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Abstract

Deep transformer models have pushed perfor-

mance on NLP tasks to new limits, suggesting

sophisticated treatment of complex linguistic

inputs, such as phrases. However, we have lim-

ited understanding of how these models han-

dle representation of phrases, and whether this

reflects sophisticated composition of phrase

meaning like that done by humans. In this pa-

per, we present systematic analysis of phrasal

representations in state-of-the-art pre-trained

transformers. We use tests leveraging human

judgments of phrase similarity and meaning

shift, and compare results before and after con-

trol of word overlap, to tease apart lexical ef-

fects versus composition effects. We find that

phrase representation in these models relies

heavily on word content, with little evidence

of nuanced composition. We also identify vari-

ations in phrase representation quality across

models, layers, and representation types, and

make corresponding recommendations for us-

age of representations from these models.

1 Introduction

A fundamental component of language understand-

ing is the capacity to combine meaning units into

larger units—a phenomenon known as composi-

tion—and to do so in a way that reflects the nuances

of meaning as understood by humans. Transform-

ers (Vaswani et al., 2017) have shown impressive

performance in NLP, particularly transformers us-

ing pre-training, like BERT (Devlin et al., 2019)

and GPT (Radford et al., 2018, 2019), suggesting

that these models may be succeeding at composi-

tion of complex meanings. However, because trans-

formers (like other contextual embedding models)

typically maintain representations for every token,

it is unclear how and at what points they might

be combining word meanings into phrase mean-

ings. This contrasts with models that incorporate

explicit phrasal composition into their architecture,

e.g. RNNG (Dyer et al., 2016; Kim et al., 2019),

recursive models for semantic composition (Socher

et al., 2013), or transformers with attention-based

composition modules (Yin et al., 2020).

In this paper we take steps to clarify the nature

of phrasal representation in transformers. We fo-

cus on representation of two-word phrases, and we

prioritize identifying and teasing apart two impor-

tant but distinct notions: how faithfully the mod-

els are representing information about the words

that make up the phrase, and how faithfully the

models are representing the nuances of the com-

posed phrase meaning itself, over and above a sim-

ple account of the component words. To do this,

we begin with existing methods for testing how

well representations align with human judgments

of meaning similarity: similarity correlations and

paraphrase classification. We then introduce con-

trolled variants of these datasets, removing cues

of word overlap, in order to distinguish effects of

word content from effects of more sophisticated

composition. We complement these phrase simi-

larity analyses with classic sense selection tests of

phrasal composition (Kintsch, 2001).

We apply these tests for systematic analysis of

several state-of-the-art transformers: BERT (De-

vlin et al., 2019), RoBERTa (Liu et al., 2019b),

DistilBERT (Sanh et al., 2019), XLNet (Yang et al.,

2019b) and XLM-RoBERTa (Conneau et al., 2019).

We run the tests in layerwise fashion, to estab-

lish the evolution of phrase information as lay-

ers progress, and we test various tokens and to-

ken combinations as phrase representations. We

find that when word overlap is not controlled, mod-

els show strong correspondence with human judg-

ments, with noteworthy patterns of variation across

models, layers, and representation types. However,

we find that correspondence drops substantially

once word overlap is controlled, suggesting that

although these transformers contain faithful repre-
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sentations of the lexical content of phrases, there

is little evidence that these representations capture

sophisticated details of meaning composition be-

yond word content. Based on the observed repre-

sentation patterns, we make recommendations for

selection of representations from these models. All

code and controlled datesets are made available for

replication and application to additional models.1

2 Related work

This paper contributes to a growing body of work

on analysis of neural network models. Much work

has studied recurrent neural network language mod-

els (Linzen et al., 2016; Wilcox et al., 2018; Chowd-

hury and Zamparelli, 2018; Gulordava et al., 2018;

Futrell et al., 2019) and sentence encoders (Adi

et al., 2016; Conneau et al., 2018; Ettinger et al.,

2016). Our work builds in particular on analysis of

information encoded in contextualized token repre-

sentations (Bacon and Regier, 2019; Tenney et al.,

2019b; Peters et al., 2018; Hewitt and Manning,

2019; Klafka and Ettinger, 2020) and in different

layers of transformers (Tenney et al., 2019a; Jawa-

har et al., 2019). The BERT model has been a

particular focus of analysis work since its intro-

duction. Previous work has focused on analyzing

the attention mechanism (Vig and Belinkov, 2019;

Clark et al., 2019), parameters (Roberts et al., 2020;

Radford et al., 2019; Raffel et al., 2020) and embed-

dings (Shwartz and Dagan, 2019; Liu et al., 2019a).

