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ABSTRACT

In this paper we address the issue of structural
multimedia similarity, which is based on the
relations between the individual objects that
comprise a multimedia document. We propose a
binary string encoding for 1D relations which
permits the automatic derivation of similarity
measures. We then extend it to various resolution
levels and many dimensions and show that
reasoning on spatiotemporal structure is
significantly facilitated in the new framework, by
applying it to multimedia presentation and motion
similarity.
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1. INTRODUCTION
The general theme of this work is the development of a
formal framework for expressing queries on multimedia
data. The motivation comes from two common recent
observations: i) the increasing availability of multimedia
documents in the WWW ii) the emerging need for
efficient navigation in such document repositories. We
consider a "multimedia document" (or simply document)
as a collection of any form of data (text, images, sound,
video, etc.) which a user may be interested in querying
upon. The salient features of such documents identified so
far are content (semantic information), interactivity
(control flow, based on user interaction) and structure
(which refers to spatiotemporal relations among the
document's objects). Related research conducted in the
information retrieval field so far mainly focuses on
content-based retrieval, covering several data forms, like
text [17], images and video [7] [12] [18] [19].

However, the advent of the WWW and its universal
adoption pose new demands for retrieval queries [13].
First, the amounts of data are huge, thus the output of a
typical content based query is likely to be still
prohibitively large to be handled by the user. Second, as
cognitive studies have shown [6], often human
remembering favours structural information as opposed to
exact content. Both above factors advocate to the
development of new query and retrieval mechanisms
based on spatiotemporal behaviour, in addition to content.

To clarify the above, assume a database consisting of
tourist multimedia documents and a user who wishes to:
"find all documents which contain a picture of an island
accompanied by a textual description on its left,
immediately followed by a video that contains both
windows". Such a query combines both spatial and
temporal aspects, although each of them may individually
constitute a distinct query. Also, users might want to
retrieve objects belonging to video frames or images of
moving scenes, based on motion, which, in the general
case, is a complex interplay of spatial and temporal
properties: "find a video's portion (set of frames) in which
a car moving to the right crashes into a house wall".

The processing of such queries should be sufficiently
flexible to allow partial matches, as the difference
between objects that satisfy the query and the ones that
don't, may be quantifiable and gradual. This can be
attributed to two main factors: i) users may want to
specify varying degrees of satisfaction in order to retrieve
configurations similar to the queried ones and ii)
spatiotemporal objects or relations are sometimes fuzzy
by nature (e.g. "northeast" may not conform to
universally accepted semantics).

Our work proposes a framework for similarity retrieval of
multimedia documents. We first introduce a new
expressive encoding for relations and subsequently show
how structural relation-based similarity can be effectively
accommodated in this framework. The rest of the paper is
organized as follows: Section 2 discusses a new encoding
of 1D relations which facilitates similarity reasoning and
its extensions to multiple resolution levels and
dimensions. Section 3 applies the framework to
spatiotemporal queries involving the retrieval of
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multimedia documents that conform to some input
structure. In Section 4 we discuss motion queries
including examples. Section 5 concludes with a brief
discussion and an outline of future work.

2. SPATIOTEMPORAL SIMILARITY
Several types of relations, such as, temporal [1],
topological [5] (e.g., inside, overlap), directional [16]
(e.g., left, northeast) and qualitative distances [10],  have
been defined and used in a wide range of applications.
Our goal is to provide a unified and adjustable framework
which permits the definition of any type of spatio-
temporal relation and the automatic generation of
similarity measures. We will initially confine our
discussion to one dimension and consider a (reference)
interval [a,b]. We identify nine potential regions of
interest:

1.(-∞,a-δ) 2.[a-δ,a-δ] 3.(a-δ,a) 4.[a,a] 5.(a,b) 6.[b,b] 7.(b,
b+δ) 8.[b+δ, b+δ] 9.(b+δ,+∞)

For each of the above regions we associate a binary
variable, r, s, t, u, v, w, x, y, z, respectively (Figure 1a).
Given a primary interval [c,d], the value of every variable
indicates the result of the intersection between [c,d] and
the variable's associated region ("0" corresponds to an
empty intersection while "1" corresponds to a non-empty
one). Thus, we can define 1D relations to be 9-tuples
(Rrstuvwxyz : r, s, t, u, v, w, x, y, z ∈  {0,1}). For instance,
R011000000 can be interpreted as left-near while R000011110 as
overlap-right.

