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Abstract 

Despite the limitations of overgeneralizing cutoff values for confirmatory factor analysis (CFA; e.g., 
Marsh, Hau, & Wen, 2004), they are still often employed as golden rules for assessing factorial 
validity in sport and exercise psychology. The purpose of this study was to investigate the 
appropriateness of using the CFA approach with these cutoff values for typical multidimensional 
measures. Furthermore, we ought to examine how a model could be respecified to achieve 
acceptable fit and explored whether exploratory structural equation modeling (ESEM) provides a 
more appropriate assessment of model fit. Six multidimensional measures commonly used in sport 
and exercise psychology research were examined using CFA and ESEM. Despite demonstrating good 
validity in previous research, all eight failed to meet the cutoff values proposed by Hu and Bentler. 
ESEM improved model fit in all measures. In conclusion, we suggest that model misfit in this study 
demonstrates the problem with interpreting cutoff values rigidly. Furthermore, we recommend 
ESEM as a preferred approach to examining model fit in multidimensional measures. 
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Jöreskog (1969) developed confirmatory factor analysis (CFA) to examine psychometric models, and 
the use of CFA has risen exponentially in recent years and is particularly prominent in sport and 
exercise psychology. Searches on SPORTdiscus for the term “confirmatory factor analysis” in titles, 
keywords, and abstracts revealed that 180 papers employing CFA techniques were published from 
1990 to 1999, compared to 549 papers from 2000 to 2009. The limitations of CFA approaches have 
been documented (e.g., Hopwood & Donnellan, 2010; Marsh, Hau, & Wen, 2004). However, there is 
still a lack of acknowledgment of these limitations in the sport and exercise psychology literature. 

Theoretically, CFA represents an objective test of a theoretical model. In practice, conducting all 
factor analytic procedures requires a series of judgments. By far, the most important judgment 
made in CFA is whether a model is deemed to be acceptable or not. Logically, the process of 
accepting or rejecting models is fairly simple, in that the aim is to avoid concluding that a good 
model is bad, and that a bad model is good (MacCallum, Browne, & Sugawara, 1996). This is typically 
achieved by examining the absence or presence of misspecifications, which are errors between the 
prescribed model and the estimated parameters. In structural equation modeling, of which CFA is 
one form, the goodness of a model is typically determined by the absence (good) or presence (bad) 
of misspecifications (Saris, Satorra, & van der Veld, 2009). The clearest of all the parameters for 
making judgments on the acceptability of model fit is the chi-square (χ2). However, as initially 
observed by Bentler and Bonett (1980) and many thereafter (e.g., Saris et al., 2009), because this 
statistic is sensitive to sample size, it will reject models that have only a trivial misspecification, thus 
leading to increased type II error. The solution appears to be to use a selection-of-fit indices that 
calculate exact model fit based on chi-square (e.g., standardized root mean square residual or 
goodness-of-fit index), relative fit indices that compare the hypothesized model to an independent 
baseline model (e.g., Tucker-Lewis index or incremental fit index), and noncentrality-based indices 
that test the alternative hypothesis rather than the null (e.g., Bentler’s comparative fit index or the 
root mean square error of approximation). 



