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Abstract

A number of models have been developed to estimate PM2.5 exposure, including satellite-based 

aerosol optical depth (AOD) models, land-use regression or chemical transport model simulation, 

all with both strengths and weaknesses. Variables like normalized difference vegetation index 

(NDVI), surface reflectance, absorbing aerosol index and meteoroidal fields, are also informative 

about PM2.5 concentrations. Our objective is to establish a hybrid model which incorporates 

multiple approaches and input variables to improve model performance. To account for complex 

atmospheric mechanisms, we used a neural network for its capacity to model nonlinearity and 

interactions. We used convolutional layers, which aggregate neighboring information, into a neural 

network to account for spatial and temporal autocorrelation. We trained the neural network for the 

continental United States from 2000 to 2012 and tested it with left out monitors. Ten-fold cross-

validation revealed a good model performance with total R2 of 0.84 on the left out monitors. 

Regional R2 could be even higher for the Eastern and Central United States. Model performance 

was still good at low PM2.5 concentrations. Then, we used the trained neural network to make 

daily prediction of PM2.5 at 1 km×1 km grid cells. This model allows epidemiologists to access 

PM2.5 exposure in both the short-term and the long-term.
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1. Introduction

Fine particulate matter (PM2.5) is a major concern in public health.1-6 An adverse health 

effect is associated with PM2.5 exposure in the short term7, 8 and the long term.9, 10 PM2.5 is 

found to be associated with morbidity,11, 12 mortality,6 cardiovascular disease,4 respiratory 

disease,13 myocardial infarction,14 an increase in hospital admission11, 15, 16 and others.17

Accurate exposure assessment of PM2.5 is a prerequisite of to investigate its adverse health 

effect. Early studies estimated PM2.5 at the nearest monitoring station.18 However, nearest 

monitors cannot capture all variability in PM2.5 concentrations and nondifferential 

misclassification occurs.19

Various approaches have been developed to achieve better exposure assessment. Spatial 

interpolation, including nearest-neighbor interpolation and Kriging interpolation, was used 

to smooth PM2.5 concentration and estimate local exposure. Nonetheless, interpolation adds 

no additional information to the model. Local emission like highways between two monitor 

sites is not captured by simple interpolation. Land-use regression (LUR) uses land-use 

terms, such as road density, percentage of urban and others, as proxies for PM2.5 

concentration.20, 21 Although LUR could achieve a high spatial resolution, it has limited 

temporal resolution since land-use terms are usually time-invariant.22 Recent improvements 

in land-use regression enable incorporation some level of time-variant factors,23, 24 but land-

use terms are still inadequate in modeling short-term variations and often limited by short 

temporal coverage.25

Satellite-based aerosol optical depth (AOD) measurements have been widely used to 

estimate PM2.5 in various models for its large spatial coverage and repeated daily 

observations.26 AOD measures the light extinction due to aerosol in the whole atmospheric 
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column.27 To obtain ground-level PM2.5 concentration, vertical distribution of aerosol is 

needed. Recent studies proposed different calibration methods.26, 28-32 Most studies focused 

on quantifying relationship between AOD and PM2.5 or predict a long-term average of 

PM2.5, while epidemiological studies also need short-term PM2.5 assessment. Some studies 

combined AOD and land-use regression and used mixed effect model to achieve 

improvements on model performance.33-35 However, the drawback of AOD is missing data, 

which is caused by bright surfaces or cloud contamination, especially in winter.36 Also, 

