assessment had 13 equal-sign items;
the revised assessment had eight.

Scoring. Each item was scored dichotomously (i.e., 0 for
incorrect or 1 for correct). For computation items, students re-
ceived a point for answers within 1 of the correct answer to allow
for minor calculation errors. For the five explanation items, stu-
dents received a point if they mentioned the equivalent relation
between values on the two sides of the equation; see Appendix A
for scoring details for individual items.

Revised assessment. We revised the initial assessment in
order to have two shorter, comparable forms of the assessment.
Items on the initial assessment were eliminated if (a) they had poor
psychometric properties on more than one of three key indices
described in the item screening section and a domain expert had
identified them as inappropriate (5 items) or (b) they were redun-
dant with other items that had stronger psychometric properties (7
items). In addition, we revised two items that had been flagged on
multiple indices. Based on accuracy data and the suggestion of the
domain expert, the two pairs of items with the equation structure
x " b ! c or a " x ! c were reclassified from Level 2 to Level
1 (2SOL and 4STR in Table 3).

We created two comparable, short versions of the assessment
(37 items each) based upon these revisions. Items from the initial
assessment were paired on the basis of three criteria: level of
equivalence tapped, question stem, and proportion correct on the
initial assessment. Whenever possible, we used one item from each
pair on Form 1 and the other item on Form 2. However, sometimes
we needed to create a new, similar version of an item (5 items) or
use the same item on both assessments (4 items). We used this
step-by-step item-matching procedure to ensure that content would
be comparable across forms, as content similarity is a prerequisite
for meaningful score-equating procedures (Kolen & Brennan,
2004). The number of items of each class was based on the number
of available items in the literature and the time requirements for
completion of the different item classes. The items from one form
of the revised assessment are presented in Appendix A.

Test administration. Assessments were administered on a
whole-class basis. At Time 2, both forms were randomly distrib-
uted in each classroom. A spiraling procedure was used to ensure
random equivalence of the groups responding to each form (i.e.,
Form 1 was given to the first student and Form 2 to the next, with
alternation thereafter). A member of the research team read the
directions aloud for each section and used a preplanned script to
help answer any questions participants raised. The team member
also enforced a time limit for each section (see Appendix A) in

Table 2
Teacher Responses to “How Much Time Have Students Spent on the Following Activities This School Year?” by Grade

Activity
Grade 2

Teacher A
Grade 2

Teacher B
Grade 3

Teacher A
Grade 3

Teacher B Grade 4 Grade 5 Grade 6

Solving problems in which the
equal sign is not at the end
(e.g., 4 " _ ! 9; 3 " 6 ! _ " 8) Week" 3–5 days None 3–5 days 1–2 days 3–5 days 3–5 days

Seeing problems in which
the equal sign is not at the end
(e.g., 8 ! 8; 5 " 2 ! 2 " 5) 3–5 days 3–5 days None Week" Week" 3–5 days Week"

Discussing meaning of the equal sign Week" 3–5 days 1–2 days 1–2 days 1–2 days 1–2 days 1–2 days
Solving equations with variables

(e.g., 4 " 7 ! t and t " 8 ! 14) None 3–5 days 3–5 days None Week" 3–5 days Week"
Comparing numbers using $, %, ! Week" Week" Week" Week" Week" 3–5 days Week"

Note. For Grades 4–6, one teacher at each grade level taught math.
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order to ensure that students had time to get to all three sections.
For second and third graders, a member of the research team also
read the directions aloud for each new subset of items to reduce the
reading demands of the assessment.

Expert ratings. Expert screening of items on one form of the
revised assessment was obtained from four mathematics education
researchers who each had over 10 years of experience conducting
research on elementary-school children’s knowledge of algebra.
Each expert rated every item on a scale from 1 to 5 (1 ! not
essential, 3 ! important but not essential, 5 ! essential) based on
its perceived importance for knowledge of mathematical equiva-
lence. Gathering expert ratings is common practice in measure-
ment development and supports the face validity of the items
within a target community (AERA/APA/NCME, 1999).

Measurement Model

We used a Rasch model in addition to methods from classical
test theory to evaluate the assessment. Rasch modeling is a one-
parameter member of the item response theory (IRT) family (Bond
& Fox, 2007). The Rasch model considers both respondent ability
and item difficulty simultaneously, estimating the probability that
a particular respondent will answer a particular item correctly
(Rasch, 1980). A graphical display of the results, known as a
Wright map, allowed us to interpret the parameters estimated by
our Rasch model in terms of our construct map (Wilson, 2005).
We used Winsteps software version 3.68.0.2 to perform all IRT
estimation procedures (www.winsteps.com).

