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Assessing pain objectively: the use of physiological markers
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Summary
Pain diagnosis and management would benefit from the development of objective markers of nociception and pain.

Current research addressing this issue has focused on five main strategies, each with its own advantages and

disadvantages. These encompass: (i) monitoring changes in the autonomic nervous system; (ii) biopotentials; (iii)

neuroimaging; (iv) biological (bio-) markers; and (v) composite algorithms. Although each strategy has shown

areas of promise, there are currently no validated objective markers of nociception or pain that can be recom-

mended for clinical use. This article introduces the most important developments in the field and highlights short-

comings, with the aim of allowing the reader to make informed decisions about what trends to watch in the

future.
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Background
Pain is fundamental to human existence. It has shaped

our evolution, and aids our ability to avoid dangerous

hazards. Nevertheless, striving to alleviate such suffer-

ing is at the heart of medicine, and one of the anaes-

thetist’s essential roles.

The key to adequate pain management is assessing

its presence and severity, identifying those who require

intervention and appreciating treatment efficacy. The

experience of pain is complex, as reflected by its defi-

nition as “an unpleasant sensory and emotional experi-

ence, associated with actual or potential tissue damage”

[1]. Pain therefore relates to both the noxious input

via peripheral nerves and central modulation integrat-

ing different modalities such as affect, experience or

personality. Current ‘gold-standard’ pain assessment

tools rely on self-reporting, requiring an individual

both to process external information and to communi-

cate this personal experience [2]. Circumstances exist

where this is not possible, or where it is unreliable. In

these situations, surrogate markers utilise changes in

behavioural or physiological parameters [3, 4]. How-

ever, their use can be associated with considerable

shortcomings. They may be unreliable [5], hampered

by observational bias, or influenced by disease pro-

cesses or pharmacological interventions. Developing an

objective method of pain assessment therefore needs to

ensure tools that are sensitive and specific to pain.

They need to be observer-independent, not reliant on

the patient’s ability to communicate and not influ-

enced by disease characteristics. This article reviews

evidence available on the most promising current

approaches, and highlights areas for possible future

developments.
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Methods
A literature search of the electronic database PubMed

(see www.ncbi.nlm.nih.gov/pubmed/) was undertaken

using the following keywords, individually and in com-

bination: “pain”; “nociception”; “heart rate variability”;

“analgesia nociception index”; “cardiorespiratory coher-

ence algorithm”; “cardiovascular depth of analgesia”;

“surgical plethysmographic index”; “surgical stress

index”; “fluctuations of skin conduction”; “pupillome-

try”; “nociception flexion reflex”; “evoked potentials”;

“positron emission tomography”; “magnetic resonance

imaging”; “functional near infrared spectroscopy”;

“electro-encephalography”; “magneto-encephalography”;

“bispectral index”; “composite variability index”;

“entropy”; “biomarkers”; “stress hormones”; “markers of

metabolism”; “markers of inflammation”; “cytokines”;

“free radicals”; and “noxious stimulation response

index”. Articles identified from the above search, and

published in English before May 2014, were reviewed.

Publications were further screened for additional refer-

ences regarding human clinical trials fitting the search

criteria [6].

Results
Our review identified five main strategies for the devel-

opment of objective measures of pain. These utilise: (i)

changes in the autonomic nervous system; (ii) biopo-

tentials; (iii) neuroimaging; (iv) biological (bio-) mark-

ers; and (v) composite algorithms.

Autonomic nervous system changes for pain
assessment
Pain is thought to exacerbate the autonomic response

to stress [7], a rationale supported by evidence show-

ing a neuroanatomical overlap between nociceptive

and autonomic pathways [8], increases in circulating

stress hormones in response to pain [9], and by studies

investigating the effect of postoperative analgesia on

autonomic responses [10–13]. A number of potentially

objective assessment tools have been developed that

utilise the assumption that pain induces alterations in

the autonomic nervous system. These include methods

observing derived cardiovascular and respiratory

parameters (heart rate variability, patterns of blood

pressure and heart rate responses, pulse wave ampli-

tude and pulse beat interval), skin sweating and pupil-

lary changes (Table 1).

Heart rate variability

Interactions between the sympathetic and parasympa-

thetic nervous system can be detected using computa-

tionally traceable measures of heart rate variability [41].

Changes to time and frequency analysis of intervals

between consecutive heartbeats reflect autonomic reac-

tivity to noxious stimulation [18, 42]. This easy-to-

measure, non-invasive and real-time variable uses stan-

dard ECG monitoring, and can be used in both awake

and sedated patients [43, 44]. However, heart rate vari-

ability can be influenced by numerous physiological and

psychological conditions, such as age [45, 46], sex [47],

co-morbidities [48–51], depth of anaesthesia [52], surgi-

cal stimulation [53], medications [54] and emotions

[55]. Fluctuations in heart rate during breathing cycles

(respiratory sinus arrhythmia) have been integrated to

improve parameter accuracy [56]. It is thought to be

influenced by noxious stimuli, particularly under steady-

state anaesthesia, but translation into non-anaesthetised

patients is contentious, along with the correlation

between heart rate variability and pain intensity [16, 17].

Both pre-clinical studies and recent clinical trials suggest

it could be developed in future into an objective pain

assessment tool [14, 15, 24].

To correct for possible confounding factors, a

number of real-time algorithms have been developed

to evaluate heart rate variability in the setting of pain.

These include:

• real-time Fourier high/low frequency ratios:

although not specific to nociception, they are

widely accepted methods for analysis of heart rate

variability [14];

• the analgesia nociception index: this method com-

bines electrocardiography and respiratory rate

together with high-frequency heart rate variability,

in a frequency domain analysis [57];

• the cardiorespiratory coherence algorithm: this

analyses the coupling between heart rate and respi-

ratory sinus arrhythmia patterns [25].