Hu and Bentler (1999) proposed cutoff criteria for all commonly cited fit indices by examining 
rejection rates on hypothetical models. These proposed criteria, including Comparative Fit Index 
(CFI) and Tucker-Lewis Index (TLI) close to .95, Standardized Root Mean-square Residual (SRMR) of 
close to .08, and Root Mean Square Error of Approximation (RMSEA) of close to .06, are referred to 
as a matter of routine in studies using any kind of structural equation methods. While reference to 
Hu and Bentler’s (1999) suggested cutoffs is not necessarily an issue itself, the extent to which many 
researchers view these recommendations as golden rules potentially creates an substantial amount 
of type II errors. In sport and exercise psychology, frequent judgments regarding the factorial validity 
of a measurement scale are made according to these rules. Marsh et al. (2004) keenly and accurately 
pointed out that Hu and Bentler offered caution about using such cutoff values and concisely explain 
the dangers of overgeneralizing the findings from Hu and Bentler in search of golden rules. Indeed, 
Marsh et al. referred to a traditional cutoff values amounting to “little more than rules of thumb 
based largely on intuition and have little theoretical justification” (2004, p. 321). Although scales are 
often published and used despite falling short of cutoffs, there are also examples of the 
psychometric properties of scales in sport and exercise psychology being dismissed as a result of 
adherence to cutoffs as golden rules. One popular example comes in the evolution of the sport 
motivation scale (SMS), originally developed by Pelletier et al. (1995), which was examined and 
revised by Mallett, Kawabata, Newcombe, Otero-Forero, and Jackson (2007). Despite the SMS 
originally being subjected to CFA, Mallett and colleagues conducted another CFA and found a model 
fit just short of the recommended criteria (CFI = .87, SRMR = .06, RMSEA = .06). The authors went on 
to describe the model fit as “poor” and used this as justification to claim that the scale required 
revision. 

The use of CFA techniques for examining factorial validity and identifying acceptable levels of fit is 
certainly not straightforward. Hopwood and Donnellan (2010) illustrated the difficulty by examining 
eight common personality measurements. Hopwood and Donnellan applied more relaxed cutoff 
criteria than Hu and Bentler (1999; e.g., CFI and TLI > .90, RMSEA < .10) and allowed cross-loadings in 
some of the measures analyzed. Even so, by conducting CFAs, the authors found that none of the 
scales used came close to the recommended cutoff values. Interestingly, even the best-performing 
measure achieved a model fit well below the commonly accepted criteria, despite commonly being 
accepted as an appropriate assessment of personality. The length and complexity of personality 
measures means that employing the same requirements of such models compared to short, simple 
models is simply not appropriate. A CFA model typically constrains items to loading on only one 
factor as an independent cluster model (ICM) (CFA-ICM; Marsh et al., 2009), resulting in 
misspecification for each cross-loading. Long (i.e., many items), complex (i.e., many factors) 
measures therefore, have much less chance of achieving an acceptable fit. In providing their own 
caveat for using CFA, Hopwood and Donnellan (2010) described what they call The Henny Penny 
Problem after the character from the children’s tale who lamented that the sky was falling after an 
acorn fell on his head. The authors pointed out that claims that a measure is invalid because of a 
weak CFA fit is exaggerated and ignores other types of validity such as content and criterion-related 
validity. Such personality assessments could perhaps perform better in a CFA by reducing their size 
and/or complexity, but if this is at cost of predictive or other forms of validity, it is simply not a 
virtuous academic pursuit. 

When encountering misspecifications in a CFA model, the researcher has several options. They can 
either (a) determine that the misspecification is irrelevant and proceed, (b) concede that the 



misspecification is significantly relevant and therefore reject the model, or (c) modify the model to 
achieve an acceptable fit. Such modification can be achieved using the modification indices (MI) 
provided in CFA output. The MI provide an estimate increase in the chi-square for each fixed 
parameter if it were to be freed. In ICMs, covariances between items from questionnaires are 
typically fixed to zero. By identifying significant MI and allowing them to be estimated, chi-square is 
reduced, thus yielded a better statistical model fit. The use of MI to respecify poorly fitting models 
was effectively demonstrated by MacCullum (1986) and further recommended by Saris, den Ronden, 
and Satorra (1987) and Saris et al. (2009). It should be noted however, that all of these authors also 
urge caution because this data driven approach does not necessarily hold any theoretical relevance. 
Indeed, MacCullum (1986) found that in half of the models tested in a simulation study, MI did not 
find a true model. Several authors (e.g., Kaplan, 2009) have referred to such respecification as 
atheoretical, claiming that it is merely capitalizing on chance within a sample. The process of using 
MI is seldom reported and therefore presumably seldom conducted in sport and exercise 
psychology. 