We call such a consecutive partitioning of space a
resolution scheme. The rationale behind the above choice
of regions is the need to express in a single framework all
feasible topological and directional relations in 1D, as
well as the simplest type of distance relations, near
(within a distance of δ) and far (otherwise). However,
there are several possible resolution schemes and a
particular choice is affected by the users' expectations or
the application's requirements, as every scheme can refine
or generalize a particular relation class. In applications
where more refined distance relations are required,
multiple interval extensions of δ or possibly different
lengths may be used. On the other hand, if distance
relations are not necessary we may apply a simpler
scheme such as (-∞,a) [a,a] (a,b) [b,b] (b,+∞) (see Fig.
1b). According to this resolution scheme, 13 distinct
relations are possible, which coincide with the ones
described by Allen in his seminal work on temporal
intervals [1].
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overlap relations can be refined to strong-overlap or
weak-overlap by splitting (a,b) to two intervals using the
mid-point (Figure 1d).

In general, by increasing (decreasing) the number of bits,
we capture more (less) detail in the description of
relations. For every resolution scheme, a binary string
represents a valid relation if i) it contains a list of (at least
one) consecutive "1"s, ii) in the case of a single "1", this
should not correspond to a point variable (e.g. s,u,w or y
in Figure 1a) otherwise [c,d] collapses to a point and iii)
the intervals of interest form a consecutive partition of (-
∞,+∞).

If b is the number of bits used by the resolution scheme,
the number of feasible relations in 1D is b(b+1)/2 - k,
where k is the number of point variables, i.e. intervals of
the form [a,a]. If we fix the starting point at some bit then
we can assign the ending point at the same or some
subsequent bit. There are b choices if we fix the first
point to the leftmost bit, b-1 if we fix it to the second
from the left, and so on. The total number is b(b+1)/2
from which we subtract the k single-point intervals. For
b=9, k=4 (resolution scheme of Figure 1a) we get 41
relations (see Figure 2a), while for b=5, k=2, there exist
13 (Allen's) relations. For the rest of the paper, we will
call the feasible relations at a particular scheme, primitive
relations.

The next step is to provide a mechanism for representing
similarity among relations independently of the resolution
scheme. Freksa [8] defined the concept of conceptual
neighborhood as a cognitively plausible way to measure
similarity among Allen's interval relations. A
neighborhood is represented as a graph whose nodes
denote relations that are linked through an edge, if they
can be directly transformed to each other by continuous
interval deformations. Depending on the allowed
deformation (e.g., movement, enlargement), several
graphs may be obtained. Figure 2a represents the
neighborhood graph for the distance-enhanced resolution
scheme, assuming that a minimal deformation is a
movement of a single interval endpoint. Starting from
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Figure 1 Binary encoding of relations



relation R100000000 and extending the upper interval to the
right, we derive relation R110000000. With a similar
extension we can get the transition from R110000000 to
R111000000 and so on. R100000000 and R111000000 are called 1st

degree neighbors of R110000000. The distance d between
two relations is equal to the length of the shortest path
connecting them in the neighborhood graph.

Unlike other methods that utilise conceptual
neighbourhoods by manually constructing distance tables
(e.g., [8] [14]), the binary encoding allows the automatic
derivation of relation distance at any resolution scheme,
through the following pseudo code:
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Intuitively, the above routine compares the corresponding
binary strings and counts the minimal number of “1”s
that have to be added in order to make the notations two
identical binary strings with consecutive "1's. For
example d(R000110000, R010000000) = 5 and d(R011000000,
R111100000) = 2 (the underlined 0s are the ones counted
during the calculation of distance).