Experimentally, the analgesia nociception index

shows an inverse linear relationship with both numerical

rating and visual analogue scores [22, 24, 58]; however,
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Table 1 Autonomic nervous system markers used in the assessment of pain.

Marker Tool Key findings References

Heart rate
variability (HRV)

Real-time Fourier
low/high frequency
ratio (LF/HF ratio)

Intra-operative anaesthesia
Correlation with haemodynamic responses Jeanne et al. [14]
Change in response to inadequate analgesia Jeanne et al. [15]
Postoperative
Correlation with pain scores Chang et al. [16]
Awake healthy volunteers
No correlation with pain intensity Meeuse et al. [17]
Responds to nociceptive stimulation Koenig et al.

(Review) [18]
Analgesia nociception
index (ANI)

Intra-operative anaesthesia
More sensitive than haemodynamic responses
to noxious stimuli

Jeanne et al. [19]

Correlation with noxious stimuli Gruenewald et al. [20]
Reflects different levels of noxious stimulation Ledowski et al. [21]
Postoperative
Correlation with NRS post-TIVA anaesthesia Boselli et al. [22]
No association with NRS after sevoflurane
anaesthesia

Ledowski et al. [23]

ANI immediately before extubation associated
with postoperative pain intensity

Boselli et al. [24]

Cardiorespiratory
coherence algorithm

Intra-operative anaesthesia
Responds to noxious stimuli and anaesthetic
bolus

Brouse et al. [25]

Heart rate and
blood pressure
changes

CARdiovascular DEpth of
ANalgesia (CARDEAN)
index

Intra-operative anaesthesia
CARDEAN-guided opioid administration resulted
in reduced movement during colonoscopy

Martinez et al. [26]

Correlation with noxious stimuli Rossi et al. [27]
Peripheral pulsatile
component of
cardiac cycle

Surgical plethysmographic
index (SPI)

Intra-operative anaesthesia
Responds to noxious stimuli and anaesthetic
bolus (TIVA)

Huiku et al. [28]

No association with nociception during spinal
anaesthesia in awake patients

Ilies et al. [29]

SPI-guided remifentanil administration resulted in
reduced opioid consumption and faster recovery

Bergmann et al. [30]

Postoperative
Moderate sensitivity and specificity to
discriminate between low, moderate and
severe pain; correlation with total opioid
consumption

Thee et al. [31]

Electrodermal
activity

Fluctuations of skin
conductance (NFSC)

Detection of nociception and pain Storm (review) [32]
Postoperative
Correlation with pain scores (adults) Ledowski et al. [33]
Accurate prediction of absence of moderate
to severe pain (children)

Hullett et al. [34]

Weak correlation with pain scores (children) Choo et al. [35]
Awake healthy volunteers
Correlation with individual heat
evoked pain intensity, but high variability
between individuals

Loggia et al. [36]

Pupil reflexes Pupillometry
PD (pupil diameter)
PDR (pupillary dilatation
reflex)
PLRA (pupillary light
reflex amplitude)

Labour pain
Correlation with PD and PLRA Guglielminotti et al. [37]
Intensive care
PD variation to tetanic stimulation
predicted insufficient analgesia during
tracheal suctioning

Paulus et al. [38]

Postoperative
Correlation of PDR with VRS Aissou et al. [39]
No association of PD or PLRA with NRS Kantor et al. [40]

NRS, numerical rating scale; TIVA, total intravenous anaesthesia; VRS, verbal rating scale.
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its accuracy in postoperative pain detection has been

inconclusive [23]. Both the analgesia nociception index

and the cardiorespiratory coherence algorithm reflect

noxious stimulation levels, and respond to increasing

plasma concentration and boluses of opioids [19–21,

59–61]. These findings may nevertheless be influenced

by the mode of anaesthesia and residual effects in the

postoperative period. Despite this method’s offering easy

practical applications, it remains unclear whether the

complex computational algorithms are specific enough

to nociception or pain in a clinical setting.

CARdiovascular DEpth of ANalgesia index

Noxious stimulation induces minor increases in blood

pressure, followed by an increase in heart rate. The

CARdiovascular DEpth of ANalgesia (CARDEAN)

index was developed to detect these changes, combin-

ing electrocardiography and pulse oximetry with non-

invasive beat-to-beat finger and oscillometric arterial

blood pressures measurements [62]. Utilising these

parameters, it creates a score on a linear scale (0–100),

assessing adequacy of intra-operative anti-nociception.

Initial research predominantly concentrated on its abil-

ity to guide opioid use in reducing intra-operative

movement, tachycardia and hypertension [26, 27]. It is

a potentially useful tool, again using standard intra-

operative monitoring.

Surgical plethysmographic index

The surgical plethysmographic index (previously surgi-

cal stress index) employs photoplethysmographic

waveforms of peripheral oxygen saturation measure-

ments to analyse pulse wave amplitude and interval

[28]. From these values, it generates a number on a

linear scale (0–100), where values exceeding 50 are

thought to represent pain. Most current research has

investigated its ability to aid titration of intra-operative

remifentanil this response to noxious stimulation [30,

63–68]. Although pre-clinical and clinical (intra-opera-

tive and postoperative) research indicated its ability to

discriminate strong noxious stimuli from no stimula-

tion [67–71], the method could not consistently differ-

entiate stimulus intensities [29, 31, 72, 73]. The

surgical plethysmographic index is not specific to noci-

ception, and is influenced by both peripheral and cen-

tral sympathetic tone [67, 74], sex [47, 75],

intravascular volume status [76], heart rate [77], drugs

[77, 78], location of the probe [79], posture [74], levels

of consciousness and in awake patients, pain anticipa-

tion and emotional stress. Although the non-invasive

nature of the clinical application is appealing, this is

offset by large inter-patient variability.