The Rasch model estimation procedure also provides informa-
tion on the goodness of fit between empirical parameter estimates
and the measurement model, thus providing indicators of poten-
tially problematic items. In particular, infit statistics measure un-
expected responses to items with difficulty levels close to respon-
dents’ ability estimates. Outfit statistics, on the other hand,
measure unexpected responses to items with difficulty levels
markedly different from respondents’ ability estimates. Ideal infit
and outfit mean square values are near 1. Values substantially
above 1 indicate items that contribute less toward the overall
estimate of the latent variable and are most problematic, and values
substantially below 1 indicate items that have less variance than
expected. Popular criteria favor infit/outfit mean square values that
lie between 0.5 and 1.5 (Linacre, 2010).

Item Screening

We screened the 37 items on each form of the revised assess-
ment for sound psychometric properties. Three of the 37 items on
each form were Level 1 items meant to check that students were
paying attention (e.g., 3 " 4 ! x). Accuracy for these items was
near 100%, so they were not included in the analyses because they
were not diagnostic. We excluded three additional items on each
form from further analysis (one equation-structure item and two
equal-sign items per form), because there were multiple indicators
that they were not good items (i.e., both item-total correlations
below .2 and infit and/or outfit mean square values above 1.5).
This screening resulted in 31 items on each form with acceptable
psychometric properties: 16 equation-structure items, 5 equal-sign
items, and 10 equation-solving items. The complete list of items is
presented in Table 3.

Results

In presenting our results, we focus on the revised forms of the
assessment. Data from the initial assessment are used as supporting
evidence when appropriate.

Evidence for Reliability

At the most basic level, assessments must be able to yield
reliable measurements. Internal consistency, as assessed by Cron-
bach’s alpha, was high for both of the revised assessments (Form
1 ! .94; Form 2 ! .95). Performance on the assessment was also
very stable between testing times. Test–retest reliability was cal-
culated by computing the correlation between performance on the
subset of 28 items that had been given in both the initial and the
revised assessment (3 of the items from the revised assessment
were not on the initial assessment). There was a high test–retest
correlation overall both for Form 1, r(26) ! .94, and for Form 2,
r(26) ! .95. Finally, the five explanation items on the revised
assessments were analyzed for interrater reliability. An indepen-
dent coder coded responses for 20% of the sample, with a mean
exact agreement of 0.99 for Form 1 (range ! .96–1.00) and .97 for
Form 2 (range ! .87–1.00). Overall, both forms of the assessment
appeared to yield reliable measures of student performance.

Equating of Scoring Across Forms

We sought to equate scores across forms for two reasons. First,
we wanted to establish comparable alternate forms for future
intervention or longitudinal research, in which it is helpful to have
multiple forms of an assessment. Second, we wanted to be able to
evaluate the validity of our construct across all items, instead of
separately by form. We used a random groups design within IRT
to calibrate the scores from the two forms (Kolen & Brennan,
2004). Item difficulty estimates for both forms of an assessment
are calibrated so that the item difficulty of each form is mean
centered around zero. As long as groups are equivalent, the ability
estimates of participants taking both versions are placed on the
same scale, requiring no further transformation or additional equat-
ing procedures.

Several indicators confirmed the equivalence of students who
completed the two forms. Because a spiraling technique was used
to distribute the assessments, the forms were administered to
similar numbers of students (nform1 ! 88, nform2 ! 87), and the
distribution of forms was even within each grade level. Groups
were also equivalent in age (mean age for both forms was 9.6
years) and on average ITBS reading grade equivalent scores (Form
1 ! 5.75, Form 2 ! 5.82) and math grade equivalent scores (Form
1 ! 5.45, Form 2 ! 5.27).

We also checked to ensure that the two test forms demonstrated
similar statistical properties according to classical test theory mea-
sures. First, they had virtually identical mean accuracy scores
(57% on each form). Second, they had similar mean item discrim-
ination scores (Form 1 ! 63%, Form 2 ! 69%). Item discrimi-
nation scores are an indicator of how well each item discriminates
between the top and bottom performers on the assessment and are
calculated by finding the difference in percent correct on each item
for the top 27% and bottom 27% of students in terms of total score
(Rodriguez, 2005). Third, the correlation between mean accuracy
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on the paired items across the two forms was very high, r(29) !
.94, p % .01.

As a final check on our equating procedure, we compared the
estimated item difficulties from the IRT model of paired items
across the two forms. Twenty-five of the 31 matched pairs re-
ceived equivalent item difficulty estimates as indicated by
between-samples t tests (see Table 3). Differences in accuracy on
the remaining six pairs may reflect knowledge and skills not
included in our equivalence construct, such as computational flu-
ency. For instance, 1DEF.L1 asks students to evaluate which pair
of numbers is equal to the pair in the question stem. The correct
answer to the problem on Form 1 is 2 " 7, and the correct answer
on Form 2 is 5 " 5. Compared to 2 " 7, problems like 5 " 5 are
more often solved by direct retrieval and more rarely solved
incorrectly (Ashcraft, 1992). Nevertheless, these six problems still
clustered in the appropriate range of item difficulty scores, as
predicted by our construct map.