The proposed encoding and distance calculation can be
extended accordingly to multi-dimensional spaces. The
relation between two objects in N dimensions corresponds
to the combination of N 1D relations. Thus, an ND
relation can be naturally defined as a N-tuple of 1D
projections, e.g. R110000000-111000000 = (R110000000,R111000000).
For example, 3D relations can be used to describe
relationships between volumes or spatiotemporal objects
(2D snapshots over time). Figure 2b illustrates a few
indicative 3D spatiotemporal relations (the order of the
constituent 1D projections being x-y-time) between five
rectangles and a reference (gray) one. The x-y relation
components are expressed in the distance-enhanced

scheme while Allen's scheme is used for the temporal
dimension.

Assuming block world metrics, the distance between two
ND relations is the sum of the pair-wise distances
between the constituent 1D projections, i.e. d(Ri1-i2-…-iN,
Rj1-j2-…-jN) = d(Ri1, Rj1) + d(Ri2, Rj2)+ … + d(RiN, RjN).
Other metrics (such as Euclidean [14]) can also be
applied.

The advantages of the proposed framework are i) the
expressiveness of the encoding in the sense that given the
new notation, the corresponding spatiotemporal
configuration can be easily inferred, and vice versa, ii)
efficient automatic calculation of relation distance
(similarity), and iii) the uniform representation of several
types of relations in various resolution levels.

3. STRUCTURAL QUERIES
The multidimensional extension of 1D relations define
projection-based primitive relations, as each 1D relation
between ND objects corresponds to the relation between
their corresponding 1D projections. Projection-based
definitions of relations and similarity measures are
particularly suitable for structural similarity retrieval in
multimedia applications because:

− often in practice, multimedia documents consist of
rectangular objects (e.g., window objects). Projection-
based relations provide an accurate and effective
means for spatio-temporal representation of
collections of such objects [16].

− even for non-rectilinear objects, usually
spatial/multimedia databases utilise minimum
bounding rectangles (MBRs) for efficient indexing.
MBRs provide a fast filter step which excludes the
objects that could not possibly satisfy a given query.
The actual representations of the remaining objects
are then passed through a (computationally expensive)
refinement step which identifies the actual output [3].

− multimedia queries do not always have exact matches
and crisp results. Rather, the output documents should
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Figure 2 Conceptual neighborhood including distances and a multi-dimensional example



have an associated "score" to indicate the similarity
between their retrieved spatiotemporal relations and
the target relations of the query document.

Multiresolution and multidimensional conceptual
neighborhoods can be tuned to provide flexible processing
mechanisms for structural queries. For the sake of
simplicity and readability of relation notation, in the
following examples we use Allen's resolution scheme.
Processing of queries at any other, sufficiently refined
scheme, is completely analogous.

Consider the simple but indicative spatiotemporal query
already mentioned in the introduction: "find all
documents which contain a picture I of an island
accompanied by a textual description T adjacently on its
left, followed by a video V that contains both windows".
In general, such queries may involve specific instances
(e.g. Mauritius) or classes (island). This query essentially
defines a spatiotemporal scene (see Fig. 3a), described by
the following predicates (assuming an x-y-time order):

R11000-U-01110(T,I)
R11111-11111-00011(V,I)∨ R11111-11111-00001(V,I)
R11111-11111-00011(V,T)∨ R11111-11111-00001(V,T)

In the above, RU denotes the universal projection relation,
i.e. the disjunction of all possible projection relations at
the corresponding resolution scheme, and is used for
defining incomplete (unspecified) constraints between
query variables. Also, query relations might be indefinite
(the constraint may be a disjunction of primitive
relations). For example, in the above query the relation
followed can be interpreted as Rx-y-00011∨ Rx-y-00001.

