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ABSTRACT: NO2 is a combustion byproduct that has been
associated with multiple adverse health outcomes. To assess NO2

levels with high accuracy, we propose the use of an ensemble model
to integrate multiple machine learning algorithms, including neural
network, random forest, and gradient boosting, with a variety of
predictor variables, including chemical transport models. This NO2

model covers the entire contiguous U.S. with daily predictions on 1-
km-level grid cells from 2000 to 2016. The ensemble produced a
cross-validated R2 of 0.788 overall, a spatial R2 of 0.844, and a
temporal R2 of 0.729. The relationship between daily monitored and
predicted NO2 is almost linear. We also estimated the associated
monthly uncertainty level for the predictions and address-specific
NO2 levels. This NO2 estimation has a very high spatiotemporal
resolution and allows the examination of the health effects of NO2 in
unmonitored areas. We found the highest NO2 levels along highways and in cities. We also observed that nationwide NO2 levels
declined in early years and stagnated after 2007, in contrast to the trend at monitoring sites in urban areas, where the decline
continued. Our research indicates that the integration of different predictor variables and fitting algorithms can achieve an
improved air pollution modeling framework.

1. INTRODUCTION

NO2, or nitrogen dioxide, is a gaseous air pollutant, which can
affect the respiratory system1 by increasing susceptibility to
respiratory infections,2 exacerbating asthma symptoms,3 and
decreasing pulmonary function.4 In addition to respiratory
symptoms, evidence is mounting on the association of NO2

with low birth-weights,5 cardiovascular diseases,6 hospital
admission, and mortality. For some health outcomes, the
evidence is moderate.7 Besides its direct health impacts, NO2

can mediate the formation of secondary organic aerosol from

biogenic (e.g., terpenes) and anthropogenic (e.g., aromatics

from vehicle exhaust) sources via reactions with organic gases

and by influencing oxidant abundance.8−10 It similarly drives

reactions that produce the surface pollutant ozone.
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NO2 is an oxidative gas which reacts with other chemicals in
the atmosphere. Mobile emissions are the major source of NO2

in the United States,11 although power plants and other large
fossil fuel combustors are also important, resulting in local
hotspots of NO2. This results in a heterogeneous distribution
of NO2. NO2 modeling, therefore, needs to capture small-scale
variations, which can be challenging.
NO2 concentrations also vary considerably from day to day

due to its short lifetime. Chemical sources and sinks, the height
of the planetary boundary layer, wind speed, and wind
direction all influence concentrations in any location, with
substantial variations from day to day, even given similar
emissions. Hence accurate modeling must also capture these
temporal patterns.
Many existing NO2 models were based on land-cover

regression. Land-cover terms are proxies for traffic emissions
and related to NO2 concentrations indirectly. A typical NO2

model is based on a land-cover regression with such quantities
as road length, population density, tree canopy coverage,
impervious surface, elevation, distance to coast,12 traffic flow,13

traffic intensity,14 land-cover type,13,15,16 road types,17 building
density,18 and urban density,19 as predictor variables.
Some of these land-cover regressions incorporated satellite

measurements as well. NO2 column density from OMI (Ozone
Monitoring Instrument) have been widely used in NO2

modeling,15,17,20−25 for its relatively fine spatial resolution
(13 km × 24 km) and continuous operation since 2004.
SCIAMACHY (SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY) and GOME-2A (Global
Ozone Monitoring Experiment-2A) also provided NO2

column density, but were used less often,24,26−28 since
GOME-2A and SCIAMACHY have much coarser resolutions
(80 km × 40 km and 60 km × 30 km, respectively) and daily
coverage for GOME-2A was not available after 2012 due to a
change in viewing configuration. SCIAMACHY stopped data
collection after 2012. NO2 retrievals from satellite measure-
ment are column concentrations. To obtain surface-level NO2,
existing studies used scaling factors (i.e., the vertical
distribution of NO2) from chemical transport models to derive
the relationships between satellite retrievals and surface-level
NO2 concentrations.