We build on this work with a particular, controlled

focus on the evolution of phrasal representation in

a variety of state-of-the-art transformers.

Composition has been a topic of frequent in-

terest when examining neural networks and their

representations. One common practice relies on

analysis of internal representations via downstream

tasks (Baan et al., 2019; Ettinger et al., 2018; Con-

neau et al., 2019; Nandakumar et al., 2019; McCoy

et al., 2019). One line of work analyzes word in-

teractions in neural networks’ internal gates as the

composition signal (Saphra and Lopez, 2020; Mur-

doch et al., 2018), extending the Contextual De-

composition algorithm proposed by Jumelet et al.

(2019). Another notable branch of work constructs

synthetic datasets of small size to investigate com-

positionality in neural networks (Liška et al., 2018;

Hupkes et al., 2018; Baan et al., 2019). Some work

1Datasets and code available at
https://github.com/yulang/

phrasal-composition-in-transformers

controls for word content, as we do, to study com-

position at the sentence level (Ettinger et al., 2018;

Dasgupta et al., 2018). We complement this work

with a targeted and systematic study of phrase-level

representations in transformers, with a focus on

teasing apart lexical properties versus reflections

of accurate compositional phrase meaning.

Our work relates closely to classic work on

two-word phrases, which have used methods like

landmark tests (Kintsch, 2001; Mitchell and Lap-

ata, 2008, 2010), or compared against distribution-

based phrase representations (Baroni and Zampar-

elli, 2010; Fyshe et al., 2015). Our work also

draws on work using correlation with similarity

judgments (Finkelstein et al., 2001; Gerz et al.,

2016; Hill et al., 2015; Conneau and Kiela, 2018)

and paraphrase classification (Ganitkevitch et al.,

2013; Wang et al., 2018; Zhang et al., 2019; Yang

et al., 2019a) to assess quality of models and rep-

resentations. We build on this work by combining

these methods together, applying them to a system-

atic analysis of transformers and their components,

and introducing controlled variants of existing tasks

to isolate accurate composition of phrase meaning

from capturing of lexical information.

3 Testing phrase meaning similarity

Our methods begin with familiar approaches for as-

sessing representations via meaning similarity: cor-

relation with human phrase similarity judgments,

and ability to identify paraphrases. The goal is to

gauge the extent to which models arrive at represen-

tations reflecting the nuances of composed phrase

meaning understood by humans. We draw on ex-

isting datasets, and begin by testing models on the

original versions of these datasets—then we tease

apart effects of word content from effects of more

sophisticated meaning composition by introducing

controlled variants of the datasets. The reasoning

is that strong correlations with human similarity

judgments, or strong paraphrase classification per-

formance, could be influenced by artifacts that are

not reflective of accurate phrase meaning composi-

tion per se. In particular, we may see strong perfor-

mance simply on the basis of the amount of overlap

in word content between phrases. To address this

possibility, we create controlled datasets in which

word overlap is no longer a cue to similarity.

As a starting point we focus on two-word

phrases, as these are the smallest phrasal unit and

the most conducive to these types of lexical con-

https://github.com/yulang/phrasal-composition-in-transformers
https://github.com/yulang/phrasal-composition-in-transformers
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Normal Examples

Source Phrase Target Phrase & Score

ordinary citizen (0.724)

average person person average (0.518)

country (0.255)

AB-BA Examples

Source Phrase Target Phrase & Score

law school school law (0.382)

adult female female adult (0.812)

arms control control arms (0.473)

Table 1: Examples of correlation items. Numbers in

parentheses are similarity scores between target phrase

and source phrase. Upper half shows normal examples,

and lower half shows controlled items.

trols, and because this allows us to leverage larger

amounts of annotated phrase similarity data.