Skin conductance

Sweating occurs as a consequence of the activation of

the autonomic nervous system by noxious stimuli. This

both reduces the electrical resistance of the skin and

increases its conductance. Fluctuations of amplitude

and frequency of skin conductance that change with

stimulation can then potentially be used to assess pain

[32]. Measurement involves attaching self-adhesive

electrodes to the palm of the hand or sole of the foot.

A filtered and processed conductance signal is then

generated that responds within a few seconds, chang-

ing this frequency of fluctuations into a measured unit

[32, 80, 81]. The signal is thought to be independent

of adrenergic agents, haemodynamic variability and

respiratory rate, as sweat glands are controlled by mus-

carinic receptors [32]. These, however, are not pain

specific [82, 83], and can be affected by skin quality,

moisture levels and environmental temperature. Out-

puts are also highly individual [36], and therefore

interpretation should focus on each patient’s own vari-

ability, rather than on isolated values or comparisons

between individuals. Initial evaluation demonstrated a

good ability to differentiate between the presence and

absence of pain in adult postoperative patients [33,

84]. Replication of these promising results, however,

has been lacking [85, 86], and there are inconsistencies

in responses in paediatric postoperative patients and

neonates [34, 35, 80, 83, 87–95]. Furthermore, despite

clinical data that indicate a high sensitivity and speci-

ficity for noxious stimuli [96–99], depth of anaesthesia

and neuromuscular reversal agents can influence

results [85], and only a small correlation is demon-

strated to occur with opioid dosing [97, 98, 100, 101].

Additional technical problems that cause high levels of

artefact include electrode dislocation, stretching of

wires and excess sweating [82, 102]. Although suitable

for all ages, this tool currently represents only a crude

detector of pain, with further modifications and valida-

tion required before it can be implemented clinically.
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Pupillometry

Pupillary dilatation is sympathetically mediated in

awake patients, and could be used to evaluate sympa-

thetic stimulation as a consequence of pain. This ratio-

nale has led to the development of an infrared video-

pupillometer; it is described as a portable, easy-to-use

and non-invasive device. It measures both pupillary

diameter and the light-induced pupillary dilatation

reflex, shown to change in response to noxious stimuli

[103–106]. However, the pupillary response can be

influenced by drugs, including analgesic, antiemetic,

anticholinergic and vasoactive agents, environmental

luminance, age and rare entities such as Horner’s syn-

drome [107, 108]. In addition, the mechanism of

pupillary response in sedated patients remains unclear.

Despite consistent results in response to transient

painful stimuli [37, 38, 60, 103], pupillary light reflex

amplitude has shown variable correlation with numeri-

cal rating scores in the postoperative setting [39, 40].

In the light of these results, along with issues of practi-

cality, particularly in uncooperative patients, its clinical

application remains uncertain.

Biopotentials
Biopotentials are electric potentials that transfer infor-

mation between living cells. They are measured as

electrocardiography, electro-encephalography (EEG) or

electromyography (EMG), and can be incorporated

into methods that aim to assess responses to nocicep-

tion and pain (Table 2).

Nociception flexion reflex threshold

The nociceptive flexion reflex threshold provides an

indication of an individual’s nociception threshold, by

assessing the protective withdrawal reflex [109]. Stim-

uli are applied via a needle or surface electrode to the

sural motor nerve. This elicits a withdrawal of the

biceps femoris muscle that is quantified using EMG

[123, 124]. The flexion reflex threshold can be modu-

lated by emotionally stimulating pictures or smell

[111, 125], habituation stimulation [112], analgesic

medications [126–130], sex [131], ethnicity [132],

obesity [133], sedentary lifestyle [134], chronic pain

[135, 136], cardiac cycle [137, 138], sleep [139], site of

stimulation [140, 141] and circadian rhythm [142].

Furthermore, no standardised scoring method cur-

rently exists [124, 143–145]. Despite these drawbacks,

scores appear to correlate well with self-reported pain,

but routine clinical practice is hindered by the lack of

a commercially available real-time monitoring system.

Evoked potentials

Evoked potentials assess neuronal responses as mea-

sured by EEG that occur following specific sensory

stimuli [146]. These techniques are less expensive, and

more clinically practical, than other methods of evalu-

ating cerebral activity such as neuroimaging, and have

demonstrated clinical applications, including monitor-

ing depth of anaesthesia. However, to provide useful

results, they require advanced signal processing to

remove both background noise and non-cortical arte-

facts. With regard to pain assessment, EEG signal

amplitudes correlate with nociceptive stimulus inten-

sity, and are thought to reflect both peripheral and cen-

tral processing of nociceptive inputs. Analgesic

medication appears to alter these measured amplitudes

[113, 147–149]; the specificity required to differentiate

between nociceptive and non-nociceptive stimuli is,

however, contentious [149–154]. Measurement of the

stimulus response can be evaluated via a number of dif-

ferent methods. Currently, steady-state evoked poten-

tials (measuring sustained changes after a periodic

sensory stimulus) and single-trial, infrared laser-evoked

potentials seem to be promising [114, 155–157],

although they are not thought to reflect the neural cod-

ing of pain intensity [152]. In this respect, evaluation of

gamma band oscillations, which show correlation with

subjective pain intensity, provides a promising alterna-

tive [115]. At present, these techniques remain within

the research setting, requiring careful experimental pro-

tocols, a sophisticated extraction process and high com-

putational complexity. They are, therefore, beyond the

realms of clinical application, but may provide possible

avenues for development in the future.