Exploratory Structural Equation Modeling (ESEM) provides an alternative to CFA-ICM, which is 
effectively an integration of exploratory factor analysis (EFA) and CFA methods, which could be 
considered as a EFA-SEM approach (Asparouhov & Muthén, 2009). CFA-ICM assesses an a priori 
model that typically allows observed variables to load only onto their intended factor. Typically, all 
loadings, regardless of their significance, onto other latent variables are constrained to zero (Figure 
1). This means that all trivial, non-significant cross-loadings will contribute to model misspecification 
(Ashton & Lee, 2007). This misspecification is defined by Hu and Bentler (1998, p. 427) as when “one 
or more parameters are fixed to zero where population values are non-zeros (i.e., an 
underparameterized misspecified model).” Clearly in many psychometric measures, particularly 
long, multidimensional scales, this can become a substantial issue. Moreover, questionnaires that 
are aggregated to enable an overall score to be derived as well as individual subscale scores to 
include appropriate internal consistency must have moderate to high inter-correlations, and 
therefore, many non-zero cross-loadings. A common example of such an aggregated measure is the 
Mental Toughness Questionnaire-48 (MTQ48; Clough, Earle, & Sewell, 2002). Church and Burke 
(1994) explained that ICMs are too restrictive for research where secondary or cross-loadings are 
likely, such as personality research. It is this reason why Hopwood and Donnellan (2010), and others 
before them, found such difficulty in obtaining a satisfactory CFA fit on personality scales. ESEM 
provides standard errors for all rotated parameters. As such, it allows all observed variables to load 
on all latent variables (Figure 2). This overcomes the issue of secondary, often non-significant cross-
loadings causing irrelevant model misspecification, and therefore, the potential rejection of a good 
model. This was demonstrated by Marsh et al. (2010), who assessed the 60-item NEO Five-Factor 
Inventory using CFA and ESEM methods. The authors found that ESEM noticeably outperformed CFA 
in goodness of fit and construct validity. 

FIGURE 1 An illustration of model structure with estimated parameters in confirmatory factor, 
independent clusters model analysis. Note: y represents the latent variables, which are typically 
subscales in self-report psychology measures, while x represents each observed variable, typically an 
item within a questionnaire, and e represents the residual error. 

 



 

FIGURE 2 An illustration of model structure with estimated parameters in exploratory structural 
equation modeling. 

 

 

Given the exponential rise in the use of CFA, it is crucial to examine the potential limitations of the 
technique, or the interpretation of CFA-ICM models using cutoff values. The purpose of this study 
was to firstly assess the likelihood that common quantitative measures in sport and exercise 
psychology can meet the cutoff values proposed by Hu and Bentler (1999) with independent 
samples. Secondly, we conducted ESEM on all scales to examine if this is likely to be a preferred 
alternative to CFA. We hypothesized that the majority of measurement scales used in the study 
would fall below the cutoff values proposed by Hu and Bentler (1999), and all chi-square values 
would suggest model misfit (i.e., p < .001). We also hypothesized that ESEM would provide a better 
model fit on all measurement scales, proportional to the amount of factors and whether or not the 
factors provide an aggregated score. 

METHOD 

Participants 

We collated data from using six commonly used psychometric scales in sport and exercise 
psychology. The measures were selected to represent a range of complexities in terms of the 
number of items (22–48) and factors (3–10). The measures also represent a variety of 
interrelationships between subscales, where some have highly correlated subscales and others have 
relatively independent subscales. Participant information for each scale used is displayed in Table 1. 
All samples were gathered using athletes from a range of individual and team sports. For each 
sample, participants were recruited by approaching the head coach of a team, and all completed the 
questionnaire using pen and paper following informed consent. Where possible, heterogeneous 
samples were sought, as the measures examined in this article were largely validated on samples 
including both genders and from a range of backgrounds, sports, and performance levels. 