21,29 Chemical transport models can also
directly simulate surface-level NO2,

15,30,31 in addition to
providing scaling factors.
In terms of fitting algorithms, most previous studies have

used simple regression with some variable selection process or
more advanced regression methods, such as geographically
weighted regression.32 Most recently, several studies estimated
NO2 concentration using machine learning approaches.
Gardner et al. used multilayer neural networks to model
hourly NO2 in Central London, which outperformed a
regression model.33 Kukkonen et al. also found that a neural
network outperformed a regression model when estimating
NO2 levels in central Helsinki, Finland.34 Yeganeh et al.
employed an adaptive neuro-fuzzy inference system, a kind of
artificial neural network, to estimate monthly mean NO2 levels
in a selected area in Australia, with model performance
superior to that of a multiple regression model.35 Other
machine learning algorithms were also utilized to model NO2

in other regions, including Hong Kong, where a support vector
machine predicted hourly NO2,

36 and urban Hungary, where a
forecast model used a neural network and a support vector
machine.37

After reviewing existing NO2 models, we found two major
areas for improvement. First, no existing study achieved high
spatial resolution, high temporal resolution, and large spatial
coverage at the same time. NO2 models with fine spatial
resolution or/and temporal resolution were often constrained
to a small study area, usually at the city level,13,19,31,33,38−43

while studies extending over a larger area had either relative
low temporal resolution16,18,22,30 (e.g., national models only
available at the annual level) or low spatial resolution.23

Second, most existing studies relied on a single model and a
single fitting algorithm to estimate NO2, even though recent
studies suggest that a hybrid model is better at integrating
monitoring data, land-cover regression, remote sensing data,
and dispersion data44 and could potentially improve model
performance.23

Therefore, in this study, we integrated multiple types of
predictor variables and multiple types of machine learners into
an ensemble model to estimate NO2 with high spatial
resolution (1 km × 1 km), high temporal resolution (daily),
and large spatial coverage (the contiguous United States) from
2000 to 2016. We further added a land cover regression with
meteorology to estimate within-grid variation. The ensemble
model integrated neural network, random forest, and gradient
boosting algorithms into a unified framework based on a
generalized additive model for ensemble averaging. For
predictor variables, we used satellite-based NO2 measurements,
an extensive number of land-cover variables, meteorological
variables, simulation results from multiple chemical transport
models, and some predictor variables not used by previous
studies. We validated our model using 10-fold cross-validation
and predicted daily NO2 levels for every 1 km × 1 km grid cell
in the entire contiguous United States from 2000 to 2016. We
also quantified the uncertainty level by estimating the monthly
standard deviation of the difference between daily monitored
NO2 and predicted NO2, for the same 1 km × 1 km grid cells.
This high resolution daily NO2 estimation, along with
predicted uncertainty, will help epidemiologists to better
assess both long-term and short-term exposures for studies of
large cohorts with residents in locations far from or without
monitors.

2. DATA

2.1. Study Area and NO2 Measurements. Our study
area is the contiguous United States, including 48 states and
Washington, DC. The contiguous United States has several
NO2 monitoring networks included in the Air Quality System
(AQS) from the Environmental Protection Agency (EPA),
encompassing 912 monitoring sites. Monitoring sites are not
evenly distributed in the study area, with more monitoring sites
in populous regions and urban areas. Mountainous regions and
some remote border areas have almost no monitoring sites. We
extracted or calculated 1-h daily maximum NO2 concen-
trations, the NO2 metric used for EPA regulation, from these
monitoring sites. We used the term “daily NO2” to stand for 1-
h daily maximum NO2 in this paper, unless specified otherwise.
The study period is from January 1, 2000 to December 31,
2016, a total of 6210 days. Not all monitoring sites were
operating during the entire study period. Missing data within
monitoring sites were excluded from the follow-up model
training process.
Like other air pollutants, the distribution of NO2

demonstrates some degree of spatial and temporal autocorre-
lation. NO2 measurements from nearby monitoring sites are
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more correlated than those from sites far apart; NO2

measurements from neighboring days are more correlated
than measurements distant in time. The use of autocorrelation
can improve model fit, and we incorporated spatially and
temporally lagged NO2 measurements. Spatially lagged terms
were calculated as inverse distance weighted NO2 measure-
ments at other locations, as well as their one-day, three-day,
and five-day lagged moving average values.
2.2. Meteorological Data. Reanalysis data sets rely on

data sourced from land-surface monitors, ship, aircraft, satellite
radiosondes, pibals, and other sources. The National Oceanic
and Atmospheric Administration (NOAA) assimilates these
data sets into a data assimilation system and provides gridded
atmospheric fields. In comparison with meteorological
measurements from monitoring sites, reanalysis data provide
almost continuous spatial and temporal coverage, often with
no or few missing values. We used daily values of 16
meteorological variables (Section 1, Supporting Information),
with spatial resolution of approximately 32 km.
2.3. NO2 Column Density and Chemical Transport