3.1 Phrase similarity correlation

We first evaluate phrase representations by as-

sessing their alignment with human judgments of

phrase meaning similarity. For testing this corre-

spondence, we use the BiRD (Asaadi et al., 2019)

dataset. BiRD is a bigram relatedness dataset de-

signed to evaluate composition, consisting of 3,345

bigram pairs (examples in Table 1), with source

phrases paired with numerous target phrases, and

human-rated similarity scores ranging from 0 to 1.

In addition to testing on the full dataset, we de-

sign a controlled experiment to remove effects of

word overlap, by filtering the dataset to pairs in

which the two phrases consist of the same words.

We refer to these pairs as “AB-BA” pairs (following

terminology of the authors of the BiRD dataset),

and show examples in the lower half of Table 1.

We run similarity tests as follows: given a

model M with layers L, for ith layer li ∈ L and

a source-target phrase pair, we compute repre-

sentations of source phrase pirep(src) and target

phrase pirep(trg), where rep is a representation

type from Section 4, and we compute their co-

sine cos(pirep(src), pirep(trg)). Pearson correlation

ri of layer li is then computed between cosine and

human-rated score for all source-target pairs.

3.2 Paraphrase classification

We further investigate the nature of phrase represen-

tations by testing their capacity to support binary

paraphrase classification. This test allows us to

explore whether we will see better alignment with

human judgments of meaning similarity if we use

more complicated operations than cosine similar-

ity comparison. For the classification tasks, we

draw on PPDB 2.0 (Pavlick et al., 2015), a widely-

used database consisting of paraphrases with scores

generated by a regression model. To formulate

our binary classification task, after filtering out

low-quality paraphrases (discussed in Section 5),

we use phrase pairs (source phrase, target phrase)

from PPDB as positive pairs, and randomly sample

phrases from the complete PPDB dataset to form

negative pairs (source phrase, random phrase).

Because word overlap is also a likely cue for

paraphrase classification, we filter to a controlled

version of this dataset as well, as illustrated in Ta-

ble 2. We formulate the controlled experiment here

as holding word overlap between source phrase and

target phrase to be exactly 50% for both positive

and negative samples. Our choice of 50% word

overlap in this case is necessary for construction of

a sufficiently large, balanced classification dataset

(AB-BA pairs in PPDB are too few to support clas-

sifier training, and AB-BA pairs are more likely

to be non-paraphrases). Note, however, that by

controlling word overlap to be exactly 50% for all

phrase pairs, we still hold constant the amount of

word overlap between phrases, which is the cue

that we wish to remove. As an additional control,

each source phrase is paired with an equal number

of paraphrases and non-paraphrases, to avoid the

classifier inferring labels based on phrase identity.

Formally, for each model layer li and representa-

tion type rep, we train

CLFi
rep = MLP([pairirep])

where pairirep represents embedding concatena-

tions of each source phrase and target phrase:

pairirep = [pi
rep(src);p

i
rep(trg)]

The classifier is trained on binary classification of

whether concatenated inputs represent paraphrases.

4 Representation types

A variety of approaches have been taken for repre-

senting sentences and phrases when all tokens out-

put contextualized representations, as in our tested

transformers. To clarify the phrasal information

present in different forms of phrase representation,

we experiment with a number of different combina-

tions of token embeddings as representation types.

Formally, let [T0, · · · , Tk] be an input sequence

of length k + 1, with corresponding embeddings
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Normal Examples

Source Phrase Target Phrase

are crucial

is absolutely vital (pos)

was a matter of concern (neg)

is an essential part (pos)

are exacerbating (neg)

Controlled Examples

Source Phrase Target Phrase

communication infrastructure
telecommunications infrastructure (pos)

data infrastructure (neg)

Table 2: Examples of classification items. Classification labels between target phrase and source phrase are in

parentheses. Upper half shows normal examples, and lower half shows controlled items.

Figure 1: Example input sequences (BERT format).