TABLE 1 Demographic Details for Each Measurement Scale 

Measures 

Coping Inventory for Competitive Sport (CICS) 

The CICS (Gaudreau & Blondin, 2002) examines 10 coping subscales using 39 items requiring a 
response on a five-point Likert-type scale anchored from 1 (Does not correspond at all to what I did 
or thought) to 5 (Corresponds very strongly to what I did or what I thought). For the purposes of this 
study, the CICS was only considered as a 10-factor model, and hierarchical models were not 
assessed. The CICS was developed using a sample of 316 French-Canadian athletes (54% male) aged 
14 to 28 from a range of international (17%) to regional (35%) levels. Participants were drawn from a 
range of team and individual sports. Gaudreau and Blondin presented an acceptable CFA fit when 
the CICS was published (CFI = .93, TLI = .92, RMSEA = .04), also demonstrating sufficient concurrent 



and divergent validity. Fletcher (2008) examined the psychometric properties of the CICS over a 10-
week period, concluding that the measure is strong, obtaining meaningful and interpretable data. 

Stress Appraisal Measure (SAM) 

The SAM (Peacock & Wong, 1990) contains seven subscales with 28 items in total requiring a 
response on a five-point Likert-type scale anchored from 0 (Not at all) to 5 (Extremely). At the time 
of publication, Peacock and Wong presented support for the internal consistency and construct 
validity of the SAM. The SAM was developed in a series of studies using undergraduate students. 
While they did not conduct CFA, in developing and assessing the psychometric properties of a 
Turkish version, Durak and Senol-Durak (2013) presented a good model fit (CFI = .93, TLI = .92, SRMR 
= .06, RMSEA = .05). Durak and Senol-Durak tested the model on a sample of 461 undergraduate 
students (49.5% male) aged 17 to 33. 

Mental Toughness Questionnaire-48 (MTQ48) 

The MTQ48 (Clough et al., 2002) contains six subscales on 48 items requiring a response on a five-
point Likert-type scale from 1 (Strongly disagree) to 5 (Strongly agree). Perry, Clough, Earle, Crust, 
and Nicholls (2013) found support for the factorial validity and reliability of the scale using a sample 
of over 8,000 from a variety of business, education, and sport backgrounds. The athlete sample (n = 
442, 72.4% male) contained a range of sports and level of participation. The authors reported both 
CFA model fit (CFI = .85, TLI = .85, SRMR = .05, RMSEA = .05) and ESEM model fit (CFI = .94, TLI = .92, 
SRMR = .02, RMSEA = .03). 

Sport Motivation Scale-6 (SMS-6) 

The SMS-6 (Mallett et al., 2007) assesses a six-factor model of sport motivation on 24 items 
requiring a response on a seven-point Likert-type scale from 1 (Does not correspond at all) to 5 
(Corresponds exactly). Mallett et al. examined the factorial validity of the scale on two large samples 
(n = 614 and 557, 44.2% male) from a range of individual and team sports. Mean age of performers 
was 20.0 and participation was at a variety of levels from international (19% and 7.1%) to 
recreational (43% and 16.5%). The authors claimed improved model fit (CFI = .93, TLI = .92, SRMR = 
.04, RMSEA = .05) compared to its earlier incarnation (The Sport Motivation Scale; Pelletier et al., 
1995); the SMS-6 also demonstrated concurrent validity. 

Sport Emotion Questionnaire (SEQ) 

The SEQ (Jones, Lane, Bray, Uphill, & Catlin, 2005) examines five emotions using 22 items requiring a 
response on a five-point Likert-type scale from 0 (Not at all) to 5 (Extremely). Participants are asked 
to indicate the extent to which they experience each emotion at the time of completing the SEQ. At 
the time of publication, Jones et al. demonstrated reasonable model fit (CFI = .93, RMSEA = .07), 
concurrent and construct validity, and internal consistency. The sample used to examine factorial 
validity comprised of 518 athletes (57.9% male) with a mean age of 21.2 from a range of team and 
individual sports from varsity and regional competitions. 

Coping Self-Efficacy Scale (CSES) 



The CSES (Chesney, Neilands, Chambers, Taylor, & Folkman, 2006) consists of 26 items and three 
subscales requiring a response on an 11-point Likert-type scale from 0 (Cannot do at all) to 10 
(Certain can do). In publishing the CSES, Chesney et al. presented satisfactory model fit (CFI = .95, 
SRMR = .05, RMSEA = .07), concurrent validity, and internal consistency. The development and 
testing of the CSES used non-sport samples of 348 men. 