Model Simulations. We used NO2 column density from the
OMI instrument aboard the Aura satellite. The OMI NO2 data
product is available every day at 13 km × 24 km grid cells.
OMI NO2 retrievals are column measurements. To relate OMI
NO2 retrievals to surface-level NO2 levels, we used chemical
transport models to simulate scaling factors.
A chemical transport model (CTM) simulates the chemistry,

transport, and deposition of air pollutants in discrete three-
dimension grid cells, based on surface-level emission
inventories and meteorological fields. The models capture
the relevant atmospheric photochemical reactions, including
the secondary formation of air pollutants. We used the vertical
distribution of NO2 from two different CTMs, the global-scale
GEOS-Chem (http://acmg.seas.harvard.edu/geos/) and the
regional-scale Community Multiscale Air Quality model
(CMAQ, https://www.epa.gov/cmaq), and calculated scaling
factors as the percentage of surface-level NO2 contributing to
the total NO2 column density. We then related the satellite-
retrieved NO2 column to surface-level NO2, as in previous
existing studies.29,45,46 In addition, we used surface-level NO2

estimates from the CTMs as a predictor variable in NO2

modeling. Details of both CTMs can be found elsewhere.47−49

The spatial resolution of GEOS-Chem output was 0.5° ×

0.625°; the spatial resolution of CMAQ output was 12 km for
all years, except the 36-km resolution for the Western U.S. in
the early years. Neither GEOS-Chem nor CMAQ was
calibrated or tuned with NO2 monitoring data.
2.4. Land-cover Variables. A large percentage of surface

NO2 concentrations stems from local traffic emissions, which
are sensitive to land-cover patterns50 and can be approximated
by land-cover terms. Hence, land-use variables are among the
most important predictor variables in NO2 modeling. Land-
cover variables have been used in nationwide NO2 models,12,51

as well as some regional or neighborhood models.38,41

Following previous studies,52 this study included seven
categories of land-cover variables, including land-cover terms
(water bodies, developed areas, barren land, forest, shrubland,
herbaceous land, planted/cultivated land, wetlands, impervious
surface, and tree canopy), truck traffic (truck traffic volume,
truck route density, and shortest distance to truck route), road
density (road density for primary roads, secondary roads, and
all roads, respectively), restaurant density, elevation (minimum
elevation, maximum elevation, mean elevation, median

elevation, standard deviation of elevation, and breakline
emphasis), normalized difference vegetation index, nighttime
light, with details listed in the Supporting Information (Section
2).
We also prepared selected land-cover variables at three

resolutions: 100 m × 100 m, 1 km × 1 km, and 10 km × 10
km. OMI column NO2 has a resolution of 13 km × 24 km; the
horizontal resolution of GEOS-Chem, CMAQ, and reanalysis
data sets are at similar levels or even coarser than OMI. The
kilometer-level variables capture local emissions, especially
from traffic and emissions from neighboring areas, and the 10-
km variables capture more of the overall pattern of urban
emissions. We incorporated 1-km- and 10-km-level land-cover
variables to fit the three machine learning models. The 100-m-
level land-cover variables were used to fit the local models of
address-specific deviations from the 1 km grid cell.

2.5. Other Ancillary Variables. The retrieval algorithm of
satellite-based NO2 is affected by aerosol, surface reflec-
tance53/surface albedo, and cloud contamination,54 although
the agreement of satellite-based NO2 with in situ measure-
ments is usually good.55 To correct possible errors in the NO2

retrieval, we further added the following variables to our
model. (1) Variables related to aerosol concentration and
aerosol type, including simulated elemental carbon, organic
carbon, sulfate, nitrate, aerosol mass from both GEOS-Chem
and CMAQ; sulfate aerosol, hydrophilic black carbon,
hydrophobic black carbon, hydrophilic organic carbon, and
hydrophobic organic carbon from MERRA-2;56 and absorbing
aerosol index in the ultraviolet and visible ranges (OMAER-
UVd, OMAEROe) from OMI.57,58 (2) Cloud coverage,
including cloud area fractions at low, medium, and high
altitudes from the NCEP/NCAR reanalysis data set.59 (3)
Surface albedo from the NCEP/NCAR reanalysis data set59

and surface reflectance from MODIS (MOD09A1).60

OMI retrievals have many missing values. We also acquired
NO2 column simulations from Copernicus Atmosphere
Monitoring Service (CAMS), another reanalysis data set.61

The CAMS reanalysis data for NO2 rely on observations from
multiple satellites, without observations from NO2 monitoring
sites, combined with state-of-the-art computer models. CAMS
NO2 columns have a spatial resolution of 0.125° × 0.125°,
similar to that of OMI NO2 retrievals and with no missing
values, providing additional information where OMI NO2

retrievals are missing.

