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Assessing Lévy walks as models
of animal foraging

Alex James1, Michael J. Plank1,* and Andrew M. Edwards2

1Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
2Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road,
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The hypothesis that the optimal search strategy is a Lévy walk (LW) or Lévy flight, originally
suggested in 1995, has generated an explosion of interest and controversy. Long-standing
empirical evidence supporting the LW hypothesis has been overturned, while new models
and data are constantly being published. Statistical methods have been criticized and new
methods put forward. In parallel with the empirical studies, theoretical search models have
been developed. Some theories have been disproved while others remain. Here, we gather
together the current state of the art on the role of LWs in optimal foraging theory. We exam-
ine the body of theory underpinning the subject. Then we present new results showing that
deviations from the idealized one-dimensional search model greatly reduce or remove the
advantage of LWs. The search strategy of an LW with exponent m ¼ 2 is therefore not as
robust as is widely thought. We also review the available techniques, and their potential pit-
falls, for analysing field data. It is becoming increasingly recognized that there is a wide range
of mechanisms that can lead to the apparent observation of power-law patterns. The conse-
quence of this is that the detection of such patterns in field data implies neither that the
foragers in question are performing an LW, nor that they have evolved to do so. We conclude
that LWs are neither a universal optimal search strategy, nor are they as widespread in nature
as was once thought.

Keywords: animal movement; efficiency; heavy-tailed; power law; random search;
random walk
1. INTRODUCTION

A random walk is a stochastic process in which the
location X(t) of the random walker varies with time t
according to a defined set of probabilistic rules.
Random walks have been used for many years as a
model for animal movement (e.g. [1–5]). Codling
et al. [6] reviewed many of these models (but did not
consider Lévy walks (LWs)). Shlesinger et al. [7] were
among the first to introduce LWs as a class of random
walk in which the distance travelled between reorienta-
tion events (often referred to as the step length) is
drawn from a probability distribution that is heavy-
tailed, meaning that it does not have finite variance. The
most commonly used such distribution is the power-law
or Pareto distribution, in which the probability density
function of a step length l is given by

pðlÞ ¼ Cl�m for l [ ½lmin;1Þ; ð1:1Þ

where the exponent m satisfies 1, m � 3. Exponents
m �1 do not correspond to a well-defined probability
distribution, while exponents m . 3 correspond to
orrespondence (michael.plank@canterbury.ac.nz).
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distributions with finite variance, leading to a non-
LW. Once the two parameters m and lmin have been
determined, the normalization constant C is determined
by C ¼ (m 2 1)lmin

m21 (e.g. [8]).
In an LW, the time taken to complete a given step is

related to the length of that step [7]. In contrast, the
term Lévy flight (LF) refers to a process in which the
random walker jumps between successive locations
instantaneously (or at equally spaced time intervals),
with step lengths given by equation (1.1). LFs are some-
times used in cases where the distances between
successive reorientation locations are known, but the
corresponding times are unknown. However, it should
be noted that the terms LF and LW are often used
interchangeably in the foraging literature (following
Viswanathan et al. [9]).

Heavy-tailed distributions do not conform to the
conditions of the central limit theorem (which requires
finite variance) and, as a consequence, standard results
about the long-term limit of random walks (e.g. [10]) do
not apply for LWs. Instead, LWs are superdiffusive,
meaning that the long-term mean-squared displace-
ment of the walker is proportional to ta, where t is the
time from the start of the walk and a . 1 [6]. One
This journal is q 2011 The Royal Society
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Figure 1. Examples of random walks of total length 1000 with step lengths drawn from an exponential distribution, and from
power-law distributions with different exponents m but equal lmin. The walks with m � 3 are LWs. Notice the different scale
for each example. The number of steps needed for each walk (n) is given. The turning angles between steps are drawn from a
uniform distribution on [0,2p], meaning that there is no correlation between the directions of successive steps.
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advantage of LWs is that they allow for a continuous
transition from diffusive (Brownian) random walks
(m . 3), through superdiffusion (1, m � 3), to ballistic
(straight-line) motion, which occurs in the limit m! 1.
LW thus provides an important conceptual link
between these modes of movement. Another important
feature of LWs is that they are scale-free, meaning that
they do not have any characteristic spatial scale, and
exhibit the same patterns regardless of the range over
which they are viewed. Figure 1 shows simulations of
various two-dimensional random walks. Each walk
covers the same total distance of 1000 units (the final
step is truncated to ensure this). LWs with a low expo-
nent cover the required distance in a small number of
steps; a higher exponent gives a step-length distribution
with more shorter steps, resulting in a walk that stays
much closer to the starting point (note the different
scales in figure 1).

It should be mentioned that the processes discus-
sed here are highly simplified representations of real
foragers. The models assume that the forager is memory-
less, i.e. each step taken is independent of previous
movements and the forager has no knowledge of the
environment outside its immediate perceptive range.
While these assumptions are necessary to allow progress
(particularly analytical) in modelling, they are not
J. R. Soc. Interface (2011)
wholly realistic [11]. There is strong evidence that
foraging in many species involves complex behaviour
that violates these simple assumptions [12]. Further-
more, real foragers have to make complex trade-offs
involving a wide range of factors, such as risk of
predation, energy storage and expenditure, and intra-
specifc and interspecific competition. It should also be
remembered that evolutionary selection pressure does
not always have the effect of maximizing individual
mean fitness and risk sensitivity may be an important
factor [13]. The recent book by Stephens et al. [14]
gives an excellent review of observed behaviours and
their links to different types of models. The random
walk models that are the focus of this paper are
intended to conceptualize some of the general principles
underlying foragers’ decisions about where to search
for food, and are necessarily a huge simplification
of reality.

The subject of LW in foraging was initiated by
empirical papers that demonstrated the presence of a
heavy-tailed distribution in data describing the move-
ments of fruitflies [15] and wandering albatrosses [9].
These were complemented by a theoretical study of
the efficiency of a forager carrying out a random walk
search with a power-law distribution of step lengths in
an environment designed to model patchily distributed

http://rsif.royalsocietypublishing.org/
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Figure 2. Diagrams showing the initial conditions for the one-dimensional search model of Viswanathan et al. [16]: (a) destructive
foraging; (b) non-destructive foraging. x0 is the forager’s starting position for each search; l is the mean free path (half the
distance between targets); rv is the forager’s perceptive range.
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search targets [16,17]. Defining search efficiency as the
mean number of targets located per unit distance tra-
velled, Viswanathan et al. [16] showed that: (i) LWs
(1 , m � 3) are more efficient than non-Lévy walks
(m . 3) and (ii) the optimal Lévy exponent is approxi-
mately 2. Diffusive (i.e. Brownian) movement (m . 3)
involves much backtracking, which can be advantageous
in keeping the forager in a food patch, but can also entail
repeatedly searching empty space when not in a patch.
Ballistic movement (m! 1) avoids repeatedly searching
the same space, but is less suited to exploiting the patchy
nature of the food environment. The hypothesis of Vis-
wanathan et al. [16] was that an LW with m � 2
represents an optimal compromise between the Brow-
nian and the ballistic search modes.