In sum, we confirmed that our forms were administered to
equivalent groups, that they demonstrated similar statistical prop-
erties, and that similar difficulty estimates were received for most
paired items. With these criteria met, it was reasonable to use a
random groups design in IRT to calibrate the scores from the two
forms, placing all item difficulties and student abilities on the same
scale. Hence, the following discussion of validity considers all
items simultaneously, placed on the same scale.

Evidence for Validity

Multiple measures provided evidence for the validity of our
measure of mathematical equivalence, according to four of the
validity categories specified by AERA/APA/NCME (1999).

Evidence based on test content. Experts’ ratings of items
provided evidence in support of the face validity of the test
content. The four experts rated most of the test items to be
important (rating of 3) to essential (rating of 5) items for tapping
knowledge of equivalence. The mean validity rating for test con-
tent was 4.1 (see Table 3 for the average rating on each item).

Evidence based on internal structure— dimensionality.
We conducted several analyses to evaluate whether our construct
was reasonably characterized as tapping a single dimension.
Within an IRT framework, the unidimensionality of a measure is
often checked by using a principal-components analysis of the
residuals after fitting the data to the Rasch model (Linacre, 2010).
This analysis attempts to partition unexplained variance into co-
herent factors that may indicate other dimensions.

The Rasch model accounted for 57.2% of the variance in the
present data set. A principal-components analysis on the residuals
indicated that the largest secondary factor accounted for 2.2% of
the total variance (eigenvalue ! 3.2), corresponding to 5.2% of the
unexplained variance. The secondary factor was sufficiently dom-
inated by the Rasch dimension to justify the assumption of unidi-
mensionality (Linacre, 2010).

As an additional check on dimensionality, we conducted a series
of confirmatory factor analyses (CFA). We explored three possible
factor structures: (a) a one-factor model for all items; (b) a two-
factor model, grouping items that have been said to tap knowledge
of procedures in past intervention research (equation-solving
items) and items that have been said to tap knowledge of concepts
(equation-structure and equal-sign definition items; Matthews &

Rittle-Johnson, 2009; Rittle-Johnson, 2006; Rittle-Johnson & Ali-
bali, 1999); and (c) a three-factor model, grouping items by the
three item classes. We performed the CFAs with Mplus 4.2 (B.
Muthén & Muthén, 2006). Because the items were scored dichot-
omously (wrong-right), the CFA was computed with tetrachoric
correlations. Because scores on dichotomous items did not follow
a normal distribution, we used the WLSMV estimator, which
employs weighted least square estimates with robust standard
errors, as recommended by L. K. Muthén (2004). The models had
minor problems with some empty cells in between-items correla-
tions, but model estimation terminated normally (see Appendix B
for the correlation matrix for the one-factor model). To evaluate
the models, we examined the fit indices suggested by Hu and
Bentler (1999), namely, the chi-square-based Bentler comparative
fit index (CFI) and the residual-based standardized root mean
square residual (SRMR), using standards recommended by
Tabachnick and Fidell (2007). All models had a very good CFI
estimate (CFI ! 0.980, 0.980, 0.981 for the one-, two-, and
three-factor models, respectively), indicating acceptable fit. Ac-
cording to the residual-based SRMR, however, none of the models
showed very good fit (SRMR ! 0.121, 0.119, 0.118 for the one-,
two-, and three-factor models, respectively; target value ! 0.08).
Yu (2002) has reported that SRMR does not perform well with
binary variables, so we are not as confident in the results of this
index. Clearly, the fit of the three different models were very
similar, so the increased complexity of a two- or three-factor
model did not seem justified.

Overall, a single factor captured a majority of the variance and
performance on individual items, suggesting that our construct was
unidimensional. The extremely small improvements in fit when
additional factors were added, combined with little theoretical
justification for additional factors, suggested that including addi-
tional factors was not warranted.

Evidence based on internal structure—Wright map. As a
second check on internal structure, we evaluated whether our a
priori predictions about the relative difficulty of items were correct
(Wilson, 2005). Recall that when creating the assessment, we
selected items to tap knowledge at one of four levels on our
construct map. We used an item-respondent map (i.e., a Wright
map) generated by the Rasch model to evaluate our construct map.
In brief, a Wright map displays participants and items on the same
scale. In the left column, respondents (i.e., participants) with the
highest estimated ability on the construct are located near the top
of the map. In the right column, the items of greatest difficulty are
located near the top of the map. The vertical line between the two
columns indicates the scale for parameter estimates measured in
logits (i.e., log-odds units), which are the natural logarithm of the
estimated probability of success divided by the estimated proba-
bility of failure on an item. The advantage of using the logit scale
is that it results in an equal interval linear scale that is not
dependent on the particular items or participants used in estimating
the scores. The average of the item distribution was set to 0 logits;
negative scores indicate items that were easier than average, and
positive scores indicate items that were harder than average.