CLS is a special token at beginning of sequence. To-

kens in yellow correspond to Head-Word. Avg-Phrase

contains element-wise average of phrase word embed-

dings. Avg-All averages embeddings of all tokens.

at ith layer [ei
0
, · · · , eik]. Assume the phrase spans

the sequence [a, b], where 0 ≤ a ≤ b ≤ k. Be-

cause two-word phrases are atypical inputs for

these models, we experiment both with inputs of

the two-word phrases alone (“phrase-only”), as

well as inputs with the phrases embedded in sen-

tences (“context-available”). This is illustrated in

Figure 1 along with phrase representation types.

We test the following forms of phrase representa-

tion, drawn from each model and layer separately:

CLS Depending on specific models, this special

token can be the first or last token of the input

sequence (i.e. ei
0

or eik). In many applications, this

token is used to represent the full input sequence.

Head-Word In each phrase, the head word is the

semantic center the phrase. For instance, in the

phrase “public service”, “service” is the head word,

expressing the central meaning of the phrase, while

“public” is a modifier. Because phrase heads are

not annotated in our datasets, we approximate the

head by taking the embedding of the final word

of the phrase. This representation is proposed as

a potential representation of the whole phrase, if

information is being composed into a central word:

pi
hw = eib

Avg-Phrase For this representation type we av-

erage the embeddings of the tokens in the target

phrase (dashed box in Figure 1). This type of aver-

aging of token embeddings is a common means of

aggregate representation (Wieting et al., 2015).

pi
ap =

1

b− a+ 1

b∑

x=a

eix

Avg-All Expanding beyond the tokens in “Avg-

Phrase”, this representation averages embeddings

from the full input sequence.

pi
aa =

1

k + 1

k∑

x=0

eix

SEP With some variation between models, the

SEP token is typically a separator for distinguishing

input sentences, and is often the last token (eik) or

second to last token (eik−1
) of a sequence.

5 Experimental setup

Embeddings of each token are obtained by feed-

ing input sequences through pre-trained contex-

tual encoders. We investigate the “base” version

of five transformers: BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019b), DistilBERT (Sanh

et al., 2019), XLNet (Yang et al., 2019b) and XLM-

RoBERTa (Conneau et al., 2019). For the models

analyzed in this paper, we are using the implemen-

tation of Wolf et al. (2019),2 which is based on

PyTorch (Paszke et al., 2019).

2https://github.com/huggingface/transformers
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Figure 2: Correlation on BiRD dataset, phrase-only input setting. First row shows results on full dataset, and

second row on controlled AB-BA pairs. Layer 0 corresponds to input embeddings passing to the model.

For correlation analysis, we first use the com-

plete BiRD dataset, consisting of 3,345 phrase

pairs.3 We then test with our controlled subset of

the data, consisting of 410 AB-BA pairs. For clas-

sification tasks, we first do preprocessing on PPDB

2.0,4 filtering out pairs containing hyperlinks, non-

alphabetical symbols, and trivial paraphrases based

on abbreviation or tense change. For our initial clas-

sification test, we use 13,050 source-target phrase

pairs (of varying word overlap) from this prepro-

cessed dataset. We then test with our controlled

dataset, consisting of 11,770 source-target phrase

pairs (each with precisely 50% word overlap). For

each paraphrase classification task, 25% of selected

data is reserved for testing. We use a multi-layer

perceptron classifier with a single hidden layer of

size 256 with ReLU activation, and a softmax layer

to generate binary labels. We use a relatively sim-

ple classifier following the reasoning of Adi et al.

(2016), that this allows examination of how easily

extractable information is in these representations.

For both correlation and classification tasks, we

experiment with phrase-only inputs and context-

available (full-sentence) inputs. To obtain sentence

contexts, we search for instances of source phrases

in a Wikipedia dump, and extract sentences con-

taining them. For a given phrase pair, target phrases

are embedded in the same sentence context as the

source phrase, to avoid effects of varying sentence

position between phrases of a given pair. 5

3http://saifmohammad.com/WebPages/BiRD.html
4http://paraphrase.org
5Because context sentences are extracted based on source

phrases, our use of the same context for source and target
phrases can give rise to unnatural contextual fit for target

6 Results

6.1 Similarity correlation

Full dataset The top row of Figure 2 shows

correlation results on the full BiRD dataset for

all models, layers, and representation types, with

phrase-only inputs. Among representation types,

Avg-Phrase and Avg-All consistently achieve the

highest correlations across models and layers. In all

models but DistilBERT, correlation of Avg-Phrase

and Avg-All peaks at layer 1 and decreases in sub-

sequent layers with minor fluctuations. Head-Word

and SEP both show weaker, but non-trivial, corre-

lations. The CLS token is of note with a consis-

tent rapid rise as layers progress, suggesting that

it quickly takes on properties of the words of the

phrase. For all models but DistilBERT, CLS token

correlations peak in middle layers and then decline.