Procedure 

All data were collected using pen and paper method in the presence of researchers to ensure 
authenticity. Ethical clearance was obtained by an ethics committee at a UK higher-education 
institution before data was collected. All participants were assured of confidentiality, were 
encouraged to complete questionnaires honestly, and gave informed consent. 

Data Analysis 

Preliminary analysis checked for missing data and outliers before univariate skewness and kurtosis 
and multivariate kurtosis were examined. CFA was conducted on all measurement scales using 
Mplus 7.0 (Muthén & Muthén, 2012). Model fit was assessed using chi square (χ2), the comparative 
fit index (CFI), the Tucker-Lewis index (TLI), standardized root mean square residual (SRMR), and 
root mean squared error of approximation (RMSEA). Chi-square and SRMR represented absolute fit 
indices, CFI and TLI provided incremental indices, and RMSEA presented a parsimony-adjusted 
measure. All analyses used the robust maximum likelihood method (MLR) with epsilon value .05, and 
the oblique geomin rotation, as factors in all models are theoretically correlated. 

To examine how easily fixed a model could be, MI were used to correlate observed variables until a 
better model fit was found, using an iterative process as recommended by Oort (1998). In each 
analysis, the MI with the highest value were sequentially selected one at a time to enable observed 
error variables to correlate. Oort demonstrated that the process should be iterative, whereby only 
one modification is made at once, as others may contain biases based on the existing structure. This 
enabled firstly, to assess if this generated an acceptable model fit. Secondly, if it did, the amount of 
modifications required to achieve the fit were identified. However, this begins to deviate from the 
intended theoretical design of the original model. To assess if the model had deviated, the 
respecified model was cross-validated the respecified model by testing model fit on two random 
halves of the original sample. If there was a clear difference (ΔCFI > .1) between the model fits, the 
modified model was deemed to have failed cross-validation. Cross-validation using random half 
samples is a useful way of checking the extent to which model fit is sample-specific. This was used to 
determine the consistency of fit of CFA-ICM models. Furthermore, measurement invariance is a 
robust assessment of the stability of a model by assessing variance in factor loadings, intercepts, and 
factor means. This was used to determine if the measures used satisfied the assumption of 
invariance. 

For all scales, ESEM was conducted, employing the same fit indices as CFA-ICM. For all ESEM 
analyses, the number of factors was identified, but items could load freely onto all factors. As ESEM 
could potentially achieve a good fit by finding unintended factor loadings, the model fit alone cannot 
be relied on without then examining the individual parameter estimates. To assess this, we 
computed the proportion of items that loaded significantly (p < .05) onto intended factors from the 
CFA-ICM, the number of significant cross-loadings, and the number of significant cross-loadings that 



were greater than the loading onto the intended factor. It is important that intended factor loadings 
are substantially greater than latent factor loadings from unintended items, as subscale scores are 
derived from the sum of the intended only and do not consider unintended loadings. The Satorra-
Bentler scaled chi-square difference test (Satorra, 2000) was used to identify if ESEM models 
produced statistically significantly different model fits to CFA-ICMs. 

RESULTS 

Preliminary Analyses 

Less than 0.1% of data was missing in all samples, and there were no issues with outliers, following 
examination of Q-Q plots. All variables presented no issues with univariate skewness (< 2) or kurtosis 
(< 7). All multidimensional scales presented a departure from multivariate kurtosis. Consequently, 
the MLR was used in analyses. 

Confirmatory Factor Analyses 

A summary-of-fit indices from the CFAs are displayed in Table 2. It is worth noting that of the eight 
measurement scales assessed, all chi-square statistics results were statistically significant (p < .001). 
Moreover, none of the measures achieved cutoff values for CFI and TLI of > .95, as recommended by 
Hu and Bentler (1999). Indeed, the SEQ was the only measure to reach the sometimes applied more 
relaxed cutoff value of > .90 for CFI and TLI. While all met the recommended SRMR cutoff of < .08, 
only three of the eight achieved an RMSEA of < .06. With the exception of the CSES, all measures 
demonstrated a high proportion of items loading correctly onto their intended factor. 