The Wright map shown in Figure 1 allows for quick visual
inspection of whether our construct map correctly predicted rela-
tive item difficulties (see Table 3 for specific item difficulty
scores). As can be seen, the items we had categorized as Level 4
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items were indeed the most difficult (clustered near the top, with
difficulty scores greater than 1), the items we had categorized as
Levels 1 and 2 items were indeed fairly easy (clustered near the
bottom, with difficulty scores less than #1), and Level 3 items fell

in between. Overall, the Wright map supports our hypothesized
levels of knowledge, progressing in difficulty from a rigid opera-
tional view at Level 1 to a comparative relational view at Level 4.
This was confirmed by Spearman’s rank order correlation between

6
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3

2

1

0

-1

-2

-3 

-4  

-5

Level 4 

Level 3 

Level 2 

Level 1 

Figure 1. Wright map for the mathematical equivalence assessment. In the left column, each X represents one person,
with least knowledgeable people at the bottom. In the right column, each entry represents an item, with the easiest items at
the bottom. The vertical line between the two columns indicates the scale for parameter estimates measured in logits (i.e.,
log-odds units). Along the vertical line, M indicates the mean, S indicates 1 standard deviation above or below the mean,
and T indicates 2 standard deviations above or below the mean. These statistics are included for the participants (i.e., persons;
left of center) and for the items (right of center). Refer to Table 3 for details on each item.
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hypothesized difficulty level and empirically derived item diffi-
culty, &(62) ! .84, p % .01.

To evaluate whether individual items were at the expected level
of difficulty, we used standard errors to construct confidence
intervals around item difficulty estimates. We flagged items that
failed to cluster within the empirically derived boundaries of their
respective difficulty levels (i.e., Level 4 items with difficulty
above 1, Level 3 items with difficulty between 1 and #1, Level 2
items with difficulties between #1 and #3, and Level 1 items with
difficulties below #3; see Figure 1). Seven of the 62 items across
the two forms of the assessment failed to cluster as expected:
1DEF.L1.1, 3STR.L1.1, 3STR.L1.2, 10DEF.L3.2, 11DEF.L3.1,
21STR.L3.1, and 21STR.L3.2. We briefly consider each of these
items in turn.

1DEF.L1.1, 3STR.L1.1, and 3STR.L1.2 were all expected to be
Level 1 items but proved more difficult. On the latter two, students
needed to identify false equations as false. The equations were in
nonstandard formats, and we expected students to easily identify
them as false, even if for the wrong reason. The poorer than
expected accuracy may indicate general uncertainty elicited by
being asked to evaluate a variety of unfamiliar equation structures
as true or false. These items were not critical to our construct map
and perhaps should be dropped in future iterations. 1DEF.L1.1
may reflect unexpected computational difficulty discussed above,
as the parallel item on Form 2 was at the expected level of
difficulty.

The remaining mismatched items were all expected to be at
Level 3, which suggests that the construct map may need to be
refined. 10DEF.L3.2 asked students to provide a definition of the
equal sign and was somewhat more difficult than expected. Its twin
(10DEF.L3.1) was also difficult, so generating a relational defini-
tion may be better classified as a Level 4 item. 11DEF.L3.1 asked

students whether “the equal sign means two amounts are the same”
is a good definition of the equal sign, and it was easier than
expected. Its paired item asked whether “the equal sign means the
same as” is a good definition and was at the predicted level of
difficulty. It may be that the phrasing “two amounts” provides
easier access to the concept of equality. Finally, 21STR.L3.1 and
21STR.L3.2 were identical items on the two forms that asked
students to reproduce the equation 5 " 2 ! x " 3 from memory.
These items were considerably easier than expected. This result
might be explained by the fact that encoding a problem correctly
is necessary for solving it correctly (Siegler, 1976), so successful
encoding of a particular structure may precede successful solving
of problems with that structure in some circumstances. We will
carefully monitor the performance of these items in the future as
we continue to validate our assessment and refine the construct
map.

The range in difficulty of the items was appropriate for the
target population. As shown in Figure 1, the range of item diffi-
culties matched the spread of participant locations quite well (i.e.,
there were sufficiently easy items for the lowest performing par-
ticipants and sufficiently difficult items for the highest performing
participants). In addition, ability estimates increased with grade
level (see Figure 2). As expected, mean ability estimates progres-
sively increased as grade level increased, &(173) ! .76, p % .01.

Evidence based on relation to other variables. We exam-
ined the correlation between students’ standardized math scores on
the ITBS and students’ estimated ability on our equivalence as-
sessment (two students were excluded because we did not have
ITBS scores for them). As expected, there was a significant pos-
itive correlation between scores on the equivalence assessment and
grade equivalent scores on the ITBS for mathematics, even after
we had partialed out students’ reading scores on the ITBS, r(86) !

Figure 2. Distribution of ability estimates by grade level.
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.79 and r(83) ! .80, ps % .01, for Forms 1 and 2 respectively).
This was true within each grade level as well. This positive
correlation between our assessment and a general standardized
math assessment provides some evidence of convergent validity.