The studies of Viswanathan et al. [9,16] sparked an
explosion of interest in LW and the twin streams of
empirical and theoretical research continued in sub-
sequent years. A large number of empirical papers
advanced evidence of LW in the observed movements
of a wide range of species, including reindeer [18],
spider monkeys [19], grey seals [20], fruitflies [21], bees
[22], moths [23] and marine predators [24,25]. Evidence
was also demonstrated of LW in the movements of fish-
ing trawlers [26] and human hunter–gatherers [27].
A number of theoretical papers generalized the LW
hypothesis, considering for example cases with moving
targets [28], targets that regenerate a certain period of
time after being located by the forager [29,30] and
cases where the perceptive capability of the forager
depends on the step length [31].

However, a re-analysis by Edwards et al. [32] of the orig-
inal albatross, bumble-bee anddeer studies ofViswanathan
et al. [9,16] demonstrated flaws in both the interpretation of
the data and the statistical methods used to analyse them.
One regression-based method was recommended over the
others [33], though maximum likelihood was then shown
to estimate m accurately [8,34] and avoid the bias of all
regression-based methods. Other problems were the lack
of proper testing of alternative hypotheses and of good-
ness-of-fit. A recent re-analysis of previously published
statistical studies overwhelmingly rejected the original
Lévy model for 16 of the 17 datasets tested [35], including
for some of the foragers mentioned above.

Further theoretical work showed that, even if an
animal is performing an LW, some of the more
common field techniques employed will not necessarily
give heavy-tailed data [36]; conversely, heavy-tailed
patterns in field data can arise from non-LWs [37]. It
was also shown that alternative search strategies can
outperform LW [36,38]. The conclusions of the theoreti-
cal work concerning moving prey [28] were shown to be
J. R. Soc. Interface (2011)
misleading [39]. Simulations involving LW were shown
to have hidden pitfalls and numerical inaccuracies
that can lead to biased results [40]. Together, these
developments have led to a greater appreciation of the
need to draw a distinction between pattern and process
[36,37], and a reconsideration of the conditions under
which an LW is the optimal search strategy [41,42].

In §2, we consider the theoretical work on random
searches in detail. We pay specific attention to the
assumptions underlying the conclusion that LWs are
an optimal strategy and we present new results showing
the effects of relaxing these assumptions. In §3, we
review the techniques available for analysing movement
data and consider what can and what cannot be inferred
from these about search mechanisms. In §4, we summar-
ize the theoretical and empirical findings and conclude
that, in contrast to what was once thought, LWs are
not the universal optimal search strategy.
2. THEORETICAL MODELS OF SEARCH
EFFICIENCY

2.1. Lévy walks as optimal search strategies

The results of Viswanathan et al. [16,17] concerning
optimal search strategies motivated much of the ensu-
ing work on LWs, so we first review their results in
detail. They proposed a simple, one-dimensional
model of an individual searching for food. In each
search, the individual starts at location x ¼ x0 on the
line and food items are situated at x ¼ 0 and x ¼ 2l
(the quantity l is referred to as the mean free path
and corresponds to the mean straight-line distance to
a target in a randomly chosen direction; figure 2). The
forager searches for food by picking a direction at
random (left or right with equal probability) and then
moving at a constant speed for a distance chosen from
the step-length distribution. If during this step the for-
ager moves within a distance rv of a food item then the
step is truncated and the forager moves directly to the
item (rv is termed the perceptive range). If the forager
does not find a food item during the step, it chooses
another step length and direction, independent of pre-
vious steps. The forager’s efficiency h is defined as the
reciprocal of the mean distance L travelled to find a
food item:

h ¼ 1
L
: ð2:1Þ

Two scenarios were considered: destructive foraging,
in which food items cannot be visited more than once;

http://rsif.royalsocietypublishing.org/
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and non-destructive foraging, in which food items can
be revisited an unlimited number of times. In the
destructive scenario, the forager’s initial position x0

is assumed to be equal to l. This represents the situ-
ation where, having located and consumed a food
item, the forager begins the next search positioned
equidistantly between two food items (figure 2a). In
order to maintain a constant target density, the food
items are always positioned the same 2l distance
apart. In the non-destructive scenario, x0 is assumed
to be equal to rv (which is assumed to be much smaller
than l). This represents the situation where, having
located a food item, the same item remains available
for future searches. So that the forager cannot
simply remain at the same food item indefinitely, it
is assumed that the forager must first move ( just) out-
side perceptive range of the food item (i.e. to x0 ¼ rv)
before beginning the next search (figure 2b). As it is
also assumed that it has no knowledge or memory of
anything outside its perceptive range, the forager
cannot remember the direction in which the food
item lies.

Viswanathan et al. [16] explored the class of strategies
where the step-length distribution is a power law defined
by equation (1.1). The advantage of this approach is
that strategies that were hitherto considered as being
of separate types could now be represented as opposite
ends of a continuum of strategies, characterized by the
power-law exponent m. As m! 1, the step-length distri-
bution becomes increasingly dominated by long steps
and the strategy becomes more and more similar to bal-
listic motion (figure 1). For values of m . 3, the step-
length distribution is not heavy-tailed and the random
walk is therefore not an LW. Although a power-law
walk with m . 3 is diffusive (rather than superdiffusive)
in the long-term limit, and is frequently referred to as a
Brownian walk (e.g. [17]), it is important to remember
that it is only one example of a non-LW and there are
a wide variety of walks that are diffusive and are not
based on a power law. Indeed, a power-law walk where
m is only just greater than 3 will still have some very
large step lengths, which means that the walk will
only appear diffusive over very large time scales. For
intermediate values of m between 1 and 3, the strategy
is an LW. As steps are truncated when a food item is
found, the distribution of actual distances travelled
has a finite upper bound and therefore has finite mean
and variance. Strictly, this is a truncated LW, but is
commonly referred to simply as an LW to distinguish
it from the case where the distribution of step lengths
defined by equation (1.1) is truncated, either by a
fixed upper bound or an exponential cut-off. To
be unambiguous, we shall refer to the strategy
where steps are truncated at food items as a target-
truncated LW.

It should be noted that the assumption of Viswa-
nathan et al. [16] that step lengths are independent
and identically distributed (IID) according to this par-
ticular class of distribution is a significant limitation. A
wide class of other potential strategies, such as strat-
egies involving some memory or intelligence and
intermittent (composite) strategies, are excluded. In
the rest of this section, it should be remembered that
J. R. Soc. Interface (2011)
the term ‘optimal strategy’ actually means ‘most effi-
cient strategy of those with IID step lengths drawn
from a power-law distribution’. Foragers that use
memory to find food will usually have a fitness advan-
tage over those that use only random searches (Lévy
or otherwise).

In the destructive case, Viswanathan et al. [16]
showed that the optimal strategy is to move ballistically
(m! 1). This is intuitively sensible as the forager
begins at a location equidistant between the two food
items, so there is never any advantage to a strategy
that involves backtracking. Any strategy with m . 1
involves backtracking, but the closer m is to 1, the
higher the probability of selecting a step length that is
long enough to reach the target.