Model-wise, XLM-RoBERTa shows the weakest

overall correlations, potentially due to the fact that

it is trained to infer input language and to handle

multiple languages. BERT retains fairly consis-

tent correlations across layers, while RoBERTa and

XLNet show rapid declines as layers progress, sug-

gesting that these models increasingly incorporate

information that deviates from human intuitions

about phrase smilarity. DistilBERT, despite being

of smaller size, demonstrates competitive correla-

tion. The CLS token in DistilBERT is notable for

its continuing rise in correlation strength across

phrases. We consider this acceptable for the sake of controlling
sentence position—and if anything, differences in contextual
fit may aid models in distinguishing more and less similar
phrases. The slight boost observed on the full datasets (for
Avg-Phrase) suggests that the sentence contexts do provide
the intended benefit from using input of a more natural size.
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Figure 3: Correlation on BiRD dataset with phrases embedded in sentence context (context-available input setting).

layers. This suggests that DistilBERT in particular

makes use of the CLS token to encode phrase infor-

mation, and unlike other models, its representations

retain the relevant properties to the final layer.

Controlled dataset Turning to our controlled

AB-BA dataset, we examine the extent to which the

above correlations indicate sophisticated phrasal

composition versus effective encoding of informa-

tion about phrases’ component words. The bottom

row of Figure 2 shows the correlations on this con-

trolled subset. We see that performance of all mod-

els drops significantly, often with roughly zero cor-

relation. Avg-All and Avg-Phrase no longer dom-

inate the correlations, suggesting that these repre-

sentations capture word information, but not higher-

level compositional information. XLM-RoBERTa

and XLNet show particularly low correlations, sug-

gesting heavier reliance on word content. Notably,

the CLS tokens in RoBERTa and DistilBERT stand

out with comparatively strong correlations in later

layers. This suggests that the rise that we see in

CLS correlations for DistilBERT in particular may

correspond to some real compositional signal in

this token, and for this model the CLS token may

in fact correspond to something more like a repre-

sentation of the meaning of the full input sequence.

The Avg-Phrase representation for RoBERTa also

makes a comparatively strong showing.

Including sentence context Figure 3 shows the

correlations when target phrases are embedded as

part of a sentence context, rather than in isolation.

As can be expected, Avg-Phrase is now consis-

tently the highest in correlation on the full dataset—

other tokens are presumably more impacted by the

presence of additional words in the context. We

also see that the Avg-Phrase correlations no longer

drop so dramatically in later layers, suggesting

that when given full sentence inputs, models re-

tain more word properties in later layers than when

given only phrases. This general trend holds also

for Avg-All and Head-Word representations.

In the AB-BA setting, we see that presence

of context does boost overall correlation with hu-

man judgment. Of note is XLM-RoBERTa’s Avg-

Phrase, which without sentence context has zero

correlation in the AB-BA setting, but which with

sentence context reaches our highest observed AB-

BA correlations in its final layers. However, even

with context, the strongest correlation across mod-

els is still less than 0.3. It is still the case, then, that

correlation on the controlled data degrades signifi-

cantly relative to the full dataset. This indicates that

even when phrases are input within sentence con-

texts, phrase representations in transformers reflect

heavy reliance on word content, largely missing ad-

ditional nuances of compositional phrase meaning.

6.2 Paraphrase classification

Full dataset Results for our full paraphrase clas-

sification dataset, with phrase-only inputs, are

shown in the top row of Figure 4. Accuracies

are overall very high, and we see generally sim-

ilar patterns to the correlation tasks. Best accu-

racy is achieved by using Avg-Phrase and Avg-

All representations. RoBERTa, XLM-RoBERTa,

and XLNet show decreasing correlations for top-

performing representations in later layers, while

BERT and DistilBERT remain more consistent

across layers. Performance of CLS requires a few
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Figure 4: Classification accuracy on PPDB dataset (phrase-only input setting). First row shows classification

accuracy on original dataset, and second row shows accuracy on controlled dataset.