Evidence based on response processes. Thus far, our anal-
yses have focused on the accuracy of students’ answers. However,
past research and our construct map indicate that students’ errors
should not be random. Rather, an operational understanding of the
equal sign as an indicator to “add up the numbers” should lead
students either (a) to think the terms before the equal sign should
add up to the term immediately after the equal sign (add-to-equal;
e.g., answering 7 to 3 " 4 ! x " 5 or answering 4 to x " 2 !
6 " 4) or (b) to think all the numbers in the equation should be
added (add-all; e.g., answering 12 for either equation). To explore
this, we coded children’s errors on the six Level 2 and Level 3
equation-solving items based on their answers and their written
work. Of the incorrect responses, 37% were nonresponses. Of the
remaining errors, 63% were “add up the numbers” errors (52%
add-to-equal errors and 11% add-all errors). The frequency with
which children made “add up the numbers” errors was correlated
with their estimated abilities on the assessment, r(173) ! #.57,
p % .01. Overall, students’ errors often reflected an operational
view of equivalence.

Characterizing Students’ Knowledge Levels

Much of the power of IRT results from the fact that it models
participants’ responses at the item level. For example, we can
calculate the probability of any participant’s success on any given

item using the equation Pr'success) "
1

1 # e#((#d), where ( is a

participant’s ability estimate and d is the item difficulty estimate.
This is a powerful tool, because it allows us to take a single
measure (a student’s ability score) and use it to predict the types of
items with which a student is likely to struggle, without the usual
need for resource intense item-by-item error analysis.

Consider a student with the mean ability score of .71. This student
would be expected to solve the Level 3 item 3 " 4 ! x " 5
(13SOL.L3.2) accurately 68% of the time and would be expected
to solve few Level 4 items correctly. In contrast, a student with an
ability score of #1.6 (1 SD below the mean) would be expected to
solve this Level 3 item accurately only 17% of the time but would
be expected to solve the easier Level 2 item 8 ! 6 " x
(6SOL.L2.2) correctly 77% of the time. As we develop our mea-
sure over time, adding more and more items to the bank of known
difficulty levels, this predictive power will grow in precision and
generality.

Textbook Analysis

To help shed insight on the role of experience in the develop-
ment of equivalence knowledge, we performed a textbook analysis
of the textbook series used at the school, Houghton Mifflin Math
(Greenes et al., 2005).

Method. Following the method used byMcNeil et al. (2006),
we coded the equation structure surrounding each instance of the
equal sign on every other page of the Grade 1–6 textbooks.
Equation types are defined in Table 4.

Findings. Across grade levels, there was a steady increase in
the number of instances of the equal sign per page (see bottom of
Table 4). In first grade, the operations-equals-answer structure

Table 4
Textbook Analysis Results: Percentage of Instances of the Equal Sign in Each Equation Structure for Grades 1 Through 6

Structure type

Grade

Average1 2 3 4 5 6

Operations-equals-answer structure 97 82 70 52 38 31 62
Unknown at end or no unknown Operation(s) on left side of the equal

sign and unknown quantity or
answer on the right side
(e.g., 5 " 2 ! ▫)

91 75 48 35 18 11 46

Unknown on left side Operation(s) and an unknown quantity
on the left side (e.g., 4 " ▫ ! 7)

6 7 22 17 20 20 15

Nonstandard equation structures 0 10 24 41 59 68 34
Operations on right side of equal

sign
Operation(s) on right side of the equal

sign and answer or an unknown
quantity on the left side
(e.g., 7 ! 5 " 2)

0 4 3 2 18 11 6

No explicit operations No explicit operation on either side of
the equal sign (e.g., 12 in. ! 1 ft.,
x ! 4, 2/4 ! 1/2, 3 ! 3)

0 5 15 33 38 49 23

Operations on both sides of
equal sign

Operations appear on both sides of the
equal sign (e.g., 3 " 4 ! 5 " 2)

0 1 6 6 3 8 4

No equation Equal sign appears outside the context
of an equation, such as in the
directions (e.g., “Write %, $, or !
to complete each statement”)

3 7 6 6 3 1 4

Total instances of equal sign 492 363 696 671 859 1267
Pages examined 320 310 314 314 311 309
Instances per page 1.5 1.1 2.2 2.0 2.7 4.0
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dominated, accounting for 97% of all occurrences of the equal
sign. There was a steady decrease in the frequency of this struc-
ture, with it eventually accounting for just 31% of occurrences in
the sixth-grade text. In contrast, equations with no explicit oper-
ation (e.g., 1 foot ! 12 in) increased steadily from first to sixth
grade, with this structure accounting for almost one half of the
occurrences of the equal sign in sixth-grade text. The other struc-
tures were relatively rare, accounting for less than 15% of in-
stances of the equal sign across the grades. Equations with oper-
ations on both sides were particularly rare, accounting for only 4%
of instances overall.