In the non-destructive case, where the forager
begins each bout very close to one of the food items,
Viswanathan et al. [16] used analytical approximations
to show that choosing an exponent

mopt ¼ 2� ln
l

rv

� ��2

ð2:2Þ

is the optimal strategy. In cases where the ratio l/rv of
mean free path to perceptive range is large, the second
term in this expression for mopt is small (e.g. if l/rv ¼

100 then mopt ¼ 1.95). Hence, if l/rv is large but its
exact value is not known to the forager, the optimal
strategy is to use an exponent m � 2.

Under the assumptions made by Viswanathan et al.
[16] that each search begins with one of the targets on
the very edge of the forager’s perceptive range (i.e.
x0 ¼ rv) and with the second food item a large distance
away (x0� l), the advantage conferred by the expo-
nent m � 2 is highly significant. For example, with a
mean free path of l ¼ 104rv and x0 ¼ rv, a target-
truncated LW with m � 2 is approximately
eight times more efficient than either ballistic searching
(m! 1) or Brownian searching (m . 3). The relative
advantage of the Lévy strategy decreases as mean free
path decreases. Numerical simulations showed that an
equivalent two-dimensional model with randomly
placed food items, where every search starts very close
to a food item, gives a similar optimal exponent. How-
ever, the advantage conferred is smaller than in the
one-dimensional model: for similar parameter values,
the optimal strategy (m � 2) is approximately 30 per
cent more efficient than the ballistic motion and only
13 per cent more efficient than Brownian motion [16].
In all the above theory and simulations, the minimum
step length of the forager lmin is equal to the forager’s
perceptive range rv, but changing this has very little
effect on the results.

The key feature of the non-destructive scenario is
that every search starts close to a food item in one
direction. This property can be interpreted as genuine
non-destructive foraging, where a food item still exists
after the forager has eaten (but the forager has moved
just outside the perceptive range of the food and
cannot remember the direction in which it lies). Alter-
natively, the non-destructive model can be interpreted
as a proxy for a sparse (because rv� l) and patchy
(because x0� l) food distribution [16,43]. Finding

http://rsif.royalsocietypublishing.org/
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for the optimal strategy (m ¼ mopt) to that of a ballistic strategy. For each combination of m and x0, n ¼ 5 � 105 simulations were
performed and the efficiency recorded. For each value of x0, the optimal exponent was taken to be the value of m with the highest
mean efficiency. The starting position x0 is given as a fraction of the mean free path l; perceptive range rv ¼ 0.001l. The results of
Viswanathan et al. [16] are restricted to the single case x0/rv ¼ 0.001, indicated by the vertical dashed line, for which mopt � 1.93.
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one food item implies that there are others nearby and
hence each search always begins near to a food item. If
the forager chooses the wrong direction, it will have to
travel a long distance to the next food item, so some
backtracking is beneficial. Note that this scenario
ignores any memory on the part of the animal.

The effect of relaxing the assumption that each
search begins just outside the perceptive range of a
food item (x0 ¼ rv� l) has not yet been systematically
explored. We now present new results showing that the
starting position x0 is in fact a very important par-
ameter. Figure 3 shows the effect of changing x0 in
the model of Viswanathan et al. [16] on both the opti-
mal exponent and the optimal efficiency relative to
the efficiency of ballistic movement. Here, the mean
free path is l ¼ 103rv (increasing this gives a small
increase in the relative efficiency of the optimal strat-
egy); the starting position x0 is given as a fraction of
the mean free path l. As the starting position moves
further from the target at x ¼ 0, the optimal strategy
becomes closer to the ballistic limit and the efficiency
gained by following the optimal strategy relative to a
ballistic strategy decreases. For example, if the starting
position is 10 per cent of the distance between the two
food items (x0 ¼ 0.1l ¼ 100rv), then the optimal expo-
nent is approximately 1.2 and this Lévy search
strategy is less than 5 per cent more efficient than a
ballistic search.

In a similar way to that in which LW provides a con-
tinuum between Brownian and ballistic search modes,
the parameter x0 provides a continuum between the
destructive and non-destructive extremes. In the
destructive case (x0 ¼ l), ballistic movement (m! 1)
is optimal; in the non-destructive limiting case of
x0 ! 0, a target-truncated LW with m ¼ 2 is optimal;
intermediate values of x0 lead to intermediate values
of mopt. As one possible interpretation of the non-
destructive case is that of patchily distributed targets,
increasing x0 can be thought of as a proxy for
decreasing the patchiness of the distribution of targets.
J. R. Soc. Interface (2011)
To conclude, the one-dimensional model of
Viswanathan et al. [16] provides a useful method
of moving between Brownian and ballistic search modes,
by varying the exponent m of the power-law walk, and
also for moving continuously between destructive
and non-destructive foraging, by varying the initial
starting point x0. Provided one stays very close to the
non-destructive case, there is an optimal search strategy
close to m¼ 2. However, the optimal exponent is very
sensitive to changes in x0, moving closer to the ballistic
limit of m ¼ 1 as x0 increases. Furthermore, when the
model is increased to higher dimensions, the improvement
in efficiency at the optimal exponent is far smaller.
2.2. Extensions to the basic search model

Further work generalized the conditions under which
an LW with m � 2 is the optimal search strategy,
though always with the assumption that the forager
starts close to a target. It was shown that neither the
inclusion of energy considerations that constrained the
allowed exponent values [44], nor the addition of an
absorbing boundary [45,46] alters the optimal exponent
of m � 2. Raposo et al. [29] and Santos et al. [30]
explored the concept of regenerating targets: food
items become temporarily unavailable for a fixed time
t after being located by the forager. As t approaches 0,
the optimal exponent approaches its non-destructive
limit of approximately 2. As t approaches infinity, the
destructive limit is recovered and the optimal exponent
is therefore 1 (ballistic motion). In fact, as t increases
from 0, the optimal exponent decreases and eventually
reaches 1 for a finite value of t. In the one-dimensional
model, this occurs for a delay time of approximately
14 per cent of the typical search time (t ¼ e22l/v,
where v is the speed of movement); however, in two
dimensions, delay times of less than 1 per cent of the
typical search time mean that ballistic motion is
optimal [29]. As with the starting position x0, the
delay time provides a continuum between the
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destructive and the non-destructive scenarios. The
respective optimal exponents are recovered in these lim-
iting cases, but a relatively small departure from the
non-destructive limit (a short delay time for target
regeneration) means that LWs are no longer
advantageous.

In Santos et al. [47], the two-dimensional scenario
was restricted to a lattice, allowing some analytical
results (not usually possible in more than one dimen-
sion). In this case, m � 2 is only optimal for very low
target densities; at higher food densities a ballistic
search is the optimal strategy. Santos et al. [48] and
Raposo et al. [49] showed that the presence of defects
in the lattice further decreases the advantage of any
given strategy over others. Bartumeus et al. [50] com-
pared the efficiency of LWs with correlated random
walks (CRWs)—random walks with a non-heavy-tailed
step-length distribution and with some correlation in
the directions of successive steps, termed directional
persistence [51]. They considered the non-destructive
scenario, i.e. where every search starts close to the
target, and found that m � 2 is the optimal Lévy
exponent and that this Lévy strategy outperforms
CRW with varying degrees of directional persistence.