Figure 5: Classification accuracy on PPDB dataset with phrases embedded in sentence context. First row shows

classification accuracy on original dataset, and second row shows accuracy on controlled dataset.

layers to peak, with top performance around mid-

dle layers, and in some models shows poor per-

formance in later layers. SEP shows unstable per-

formance compared to other representations, espe-

cially in DistilBERT and RoBERTa.

Controlled dataset The bottom row of Figure 4

shows classification accuracy when word overlap

is held constant. Consistent with the drop in cor-

relations on the controlled AB-BA experiments

above, classification performance of all models

drops down to only slightly above chance perfor-

mance of 50%. This suggests that the high classifi-

cation performance on the full dataset relies largely

on word overlap information, and that there is lit-

tle higher-level phrase meaning information to aid

classification in the absence of the overlap cue. We

see in some cases a very slight trend such that clas-

sification accuracy increases a bit toward middle

layers—so to the extent that there is any compo-

sitional phrase information being captured, it may

increase within representations in the middle lay-

ers. Overall, the consistency of these results with

those of the correlation analysis suggests that the

apparent lack of accurate compositional meaning

information in our tested phrase representations

is not simply a result of cosine correlations being

inappropriate for picking up on correspondences.

Including sentence context Figure 5 shows the

classification results for representations of phrases

embedded in sentence contexts. The patterns

largely align with our observations from the corre-

lation task. Performance on the full dataset is still

high, with Avg-Phrase now showing consistently

highest performance, being least influenced by the

presence of new context words. In the controlled

setting, we see the same substantial drop in per-
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horse ran color ran

gallop POS NEG

dissolve NEG POS

Table 3: An example of landmark experiment of verb

”run”. Representations are expected to have higher co-

sine similarities between phrase and landmark word

that are marked “POS”.

formance relative to the full dataset—there is very

slight improvement over the phrase-only represen-

tations, but the highest accuracy among all models

is still around 0.6. Thus, the inclusion of sentence

context again does not provide any additional ev-

idence for sophisticated compositional meaning

information in the tested phrase representations.

7 Qualitative analysis: sense

disambiguation

The above analyses rely on testing models’ sensitiv-

ity to meaning similarity between two phrases. In

this section we complement these analyses with an-

other test aimed at assessing phrasal composition:

testing models’ ability to select the correct senses

of polysemous words in a composed phrase, as pro-

posed by Kintsch (2001). Each test item consists

of a) a central verb, b) two subject-verb phrases

that pick out different senses of the verb, and c)

two landmark words, each associating with one of

the target senses of the verb. Table 3 shows an ex-

ample with central verb “ran” and phrases “horse

ran”/ “color ran”. The corresponding landmark

words are “gallop”, which associates with “horse

ran”, and “dissolve”, which associates with “color

ran”. The reasoning is that composition should

select the correct verb meaning, shifting represen-

tations of the central verbs—and of the phrase as

a whole—toward landmarks with closer meaning.

For this example, models should produce phrase

embeddings such that “horse ran” is closer to “gal-

lop” and “color ran” is closer to “dissolve”. We

use the items introduced in Kintsch (2001), which

consist of a total of 4 sets of landmark tests. We

feed landmarks and phrases respectively through

each transformer, without context, to generate cor-

responding representations pirep for each layer li
and representation type rep. Cosine similarity be-

tween each phrase-landmark pair is computed and

compared against expected similarities.

Figure 6 shows the percentage of phrases that

fall closer to the correct landmark word than to the

incorrect one, averaged over 16 phrase-landmark

word pairs. We see strong overall performance

across models, suggesting that the information

needed for this task is successfully captured by

these models’ representations. Additionally, we

see that the patterns largely mirror the results above

for correlation and classification on uncontrolled

datasets. Particularly, Avg-Phrase and Avg-All

show comparatively strong performance across

models. RoBERTa and XLNet show stronger per-

formance in early layers, dropping off in later lay-

ers, while BERT and DistilBERT show more con-

sistency across layers. XLM-RoBERTa and XLNet

show lower performance overall.