Magneto-encephalography and electro-encephalography

Magneto-encephalography directly measures magnetic

fields generated by intracellular dendritic activity,

whereas EEG directly measures scalp voltage fluctua-

tions due to extracellular ionic currents [158]. Both

techniques detect increases in brain activity related to

noxious stimulation [116, 159], that correspond with
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data obtained with functional magnetic resonance

imaging (fMRI) [117, 118]. They have a temporal reso-

lution in the order of milliseconds, which is superior

to indirect neuroimaging methods such as functional

near-infrared spectroscopy and MRI. However, they

have limited spatial resolution (up to 1 cm) [160],

detect only superficial cortical activity, and are liable to

artefacts originating from overlying muscle contrac-

tions [161]. Magneto-encephalography is clinically

impractical owing to large, immobile equipment, and

the need to shield the signal generated from external

magnetic artefacts, which interfere with the brain’s

weak femto-tesla signals. Conversely, EEG signals,

although much easier to obtain and measure by the

bedside, are more prone to signal distortions from the

skull and non-neural matter.

Processed electro-encephalography

Processed EEG is used to monitor depth of hypnosis

under general anaesthesia. The bispectral index (BIS)

is a dimensionless number (0–100), derived from sev-

eral cortical EEG parameters. Entropy processes raw

cortical EEG and frontal EMG signals to produce two

indices based on their frequency range, called ‘response

entropy’ and ‘state entropy’. Although studies have

shown that nociceptive stimulation increased BIS,

response entropy and state entropy, this was heavily

dependent on both the baseline BIS levels [119] and

the degree of concurrent hypnosis. It did not correlate

with the quality or intensity of noxious stimuli [120],

despite steady-state, end-tidal sevoflurane concentra-

tions. Further analysis of entropy patterns revealed

that nociception induced a significant difference in the

Table 2 Biopotentials used in the assessment of pain.

Marker Tool Key findings References

Spinal polysynaptic
withdrawal reflex

Nociception flexion
reflex (NFR)

Reliable measure of pain Skljarevski and Ramadan
(review) [109]

Intra-operative anaesthesia
Attenuated by sevoflurane
and propofol

Baars and Trapp [110]

Awake healthy volunteers
Modulated by olfactory stimuli Bartolo et al. [111]
Affected by habituation Von Dincklage et al. [112]

Neuronal signalling Steady-state, laser-evoked
potentials

Laser-evoked potentials (LEP)

Awake healthy volunteers
Subanaesthetic concentrations of
propofol, sevoflurane, remifentanil
and ketamine effect somatic and
visceral LEPs

Untergehrer et al. [113]

Single-trial, laser-evoked
potentials

Awake healthy volunteers
Predicts intensity of pain perception Huang et al. [114]

Gamma band oscillations (GBO) Awake healthy volunteers
Predicts intensity of pain perception Zhang et al. [115]

Processed
electro-encephalography
(EEG) and frontal
electromyography (EMG)

EEG Infant heel lancing
Painful versus tactile stimulation in
infants affects evoked EEG changes

Fabrizi et al. [116]

Magneto-encephalography
(MEG)

Awake healthy volunteers
Somatotopic changes in MEG and
fMRI during visceral pain induction

Smith et al. [117]

Activation patterns differentiate
painful versus non-painful stimuli

Torquati et al. [118]

Bispectral index (BIS) Intra-operative anaesthesia
Responds to noxious stimuli Coleman and Tousignant-

Laflamme [119]
Unable to predict motor response
to noxious stimuli

Takamatsu et al. [120]

Entropy difference:
(Response entropy �
state entropy)

Intra-operative anaesthesia
Responds to noxious stimuli Takamatsu et al. [120]
Predicts intra-operative nociception
to guide remifentanil analgesia

Mathews et al. [121]

Composite variability
index (CVI)

Intra-operative anaesthesia
Responds to noxious stimuli Ellerkmann et al. [122]
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response and state entropy levels, termed ‘entropy dif-

ference’, which represents the electrical function of

facial muscles (facial EMG) [120, 121]. Facial muscle

activation is thought to represent inadequate analgesic

subcortical blockade [120], and studies have used an

entropy difference of less than 10 to titrate intra-oper-

ative opioids [121].

Two further EEG-based methods have been devel-

oped; the composite variability index, which combines

BIS and facial EMG, and auditory evoked potentials

expressed as A-line autoregressive index. Although the

composite variability index detected noxious stimula-

tion, and predicted haemodynamic or somatic

responses (movement, grimacing, eye opening), it did

not correlate with remifentanil plasma concentrations

[122, 162]. However, the autoregressive index increased

in both peak and speed after noxious stimuli, despite

steady BIS levels [163].

Technology based on EEG has the potential to be

a practical and useful method of assessing the nocicep-

tive/antinociceptive balance. At present, however, none

of the raw or processed parameters have been shown

to predict levels of nociception accurately in awake or

anaesthetised patients.

Neuroimaging and related methods
Neuroimaging is increasingly used to assess the corre-

lation between functional and morphological status of

the nervous system, and painful stimuli or conditions.

Common methods include positron emission tomogra-

phy (PET), MRI and near-infrared spectroscopy

(Table 3). All assess neuronal function, and allow

investigation of how activity in the spinal cord and

brain changes depending on the quality [166, 169],

intensity [147, 170–172], location [169] and duration

[173] of painful stimuli. Comparisons between awake

and anaesthetised volunteers have demonstrated that

pain perception (nociception) is not influenced by

sedation [174]. Nevertheless, some authors argue that

brain activation due to noxious stimulation during

functional neuroimaging is not nociception-specific,

but part of the overall sensory process of detecting any

salient trigger [150].