Reynolds [52] developed a model for central-place
foragers, with a search strategy based on moving in a
series of loops from the origin. This is an appropriate
model for foragers, e.g. desert ants and honeybees,
that know that there is a target in the vicinity of a cer-
tain point, as opposed to the freely roaming model of
Viswanathan et al. [16], which assumes no prior knowl-
edge. The random looping strategy assumes that the
forager does not have sufficiently accurate navigation
mechanisms to execute a deterministic, systematic
search of the relevant area reliably. It was shown that,
assuming a power-law distribution of loop lengths trun-
cated at a fixed upper limit lc, the optimal exponent is
m � 2, provided the maximum loop length lc is large
relative to the typical distance of the target from the
origin. The optimal exponent decreases towards 1 as
the target is moved further from the origin (i.e. as the
forager’s knowledge of the target location becomes less
precise). Again the key feature of the model is that
there exists a target very close to the forager’s central
place; as in figure 3, relaxation of this assumption
shifts the optimal strategy towards ballistic motion.

Reynolds & Bartumeus [53] showed that if the
destructive search model of Viswanathan et al. [16]
is extended to account for the gradual depletion of
targets, a target-truncated LW with 1 , m � 2 outper-
forms ballistic motion. This result relies on the
assumption that the forager cannot remember its direc-
tion of movement from one search to the next,
otherwise ballistic motion is again optimal. The benefit
of an LW is due, in large part, to the restriction to one
dimension: initially the targets are equally spaced along
a line; after a period of time, an interval of the line will
become devoid of targets and the forager will be situ-
ated relatively close to one end of the empty interval.
The situation thus gradually grows to resemble the
non-destructive scenario in which target-truncated
LW outperforms ballistic motion. In higher dimensions,
LWs are less efficient than ballistic motion, though
J. R. Soc. Interface (2011)
only marginally so for small exponents (m , 1.5) and
at low target density. However, an LW is slightly
more efficient if targets are not always captured when
detected, so steps are frequently truncated and new
searches commenced in close proximity to an available
target [53]. Again, the probability of capture pc can
be thought of as providing a continuum between the
destructive (pc ¼ 1) case where ballistic motion is opti-
mal and the non-destructive (pc! 0) case where a
target-truncated LW with m � 2 is optimal.

James et al. [40] showed that, for a non-destructive
forager with no knowledge of or ability to react to its
environment, the search efficiency is completely inde-
pendent of both the distribution of food items (for a
given food density) and the search strategy. The
model of Sims et al. [24] falls into this category and
numerical simulations confirm that, provided a suffi-
ciently long timeframe is considered, the mean search
efficiency is always the same (figure 4), regardless of
the step-length distribution or the prey distribution
(see appendix A for details). Hence, in contrast to the
findings of Sims et al. [24], neither an LW search strat-
egy, nor a power-law distribution of prey confers any
increase in search efficiency.

The model of Viswanathan et al. [16] and subsequent
models based on similar principles do not fall into the
category considered by James et al. [40] because, in a
non-destructive search, truncating steps when food
items are detected ensures that every search starts
very close to a target. An efficient strategy will exploit
this knowledge.

To summarize, a number of models have been devel-
oped wherein the forager starts every search very close
to a target. These models can represent either revisita-
ble (non-destructive foraging) or patchily distributed
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targets. In this class of model, the most efficient strat-
egy, of those with purely a power-law step-length
distribution, is a target-truncated LW with an exponent
between 1 and 2 [16]. The closer the situation to the
sparse, non-destructive limit, the closer the optimal
exponent to 2. This theory applies only to a forager
with restricted perceptive capabilities and with no
memory or prior knowledge of the environment, a set
of conditions that is likely to be rare in real foragers.
For destructive foraging, ballistic motion tends to be
the optimal strategy. Between the non-destructive and
destructive limits, there is a continuum of cases,
which can be characterized by any one of several
model parameters, such as target regeneration time
[29], target patchiness and probability of target detec-
tion [53]. Importantly, relatively small deviations from
the idealized non-destructive scenario owing to factors
such as these rapidly attenuate, or even completely
remove, the advantage of the LW strategy.
2.3. Searching for moving targets

Another strand of theoretical work considers the case of
moving targets. Bartumeus et al. [28] and Viswanathan
et al. [54] used a periodic, one-dimensional model, where
the predator and the food item (in this case a mobile
prey) move on a domain equivalent to the perimeter
of a circle. Predator and prey each follow a movement
strategywith step lengths chosen fromapower-lawdistri-
bution, with a random direction for each step and with
constant speed. Two power-law movement strategies
were considered: m ¼ 2, referred to by Bartumeus et al.
[28] as the Lévy strategy; and m ¼ 3, referred to as the
Brownian strategy (although it should be noted that
m ¼ 3 actually corresponds to an LW as the step-length
distribution has infinite variance for this value of m).
Each simulation begins with the predator and the prey
placed randomly on the circle, i.e. there is no assumption
that the prey is initially close to the predator (foraging is
destructive). Simulations were used to calculate the
predator’s search efficiency, defined by equation (2.1),
for different relative velocities and perceptive ranges of
predator and prey. In almost every case, the ‘Lévy’ pred-
ator outperforms the ‘Brownian’ predator. In the most
advantageous case of a large, fast-moving predator
searching for a small, slow-moving prey, the Lévy preda-
tor is almost four times more efficient than the Brownian
one. In the worst-case scenario (small, slow predator and
large, fast prey), the Lévy and Brownian predators have
the same efficiency.

The work of Bartumeus et al. [28] was extended
by James et al. [39] to compare the whole range
of power-law exponents, as originally considered by
Viswanathan et al. [16], rather than just the special
cases of m ¼ 2 and m ¼ 3. It was found that, regardless
of the prey movement strategy, the most efficient pred-
ator strategy is ballistic motion (m! 1). In almost
every scenario (fast/slow, large/small prey), both strat-
egies considered by Bartumeus et al. [28] are either
equalled or outperformed by the ballistic strategy.
The only exception to this is the case where both pred-
ator and prey follow a ballistic strategy with the same
speed. In this case the periodic nature of the model
J. R. Soc. Interface (2011)
means that, if they both choose the same movement
direction, they will simply move around the circle inde-
finitely without ever meeting. This is clearly an
unrealistic, degenerate case, and when this scenario is
converted to the more realistic, non-periodic model
that it is designed to represent, the ballistic strategy
once again outperforms all other strategies [39]. These
results are consistent with those of Bartumeus et al.
[43], who also carried out simulations in two and
three dimensions and generalized to an environment
with many targets moving independently.
2.4. Composite and intermittent strategies

One of the most useful features of a random walk with
power-law-distributed step lengths is that variation of
the exponent m allows a continuous change between
different types of walk as described above. However,
despite this range of walks that can be described by
a power-law distribution, there are many types of
search strategy that cannot. Intermittent behaviour,
where the forager’s movements consist of a mixture of
strategies, has been frequently observed in animal
movement paths [55–59]. Composite random walks,
where the forager has two or more different modes of
movement, have been suggested as a model of this be-
haviour. Benhamou [38] carried out simulations of a
composite random walk model in the same one-dimen-
sional scenario as Viswanathan et al. [16]. Again the
forager always starts close to a food item but, instead
of taking step lengths from a power-law distribution,
the forager first undertakes a local intensive search con-
sisting of short steps. If it has not located a food item
after some time t (called the giving-up time), it
switches to an extensive ballistic search, i.e. the preda-
tor chooses a direction at random and moves in a
straight line until the next food item is found. Plank
& James [36] used stochastic differential equations to
gain analytical results for a similar model. Both sets
of results show that if the correct giving-up time is
chosen, this simple composite strategy can outperform
a target-truncated LW.