AOD measurements may also have abnormally large values caused by forest fires.37 For grid 

cells with missing or abnormal values, the AOD-PM2.5 relationship may be problematic, 

especially for daily PM2.5 assessment. The relationship between column aerosol 

concentration and ground-level concentration can be influenced by multiple factors such as 

meteorological fields, chemical profile of aerosol, and others.38, 39 The absorbing aerosol 

index (AAI) provides information about aerosol type and is informative to PM2.5 

modeling.40, 41

Chemical transport models (CTMs), like GEOS-Chem,42 CMAQ,43 and CHIMERE,44 

simulate the formation, dispersion and deposition of fine particles based on emission 

inventories and known atmospheric chemical reaction. CTM is another way to assess PM2.5 

concentration. Due to the complexity of reactions and atmospheric meteorological processes, 

simulated concentration often deviates from the real world. CTM outputs are often used after 

calibration.45, 46 CTM provides an aerosol vertical profile, which has been used as scaling 

factor in AOD calibration.29, 47 Due to the limit of computation, CTM usually has coarse 

spatial resolution. In a previous study, we have proposed a hybrid model which uses land-use 

regression to downscale CTM outputs. 48

Existing approaches have both strengths and weaknesses, and often they complement to each 

other. In this paper, we incorporated multiple variables into a neural network-based hybrid 

model, including satellite-based AOD data, AAI, CTM outputs, land-use terms, and 

meteorological variables. We validated the model with 10-fold cross-validation and 

predicted daily PM2.5 at 1 km×1 km resolution in the continental United States for the years 

2000-2012. Prediction with such a high temporal and spatial resolution allows 

epidemiological studies to estimate health effect of PM2.5 with greater reliability.

2. Materials

2.1. Study Domain

The study domain is the continental United States, including 48 contiguous states and 

Washington, D.C (Figure S1). The study period is from January 1st, 2000 to December 31st, 

2012, a total of 4,749 days.

2.2. Monitoring Data

Monitoring data for PM2.5 were collected by EPA Air Quality System (AQS). In total, there 

were 1,986 monitor stations available in this period and 1,928 of them were located in the 

study area. Not every monitoring site has data available throughout the study period. 

Monitoring sites were densely distributed along coastal areas and the Eastern part, while 
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there were a few monitors in the Mountain Region (Figure S1). We calibrated our hybrid 

model to the daily average of monitored PM2.5.

2.3. AOD Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument aboard the 

Earth Observing System (EOS) satellite.49, 50 Several algorithms have been developed to 

retrieve AOD data from MODIS measurement,51 including a recent algorithm called 

MAIAC, which retrieves AOD with a spatial resolution of 1 km×1 km.52-54 We used 

MAIAC AOD data from Aqua satellite from 2003 to 2012 and Terra satellite from 2001 to 

2012. The MAIAC algorithm arranges data at 600 km×600 km tile, which includes 360,000 

1 km×1 km grid cells. In total 33 tiles and 11,880,000 grid cells were used in this study, 

which is also the grid cell we made predictions at. Grid cells over water bodies were 

excluded from the study.

AOD data has some portion of missing values, especially in the winter. Missing values are 

caused by bright surfaces (e.g. snow coverage) and cloud contamination.36 In addition, AOD 

data may have abnormally large values due to extreme events like forest fires.37 Usually 

AOD data with values above 1.5 are excluded from modeling, which also creates missing 

values.55 Our previous study calibrated column aerosol mass from CTM outputs to satellite-

based AOD and predicted AOD values when satellite-based AOD are missing.56 For AOD 

data used in this study, we filled in the missing values using this method as preprocessing 

(Section 3, Supplementary Material).

2.4. Surface Reflectance

Surface characteristics and errors in AOD data products have been well documented by 

previous studies.57 The MAIAC algorithm was designed to retrieve AOD over various 

surfaces, but surface brightness can still affect data quality.54 We used MODIS surface 

reflectance data (MOD09A1) to control for that.58 MOD13A1 has a spatial resolution of 500 

m×500 m and a temporal resolution of 8 days. We used surface reflectance from Band 3 and 

linearly interpolated values for days without measurements.