3. METHODS

3.1. Overview. Our NO2 model was based on an ensemble
model that took estimates from three independent machine
learning algorithms. We first fit neural network, random forest,
and gradient boosting algorithms with all input predictor
variables and monitored NO2 as the dependent variable. Then,
a generalized additive geographically weighted model com-
bined the NO2 estimates from the three algorithms and
produced a final NO2 estimation. NO2 concentrations
demonstrate some degree of temporal and spatial autocorre-
lation. To leverage this autocorrelation, we used the above
NO2 estimates, calculated their spatially and temporally lagged
values, and used them as additional input predictor variables in
refitting the three machine learning algorithms and ensemble
model again (Figure S1). In this two-step modeling framework,
each step combines a neural network, random forest, gradient
boosting, and a generalized additive model into an ensemble
model.
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We applied 10-fold cross-validation in choosing the model
hyperparameters to avoid overfitting. We also used 10-fold
cross-validation to evaluate the final model performance. We
randomly divided all monitoring sites into 10 splits. We trained
the model with 90% of the monitoring sites and predicted NO2

at the remaining 10% monitoring sites; then we repeated the
process for other 9 splits. We aggregated cross-validated NO2

predictions from 10 splits together, compared with corre-
sponding NO2 monitoring values, and calculated total R2,
temporal R2, spatial R2, root-mean-square error (RMSE), and
other metrics for model performance. The definition of total
R2, temporal R2, spatial R2, and RMSE are based on previous
literature.62 It is worth mentioning that spatial R2 is calculated
by regressing annual-averaged monitored NO2 against the
predicted value, so spatial R2 evaluates model performance of
long-term averages.
3.2. Three Machine Learning Algorithms. Previous

studies have used neural network, random forest,63 and other
machine learning algorithms to estimate surface-level
NO2.

17,23,33,34 In these studies, land-cover variables, satellite
measurements and other predictors were input variables of the
machine learning algorithm; monitored NO2 was the depend-
ent variable. We used neural network, random forest, and
gradient boosting algorithms to estimate monitored NO2

separately, with all predictors as input variables. Hyper-
parameters of the machine learning algorithms, such as the
number of hidden layer and the number of neurons for a
neural network and learning rate for gradient boosting, were
determined by a grid search process and imbedded cross-
validated process (Table S1). To improve efficiency, we

standardized all input variables by =
−

xstandard
x mean x

sd x

( )

( )
and

took the logarithm of the monitored NO2. We also used
imputation to fill in missing values of predictor variables before
model training and model prediction (Section 3, Supporting
Information).
3.3. Ensemble Model. To blend NO2 estimations from

the three machine learning algorithms, we used a generalized

additive model with penalized spline on both location and
NO2 estimation to account for geographic weights

=

+

+

̂ ̂

̂

̂

( )

( )

( )

NO f Location NO

f Location NO

f Location NO

,

,

,

i nn

i rf

i gb

2 1 2,

2 2,

3 2,

ij

ij

ij

where f1 denotes a thin plate spline for an interaction between
location i and the NO2 estimation from the neural network at

location i and on day j ( ̂NO nn2, ij
); f 2 and ̂NO rf2,

ij
and f 3 and

̂NO gb2,
ij
stand for similar quantities but from random forest and

gradient boosting at location i and on day j, respectively. By
employing this generalized additive model, we allowed the
contribution of each algorithm to the final NO2 estimate to
potentially depend on the NO2 concentration (i.e., nonlinear
response) and vary in different locations (geographically
weighted regression).
To fit the local address deviations from a grid cell level, we

took the daily residuals at each monitor and modeled these as a
function of local land cover within 100 m and meteorology,
using a random forest. Downscaling predictors included
NLCD land-cover, truck traffic, traffic volume, elevation, and
road density. We also included air temperature, humidity, wind
speed, and planetary boundary layer height.

3.4. Model Prediction. We predicted daily NO2 at 1 km ×

1 km grid cells in the study area with the trained model. In
total, there are over 11 million grid cells in the entire study
area. The trained model here included trained neural networks,
random forests, gradient boosting models, and generalized
additive models in both steps. Model prediction repeated the
same process as model training: obtain NO2 prediction from
three learning algorithms, put them into the ensemble model
and calculated NO2 estimation, calculate spatially and
temporally averaged NO2 estimation, and use these averages

Table 1. Cross-Validated Model Performancea

Ensemble Model

Year R2 MSE (ppb) Spatial R2 Temporal R2 Bias (ppb) slope Neural Network, R2 Random Forest, R2 Gradient Boosting, R2