Reynolds [41] subsequently noted that the composite
Brownian/ballistic strategy of Benhamou [38] could be
interpreted as a special case of a composite LW (or
adaptive LW in the terminology of Reynolds [41]),
with the exponent m switching between 3 and 1.
Reynolds [60] considered a more general adaptive LW,
in which the extensive phase exponent m is not fixed
at 1 (ballistic motion) but can take any value. It was
shown that the optimal extensive phase exponent in
general lies between 1 and 2 and moves closer to 2 as
the target density decreases. This is under the assump-
tion of a fixed giving-up time (Plank & James [36]
optimized over all giving-up times) and that the forager
begins each bout close to one food item (x0� l).
Increasing x0 will shift the optimal exponent towards
the limiting ballistic value of 1 (as in figure 3).

Bartumeus et al. [50] and Bartumeus & Levin [61]
considered a ‘Lévy modulated’ CRW, where random
reorientations, which break the short-term directional
persistence of the CRW, occur after periods of time
drawn from a power-law distribution. A classical
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CRW is recovered in the limit m! 1 and it was shown
that, for non-destructive foraging where every search
starts close to a target, the efficiency is increased by
choosing a reorientation exponent of m � 2.

The concept of a dual-mode searching regime was
also considered by Bénichou et al. [62]. A composite
(or intermittent in the terminology of [62]) model was
proposed wherein the searcher switches between an
intensive (searching) phase, consisting of Brownian
motion, and an extensive (relocation) phase, in which
the forager is incapable of detecting the target. The
duration of each phase is assumed to be exponentially
distributed. The model corresponds most closely to
the destructive foraging regime, as the initial location
of the forager is uniformly distributed throughout the
domain. Bénichou et al. [62] showed that if the targets
are sparse and can only be detected during the
Brownian search phases, the optimal strategy is an
intermittent Brownian/ballistic search, with a power-
law relationship between the times spent in the two
phases. Bénichou et al. [63] extended the model to
two dimensions and showed that the intermittent strat-
egy is more efficient than a simple, target-truncated
LW. Thus, although the extensive phase relocations
are wasteful in the short term as the target cannot be
detected, they improve long-term search efficiency by
reducing the oversampling associated with Brownian
motion. This result was further generalized by Lomholt
et al. [64] to show that the efficiency of the intermittent
search can be increased if the extensive phase duration
(i.e. relocation step length) is chosen from a power-law
distribution, rather than an exponential distribution.
The optimal exponent for the relocation step length
decreases from 3 towards 2 as the target density
decreases. The efficiency of this Brownian/Lévy inter-
mittent strategy is also less sensitive to changes in
target density than the Brownian/ballistic strategy.
It should be noted that following either a Brownian/
ballistic or a Brownian/Lévy intermittent strategy is
only advantageous under the assumption that the fora-
ger is completely incapable of detecting targets in the
relocation phases, and can only detect them during
periods of Brownian motion. Bénichou et al. [65]
showed that, if the targets are readily detectable in
any movement phase, the optimal strategy is simply
ballistic motion, in agreement with the original destruc-
tive foraging results of Viswanathan et al. [16].

Reynolds [31] proposed a model of intermittency in
which the forager follows the original target-truncated
LW strategy of Viswanathan et al. [16], but is incapable
of detecting a food item during any step whose length l
is greater than some threshold l0. In this case, the opti-
mal strategy is a target-truncated LW with m � 2 in
both the destructive and non-destructive cases. The
scaling between the durations of intensive (l , l0) and
extensive (l . l0) is consistent with that found by Béni-
chou et al. [62].

In summary, the original model of Viswanathan et al.
[16] showed that the optimal strategy for destructive
foraging in a non-patchy environment (i.e. where each
search does not necessarily begin close to a food item)
is ballistic motion. This finding rests on the assumption
that this type of motion does not degrade the forager’s
J. R. Soc. Interface (2011)
perceptive ability. If there is a loss of perceptive ability
associated with long, straight movements, intermittent
strategieswithBrownian searching interspersedwithLévy
relocation steps (with exponent m between 1 and 2)
become advantageous.
3. OBSERVATIONS OF FORAGING
MOVEMENTS

3.1. Fitting power-law distributions to data

There is a large body of empirical research that has pur-
portedly found evidence of LW in movement data (see
§1 for examples). Such evidence originally arose from
comparing straight lines with data plotted on log–log
axes [9,16]. Viswanathan et al. [9] plotted their data
using the geometric midpoints of bins whose widths
progressively doubled in size, and drew a line corre-
sponding to a power-law distribution with m ¼ 2. This
line appeared to give a good fit to the data (though a
linear regression actually gives m ¼1.89 + 0.07 (s.e.)).
They also used other techniques to reveal long-range
correlations in the data.

The realization that data of Viswanathan et al. [9]
had been misinterpreted led to the original conclusions
being overturned by Edwards et al. [32]. However, a
wider issue is the demonstration of problems with the
statistical techniques, many of which were subsequently
adopted byother researchers. For instance, Viswanathan
et al. [16] used bins of equal width on a linear scale (rather
than logarithmic, as for [9]). Sims et al. [33] showed that
this method leads to inaccurate estimates of m, and
recommended the method of Viswanathan et al. [9] that
involved the doubling of bin widths. White et al. [34]
and Edwards [8] then showed that this regression-based
method gives biased estimates of m. Moreover, when
applied to a dataset on grey seal movement, this
method estimated m ¼ 0.8 (see fig. 4c of Sims et al.
[33]). However, exponents of m � 1, by definition, do
not correspond to a properly defined probability
distribution.

A further problem with regression-based methods
is that they adjust two parameters—the slope and the
intercept of the line on log–log axes—to obtain
the best fit to the data. The slope is used to estimate
the exponent m of the power-law distribution and,
because of the requirement that the total area under
the fitted distribution must be 1, the intercept then
implicitly determines the value of lmin (see equation (1.1)).
However, there is no guarantee that this value of lmin will
be consistent with the data: some or even all of the data
points may actually be smaller than lmin (see appendix B
for details and an example where the fitted lmin is more
than double the largest data point). These problems
with regression-based methods do not seem to have been
previously acknowledged. The problems clearly demon-
strate that these methods are inherently flawed because
they can give results that are inconsistent with the
power-law hypothesis that they purport to be testing.