2.5. Chemical Transport Model Outputs

We used GEOS-Chem, a chemical transport model, to simulate ground-level PM2.5 

concentration. GEOS-Chem is a global 3-dimensional chemical transport model, which uses 

meteorological inputs and emission inventories to simulate atmospheric components. The 

details of GEOS-Chem is articulated somewhere else.42 We performed a nested grid 

simulation (Version 9.0.2) for North America at 0.500°×0.667° from 2005 to 2012, with 

boundary conditions exported from a 2.0°×2.5° global simulation. Since meteorological 

inputs at 0.500°×0.667° are not available from 2000 to 2004, we used 2.0°×2.5° outputs 

instead. Based on previous studies and pilot testing, total PM2.5 was defined as the sum of 

nitrate, sulfate, elemental carbon, organic carbon, ammonium, sea salt aerosol, dust aerosol 

and others (Table S2).59

In additional to providing ground-level PM2.5 estimation, GEOS-Chem also simulates 

vertical distribution of aerosol, which could be used for calibrating AOD. Previous studies 
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used GEOS-Chem to compute the percentage of ground-level aerosol in the total column 

aerosol. This percentage was used in AOD calibration as a scaling factor.29, 60 Both studies 

utilized GEOS-Chem to provide both direct estimation for ground-level PM2.5 and a scaling 

factor to calibrate AOD.

2.6. Meteorological Data

Meteorological fields were obtained from NCEP North American Regional Reanalysis data, 

which assimilates various data sources like land-surface, ship, radiosonde, pibal, aircraft, 

satellite and others.61 Meteorological data are daily estimate at 0.3° grid cells (about 32 km). 

In total 16 meteorological variables were used in this study. They include air temperature, 

accumulated total precipitation, downward shortwave radiation flux, accumulated total 

evaporation, planetary boundary layer height, low cloud area fraction, precipitable water for 

the entire atmosphere, pressure, specific humidity at 2m, visibility, wind speed, medium 

cloud area fraction, high cloud area fraction, and albedo. Wind speed was computed as the 

vector sum of u-wind (east-west component of the wind) at 10m and v-wind (north-south 

component) at 10m.

2.7. Aerosol Index Data

Absorbing aerosol index (AAI) indicates the presence of absorbing aerosols in the 

atmosphere. Major sources of absorbing aerosol include biomass burning and desert dust; 

other minor sources could be volcanic ash.62 AAI is informative for estimating absorbing 

aerosols, such as organic carbon and soil dust.63, 64 We used AAI Level 3 data products from 

the Ozone Monitoring Instrument (OMI), where two algorithms are used in retrieval. One is 

a near-UV algorithm, which retrieves UV aerosol index (OMI data product 

OMAERUVd);62, 64 and the other one uses multiwavelength aerosol algorithm, whose 

outputs include aerosol indexes at visible and UV range (OMI data product OMAEROe).65 

Both algorithms have pros and cons, which have been discussed previously.66 Both data 

products are complementary, and thus we used both. OMI AAI data is available after 

October 2004. OMAERUVd data product has a spatial resolution of 1°; OMAEROe data 

product has a spatial resolution of 0.25°.

2.8. Land-use terms

Land-use terms serve as proxies for emissions and are used to capture variations at a small a 

spatial scale, which may not modeled by GEOS-Chem. The detailed process of obtaining 

land-terms like elevation, road density, NEI (National Emissions Inventory) emission 

inventory, population density, percentage of urban, and NDVI has been reported somewhere 

else.67 For vegetation coverage, we used percentage of vegetation from NCEP North 

American Regional Reanalysis data and MODIS MOD13A2, a NDVI data product.68 

MOD13A2 has a spatial resolution of 1 km×1 km and a temporal resolution of 16 days. We 

linearly interpolated NDVI values for days without measurements.

2.9. Regional and Monthly Dummy

Previous studies found the relationship between AOD and PM2.5 have regional and daily 

variation due to the difference in meteorology and aerosol composition.38, 69 Atmospheric 
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mechanism is complex, and relationships between other variables could also differ 

temporally and spatially. To account for that, we used monthly and regional dummy 

variables. Regional dummy variable comes from major climate types in the United States 

(Figure S3).70 Since the AOD-PM2.5 relationship can change from day to day, daily dummy 

variables would be ideal. However, training a neural network with 365 indicator variables in 

addition to the other variables would be computationally intensive, and we used monthly 

dummy variables as a compromise.