2000 0.692 10.175 0.804 0.602 1.330 0.962 0.668 0.693 0.677

2001 0.762 8.440 0.827 0.709 0.705 0.984 0.721 0.760 0.741

2002 0.780 7.872 0.824 0.734 0.464 0.993 0.745 0.774 0.751

2003 0.801 7.289 0.845 0.751 0.317 0.995 0.789 0.799 0.770

2004 0.782 7.249 0.833 0.734 0.374 0.985 0.754 0.781 0.755

2005 0.767 7.443 0.816 0.730 0.683 0.971 0.748 0.764 0.737

2006 0.771 7.305 0.820 0.735 0.610 0.979 0.750 0.769 0.738

2007 0.782 6.997 0.840 0.730 0.488 0.982 0.759 0.778 0.747

2008 0.785 6.964 0.799 0.764 0.323 0.984 0.744 0.787 0.753

2009 0.804 6.267 0.859 0.764 −0.157 1.000 0.775 0.803 0.765

2010 0.789 6.377 0.829 0.763 0.065 0.993 0.769 0.786 0.749

2011 0.797 6.284 0.846 0.755 −0.090 0.998 0.777 0.798 0.756

2012 0.777 6.263 0.832 0.738 0.029 0.996 0.754 0.772 0.738

2013 0.792 5.999 0.835 0.762 −0.165 1.000 0.755 0.796 0.761

2014 0.787 6.113 0.819 0.761 −0.031 0.997 0.767 0.785 0.756

2015 0.779 6.227 0.817 0.755 −0.059 1.001 0.749 0.775 0.742

2016 0.749 6.459 0.780 0.724 0.334 0.968 0.733 0.749 0.722

Total 0.788 7.146 0.844 0.729 0.233 0.990 0.763 0.787 0.752
aThe definition of spatial and temporal R2

’s were based on a previous study.62 For bias and slope, we regressed daily predicted NO2 at monitors
against daily monitored NO2 in a linear regression model to obtain slope and bias (the intercept).
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as additional predictors and repeat above process again (Figure

S1).

The address-specific exposure can be used to assign better
exposure in studies where addresses or geocodes are available.
To illustrate this while avoiding confidentiality issues, we

Figure 1. Cross-validated R2 at monitoring sites and predicted uncertainty. Left column shows the cross-validated R2 at each monitoring site; the
right column shows the monthly mean standard deviations (SD) of the differences between daily monitored NO2 and daily predicted NO2,
averaged over each 1 km × 1 km grid cell for the entire study period. Spring is March to May; summer is June to August; autumn is September to
November; winter is December, January, and February.
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estimated the final NO2 estimation on a 100-m grid in the
greater Boston metropolitan area. We calculated the residual of
the NO2 model (monitored NO2 minus predicted NO2) and
used downscaling predictor variables to estimate the residual in
a random forest. After training the random forest model, we
prepared those downscaling variables and predicted residuals
in each 100 m × 100 m grid cell.
3.5. Uncertainty Estimation. We also estimated the

uncertainty in the NO2 predictions. We used the following
generalized additive model to estimate the monthly uncertainty
of NO2 estimation

Δ = +

+ +

+ +

+ +

+ + + +

̂sd f Location f Location NO

f elevation f elevation s d

f truck traffic f traffic volume

f humidity f tree canopy

f NDVI f urban Year e

( ) ( ) ( , )

( ) ( . . )

( ) ( )

( ) ( )

( ) ( )

NO i i ij

ij

2 1 2 2

3 3

4 5

6 7

8 9

ij

where sd(ΔNO2ij) is the standard deviation of the difference

between monitored daily NO2 and estimated daily NO2 at
location i and month j; f1 is a penalized spline for location i; f 2
is a thin plate spline for an interaction between location and

monthly averaged predicted NO2 at location i and month j; f 3
∼ f 9 are splines on elevation, standard deviation of elevation,
truck traffic, traffic volume, humidity, tree canopy, NDVI, and
urban areas, respectively. The error term is eij.

4. RESULTS

The mean cross-validated R2 was 0.79 for daily NO2. The two-
step modeling framework indeed improved model perform-
ance, with total R2 improved from 0.77 in Step 1 to 0.79 in
Step 2 (Table S2). The spatial R2, which we defined as the R2

between annual averaged monitored NO2 and estimated NO2,
varied between 0.78 to 0.86 by year, with a mean spatial R2 of
0.84, indicating a good model performance at the annual level
(Table 1). The average RMSE was 7.15 ppb overall (4.51 ppb
spatially and 5.57 ppb temporally). The ensemble model
outperformed the three base learners (R2, neural network:
0.763, random forest: 0.787, and gradient boosting: 0.752).
Temporally, model performance remained stable but less
satisfying in early and most recent years. Among the three
machine learners, the random forest outperformed the neural
network and gradient boosting. Overall, ensemble averaging
further improved model performance compared to the best
single learner, although only modestly. Figure 1 presents the
maps of uncertainty level, with better model performance in
California (except the south) and the Northeastern United