The ‘pain matrix’ [175] or ‘neural pain signature’

[176, 177] describe areas that are repeatedly activated

during noxious stimulation. They comprise the pri-

mary and secondary somatosensory, anterior cingulat-

ed, insular [169, 170] and prefrontal cortices, as well

as the amygdala [169, 178, 179]. The midbrain and

brainstem are also thought to be involved, with mood

and emotion influencing pain [180]. Furthermore,

depression, distraction, anxiety [180–182], pain antici-

pation [183, 184] and the placebo effect [185] have

been associated with activating the peri-aqueductal

grey, hypothalamus, amygdala and diencephalon [177,

180].

Positron emission tomography

Positron emission tomography is one of the earliest

neuroimaging techniques. It measures increases in cel-

lular activity and enhanced glucose and oxygen con-

sumption, by imaging gamma rays emitted from a

rapidly disintegrating radioactive tracer. This indirect

Table 3 Neuroimaging used in the assessment of pain.

Marker Tool Key findings References

Brain cellular
activity

Position emission tomography (PET) Brain network activated in acute pain Apkarain et al.
(review) [164]

Awake healthy volunteers
Correlates with opioid system activation
and affective pain scores

Casey et al. [165]

Functional blood oxygenation level-dependent
magnetic resonance imaging (BOLD fMRI)

Awake healthy volunteers
Neurological signature to thermal pain,
modulated by opioids

Wager et al. [166]

Functional arterial spin labelling MRI Awake healthy volunteers and patients
with chronic low back pain

Correlated with clinical pain Loggia et al. [167]
Functional near-infrared spectroscopy Awake and intra-operative anaesthesia

Responds to noxious stimuli Gelinas et al. [168]
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assessment of regional neuronal activity results in a

three-dimensional image of a functional process.

Extensive research using PET shows similar sensi-

tivity in pain-related regional changes as fMRI [164,

180]. Furthermore, it has been used to investigate vari-

ous pharmacological effects on the brain, such as the

opioid-induced reduction in insular responses to nox-

ious stimuli [165, 184]. Despite its clear uses in pain

research, its popularity is diminishing owing to con-

cerns regarding ionising radiation exposure and inva-

sive intravascular injections of radioactive isotopes.

Magnetic resonance imaging

Magnetic resonance imaging relies on the principle

that protons align in a strong magnetic field, and fall

back into their original position when it is turned off,

emitting a magnetic flux that is transduced and mea-

sured as an electrical signal. While static MRI can pro-

vide structural information about grey and white

matter [186], fMRI allows quantification of neuronal

activity in specific areas of the brain and spinal cord,

by associating metabolic changes during cell activity

with localised haemodynamic responses. It has the

advantage of not requiring invasive contrast or expo-

sure to ionising radiation.

Two main types of fMRI have been explored as

potential methods to measure pain. Blood oxygenation

level-dependent (BOLD) fMRI utilises the differences

in magnetic properties of oxy- and deoxyhaemoglobin

to determine spatial and temporal changes in cerebral

blood flow [187]. Evidence suggests that these imaging

signals correlate with the presence of painful stimuli,

as well as their location, time frame, quality (heat ver-

sus pinprick) [169], intensity [166, 170, 179] and chro-

nicity [173]. They also show how emotional and

pharmacological stimuli modulate neuronal pain sig-

nalling [166]. This technique has good spatial cover-

age, allows large areas of brain and spinal cord to be

seen in a single study, and can detect small differences

in discrete areas over time [188]. The second method

is arterial spin labelling or blood oxygenation-sensitive,

steady-state techniques. Arterial water is ‘magnetised’

by pulsed or continuous radiofrequency radiation, and

tagged proximally to the imaged segment [189, 190].

The area becomes perfused with the newly traced

blood, and the labelled image is subtracted from the

unlabelled form, in one imaging sequence. In pain

research, arterial spin labelling has shown similar spa-

tial–temporal distributions in brain activity to PET

and BOLD imaging [191]. Its main advantages over

other neuroimaging techniques are a stable and quan-

tifiable signal, with low drift over time and between

subjects, making it ideal for investigating cerebral

activity in longitudinal studies that look at prolonged

treatment outcomes or spatial–temporal activity pat-

terns [192, 193]. As arterial spin labelling measures the

amount of tracer within brain capillaries, the images

more accurately reflect the localisation of synaptic and

neuronal activity compared with BOLD MRI, which

images the macrovasculature [167, 192]. However,

low-amplitude signals, poor temporal resolution and a

lower signal-to-noise ratio can result in less sensitivity

and spatial resolution compared with BOLD tech-

niques [192, 194]. Recently, technical refinements such

as turbo-arterial spin labelling, with shorter imaging

times and higher magnetic fields and filters, have

improved signal-to-noise ratios and provide faster

image acquisition.

All MRI-based methods are hampered by the need

for bulky, expensive equipment, long investigation

times and the risk of artefacts, affecting image specific-

ity and sensitivity [192]. They have limited use in day-

to-day clinical assessment of pain.

Functional near-infrared spectroscopy

Near-infrared spectroscopy is a non-invasive, indirect

method of measuring localised neuronal activity. As

with fMRI, it utilises changes in local blood oxygena-

tion and haemodynamics, which are thought to corre-

late with regional brain activity [195]. Two

chromophores, with different infrared absorption spec-

tra, penetrate the brain via an ‘optical window’ and are

absorbed to a variable degree, depending on the con-

centration of oxygenated and deoxygenated haemoglo-

bin. Specialised light detectors convert the remaining

signal into a graphic and numerical display of neuro-

nal activity. Increases in neuronal activity raise cerebral

oxygen consumption, and cause a corresponding

increase in cerebral blood flow and volume, which

alters the concentrations of oxygenated versus deoxy-

genated haemoglobin. This complex interaction,

known as ‘neurovascular coupling’, is the fundamental
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principle behind functional near-infrared spectros-

copy’s ability to detect local changes in brain neuronal

activity [196]. Functional near-infrared spectroscopy is

widely used in the assessment of brain activity in neo-

nates and children [197]; however, its application in

pain evaluation is not established. It is also currently

used to study the temporal and spatial localisation of

cortical activity in response to other stimuli, such as

vision [198], sound [199], language [200, 201] and

taste [202].