3. Methods

We trained a neural network with the above variables to PM2.5 monitoring data from the 

AQS network. The relationships between input variables and PM2.5 could be highly 

nonlinear with complex interactions. Neural networks have the potential to model any type 

of nonlinearity.71, 72 The details of the neural network, such as its structure and training 

method were articulated in the supplementary material. All input variables covered the entire 

study area, but some of them were not available in early years or had higher proportions of 

missing values. Missing values were especially common in Terra and Aqua AOD data. To 

deal with the missing values problem and different temporal coverages, we adopted the 

following steps. We used a calibration method to fill in the missing values in Aqua AOD 

data from 2003 to 2012 and Terra AOD data from 2001 to 2012 based on the association of 

GEOS-Chem outputs and land-use terms with non-missing AOD.56 For the other variables 

with a low fraction of missing values, we interpolated at grid cells with missing values. 

Regarding temporal coverage, GEOS-Chem outputs, land-use terms, MODIS outputs, and 

meteorological variables were available throughout the study period. OMI data, Aqua AOD, 

and Terra AOD were unavailable in earlier years. For years with one or more unavailable 

variables, we fitted the model with the remaining available variables.

Most previous studies used only in situ variables for modeling. However, information from a 

neighboring cell can be informative as well. For example, nearby road density, forest 

coverage and other land-use variables as well as nearby PM2.5 measurements either 

influence or correlate with local PM2.5 measurements. They are informative for modeling 

and can improve model performance. We accounted for spatial correlation by using 

convolutional layers in the neural network.73 A convolutional layer is computed by applying 

a convolution kernel on an input layer. Values from neighboring cells are combined through 

the use of the kernel function. The kernel takes the form a function (e.g. weighted average 

with Gaussian weights based on distance) that produces a scalar estimate from the 

multidimensional inputs. A convolution layer aggregates nearby information and can 

simulate some form of autocorrelation. We included convolutional layers for land-use terms 

and nearby PM2.5 measurements as additional predictor variables to account for spatial 

autocorrelation. Multiple convolution layers were incorporated to allow the neural network 

to model even more complex autocorrelation or possible interaction with other variables 

(Supplementary material). In addition to nearby grid cells, observations from nearby days 

for the same grid cell can be also informative. To incorporate this, we first fitted a neural 

network and obtained an initial prediction for PM2.5. We then computed temporal 

convolution layers and fitted the neural network again with them (Figure S5).
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To validate model results and avoid overfitting, we used 10-fold cross-validation, in which 

all monitoring sites were randomly divided into 10%-90% splits. The model was trained 

with 90% of data and predicted PM2.5 at the remaining 10%. The same process was repeated 

for other splits. Assembling predicted PM2.5 at ten 10% testing sets yielded predicted PM2.5 

for all the monitors. We computed correlation between predicted PM2.5 and monitored 

PM2.5. Spatial and temporal R2s were also calculated. Details of calculating R2 have been 

specified in the supplementary material.

The trained neural network was then used to make dailyPM2.5 predictions for each gridcell 

(1 km×1 km) for each day.

All programming was implemented in Matlab (version 2014a, The MathWorks, Inc.).

4. Results

To determine input variables, we compared models with different combinations of input 

variables based on cross-validated total R2. Model comparison indicated that (1) a hybrid 

model performed better than any subset models (Figure S6); (2) scaling factor was better to 

be incorporated as a separate input layer (Figure S7); (3) convolutional layers for land-use 

variables and predicted PM2.5 both improved model performance (Figures S6, S8). Hence, 

input variables for the final model were GEOS-Chem outputs, Aqua and Terra AOD, scaling 

factor, OMI AAIs, meteorological variables, NDVI, surface reflectance, land-use terms, 

convolutional layers, and regional/monthly dummy variables. Table 1 presents model 

performance after conducting 10-fold cross-validation. Total R2 between fitted and 

monitored PM2.5 ranged from 0.74 to 0.88 and spatial R2 was from 0.78 to 0.88. By season, 

the model usually performed better in summer, followed by autumn, spring, and winter 

(Table S3). By region, regions in the Eastern United States had the best model performance, 

followed by the Central United States. The Pacific and Mountain regions had a less 

satisfying model performance. We also found R2 remained high before 2008 and dropped 

after 2010 for sub-regions and the whole study area (Table S4). We will discuss possible 

reasons later. Region name and division are from U.S. census division (Table S1, Figure S2). 