White et al. [34] and Edwards [8] instead advocated
use of the maximum-likelihood method [66], which was
shown to provide an accurate estimate of m (this realiz-
ation concerning power laws has previously occurred in
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other fields—see references in White et al. [34]). Fur-
thermore, as the maximum-likelihood method is
fundamentally based on the distribution for which it
is being used to estimate parameters, it is neither poss-
ible to inadvertently fit values of lmin that are
incompatible with the data, nor to get values of m � 1.

It is possible to use statistical techniques to fit a
power-law distribution to any dataset; this does not
mean that the power-law distribution is a suitable
description of the data. Thus, Edwards et al. [32] used
the Akaike information criterion (e.g. [67]) to compare
the weight of evidence for alternative competing
models, including both bounded and unbounded power
laws, and used goodness-of-fit tests to test whether the
best model was indeed suitable for the data. Elliott
et al. [68] used this approach to show that there is no evi-
dence for a power-law search pattern in Arctic seabirds.
Edwards [35] applied this approach to 17 datasets for
which unbounded power laws were previously concluded
and found that such power laws were not supported by
the data (and were overwhelmingly rejected for 16 of
the datasets). Edwards [35] also tested the bounded
power-law distribution, and found it to be consistent
with the data for only one of 17 datasets. This calls
into question much of the empirical evidence for LW
and LF.
3.2. Heavy-tailed characteristics of non-Lévy
walks

It is becoming increasingly recognized that certain key
properties of non-LWs can have distributions that are
heavy-tailed. It is well known that the first passage
times tf of a one-dimensional Brownian walk with a
single absorbing barrier have an inverse Gaussian distri-
bution with a power-law tail tf

2a with exponent a ¼ 3/2
(e.g. [69], §13.4). The first passage time is equivalent
to the search time (total time taken to locate a food
item) in the model of Viswanathan et al. [16] with
only one food item at x ¼ 0 (i.e. no second food item
at x ¼ 2l). More recently, Reynolds [70] showed ana-
lytically that in a one-dimensional, continuous-time
CRW, the distances between changes in direction (i.e.
the step lengths) have a (truncated) power-law tail
with exponent 4/3. It should be noted that these prop-
erties do not necessarily extend to higher dimensions.

Reynolds [41] considered a population in which each
individual follows a Brownian random walk with mean
step length 1/l, and where the parameter l varies
across the population with some probability density
function f(l). If f(l) � lv as l! 0, then the distri-
bution of step lengths over the whole population has a
power-law tail: p(l ) � l2(2þv) for large l. The same
result applies in the long term if the heterogeneity
arises from a single individual switching between
different values of l according to the distribution f(l)
[41]. Although the condition that f(l) � lv as l! 0
encompasses a range of distributions, including the
exponential and gamma distributions, it is important
to realize that it is equivalent to assuming that the dis-
tribution of mean step lengths (1/l) has a power-law
tail with exponent 2 þ v. It is not surprising that this
assumption leads to an overall distribution of step
J. R. Soc. Interface (2011)
lengths that also has a power-law tail, though it does
offer an alternative explanation for the observation of
heavy-tailed distributions. Petrovskii & Morozov [71],
Hapca et al. [72] and Gurarie et al. [73] obtained similar
results showing that the positional distribution of a het-
erogeneous, diffusive population can be heavy-tailed,
using both theoretical arguments and empirical data.
3.3. Observed distributions

While the theoretical models all define a Lévy movement
strategy as one where the distances between changes in
direction are drawn from a power-law distribution,
these distances are difficult to observe in practicewithout
continuous positional data. The published datasets
usually relate to more readily observable quantities, for
example the assumed times between finding food items
[9,58,68], referred to as search times, or the location of
the forager at given time intervals [18–20,74].

In the case where the forager always moves with con-
stant speed, search time is effectively equivalent to the
total distance travelled before locating a food item. It
should be noted that this total distance is not a step
length but the sum of several step lengths (with the
last step truncated by prey detection). Therefore,
the distribution of total distances (or search times) is
a priori unrelated to the step-length distribution of
the underlying random walk.

As observed in §3.2, search times for one-dimensional
searches with a single target have a power-law tail
with exponent a ¼ 3/2. We now present new results
analysing the search time data from simulations of the
non-destructive model of Viswanathan et al. [16] with
two targets, separated by distance 2l (see §2.1 and
figure 2). We assume that the forager always moves
with constant speed 1, so that the search time is equiv-
alent to the total distance travelled. The forager is
assumed to move with a power-law distribution of
step lengths with exponent mwalk and to have perceptive
range rv ¼ 0.001l, starting position x0 ¼ rv and mini-
mum step length lmin ¼ rv. For each simulation, the
search time was recorded; each simulation was repeated
104 times. A power-law distribution (with minimum
value lmin) was fitted to the sample of 104 search
times and the best-fit exponent a was calculated using
maximum likelihood [32,66]. This process was repeated
for a range of values of mwalk. In all cases tested, includ-
ing the non-Lévy case (mwalk . 3), a power law provides
a better fit (higher likelihood) to the search time data
than an exponential distribution. The best-fit exponent
a for the search times is shown in figure 5 for a range of
random walk exponents mwalk. This shows that if a for-
ager’s step lengths are chosen from a power-law
distribution, the resulting search time data have an
exponent of approximately 3/2, which can be signifi-
cantly smaller than the underlying random walk
exponent. Even in cases where the forager’s step-
length distribution is not heavy-tailed (mwalk . 3), the
search time data (or equivalently the distance travelled
to find a food item) are heavy-tailed (a � 3), despite the
fact that the forager is not moving according to an LW.

The results shown in figure 5 highlight the fact that a
heavy-tailed distribution of search times can arise from
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Figure 5. The best-fit search time exponent a for the observed
distribution of search times against the forager’s move length
exponent mwalk, simulated according to the non-destructive
model of Viswanathan et al. [16]. Parameter values: rv ¼

x0 ¼ lmin ¼ 0.001l, where 2l is the distance between food
items. About 104 simulations were carried out for each value
of mwalk. The dashed line indicates a ¼ mwalk for comparison.
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a non-LW. Therefore, the observation of heavy tails in
search time data (or equivalently, under the assumption
of constant speed, search distances) should not be used
to infer that the forager is undergoing an LW. It should
be noted that these results are for a one-dimensional
search. Although mean search efficiency has been
calculated for an equivalent two-dimensional model
[16], the distributional properties of search times for a
two-dimensional search have not yet been well charac-
terized. Search times in two dimensions may not be
heavy-tailed either for LWs or non-LWs (this is partly
a consequence of the fact that any random search strat-
egy is much less likely to find the food item that is initially
nearby in two dimensions than in one). Hence, empirical
data on search times in two dimensions (e.g. [68]) cannot
currently be used to distinguish between Lévy and non-
Lévy models.