Its main advantages are a lack of exposure to ion-

ising radiation, which allows for repeated use over

extended periods of time. Functional near-infrared

spectroscopy shows promise as a tool for indepen-

dently assessing pain in adults [168] and children

[203], when self-reporting is not possible [204]. Its

employment as a continuous, bedside monitor would

be of particular use in critical care or intra-operative

settings.

Biomarkers
A biomarker is broadly defined as “a characteristic that

is objectively measured and evaluated as an indicator

of normal biological processes, pathogenic processes, or

pharmacological responses to a therapeutic interven-

tion” [205]. The range of biological parameters covered

by this definition spans from genotyping to imple-

menting and scoring a clinical scale, making most bio-

logical variables potential biomarkers. Within pain

medicine, biomarkers could encompass self-reported

pain intensity scores, changes in physiological variables

and functional brain imaging. However, biomarker

research has the potential to develop truly objective

pain measures, by using an integrated systems

approach that focuses on the ‘onomics’: measuring

genetic or protein responses, or metabolic products, at

cellular level (Table 4). Systems biology aims to quan-

tify molecular elements of a biological system, and

integrates these to serve as predictors to explain emer-

gent behaviours [210]. Nociception is complex, involv-

ing varying transduction mechanisms and mediators,

depending upon the cause, nature and location of the

stimulus. A systems biology approach is therefore well-

suited to develop markers that could identify the pres-

ence and intensity of pain, specific to each potential

nociceptive mechanism. Creating an easy-to-sample,

quick to measure, sensitive and specific marker could

represent the ‘holy grail’ of pain assessment. However,

this approach is not without problems, including

potential inter- and intra-individual variation in mar-

ker response, and also methodological issues, such as

determining the markers’ specificity for pain.

A number of avenues could be exploited to develop

pain biomarkers. The most obvious is the stress

Table 4 Biological (‘bio’) markers used in the assessment of pain.

Marker Tool Key findings References

Stress hormonal and
metabolic changes

Assays Venepuncture in children
Salivary alpha-amylase levels elevated in
conjunction with elevated pain scores

Ferrara et al. [206]

Awake healthy volunteers
Insulin sensitivity decreased, and serum cortisol,
free fatty acid, plasma adrenaline, glucagon
and growth hormone increased, following
noxious stimulation

Greisen et al. [9]

Drug effect-site
concentrations

Noxious stimulation
response index (NSRI)

Intra-operative anaesthesia
Higher probability of predicting a response to
tetanic stimulation than BIS or acoustic evoked
potential index

Luginb€uhl et al. [207]

Biochemical analytes Serum lipid levels Hospitalised patients
Two groups (acute visceral pain and somatic pain)
both showed increased serum lipid levels during
periods of persisting pain

Krikava et al. [208]

Inflammatory mediators Immunoassays Awake healthy volunteers
Differing release patterns of interstitial cytokines
following inflammatory and noxious heat
stimulation

Angst et al. [209]
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response, which involves two main systems; the hypo-

thalamic-pituitary axis and the sympathetic nervous sys-

tem. A relationship exists between stress and pain,

whereby the release of stress hormones could reflect the

presence of pain. Serum catecholamine levels reflect

sympathetic activation, and could be measured in an

attempt to evaluate pain. However, a less invasive surro-

gate marker of this response is salivary alpha-amylase

[211], which has shown promising results in the paedi-

atric setting [206]. In addition, in an experimental set-

ting, acute pain without tissue injury has been linked to

increased release of cortisol, adrenaline and free fatty

acid, with decreased insulin sensitivity [9]. However, the

strength of the link between sympathetic activation and

pain has recently been questioned in acute pain research

[212]. Pain may only represent a small part in this com-

plex neuroendocrine response, and therefore using these

hormonal changes as specific biomarkers of pain may be

futile.

As biomarker research is heavily embedded in

pharmacological discovery, measuring drug concentra-

tions, especially at effector sites, poses another area for

development of pain biomarkers. While establishing

serum drug concentrations reflects pharmacokinetic

and pharmacodynamic processes, it remains unclear

how this would reflect pain in the clinical setting. A

novel approach is the noxious stimulation response

index. This univariate index is calculated from

weighted propofol and remifentanil concentrations,

and aims to show the synergism of using a hypnotic

and opioid to suppress an individual’s response to

noxious stimuli [207]. However, as this requires

administration of hypnotic agents, it reflects anaesthe-

sia as much as nociception, and is not necessarily use-

ful for evaluating pain specifically in a clinical setting.

Potentially, any biochemical analyte could be used

as a biomarker, and to this end, many agents routinely

measured have been explored with respect to pain. Most

notably, changes in serum lipid levels may increase in

parallel with increasing pain intensity. However, preli-

minary work has been hampered by numerous con-

founding factors, including co-morbidities, that could be

driving these lipid changes, rather than pain [208].