We also inspected the textbooks for explicit definitions of the
equal sign embedded either in a lesson or in the glossary. We
found no explicit definitions. In the first-grade textbook, “equal
sign” was included in the glossary, but the definition was simply
an arrow pointing to the equal sign in the equation 2 " 3 ! 5. In
the second-grade textbook, there was an entry for equal to (!),
with the example 4 " 4 ! 8, 4 plus 4 is equal to 8. There was no
entry in the third-grade or fifth-grade texts; the fourth-grade text
did include an entry for equal in the glossary with the definition
“having the same value,” but there was no link to the equal sign.
In the sixth-grade text, the definition of equation in the glossary
was “A mathematical sentence that uses an equal sign to show that
two expressions are equal. 3 " 1 ! 4 and 2x " 5 ! 9.” This was
the only definition that might support a relational definition of the
equal sign.

Discussion

Numerous past studies have pointed to the difficulties
elementary-school children have understanding mathematical
equivalence (e.g., Behr et al., 1980; Falkner et al., 1999; McNeil,
2007; Perry, 1991; Rittle-Johnson & Alibali, 1999; Weaver, 1973),
underscoring the need for systematic study of elementary-school
students’ developing knowledge of the topic. We used a construct-
modeling approach to develop an assessment of mathematical
equivalence knowledge. Our construct map specified a continuum
of knowledge progression from a rigid operational view to a
comparative relational view (see Table 1). We created an assess-
ment targeted at measuring this latent construct and used perfor-
mance data from an initial round of data collection to screen out
weak items and to create two alternate forms of the assessment.
The two forms of the revised assessment were shown to be reliable
and valid along a number of dimensions, including good internal
consistency, test–retest reliability, test content, and internal struc-
ture. In addition, our construct map was largely supported. Below,
we discuss the strengths and weaknesses of our construct map,
possible sources of increasing equivalence knowledge, benefits of
a construct-modeling approach to measurement development, and
future directions.

Construct Map for Equivalence

Describing children as having an operational or relational view
of equivalence is overly simplistic. Rather, items of a broader
range of difficulty can be used to capture students in transition
between the two views (Level 2: Flexible operational) and to
capture comparative reasoning based on equivalence ideas (Level
4: Comparative relational). As predicted by the construct map,

children became increasingly flexible in dealing successfully with
equation structures, and the structure of the equation had a large
influence on performance. In contrast, the item class had limited
influence on performance. For example, success evaluating versus
solving a particular equation structure was often similar, and one
class of items was not consistently easier than another. Our con-
struct map for increasingly sophisticated abilities to deal with
different equation structures across several item classes allows for
a higher resolution description of children’s knowledge of equiv-
alence than was possible in previous studies.

Another benefit of a construct-modeling approach is that it
encourages iterative refinement of the theoretical construct map in
response to empirical findings. Indeed, the current findings suggest
several potential refinements of the construct map. First, more
attention should be paid to how the equal-sign definition items
relate to performance on equation-structure and equation-solving
items, as they were less likely to be at the expected level of
difficulty than the other items. Of most note, generating a rela-
tional definition of the equal sign was much harder than solving or
evaluating equations with operations on both sides. Rather, gen-
erating a relational definition was as hard as recognizing that a
relational definition is the best definition of the equal sign (a Level
4 item). Past research has also found that explicit, verbalized
knowledge of a relational definition of the equal sign takes longer
to develop than the ability to solve or evaluate equations with
operations on both sides (Denmark, Barco, & Voran, 1976; Kieran,
1981; Rittle-Johnson & Alibali, 1999). Likely, this definition item
should be considered a Level 4 item. Further, Levels 3 and 4 may
be more appropriately labeled as an implicit relational view versus
an explicit relational view.

In addition, it may make sense to make finer grain distinction at
Level 4. Compensation items were easier than items requiring
more explicit thinking about the properties of equality linking the
two sides of the equation. That is, children were more adept at
employing the properties of equality (e.g., judging 89 " 44 !
87 " 46 to be true without computing) than they were at explicitly
recognizing or explaining those properties (e.g., recognizing and
justifying that if 56 " 85 ! 141 is true, 56 " 85 # 7 ! 141 # 7
is also true). If the relative difficulty of these items persists in
future studies, it may be worth distinguishing two sublevels to a
comparative relational view.

Developing Knowledge of Equivalence

What causes children to develop increasingly sophisticated
knowledge of equivalence? This study did not address this issue
directly, as we did not manipulate children’s experiences with
equivalence ideas or directly observe classroom instruction.
Teacher reports and a textbook analysis, however, provide some
information that is informative. First, consider the potential role of
exposure to different equation structures in textbooks. Textbooks
heavily influence what children are exposed to in classrooms
(Reys, Reys, & Chavez, 2004; Weiss, Banilower, McMahon, &
Smith, 2001). Analysis of the participating students’ textbooks
indicated that exposure to nonstandard equation structures did
increase dramatically with grade, accounting for 3% of instances
of the equal sign in the first-grade textbook and 68% of instances
in the sixth-grade text. A vast majority of these instances had no
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explicit operations (e.g., 1 foot ! 12 in, 1/2 ! 2/4), and the
frequency of equations with operations on both sides was low
across grades. Note that these nonstandard equation structures
were much more prevalent in the sixth-grade textbook that
we analyzed than in the four sixth-grade textbooks analyzed by
McNeil et al. (2006; 30%–51% of instances). There appears to be
large variability in presentation of nonstandard equation structures
across textbook series.