Figure 2. Linearity between monitored NO2 and predicted NO2. We compared monitored NO2 and predicted NO2 from the ensemble model and
three machine learners, respectively, with a spline on monitored NO2 in a generalized additive model. Dashed lines stand for 95% confidence
intervals. The 95% confidence intervals are very narrow here because of the large sample size.
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States. Performance was worse in mountainous regions, such as
Rocky and Appalachian Mountains, where site monitors are
sparse.
Although the ensemble model only had a limited impact on

daily R2, it improved the linearity of the relationship between
monitored NO2 and predicted NO2. The neural network
underestimated NO2 at high concentrations, while the random
forest overestimated at the high end. The overestimation at the
high end was even more serious for gradient boosting. The

ensemble model showed good linearity until 150 ppb, an

extremely high daily concentration seldom seen in the

contiguous United States (Figure 2). At the annual level, the

linearity between monitored and predicted NO2 was even

better, with linearity at concentrations up to 55 ppb, a very

high annual average that only 0.2% monitoring data reached

(Figure S2). Both Figure 2 and Figure S2 indicated that our

model estimated NO2 accurately at common pollution levels in

Figure 3. Spatial distribution of predicted NO2. The panels show daily NO2 estimate for 1 km × 1 km grid cells, averaged annually and for four
seasons. Here, “daily NO2” means 1-h daily maximum NO2. Rows show the four seasons, defined in Figure 1.
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the contiguous United States, with slight underestimation at
extremely high (and also rare) concentration levels.
The distribution of NO2 exhibits clear spatial clustering, with

high concentration clustering around urban areas, especially
major cities, and along highways. From the 2000 national
maps, we can clearly identify several NO2 hotspots, such as
Seattle, Los Angeles, Phoenix, Salt Lake City, Denver,
Albuquerque, Chicago, Indianapolis, Louisville, New York,
and Philadelphia (Figure 3). This clustering pattern of NO2 is
clearer in the downscaled prediction of the greater Boston
metropolitan area, using a 100-m resolution grid to illustrate
the address specific model (Figure S3). We can clearly identify
the central urban area with generally high concentrations, but
lower concentrations in rural areas, over greenspaces and
waterbodies.
NO2 concentrations fell substantially in the U.S. during the

study period, with annual level in 2016 about 50% of the 2000
concentrations, but the decline stagnated after 2007. The
nationwide NO2 level in 2016 was almost identical (100.08%)
to that of 2007 (Figure 4). By constraining only to predictions
at monitoring sites, we observed a different pattern, with long-
term decline and a steady decrease after 2007, consistent with
the trend reported in a previous GEOS-Chem model study.49

The average predicted NO2 level at the monitoring sites in
2016 was only 71.62% of the 2007 level (Figure 4).
We also reported the relative importance of different

variables from the three machine learning algorithms (Table
S3). Specific approaches to assess variable importance were
mentioned in the footnote of Table S3. Spatially lagged NO2

and its 1-day-lagged values were both important predictor
variables. Multiple land-cover variables, such as impervious
surface, developed land, road density, traffic volume of truck

route also ranked as important predictors. The explanatory
power of CMAQ-simulated NO2, and elemental carbon, which
derives from similar sources as NO2 was also high. The
standard deviation of elevation, maximum elevation, nighttime
light, and traffic volume of trucks, variables seldom used in
previous studies, also demonstrated important explanatory
power.

5. DISCUSSION

In this paper, we present an ensemble model to incorporate
neural network, random forest, and gradient boosting to
estimate daily NO2 across the contiguous United States.
Performance of the ensemble model was excellent, with cross-
validated mean R2 of 0.79, mean spatial R2 of 0.84, RMSE of
7.15 ppb, and spatial RMSE of 4.51 ppb. Our model used
various types of predictors (satellite remote sensing, chemical
transport models, multiple land-cover terms) that are not often
combined in such models, as well as ensembled results from
them using three different machine learning algorithms. We
predicted daily NO2 at every 1 km × 1 km grid cell in the
contiguous United States, which should be useful for
epidemiology and health impact assessment that require
small area estimates (e.g., over census tracts or ZIP Codes).
The ability to predict well outside of major urban areas is an
important feature of this model, with good performance in
rural areas as well. A key addition is the modeling of the
standard deviation of exposure error for each month of each
year in each grid cell. This will enable researchers to
incorporate the measurement errors in epidemiological
studies.64