TABLE 2 Summary of Fit Indices for Measures Using CFA 

Model respecification using MI significantly improved model it for each scale (Table 3). All chi-square 
values remained significant. To examine if modifications had deviated from the initial model, all 
samples were randomly split in half and tested using the respecified model. The results of this cross-
validation are displayed in Table 4. For some measures, such as the CICS and SEQ, the modified 
model was successfully cross-validated, because no significant change in model fit was observed. For 
most of the measures, it appears that the use of the MI may deviate from the original model, though 
the extent to which this is theoretically substantial requires further investigation. It is worth noting 
that despite some changes in fit indices, all models achieved a reasonable model fit (i.e., CFI > .90) in 
both samples. 

TABLE 3 Model Fits Using Modification Indices 

TABLE 4 Model Fits Using Modification Indices for Cross-Validation 

To determine if sampling effects may have been a cause of model misfit, we examined measurement 
invariance in all measures. To examine measurement invariance, the random half subsamples for 
each scale were subjected to a series of multigroup CFAs on increasingly constrained models. In four 
steps, we assessed configural invariance (items of a scale are indicators of the same factors in 
different groups), metric invariance (factor loadings are equal across groups), scalar invariance 
(loadings and intercepts of the items that form a latent construct are invariant across groups), and 
factor means invariance (loadings, intercepts, and means are invariant across groups). To examine 



significant changes across groups, we employed Cheung and Rensvold’s (2002) recommendation of 
observing ΔCFI < .01. The results of these analyses are presented in Table 5. With the exception of 
the CD-RISC, all measures demonstrated strong measurement invariance. 

TABLE 5 Fit Indices for Multigroup CFA 

Exploratory Structural Equation Modeling 

All multidimensional measurement scales presented significantly improved model fit using ESEM 
(see Table 6). Chi-square difference testing using the Satorra-Bentler scaled chi-square found all 
improvements in model fit between CFA-ICM and ESEM to be statistically significant (p < .001). On 
average, CFI increased by .082, TLI increased by .070, SRMR reduced by .032, and RMSEA reduced by 
.018. All chi-square significance values remained significant (p < .001). Despite the marked 
improvements in model fit, only four of the six scales presented a CFI ≥ .95, and none presented a 
TLI ≥ .95. All SRMR were < .08, and all RMSEA were below < .06. This indicates an inconsistency in Hu 
and Bentler’s (1999) proposed cutoff values, as some appear to be much more achievable than 
others. 

TABLE 6 Summary of Fit Indices for Measures Using ESEM 

ESEM loadings were examined to assess whether they have loaded onto what would be their 
intended factor in a CFA-ICM. Furthermore, statistically significant cross-loadings or cross-loadings 
greater than the loading onto the intended factor represent a misspecification in the model. 
Approximately 90% of items loading onto their intended factor appears to be the norm, allowing for 
some cross-loadings. As expected, the only aggregated measure, the MTQ48, included a greater 
number of significant cross-loadings. Consequently, the increase in model fit for this measure 
between CFA and ESEM was greater. 

DISCUSSION 

The purpose of this study was, firstly, to assess the likelihood that common quantitative measures in 
sport and exercise psychology can meet proposed cutoff values and, secondly, to evaluate the ability 
of ESEM to provide a more appropriate estimate of model fit than CFA. Overall, the results indicate 
that a host of commonly-used scales fail to meet the cutoff values proposed by Hu and Bentler 
(1999). Respecification of the measurement models significantly improves model fit, and this is an 
option for researchers encountering misspecifications. Measurement invariance testing supports the 
stability of the scales used. 