Students’ knowledge was developing earlier than would be
predicted by mere exposure. For example, many children in Grade
2 were successful on items with operations on the right or no
operations even though they were rarely exposed to these equation
structures in their textbooks. Similarly, many older children were
successful on items with operations on both sides, although these
items were rare in their textbooks. A recent textbook analysis of a
sixth-grade textbook from each of four countries (China, Korea,
Turkey, and the United States) also suggests that simple exposure
to nonstandard equation structures is not the primary sources of
improving equivalence knowledge. The frequency of nonstandard
equation structures was comparable in the textbooks from the four
countries, even though students in China and Korea were much
more likely to solve equations with operations on both sides
correctly (Capraro, Yetkiner, Ozel, & Capraro, 2009).

It may be that, rather than simple textbook exposure, explicit
attention to ideas of equivalence in classroom discussion, with
attention to the equal sign as a relational symbol, is what promotes
knowledge growth in this domain. Second-grade teachers in the
current study reported discussing the meaning of the equal sign for
about a week, in addition to exposing students to nonstandard
equation structures. Such explicit attention to the meaning of the
equal sign in second grade was not directly supported by the
textbook but may reflect awareness by the second-grade teachers
about the difficulty of this topic. These classroom discussions may
have helped children gain a more flexible, albeit operational, view
of equivalence. Teachers in fourth through sixth grade reported
spending at least 3–5 days on solving equations with variables, and
it is possible that attention to equation solving aided growth of a
relational view of equivalence. We did not observe these class-
room activities and discussions, but they are in line with teaching
experiments on the effectiveness of classroom discussions of non-
standard equation structures and what the equal sign means (e.g.,
Baroody & Ginsburg, 1983; Jacobs et al., 2007).

It is also possible that cognitive differences, not just instruc-
tional ones, influence growth of equivalence knowledge across
grades. For example, according to Case, older elementary-school
children develop the ability to integrate two dimensions of a
problem (Case & Okamoto, 1996), perhaps helping them coordi-
nate the information on both sides of the equal sign. Children also
become better able to inhibit task-irrelevant information through
elementary school (e.g., Dempster, 1992), which perhaps helps
them inhibit operational views of equivalence. These cognitive
changes may, in part, explain improvements in equivalence knowl-
edge with age. However, limitations in cognitive capacity do not
prevent younger children from understanding equivalence when
they are given extensive, well-structured instruction (Baroody &
Ginsburg, 1983; Jacobs et al., 2007; Sáenz-Ludlow & Walgamuth,
1998).

Benefits of a Construct-Modeling Approach to
Measurement Development

A construct-modeling approach to measurement development is
a particularly powerful one for researchers interested in under-
standing knowledge progression, as opposed to ranking students
according to performance. Although Mark Wilson has written an
authoritative text on the topic (Wilson, 2005), there are only a
handful of examples of using a construct-modeling approach in the
empirical research literature (see Acton, Kunz, Wilson, & Hall,
2005; Masse, Heesch, Eason, & Wilson, 2006; Wilson, 2008), with
only a few focused on academic knowledge (see Claesgens,
Scalise, Wilson, & Stacy, 2009; Dawson-Tunik, Commons, Wil-
son, & Fischer, 2005; Wilson & Sloane, 2000). We found con-
struct modeling to be very insightful and hope this article will
inspire other educational and developmental psychologists to use
the approach. This measurement development process incorporates
four phases that occur iteratively: (a) proposal of a construct map
based on the existing literature and a task analysis; (b) generation
of potential test items that correspond to the construct map and
systematic creation of an assessment designed to tap each knowl-
edge level in the construct map; (c) creation of a scoring guide that
links responses to items to the construct map; and (d) after admin-
istration of the assessment, use of the measurement model, in
particular Rasch analysis and Wright maps, to evaluate and revise
the construct map and assessment (Wilson, 2005). The assessment
is then progressively refined by iteratively looping through these
phases.

Another benefit of a construct-modeling approach is that it
produces a criterion-referenced measure that is particularly appro-
priate for assessing the effects of an intervention on individuals
(Wilson, 2005). We developed two versions of our equivalence
assessment so that different versions could be used at different
assessment points in future intervention or longitudinal research.

Our equivalence assessment could also help educators modify
and differentiate their instruction to meet individual student needs.
IRT can be used to assign ability scores, which teachers can use to
classify children at different levels of equivalence knowledge. We
found wide variability in performance within grades, and diagnos-
tic information for individual students should help teachers differ-
entiate their instruction to focus on items at the appropriate level of
difficulty for a particular child. Differentiated instruction has been
shown to improve student achievement (e.g., Mastropieri et al.,
2006), but teachers often lack the tools for identifying students’
knowledge levels and customizing their instruction (e.g., Houtveen
& Van de Grift, 2001). Our measure of equivalence knowledge
and the accompanying construct map could help facilitate this
differentiation.