Finally, there is a well-established link between

inflammation and pain. Historically, pain has been

used as a clinical sign of inflammation, and evidence

supports the hypothesis that pro-inflammatory cyto-

kines both induce and facilitate pain and hyperalgesia,

through direct and indirect action on peripheral noci-

ceptors [213]. Cytokines and chemokines are released

peripherally in experimental inflammatory pain, and

could serve as potential biomarkers [209]. Results from

the clinical setting, however, are more complex. Acute

and chronic conditions associated with pain and

inflammation demonstrate variable release of pro- and

anti-inflammatory cytokines, not always consistent

with measured pain intensity [214, 215]. In addition,

evidence is hampered by methodological inter-study

inconsistencies, including samples ranging from direct

serum level analysis to skin biopsies, and the use of

heterogeneous populations with conditions that are

difficult to define, such as fibromyalgia. This field

remains promising for further development, however,

once these sampling and investigational inconsistencies

are resolved. Other areas of promise include evaluating

the inflammatory prostaglandin metabolic pathway,

the products of which may reflect pain [216]. Overall,

however, while there is theoretical promise in explor-

ing biomarkers as an objective measure of pain, it is

unlikely that there will be one specific mediator that

reflects pain alone, and it may be more useful to focus

on mediator profiles in a more systems-based

approach.

Comparison of different assessment tools
New pain assessment tools are validated in conscious

patients by comparing self-reported pain scores with the

output of the novel device. This is not possible in

sedated or cognitively impaired patients, as no gold

standard exists in this patient cohort. To address this

problem, comparison between tools has been used, but

as this lacks a validated method, the results should be

interpreted with caution (Table 5). The majority of pub-

lished studies compare the surgical plethysmographic

index with either haemodynamic responses, EEG deriva-

tives or concentrations of opioids [67, 219, 220]. The

surgical plethysmographic index has demonstrated

greater sensitivity in detecting nociceptive stimuli and

better correlation with effector site remifentanil and alf-

entanil concentration during general anaesthesia than

heart rate and entropy values [68, 69]. Some initial

results even suggest that it can detect responses to phar-
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macological interventions such as fentanyl boluses,

although this has recently been questioned [78, 100,

221]. In postoperative patients, both the surgical ple-

thysmographic index and fluctuations of skin conduc-

tance have been shown to differentiate grossly between

the extremes of pain [31, 33, 84], but not between more

subtle differences. Furthermore, fluctuations of skin

conductance, but not the surgical plethysmographic

index, were correlated with self-reported pain intensity

[73].

When looking at other potential tools, the noci-

ceptive flexion reflex threshold appears a better predic-

tor of movement and heart rate responses to noxious

stimuli under general anaesthesia than either the nox-

ious stimulation response index or propofol–remifenta-

nil effect-site concentrations [218]. However, it has

been criticised as being more specific for muscular

activity, rather than detecting pain due to measuring a

muscular reflex.

Stress hormones such as cortisol, adrenocorticotro-

pic hormone, adrenaline and noradrenaline have been

used to evaluate the magnitude of surgical stress [222].

However, as stress hormone levels are influenced by a

number of factors other than pain, there is conflicting

data regarding their correlation with both surgical ple-

thysmographic index and skin conductance [96, 100,

212, 219].

Currently, most tools are difficult to evaluate in

specific clinical situations, and comparing these tools

with each other does not necessarily address the issue

of validation.

Composite algorithms
As individual physiological variables are unlikely to

become validated markers of nociception alone, algo-

rithms that encompass several parameters might pro-

vide an alternative solution (Table 6). Furthermore, it

has been suggested that combining multiple physiolog-

ical parameters better reflects the complex nature of

pain. Statistical modelling and data analysis have, for

instance, been used to create the response index of

nociception, which utilises heart rate variability, skin

conduction and EEG, and also the nociception level

index, which evaluates heart rate variability, skin con-

duction and photoplethysmography. These multi-vari-

able approaches appear to be superior predictors of

pain intensity and intra-operative nociception to any

individual parameter alone [220, 221, 223–225], but

evidence so far comes only from uniform patient pop-

ulations who have undergone a limited array of sur-

gical procedures or noxious stimuli, under a single

type of anaesthesia. Although this approach reduces

inter-patient variability experimentally, it supports

the notion that even these tools are influenced by a

plethora of confounding factors. Therefore, the clini-

cal value of composite tools remains to be deter-

mined, especially in more heterogeneous patient

populations.

Table 5 Comparison of different tools used in the assessment of pain.

Tools compared Key findings References

NFRT and BIS Intra-operative anaesthesia
Comparable prediction of movements in response to noxious stimuli Von Dincklage et al. [217]

NFSC and SPI Postoperative
Both only moderate sensitive and specific to pain Ledowski et al. [73]

NFSC, SPI and plasma
stress hormones

Intra-operative anaesthesia
Response of NFSC but not SPI to fentanyl bolus. Both only
minimally associated with plasma stress hormone levels

Ledowski et al. [100]

NFRT, BIS, CVI and NSRI Intra-operative anaesthesia
NFRT as best predictor of movement and HR responses to
noxious stimuli

Von Dincklage et al. [218]

PRD and ANI Intra-operative anaesthesia
Correlation of both with regional anaesthesia failure (children) Migeon et al. [60]

NFSC and ANI Intra-operative anaesthesia
ANI more sensitive for intra-operative stimulation in children Sabourdin et al. [61]

NFRT, nociception flexion reflex threshold; BIS, Bispectral index; NFSC, number of fluctuations of skin conductance; SPI, surgical
plethysmographic index; CVI, composite variability index; NSRI, noxious stimulation response index; PRD, pupillary reflex dilata-
tion; ANI, analgesic nociception index.
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Discussion
Studies have repeatedly shown that at any time, 25–

40% of patients admitted to hospital suffer moderate

to severe pain [226]. Management is often hampered

by poor assessment, especially in patients who are

unable to self-report [227]. As a consequence, clini-

cians and scientists alike have identified the need to

develop more objective measures of pain, to aid its

management. As a consequence, a wide variety of tools

employing physiological parameters linked to pain are

currently undergoing investigation, of which this arti-

cle gives an overview of important trends.