During query processing, stored images are sequentially
examined and different instantiations of pairs of objects
are assessed for matching each of the above predicates. In
Figure 3 the gray objects portray two complete
instantiations (all query variables have been instantiated);
one with a low similarity (3c) and one that matches the
query closely but not exactly (3b). In general, the
"goodness" of a solution is calculated by various metrics
[11], using the distances between the input constraints
and the actual (instantiation) relations. For instance, the
total distance (dissimilarity) of a solution can be defined
as the sum of all pair-wise distances (the instantiation
R01110-10000-00001(T2,I), R10000-11111-00001(V2,I) and R10000-00011-

00110(V2,T2) in Fig. 3c has a total distance D = 7+4+9).

Formally, a structural query can be described as a soft
constraint satisfaction problem  (CSP) which consists of:
• A set of variables. In the example of Figure 3, there

exist three variables I, T, and V.
• For each variable a finite domain of potential values.

For instance the domain of T is the set of textual
descriptions.

• For each pair of variables a binary spatio-temporal
constraint (e.g., the constraint CT-I is : R11000-U-01110).
Each constraint is soft in the sense that it can be
violated to a maximum distance specified by the user.

Let n be the query size (number of variables) and N be the
domain size (assuming a common domain): in the worst
case (exhaustive search), all n-permutations of N objects
have to be searched in order to find solutions (i.e.,
N!/(N-n)!). In real DBMSs where N>>n, this number is
O(Nn), meaning that the retrieval of structural queries can
be exponential to the query size. Query processing
becomes more expensive if inexact matches are to be
retrieved.

In order to deal with the problem effectively, we apply
one of the most efficient constraint satisfaction
algorithms, namely forward checking with dynamic
variable reordering [2] combined with R*-trees  [3], the
most efficient variation of R-trees [9]. The main
mechanism of forward checking is the following: every
time a variable is instantiated, its constraints restrict the
potential values for the set of variables yet to be
instantiated (by pruning values inconsistent with the
current instantiation).

We use the R*-tree to facilitate this pruning process. The
relations between an uninstantiated variable and the
instantiated ones can be transformed to a window in
space; only the values that lie inside this window can be
assigned to the variable. Thus, the domains of
uninstantiated variables are formed after applying a
window query to the R*-tree, which is a much cheaper
operation than a brute force search in the whole domain
space. A thorough algorithmic description and
experimental evaluation can be found in [15].

4. MOTION QUERIES
Although motion is conceived as a continuous
phenomenon by humans, computer motion is essentially a
collection of discrete phenomena which we will refer to
as frames. Assuming an ordered set of frames, either

T I

V

durations

T
V
I

T1 I

V1

durations
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V1
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T2

V2

V2
T2

T2

T1 I
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durations

T1
V1
I

V2

V2
T2

(a) (b) (c)
Figure 3 Example spatiotemporal similarity



captured from a video clip or representing any ordered
collection of images of moving objects (satellite imagery,
etc.), several questions may be of importance to a user:

1. Find the first frame where an object starts moving.
2. Find the video clip's portion (set of frames) where a

set of objects move from some initial positions to
some destinations.

3. Find the video clip's portion where an object performs
a specific movement with respect to a reference object.

4. Describe the movement of an object as a set of relation
variances.

5. Compare the velocity of different objects.
6. Given a video clip, find a frame with a specific spatial

arrangement (which is reduced to a 2D structural
query).

The core of any motion query processor must consist of a
mechanism that compares consecutive frames and decides
whether they are similar enough to be regarded as an
"elementary" motion. Of course the similarity between
different movement patterns relies on several factors:

• the resolution scheme; e.g. a small object's movement
along a large reference object will not be considered
as motion unless a sufficiently refined resolution is
adopted to distinguish among several overlap
relations

• the sampling rate of frames, as it controls the
perceived motion's smoothness

• the user's expectations and the application
requirements

There exist various interesting ways to elaborate on each
of the above query types and identify motion patterns. For
instance, assume that we are interested in identifying
"smooth motion" as opposed to arbitrary movement. This
could be based on an assessment of variances among
relations, either between successive positions of the
moving object or between the moving object and a fixed
reference.