Reynolds [41] claimed that LWs are robust to sub-
sampling, in the sense that the distances between the
locations of a Lévy walker at discrete time intervals (e.g.
[75]) have a distribution that is approximately linear on
log–log axes. However, no comparison was made with
an alternative distribution (and see §3.1 for problems
with regression-based methods on log–log axes). Plank
& Codling [37] showed that a power-law distribution
gives a better fit (higher maximum likelihood) than an
exponential distribution to the sub-sampled data if the
underlying LW has an exponent mwalk , 2, but that an
exponential distribution gives a better fit if mwalk . 2.
Plank & Codling [37] also showed that a power law can,
depending on the sampling rate, give a better fit than an
exponential distribution to data from a composite CRW
(i.e. aCRWcomprising twodistinct phases ofmovement),
if there is sufficient heterogeneity between the two behav-
ioural modes. As shown by Viswanathan et al. [76], it is
necessary to observe a movement path for a sufficient
period of time, much longer than the inherent persistence
time of the random walk, to be able to distinguish a genu-
inely superdiffusive pattern from a movement that is
ultimately Brownian.
J. R. Soc. Interface (2011)
Some empirical studies have used positional data to
designate reorientation events as points where the direc-
tion of motion changes by more than some specified
threshold angle [21,22,77]. The distances between
successive reorientation events can then be fitted to a
power law and other candidate distributions. Codling &
Plank [78] showed that the best-fit distribution can be
sensitive to the choice of threshold angle. These findings
underline the need for absolute goodness-of-fit tests, as
well as a comparison of the relative fit of candidate
models [8]. It is quite possible for all candidate distri-
butions to have a poor fit, in which case alternative
models are needed before any meaningful conclusion
can be drawn.
3.4. Simulation studies

There has been a substantial amount of work done ana-
lysing the move length distributions resulting from
model simulations in which foragers follow simple
rules. These studies show that biologically motivated
movement mechanisms can produce heavy-tailed obser-
vations. For example, Reynolds [79] considered a model
of olfactory-driven foraging in bumble-bees. Reynolds
[80] explored a model of individuals that avoid odour
trails left by conspecifics (termed a self-avoiding
walk), as occurs, for example, in carabid beetles [81].
Reynolds [82] modelled a forager using chemotaxis
(movement up a gradient of concentration of some
chemical produced by search targets) to search for
food. Reynolds [83] modelled bumble-bees foraging
destructively on a two-dimensional lattice. In both the
empirical and simulation studies by Reynolds et al.
linear regression on log–log data was used to find the
best-fit values for quantities such as the exponent m of
the observed move length distribution, the fractal
dimension D of the movement path and the exponent
a of the scaling of the root mean square fluctuation
with time. Brownian motion would give m . 3, D � 2
and a � 0.5, whereas Reynolds finds values of 1 ,

m � 3, 1 , D , 2 and 0.5 , a , 1, indicative of scale-
free characteristics in the observed data [84]. Reynolds
[85] showed that these characteristics are a necessary
but not sufficient condition for the presence of an LW,
as other types of fractal movement strategy (e.g. frac-
tional Brownian motion [86]) will lead to values in
these ranges (although these are less efficient than an
LW in the model of Viswanathan et al. [16]). Codling &
Plank [78] further showed that a non-fractal strategy
(a composite CRW or a heterogeneous population of
individuals following a CRW) can give rise to statistics
in the scale-free ranges, depending on the rate at which
the forager’s location is sampled, and the threshold
angle used to designate reorientation events.

The implication of simulation studies such as these is
that there is a wide range of search strategies not based
on LW that can give rise to heavy-tailed observational
data. These issues highlight the fact that there can be
a major discrepancy between the pattern that is
obtained by observation of a forager’s movements and
the underlying process (such as a Brownian walk,
LW or other set of movement rules) governing the be-
haviour of the forager. The observed pattern is the
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result of applying imperfect sampling methods to the
actual movement path, which itself arises from the
interaction of the underlying process with the environ-
ment (in particular, the spatial distribution of food
items). Any of these three factors (underlying process,
distribution of food, sampling methods) can contribute
to heavy-tailed distributions in the observational data
[37,41,42]. More sophisticated state-space models are
emerging that attempt to identify switching between
different behavioural modes, such as transiting and
foraging [57,59]. Identifying distinct behavioural
modes in this way offers a possible route to understand-
ing the cues that foragers use to switch between them.
This is potentially more informative than simply fitting
a single probability distribution to the entire dataset.
4. DISCUSSION

One of the key questions in the field of optimal foraging
is: ‘under what circumstances is it advantageous for a
forager to follow a movement strategy based on an
LW?’ Crucially, the answer to this question depends
on what alternative strategies are realistically available
to the forager. Theoretical models typically assume that
the forager has no memory of anything prior to its most
recent detection of a food item, and that its choice of
strategy therefore corresponds to choosing a probability
distribution for its move lengths. These steps are trun-
cated whenever the forager detects a food item; a new
move length is then drawn from the distribution and a
new direction is chosen at random. Under this assump-
tion, a (target-truncated) LW is the optimal strategy
when searching for targets that are not destroyed on
consumption, but remain available as future targets
and are just outside the forager’s perceptive range at
the beginning of the subsequent search. This scenario
can be thought of as a proxy for destructive foraging
in a sparse, patchy environment, with the key assump-
tion being that each new search begins with a target
just outside the perceptive range. It is worth stressing
that in the two-dimensional version of the original
model of Viswanathan et al. [16], the LW strategy is
only 13 per cent more efficient (in terms of the
mean distance travelled to find a food item) than
the Brownian motion.

The new results presented in this paper show that
relatively small deviations from the idealized model of
Viswanathan et al. [16] can destroy the m ¼ 2 LW opti-
mum, and greatly reduce the advantage of LW search
strategies in general. For example, if there is a small
increase in the initial distance between forager and
target (figure 3), or a short period of time following
detection for which a target is available for future
searches [29], the optimal Lévy exponent decreases
from m ¼ 2 towards the ballistic limit of m ¼ 1. Further-
more, the efficiency of an LW relative to that of a
ballistic search is greatly reduced. Therefore, the theor-
etical optimum of a m ¼ 2 LW is not as robust as is
widely thought.

If the restriction on the forager’s memory is removed,
allowing even a modest level of cognitive ability, a wide
range of strategies becomes available. For instance, the
J. R. Soc. Interface (2011)
forager can modify its behaviour depending on the
amount of time since the last food item was detected
[36,38,60] or maintain some directional persistence from
one step to the next [37,50,61,87], a strategy that may
help the forager to move into the centre of a patch or
to avoid excessive backtracking. Such strategies have
more of a mechanistic basis in the behavioural biology
of the forager than a pure LW. It is also clear from the
wider literature that real foragers exhibit behaviours
driven by a range of motivations [14], many of which
are exceedingly difficult to include in such simplified
models as those discussed here. For example, bees
have been observed to exhibit highly complex memory
and associative learning characteristics [88] and it is
thought that hummingbirds and hummingbird flowers
have co-adapted to allow for more efficient nectar
harvesting [89].