Figure 4. Nationwide NO2 trend over the study period. We calculated the daily NO2 for all 1 km × 1 km grid cells in the contiguous U.S. and
plotted the daily average over the entire study period (blue line), as well as the one-year moving-average (orange line). For comparison, we also
plotted the one-year moving average of NO2 level at just the monitoring sites (black line). To visualize the relative changes after 2007, we show the
timeseries of the annual averaged changes relative to the 2007 NO2 levels (upper right figure). “Daily NO2” means 1-h daily maximum NO2.
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This study exhibits several advantages over existing studies.
First, our modeling framework incorporated multiple machine
learning algorithms and assembles them in an innovative way.
These complementary machine learning algorithms improved
model performance, especially at high concentrations. In
contrast to many ensemble methods, which give fixed weights
to each machine learner, our approach lets the weights vary
spatially and by NO2 concentration. This modeling framework,
with several independent algorithms estimating NO2 individ-
ually and a generalized additive model combining them, can be
extended to additional fitting algorithms and is applicable to
modeling other air pollutants. For example, several existing
studies on NO2 modeling used a support vector machine,
which could become another base learner in future ensemble
models. Second, this study achieved high spatiotemporal
resolution, with 1-km-level and potentially address-specific
predictions available every day. Most existing studies estimated
NO2 at the annual level, which would not be appropriate for
pregnancy outcomes or acute effects. In addition, previous
studies exhibited a trade-off between resolution and study area.
NO2 models with large spatial coverage (e.g., nationwide
models) generally had to compromise either on spatial/
temporal resolution or both. Our study, using multiple land-
cover variables as spatial predictors and meteorological
variables and CTM simulations as temporal predictors,
achieved fine spatial and temporal resolutions for the entire
contiguous United States. Third, we developed a sophisticated
model to fill in the missing values. Unlike previous studies that
estimate annual NO2 and simply exclude missing values, the
daily estimation of NO2 requires the filling in of missing values
before the training of the model. Moreover, annual average
estimates can be biased if the data are not missing at random, a
situation our method avoids. Some studies used values from
the nearest locations to fill in missing values,65 but we have
argued in a related study on PM2.5 modeling that this strategy
can be problematic, especially when the number of missing
values is large and missing values are spatially clustered. While
our method of filling in missing values requires separate
prediction models for each variable with missing data, which is
computationally intensive, growing computational capacity
makes the process less formidable. We leveraged computa-
tional power from the Harvard Odyssey Supercomputer.
We have additionally used the standard deviation of

elevation, maximum elevation, restaurant density, nighttime
light, and truck route as predictor variables, which, to the best
of our knowledge, have seldom been used in previous studies.
Results on variable importance indicate that these variables are
important for NO2 estimation. Truck exhaust is the largest
source of NOx in the United States11 and responsible for a
large portion of NOx emission in other countries as well.66

Indeed, NOx emission from trucks is many times higher than
normal passenger cars.67 Thus, it is reasonable to separate
truck emissions from generic traffic emissions. Elevation is a
predictor variable widely used in NO2 estimation. Our study
suggests that elevation variation, instead of elevation itself, is
more important. This is consistent with common sense:
topography, as well as stable tropospheric structure in the
winter due to temperature inversion, affects dispersion of air
pollutants. For a similar reason, breakline emphasis of elevation
was an important variable, which again demonstrates that
elevation variation matters in air pollution modeling. Night-
time light corresponds to the level of urbanization, energy
consumption, and overall economic activity68−70 and thus is

related to pollution emission. Previous studies have used
nighttime light in PM2.5 modeling.71 Nighttime light is
available globally over multiple years and could serve as an
important predictor variable for NO2 modeling in other
countries. In contrast, other variables we used here are not
always available. Cooking is a major source of air pollution,
especially in cities.72 Thus, restaurants are an important source,
creating local hotspots of NO2. The incorporation of
restaurants as a predictor variable can improve model
performance at finer scales, especially in cities.
The three machine learning algorithms gave the highest

weights to different predictor variables. Spatially lagged terms
of monitored NO2 (i.e., nearby monitors) play important roles
in all three algorithms. Gradient boosting predominantly
depends on these lagged terms; random forest relies primarily
on these terms plus additional land-cover variables and CTM
simulations, while neural network relies primarily on land-
cover variables. The relative importance of land-cover variables
also varies. Our results indicate that the contribution or
importance of predictor variables depends on the fitting
algorithm. Similarly, for the ensemble model, the contribution
of three individual machine learning algorithms varied by
concentrations and location. On the basis of these results, we
conclude that the model performance of different fitting
algorithms and the contribution of different predictor variables
are context-based. In other words, it is difficult to foresee
which variable(s) are most informative and which fitting
algorithm is most appropriate to an air pollution model
without actually running the model. Answers to both questions
depend on the research topic, time period, and study area.
Some previous studies compared the performance of machine
learning algorithms with a statistical model34,73 or compared
the performance of different model specifications.30,45 Our
study suggests that it would be more useful to propose a
framework integrating multiple predictor variables and
estimations from different fitting algorithms, as we did in this
study. We also conclude that the specific structure of ensemble
model depends on the practical interest. For our study, the
ensemble model aggregated daily NO2 estimation to improve
model performance at daily level, thus total R2 improved
(Table 1); but model performance at annual level may not be
optimized at the same time, thus spatial R2 of the ensemble
model decreased slightly compared with random forest (Table
S4). To optimize spatial R2, another ensemble model is
required to aggregate NO2 estimations at annual level.
We found that satellite-derived NO2 column measurements