Future Directions and Conclusions

Although we have taken an important first step in validating a
measure of equivalence knowledge, much still needs to be done. A
critical next step is to provide evidence for the validity of the
measure with a larger and more diverse sample. Such an effort will
reveal whether items on the assessment function the same for
different groups (e.g., grade levels or socioeconomic groups). It
may be that our measure appears to be more cohesive than it
actually is because we sampled students from a wide range of
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grades but were unable to test for the effect of grade on item
functioning or dimensionality, given the limited number of stu-
dents per grade level. We also need to know the predictive validity
of the measure (e.g., does the measure help predict which students
need additional math resources or who are ready for algebra in
middle school?) Having a common assessment tool should also
facilitate future efforts to better understand sources of changes in
equivalence knowledge as well as to evaluate the effectiveness of
different educational interventions.
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Appendix A

Revised Assessment (Form 2) With Scoring Criteria for Select Items

Equation Structure Items (10 min)

1. “I’ll show a problem for a few seconds. After I take the problem
away, I want you to write the problem exactly as you saw it.”

a. ▫ " 2 ! 5

b. 5 " 2 ! ▫ " 4

c. ▫ " 5 ! 8 " 7 " 5

d. 74 " ▫ ! 79 " 45 (dropped item)

Scoring criteria. Correct if all numerals, operators, equal sign,
and unknown are in correct places. OK if numerals are incorrect.

2. For each example, decide if the number sentence is true. In
other words, does it make sense? After each problem, circle
True, False, or Don’t Know.

a. 5 " 3 ! 8 True False Don’t Know (at ceiling)

b. 3 ! 3 True False Don’t Know

c. 31 " 16 ! 16 " 31 True False Don’t Know

d. 7 " 6 ! 6 " 6 " 1 True False Don’t Know

e. 5 " 5 ! 5 " 6 True False Don’t Know

3. For each example, decide if the number sentence is true.
Then, explain how you know.

a. 7! 3 " 4 True False Don’t Know

b. 6 " 4 ! 5 " 5 True False Don’t Know

Scoring criteria for explanations. Correct if mentions the
word “same,” that the inverse is true, or solves and shows both
sides to be the same.

4. This problem has two sides. Circle the choice that correctly
breaks the problem into its two sides.

8 " 2 " 3 ! 4 " ▫
5. Without adding 67 " 86, can you tell if the statement below

is true or false?
67 " 86 ! 68 " 85. How do you know?
Scoring criteria for explanation. Correct if mentions rela-

tions between values on the two sides (e.g., “67 is one less then 68,
same with 85 and 86”).

6. Without subtracting the 7, can you tell if the statement
below is true or false?

56 " 85 ! 141 is true.

Is 56 " 85 – 7 ! 141 # 7 true or false?

How do you know?

Scoring criteria for explanation. Correct if mentions doing
the same thing to both sides (e.g., “they subtracted 9 from both
sides”).

Equal Sign Items (5 min)

7. What does the equal sign (!) mean?
Can it mean anything else?
Scoring criteria. Correct if they give a relational definition,

which mentions both sides being the same or equivalent. (Note:
30% of student who gave a relational definition did so only when
prompted “Can it mean anything else?” They provided an opera-
tional or ambiguous definition on the first prompt.)

8. Which of these pairs of numbers is equal to 6 " 4? Circle
your answer.

a. 5 " 5

b. 4 " 10

c. 1 " 2

d. none of the above

9. Which answer choice below would you put in the empty box
to show that five pennies are the same amount of money as one
nickel? Circle your answer.

a. 5¢

b. !

c. "

d. don’t know

(Appendices continue)
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10. Is this a good definition of the equal sign? Circle good or
not good.

a. The equal sign means add. (at ceiling, not included) Good
Not good

b. The equal sign means get the answer. (dropped item) Good
Not good

c. The equal sign means the same as. Good Not good

11. Which of the definitions above is the best definition of the
equal sign?

12. The equal sign (!) is more like: (dropped item)

a. 8 and 4

b. % and $

c. " and #

d. don’t know

Equation-Solving Items (10 min)

DIRECTIONS: Find the number that goes in each box.

13. 3 " 4 ! x (at ceiling, not included)

14. 4 " x ! 8

15. 8 ! 6 " x

16. 3 " 4 ! x

17. x " 2 ! 6 " 4

18. 7 " 6 " 4 ! 7 " x

19. 8 " x ! 8 " 6 " 4

20. 6 # 4 " 3 ! x " 3

DIRECTIONS: Find the number that goes in each box. You can
try to find a shortcut so you don’t have to do all the adding. Show
your work and write your answer in the box.

21. 898 " 13 ! 896 " x

22. 43 " x ! 48 " 76

23. Find the value of n. Explain your answer.

n " n " n " 2 ! 17

Scoring criteria. For Items 13–23, answers within 1 of the
correct answer were considered correct to allow for minor com-
putation errors.

(Appendices continue)
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