The results suggest that Hu and Bentler’s (1999) proposed, and often implemented, cutoff values for 
a host of fit indices are unrealistic for many complex measures to achieve on a sample independent 
from that with which they were developed. While values for SRMR and RMSEA were achievable in 
standard CFA-ICM, modified CFA, and ESEM models, CFI reached the cutoff of .95 less frequently, 
and TLI seldom reached values close to .95. Furthermore, all analyses in this article yielded a 
significant chi-square, highlighting the hypersensitivity of chi-square as an assessment model of fit. 
When considered with previous demonstrations of validity, it appears that the primary reasons for 
model misfit are that (a) some cutoff values are overly strict for the measurement models, or (b) 
CFA-ICM is an inappropriate technique for analyzing the factorial validity of complex scales. 
Consequently, we urge caution for researchers when employing the CFA-ICM technique. Of course, 



there are many examples of multidimensional scales achieving a good model fit on an independent 
sample, but if a scale fails to achieve such a fit, it should not be automatically discredited. As a 
minimum, researchers should acknowledge the limitations of the approach and rigid cutoff values to 
prevent the “Henny Penny” problem described by Hopwood and Donnellan (2010). Those referring 
to Hu and Bentler’s (1999) suggested cutoff values as golden rules when conducting CFA on complex, 
multidimensional models would be well advised to review the hypothetical models used in the 
original paper to establish such cutoffs. Hu and Bentler (1999) presented a simple model that 
contained 15 observed variables and three factors. Each factor had five loadings of .70 to .80, and all 
cross-loadings were fixed to zero. Furthermore, they examined a “complex” model that enabled just 
three cross-loadings across the same matrix. This is a long way from the complexity of many of the 
measures commonly used in sport and exercise psychology and another example of the dangers in 
overgeneralizing Hu and Bentler’s (1999) findings, a topic discussed in much greater depth by Marsh 
et al. (2004). Evidence of the issue with model complexity and Hu and Bentler’s (1999) proposed 
cutoff values can be found by examining the variety of performance of scales against different fit 
indices. The RMSEA and TLI contain a penalty for model complexity using the ratio between chi-
square and degrees of freedom. SRMR has no penalty for model complexity and was therefore able 
to meet the recommend cutoffs in all models. 

The extent to which a misspecified model can be fixed remains contentious. From purely a statistical 
point of view, it is feasible to respecify the model using the MI. However, caution is urged when 
conducting this method, as all respecifications must be theoretically acceptable. This could be an 
acceptable approach as long as restrictions are placed on permissible modifications (MacCullum, 
1986). Said differently, researchers should determine whether it is theoretically plausible for model 
respecification. An example might be freeing parameters between items within the same subscale or 
perhaps creating a higher-order model that allows covariances between some subscale items that 
are theoretically related. Researchers should also be aware of the potential for MI to aid the 
theoretical development of a measurement model. 

ESEM is an emerging technique that is used either supplementary with CFA-ICM or instead of CFA-
ICM. There are several studies that utilize ESEM effectively for the development and/or validation of 
a multidimensional measure outside of the sport domain (e.g., Marsh et al., 2010; Marsh, 
Nagengast, Morin, Parada, Craven, & Hamilton, 2011). In this study, we have demonstrated that this 
technique is a desirable alternative to CFA using scales frequently used in a sport context. Other than 
rare exceptions (e.g., Morin & Maïno, 2011), the use of ESEM in the sport and exercise psychology 
literature is limited at present. It was interesting to note that the SMS-6—which Mallett et al. (2007) 
developed to replace the original SMS (Pelletier et al., 1995) after suggesting that a model fit of CFI = 
.87, SRMR = .06, RMSEA = .06 was “poor”—presented a very similar model fit under the CFA-ICM 
analysis (CFI = .88, SRMR = .06, RMSEA = .07). However, under the ESEM analysis, the scale 
performed much better (CFI = .96, SRMR = .02, RMSEA = .05). Strict adherence to the common cutoff 
recommendations would mean we would have dismissed the SMS-6 model fit as poor, as Mallett et 
al. (2007) did with the original SMS. In reality, the SMS-6 has demonstrated consistently good 
factorial validity. 