are not as important as other predictor variables, contributing
to less than 1% of the prediction in the neural network,
random forest, and gradient boosting methods. This result
contrasts with PM2.5 modeling, where satellite-derived aerosol
optical depth (AOD) is an important predictor variable. The
reasons are multiple-fold: first, NO2 column measurement
from OMI is much coarser (13 km × 24 km) compared with
AOD from MODIS (the finest resolution of MODIS AOD is 1
km × 1 km). Coarse satellite-based NO2 measurements
average out heterogeneous NO2 levels within each cell.74 This
is especially an issue when modeling NO2, an air pollutant
primarily coming from local traffic emission, and fine-scale
measurement is essential. Second, the sensitivity of OMI and
any satellite-based measurement of NO2 increases with
altitude, such that the measurement is least sensitive at the
surface due to scattering of radiation at the surface and through
the atmosphere.75 Third, CTM outputs already contributed to
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the temporal variations and the satellite-derived NO2 was less
important as a result.
In the long term, the spatial distribution of surface NO2

contrasts with that of PM2.5 and ozone (Figure S4). High NO2

levels cluster along highways and cities. Traffic emissions are
also an important source of primary PM2.5, as well emitting
precursor gases that form PM2.5 in the atmosphere. However,
PM2.5 has a longer atmospheric lifetime than NO2 and can be
transported further; it also has more widespread sources of
importance, such as the biosphere or aqueous phase
production in clouds. Thus, for example, the entire South-
eastern United States experiences high PM2.5 concentration in
the summer, while NO2 is more locally enhanced. The spatial
distribution of ozone also exhibits different patterns from NO2,
with high concentrations occurring over rural areas surround-
ing or downwind of urban areas and in mountainous regions.
The distinct patterns of NO2, PM2.5, and ozone at the national
level suggest that a nationwide environmental epidemiological
study could separate and identify the adverse health effect of
each pollutant.
In terms of temporal trend, we found a discrepancy between

the nationwide average trend and the average trend across the
monitoring sites. We observed a steadily decreasing trend of
averaged NO2 level at monitoring sites, but at the national level
(i.e., averaged NO2 level for every 1-km grid in the contiguous
U.S.) NO2 declined from 2000 to 2007 and stagnated after
2007. For example, from 2007 to 2008, the site-averaged NO2

level dropped from 21.9 to 21.1 ppb at monitoring sites with
about 3.5% decrease, but our ensemble model predicted that
the nationwide averaged NO2 rebounded from 8.1 to 9.7 ppb
over the same period, with a nearly 20% increase.
The steady 2000−2016 decrease of NO2 concentrations

predicted at the monitoring sites is consistent with
observations and with the National Emission Inventory
(NEI) of the U.S. Environmental Protection Agency (EPA),
underscoring the success of clean air regulations (Silvern et al.,
2019). However, the discrepancy between the predicted site-
based trend and the nationwide trend suggests a different
pattern of NO2 pollution in less urban areas where there is
scant monitor coverage. Whether this is due to a lower rate of
replacement of more polluting vehicles, increased wood
combustion, increased influence of background NOx, or
widespread reduction in anthropogenic VOC emission in
urban areas, deserves further attention, particularly as rural
NOx pollution may impact production of secondary organic
particles and ozone.
Our model has some limitations. There are still differences

between predicted and observed NO2 values, and we only
model outdoor concentrations and not personal exposure.
However, a recent study pointed out that ambient exposure
has an advantage over personal exposure in epidemiology
studies in that it is much less correlated with individual level
confounders.76 The model also depends on the existing
monitoring network and so was unable to take advantage of
local intensive monitoring campaigns, which are often used in
land cover regressions. The model covers many years, whereas
land cover regression suffers from challenges in representing
the influence of changing emissions over time using largely
static land-cover terms. Despite these limitations, the daily
NO2 concentrations at high spatial resolution provided by our
ensemble model promise to improve estimates of both long-
and short-term exposures for epidemiological studies of large
cohorts of U.S. residents, even those living far from monitors.
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