Figure 4 illustrates nine sample movement frames. Let Ri

be the relation between A and B in frame i. Then a
motion constraint can be defined as: d(Ri, Ri-1) ≤ τ,
meaning that in order for an arbitrary movement to
constitute motion the distance between the relations of A
and B in two successive frames must be less or equal than
a certain threshold (for the next example τ=2). An
obvious implicit constraint is that A is not allowed to
have the same position in any two successive frames. The
degree of smoothness can be indicated by several possible
measures, one of which is:
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where f is the number of frames

As long as the above constraints hold, the smaller the
value of S, the smoother the movement in the
corresponding set of frames. For the example in Figure 4,
the value of S is (2+2+0+2+0+0+2+2)/8 = 1.25, which
could be less for a more dense sampling of frames.
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starting frame final frameintermediate frames

Figure 4 Assessing movement by fixed reference

In order to experimentally quantify the performance of
motion similarity retrieval, we constructed several sets of
frames, where each frame is a file of 5000 objects
organized in an R-tree (the same set of objects in all
frames). The global extent per axis was set 1000, while,
between two successive frames, each object was allowed
to move at a maximum distance of 5 on each axis with
probability 0.1. Essentially, the majority of objects in two
successive frames are in the same position where a few
are in neighboring ones (a situation similar to satellite
imagery).

The motion query was: "find all sets of objects that moved
from a specified initial position (query window) to some
final one". In order to answer this query we have to
retrieve all objects that fall inside the initial query
window, check whether any of these objects fall in the
final window (in some subsequent frame), and assess
whether their movement in intermediate frames
constitutes motion. Figure 5 illustrates the CPU-time of
the query (using a SUN UltraSparc2 200MHz with 256
MB of RAM) as a function of the number of frames (10,
20,…,100) and the ratio query_window_area/
average_object_area (50,100,…, 500).

Figure 5 Experimental evaluation of a motion query

The processing of the above query is in general more
efficient than structural queries since it is polynomial: it
only involves retrievals using some fixed query windows
which can be performed efficiently using spatial
indexing. More complicated motion patterns can be
analysed, e.g. periodical vs. non-periodical movement,
which may be identified with the use of string matching
algorithms.



5. CONCLUSIONS
This work addresses the issue of multimedia similarity
queries, which form a special type of retrieval based on
spatiotemporal structure. Multimedia documents (which
are arbitrary collections of text, sound, images and video
objects) are assessed according to the spatial and
temporal relations that exist among their constituent
objects. The result of such an assessment verifies whether
the spatiotemporal behaviour of a document matches
totally or partially that of an input query.

We reduce this general similarity problem to elementary
1D relation similarity which has been investigated in
various ways, most of which relied on the notion of
conceptual neighborhood. We propose a formal yet
practical framework for encoding 1D relations in a way
that allows efficient similarity calculation. We
subsequently extend the model in a uniform way to
arbitrary dimensions and multiple resolution levels, thus
covering many potential applications. The novelty of the
framework is its uniform treatment of all kinds of
relations, in any number of dimensions and resolution.

Structural similarity is relatively neglected in the
literature. [14] and [4] apply conceptual neighborhoods
for configuration similarity problems in GIS. Unlike the
proposed method, these techniques are restrictive in that
they do not uniformly treat all types of spatial relations,
while they assume fixed domains and queries, i.e. the
permitted relations (direction and topological) are defined
in advance and can't be tuned to different resolution
levels.

Future continuation of this work is possible in both
theoretical and practical directions. For example, the
algebraic properties of different sets of relations that are
feasible at different resolution levels could be studied and
motivate the framework's extension for hierarchical
relation similarity problems. From a practical point of
view, a very fruitful research direction would be the
coupling of our techniques with appropriate query
languages [19] for spatiotemporal domains, and with
multimedia indexing techniques in order to improve
access to large multimedia documents.
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