We propose that researchers should make a theoretical judgment on the appropriateness of the 
technique. For true ICMs in which subscales within the model are theoretically unrelated to each 
other or even opposed to each other, CFA should provide an accurate representation of the model 



fit. If encountering misspecifications, researchers may consider the use of MI to improve model fit as 
long as they are able to theoretically justify their respecifications. The vast majority of 
multidimensional scales in sport and exercise psychology, however, are not true ICMs, because we 
can logically expect to find secondary loadings, particularly within highly correlated subscales or 
aggregated subscales. Under these circumstances, ESEM provides a more appropriate assessment of 
model fit than CFA and should be used from the outset, either in place of, or supplementary to, CFA. 
It is important to note, however, that ESEM should not be seen as a simple statistical fix to achieve 
higher CFI. By estimating more parameters, model fit inevitably improves. Regardless of the model 
fit indices, researchers must examine factor loadings to determine if the goodness of fit is derived 
from theoretical sound factor loadings, and not merely through the estimation of many parameters. 

The variety of measures and relatively large sample sizes used is a strength of this article. There are 
however, some limitations to acknowledge. Firstly, the extent to which MI substantially change each 
model requires further investigation, as cross-validation was provided only by splitting the original 
sample. A true measure of this would be to improve a model fit using the MI on one large sample 
and then use a completely independent sample to cross validate the new model. Secondly, although 
we have selected a varying range of measures regarding length, factors, and aggregated scores, this 
is merely a sample of the many that are routinely published and used in research. All of the 
measures used were validated on samples similar to those used in this article with the exception of 
the CSES (Chesney et al., 2006). The CSES was developed and validated on a sample of males drawn 
from outside of sport. Consequently, potential misspecifications could result from demographic 
differences for this scale. Finally, it is worth noting that ESEM in this article has been solely used to 
estimate measurement models. The extent to which ESEM provides a solution to limitations in 
structural models requires further examination, perhaps in contrast to the use of parceling 
techniques. 

In summary, we have demonstrated here that the proposed cutoff values by Hu and Bentler (1999) 
are unrealistic for most commonly used scales in sport and exercise psychology. That none of the 
measures used achieved the suggested cutoff values leads us to one of three conclusions: All of the 
measures we assessed are inadequate, CFA-ICM is not the most appropriate technique to examine 
their factorial validity, or the cutoff values are not appropriate. Because all of the measures used 
have previously provided evidence of their suitability, to accept the former is likely to lead to the 
rejection of many highly useful self-report measures. We feel the latter two conclusions provide a 
more true, progressive, and helpful way forward. Furthermore, we recommend that researchers 
examining more complex, multidimensional, or aggregated models should conduct ESEM in place of, 
or supplementary to, CFA. 

Notes 

Note: CICS = coping inventory for competitive sport; SAM = stress appraisal measure; MTQ48 = 
mental toughness questionnaire-48; SMS-6 = sport motivation scale-6; SEQ = sport emotion 
questionnaire; CSES = coping self-efficacy scale. 

Note: CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 
residual; RMSEA = root mean square error of approximation; CICS = coping inventory for competitive 
sport; SAM = stress appraisal measure; MTQ48 = mental toughness questionnaire-48; SMS-6 = sport 
motivation scale-6; SEQ = sport emotion questionnaire; CSES = coping self-efficacy scale. 



Note: CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 
residual; RMSEA = root mean square error of approximation; CICS = coping inventory for competitive 
sport; SAM = stress appraisal measure; MTQ48 = mental toughness questionnaire-48; SMS-6 = sport 
motivation scale-6; SEQ = sport emotion questionnaire; CSES = coping self-efficacy scale. 

Note: CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 
residual; RMSEA = root mean square error of approximation; CICS = coping inventory for competitive 
sport; SAM = stress appraisal measure; MTQ48 = mental toughness questionnaire-48; SMS-6 = sport 
motivation scale-6; SEQ = sport emotion questionnaire; CSES = coping self-efficacy scale. 

Note: All χ2 p < .001. 

Note: CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 
residual; RMSEA = root mean square error of approximation; CICS = coping inventory for competitive 
sport; SAM = stress appraisal measure; MTQ48 = mental toughness questionnaire-48; SMS-6 = sport 
motivation scale-6; SEQ = sport emotion questionnaire; CSES = coping self-efficacy scale; Cross 
loadings were deemed statistically significant if p < .05. 
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