It is becoming increasingly apparent that a wide
range of movement strategies not based on an LW can
lead to the observation of heavy-tailed patterns.
These include an apparent power-law distribution of
observed move lengths, superdiffusive movement,
long-term correlations in the reorientation data and
fractal movement paths. These scale-free characteristics
can be generated via the interaction of the forager’s
behaviour with the distribution of food in the environ-
ment [38], via the sampling methods used to observe
the movement [78] or via demographic or temporal het-
erogeneity in individual movement strategies [41,71].
As noted by Benhamou [42], the fact that a heavy-
tailed, heterogeneous population of Brownian walkers
(or an individual switching between different Brownian
strategies) can produce heavy-tailed observations is
quite different from saying that animals have evolved
to spontaneously perform LW as an optimal search strat-
egy. While it is certainly valuable to recognize that scale-
free patterns can arise from a wide variety of natural
mechanisms, it is essential to remember that observing
such patterns does not imply that the forager is ‘doing
an LW’. In the absence of additional information, little
more can be inferred from the observation of scale-free
characteristics than that the forager is not undergoing
pure Brownian motion, nor is it moving in an environ-
ment in which food items are uniformly (rather than
patchily) distributed and revisitable. Furthermore,
many inferences of LWs from data have not held up to
closer scrutiny. In light of this, the hypothesis that fora-
gers have evolved to follow an optimal LW strategy (e.g.
[24,25,90]) has little supporting evidence in the way of
observational data.

We would like to thank Simon Benhamou, Richard Brown,
Edward Codling and Jonathan Pitchford for helpful discussions.
We also thank three anonymous referees for their very
thoughtful and knowledgable comments that have helped to
improve this work.
APPENDIX A. NUMERICAL SIMULATIONS

We constructed a two-dimensional simulation based on
the model described in electronic supplementary
methods and results 3 of Sims et al. [24]. This model
is analytically intractable because of its complexity. It
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Table 1. Movement data (n ¼ 96) for a grey seal obtained
directly from the frequency chart in fig. 3 of Austin et al.
[20]. See also Edwards [8]. Linear regression on log–log axes
gives ln p(l) ¼21.26 ln l 2 0.474.

movement length l (km) frequency relative frequency

2 15 0.156
3 12 0.125
4 11 0.114
5 12 0.125
6 5 0.052
7 9 0.094
8 12 0.125
9 4 0.042

10 3 0.031
11 7 0.073
12 1 0.010
13 2 0.021
14 2 0.021
15 1 0.010
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contains features present in the work of Viswanathan
et al. [16], for example a patchy environment and a
Lévy search strategy, but the forager does not truncate
its steps when a food item is found. Sims et al. [24]
found a significant increase in the forager’s efficiency
(measured as total amount of biomass found in a simu-
lation run) when the forager performed an LW rather
than a non-Lévy random walk. It was also found that
a forager in a patchy environment outperforms a forager
in anon-patchyenvironment (where the food is distributed
uniformly).

We carried out the simulations on a two-dimensional
grid consisting of 5000 cells horizontally by 2500 cells
vertically. Each cell contains an amount of prey bio-
mass. The forager starts at the top-left corner of the
grid (0,0) and at each step moves in a straight line to
a point that is one grid cell to the right and n grid
cells down, where n is drawn from a specified distri-
bution. In each simulation, the forager takes 5000
such steps (i.e. eventually traverses the width of the
landscape). If a step takes the forager beyond the
lower boundary of the landscape, it re-enters the land-
scape at the upper boundary (i.e. periodic boundary
conditions are applied on the upper and lower bound-
aries). The total amount of biomass consumed is the
sum of the biomass contained in all the cells the forager
passes through. Efficiency is defined as the total
amount of biomass consumed divided by the number
of cells travelled through (i.e. the area searched),
divided by the total amount of prey biomass available
in the entire landscape.

The distribution of prey biomass across the land-
scape is generated as a series of patches. Each patch is
constructed using a simple, unbiased random walk
[24]. Patches are pasted into the landscape either with
an exponential or a power-law distribution for the dis-
tance between successive patch centres. (Following
Sims et al. [24], these two cases for the distribution of
prey are termed ‘random’ and ‘Lévy’, respectively.) In
each case, a sufficient number patches is pasted into
the landscape so that the total amount of available
biomass is approximately 106 units.

The forager’s vertical move lengths follow either a
uniform distribution on the integers between 1 and
10, or a truncated power-law distribution on the inte-
gers with exponent m ¼ 2, minimum step length 1 and
maximum step length 2500 (corresponding to the
total height of the domain). (Again these two cases
for the forager’s strategy are termed ‘random’ and
‘Lévy’, respectively.) The upper limit of 10 for the uni-
form distribution is chosen to ensure that the two
distributions have similar means so that, on average,
the forager visits approximately the same number of
cells in each simulation, regardless of the move length
strategy.

We carried out extensive numerical explorations of
this model using different patch generation details and
different move length distributions. The results show
that, when scaled to account for the total area searched
(i.e. the total number of cells visited) and the total
amount of prey biomass available, the expected
amount of biomass obtained per simulation is always
the same, provided enough simulations are performed
J. R. Soc. Interface (2011)
(figure 4). In cases where an LW is involved (either
for the prey distribution or the forager’s movements),
the convergence is: (i) extremely slow, meaning that
very many simulations need to be carried out to
obtain a reliable answer; (ii) biased, meaning that if
insufficient simulations are carried out, the efficiency
always appears to be greater than the true value.
These findings are consistent with the results of
James et al. [40].
APPENDIX B. REGRESSION-BASED
METHODS AND MINIMUM STEP SIZE

When linear regression is used to fit a straight line to
data on log–log axes, the resulting probability density
function is of the form ln p(l ) ¼ a ln l þ b, or equiva-
lently p(l ) ¼ Cl2m with C ¼ eb and m ¼ 2a. Thus, the
slope a of the straight line determines the exponent m

of the power-law distribution, and the intercept b deter-
mines the normalization constant C. In order for this to
be a well-defined probability distribution on l [
[lmin,1), not only must m be greater than 1, but the nor-
malization constant must also satisfyð1

lmin

Cl�m dl ¼ 1:

This requires that

C ¼ ðm� 1Þlm�1
min :

Substituting C ¼ eb and m ¼ 2a and rearranging for
lmin shows that

lmin ¼ � eb

a þ 1

� �� 1
aþ1

: ðB 1Þ

Hence lmin is implicitly determined by the regres-
sion parameters a and b, and there is no guarantee
that the value of lmin given by equation (B 1) will
provide the best fit for (or even be consistent with)
the data.
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For example, Austin et al. [20] fitted power-law distri-
butions to the movement lengths of grey seals using linear
regression. In one case (see fig. 3 of Austin et al. [20] and
table 1), the regression parameters are a ¼ 21.26
and b ¼ 20.474. According to equation (B 1), the fitted
distribution needs to have a value of lmin of 31 km. It is
clearly nonsensical to use such a distribution to describe
data that are in the range 2–15 km.
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walk? Reply. Ecology 89, 2351–2352. (doi:10.1890/08-
0313.1)

43 Bartumeus, F., Fernández, P., da Luz, M. G. E., Catalan, J.,
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outperform ballistic motions. J. Theor. Biol. 260, 98–
103. (doi:10.1016/j.jtbi.2009.05.033)
J. R. Soc. Interface (2011)
54 Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., Cat-
alan, J., Fulco, U. L., Havlin, S., da Luz, M. G. E., Lyra,
M. L., Raposo, E. P. & Stanley, H. E. 2002 Lévy flight
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