For this verb sense disambiguation analysis, the

Head-Word token is of note because it corresponds

to the central verb of interest, so its sense can

only be distinguished by its combination with the

other word of the phrase. XLM-RoBERTa has

the weakest performance with Head-Word, while

BERT and DistilBERT demonstrate strong disam-

biguation with this token. As for the CLS token,

RoBERTa produces the highest quality representa-

tion at layer 1, and BERT outperforms other models

starting from layer 6, with DistilBERT also show-

ing strong performance across layers.

Notably, the observed parallels to our correlation

and classification results are in alignment with the

uncontrolled rather than the controlled versions of

those tests. So while these parallels lend further

credence to the general observations that we make

about phrase representation patterns across models,

layers, and representation types, it is worth not-

ing that these landmark composition tests may be

susceptible to lexical effects similar to those con-

trolled for above. Since these test items are too few

to filter with the above methods, we leave in-depth

investigation of this question to future work.

8 Discussion

The analyses reported above yield two primary

takeaways. First, they shed light on the nature

of these models’ phrase representations, and the

extent to which they reflect word content versus

phrasal composition. At many points in these mod-

els there is non-trivial alignment with human judg-

ments of phrase similarity, paraphrase classifica-

tion, and verb sense selection. However, when we

control our correlation and classification tests to

remove the cue of word overlap, we see little evi-

dence that the representations reflect sophisticated
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Figure 6: Landmark experiments. Y-axis denotes the percentage of samples that are shifted towards the correct

landmark words in each layer. Missing bars occur when representations are independent of input at layer 0, such

that cosine similarity between phrases and landmarks will always be 1.

phrase composition beyond what can be gleaned

from word content. While we see strong perfor-

mance on classic sense selection items designed

to test phrase composition, the observed results

largely parallel those from the uncontrolled ver-

sions of the correlation and classification analyses,

suggesting that success on this landmark test may

reflect lexical properties more than sophisticated

composition. Given the importance of systematic

meaning composition for robust and flexible lan-

guage understanding, based on these results we

predict that we will see corresponding weaknesses

as more tests emerge for these models’ handling of

subtle meaning differences in downstream tasks.

Our systematic examination of models, layers

and representation types yields a second takeaway

in the form of practical implications for selecting

and extracting representations from these models.

For faithful representations of word content, Avg-

Phrase is generally the strongest candidate. If only

the phrase is embedded, drawing from earlier lay-

ers is best in RoBERTa, XLM-RoBERTa, and XL-

Net, while middle layers are better in BERT, and

later layers in DistilBERT. If the phrase is input

as part of a sentence, middle layers are generally

best across models. Though the CLS token is often

interpreted to represent a full input sequence, we

find it to be a poor phrase representation even with

phrase-only input, with the notable exception of

the final layer of DistilBERT.

As for representations that reflect true phrase

meaning composition, we have established that

such representations may not currently be avail-

able in these models. However, to the extent

that we do see weak evidence of potential com-

positional meaning sensitivity, this appears to be

strongest in DistilBERT’s CLS token in final layers,

in RoBERTa’s Avg-Phrase representation in later

layers, and in XLM-RoBERTa’s Avg-Phrase repre-

sentation from later layers only when the phrase is

contained within a sentence context.

9 Conclusions and future directions

We have systematically investigated the nature of

phrase representations in state-of-the-art transform-

ers. Teasing apart sensitivity to word content ver-

sus phrase meaning composition, we find strong

sensitivity across models when it comes to word

content encoding, but little evidence of sophisti-

cated phrase composition. The observed sensitivity

patterns across models, layers, and representation

types shed light on practical considerations for ex-

tracting phrase representations from these models.

Future work can apply these tests to a broader

range of models, and continue to develop controlled

tests that target encoding of complex compositional

meanings, both for two-word phrases and for larger

meaning units. We hope that our findings will stim-

ulate further work on leveraging the power of these

generalized transformers while improving their ca-

pacity to capture compositional meaning.
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