A valid test requires high and reproducible sensi-

tivity and specificity, with a strong probability that the

parameter will correlate with pain intensity [228].

However, investigating objective nociceptive measures

poses a multitude of challenges.

First, as pain is a conscious experience involving

considerable psycho-social components [1], sedated or

unconscious patients by definition cannot experience

it. Under these circumstances, it is more accurate to

talk about nociception, the process that transmits a

noxious stimulus to higher brain centres, where it is

modulated. Some would suggest that managing noci-

ception is not important, as it is the conscious process

of pain that is distressing for the patient. However, a

body of research suggests that not managing nocicep-

tion can lead to central changes in pain pathways that

predispose individuals to chronic pain states [229,

230]. In anaesthetised and sedated patients, the physio-

logical changes that occur are therefore a consequence

of nociception rather than pain. This distinction is

important, as it implies that using self-reported pain

assessments to validate tools that are most likely to

assess nociception is incorrect. Yet, this is the gold

standard applied to evaluating all such ‘objective’ tools.

Not surprisingly, therefore, some tools such as pupill-

ometry and skin conductance show inconsistent corre-

lations with pain intensity ratings in awake patients.

While the lack of a gold-standard comparator already

hampers the development of new assessment tools in

anaesthetised patients, the situation becomes even

more complex in the confused or non-verbal patient.

Here, the question arises as to what degree self-report-

ing is accurate, and can hence be used for method val-

idation. Usefully, even moderately confused patients

have been shown to be capable of using rating scales

[3], and thus careful patient selection might be the key

to develop and validate new tools.

Currently, potential tools and algorithms employ

variables that are by nature only indirect measures of

pain or nociception, and hence are not necessarily spe-

cific. This leaves them vulnerable to the influence of

other factors, such as medication or disease processes

[5]. It is often difficult to determine which of the

observed changes in the parameter under investigation

are genuinely due to pain, and which are a result of

pathological, pharmacological or physiological events.

Table 6 Composite algorithms used in the assessment of pain.

Tools combined Key findings References

ECG, PPG, EEG (RE) Intra-operative anaesthesia
Better correlation with noxious stimuli than single variables Seitsonen et al. [221]

HRV, SE, RE, PPG (RN) Intra-operative anaesthesia
Correlation with noxious stimuli and effect-site concentrations
of remifentanil

Rantanen et al. [223]

HRV, SE, RE, PPG (RN) Intra-operative anaesthesia
Correlation with intra-operative noxious stimuli and predicted
patient movement

Saren-Koivuniemi et al. [224]

Linear combination of
HR, HRV, NFSC, PPG

Awake healthy volunteers
Significant differentiation between mild, moderate and severe
pain (tonic heat stimuli)

Treister et al. [220]

HR, HRV, NFSC, PPG (NoL) Intra-operative anaesthesia
Better correlation with moderate to severe noxious stimuli
than single variables

Ben-Israel et al. [225]

EEG, electro-encephalography; PPG, photoplethysmography; RE, response entropy; HRV, heart rate variability; SE, state entropy;
RN, response index nociception; HR, heart rate; NFSC, number of fluctuations of skin conductance; NoL, nociception level.
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In addition, many analgesics are also sedatives [231],

which complicates matters in the intra-operative and

critical care settings, where tools are needed that can

reliably separate analgesia from sedation. Validation is

further complicated by the fact that new techniques

frequently rely on the same surrogate variables of pain

as the old methods they aim to replace. As a conse-

quence, these new tools may be hindered by the same

confounding factors that made their predecessors inac-

curate.

Many available tools use mathematical algorithms

that either average observations over time or employ

thresholds or cut-offs to derive their values. This

imposes the risk of missing transient or small physio-

logical responses that could indicate nociceptive stimu-

lation. Some techniques are held back by technical

issues. For instance, the bulkiness of the equipment

prevents MRI from being adopted into everyday pain

assessment. Finally, the anatomical, physiological and

functional connections of the nociceptive and auto-

nomic nervous systems warrant some special consider-

ations. This notion is based on findings that a

considerable number of alternative assessment tools

employ variables that are directly related to autonomic

function. These work on the premise that a painful

stimulus will elicit certain autonomic responses that

can be measured and integrated as physiological mark-

ers of nociception. This long-held, widespread belief

largely rests on evidence produced 30–40 years ago in

intra- and postoperative settings. This association is

debatable, as there are few published data looking at

autonomic stimulation following pain without tissue

injury. Although the rationale behind the functional

connection of the two systems is plausible [232], it can

also be suggested that changes in autonomic activation

are the result of tissue damage, rather than of pain

itself. Nevertheless, evidence to date suggests that auto-

nomic responses to nociception are binary in nature,

detecting its presence but not its severity [232]. How-

ever, a tool that does not correlate with the stimulus

intensity is of limited value in clinical practice. Here,

combinations of different parameters may be helpful,

but more research is needed to address this issue.

Although there are some promising results available

with most new methods, there are limited data to sug-

gest that they can improve clinical care. Although some

can objectively indicate the presence of pain or nocicep-

tion, this should not be the main goal of developing

these tools. If we as clinicians are to improve our ability

to manage pain in difficult settings, we need to have

methods that do not just demonstrate pain as a black or

white phenomenon, but in various shades of grey.

Conclusion
Although clinically needed and theoretically promising,

currently there is not enough evidence to support the

widespread use of any physiological markers as ‘objec-

tive’ measures of pain and nociception. This is despite

recently increased efforts, raising the question whether

this is possible in the foreseeable future. Nevertheless,

there are some promising avenues on the horizon. Bio-

marker research as part of clinical phenotyping, and

the development of composite algorithms, should be

closely watched.
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