In terms of spatial pattern, we found an east-west gradient with model performing better in 

the Eastern and Central United States but less satisfying in the western coast and the 

Mountain Region (Figure 1). Besides, some areas in the Mountain Region (e.g. Great Basin 

and Colorado Plateau) with large variability in elevation and surface type have relative low 

R2 all the year round. Even in the Eastern United States, where model performance is high 

in general, areas along Appalachian Mountains and around Ozark Plateau have less 

satisfying model performance.

Figure 2 shows the spatial distribution of total PM2.5 in the study area. The Eastern United 

States generally had higher PM2.5 levels than the Western part. The area around Illinois and 

Ohio, areas around New York City and Philadelphia, and parts of the Southeastern United 

States witnessed the heaviest PM2.5 pollutions in the study area, especially in summer. The 

San Joaquin Valley, Salt Lake City, and Denver stood out in the Western United States for 

their high PM2.5 levels. Regarding the temporal trend, the national average dropped from 9.2 

μg/m3 in 2003 to 7.5 μg/m3 2012 (Figure 3). By regions, the declining trend was 
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predominantly in the Eastern United States, with largest reduction occurring in East South 

Central Region (5.8 μg/m3).

One additional way to validate our exposure estimates is to see if they can reproduce the 

spatial autocorrelation in PM2.5 concentrations. To do this, we calculated the correlation 

among all pairs of PM2.5 monitors in the EPA network, and plotted them as a function of 

distance. We compared that to the same plot, but using our predicted PM2.5 concentrations 

instead (Figure 4). The results show essential identical trends and substantial overlap 

between the correlations of actual vs modeled PM2.5 with distance.

5. Discussion

Our hybrid model incorporated existing PM2.5 models as well as multiple variables and 

achieved high out-of-sample R2,averaging 0.84 (0.74∼0.88 by year) over the study period. 

The model performed better in some eastern regions, with an average out of sample R2 of 

0.86∼0.89 by region. To our best knowledge, our model performance surpasses existing 

similar studies. Meanwhile, we predicted PM2.5 daily concentrations at nationwide 1 km×1 

km grid cells from 2000 to 2012. As discussed below, this level of resolution and coverage is 

an improvement over current PM2.5 models and could be beneficial to epidemiological 

studies. Epidemiologists could identify long-term and short-term exposure of PM2.5 in the 

whole continental United States at individual level, which helps study adverse health effect 

of PM2.5 with higher accuracy.

There are several advantages and innovations in our approach. First of all, our model 

covered the whole United States with a spatial resolution of 1 km×1 km and a temporal 

resolution of 1 day and achieved high R2. As far as we know, if taking coverage, resolution 

and model performance into consideration, our model performs better than existing models. 

As mentioned in the Introduction, most PM2.5 modeling work that used AOD data focused 

on the AOD-PM2.5 relationship, instead of making predictions. For studies with a similar 

research goal as ours, some of them have done AOD calibration at global scale, but their 

estimation was long-term average29 or annual average, with some degree of bias 

(slope=0.68) and modest R2 (R2=0.65).47 A previous study calibrated AOD to daily 

monitored PM2.5 in the Northeastern United States using a mixed model and achieved R2 

around 0.725∼0.904.31 A similar study used the similar method for the Southeastern United 

States and achieved R2 around 0.63 to 0.85.32 Compared with both regional models, our 

hybrid nationwide model performs slightly better in the Northeastern United States and 

much better in the Southeastern United States (Table S6). One reason is that aerosol 

formation in the Southeastern United States is affected by biogenic isoprene emission from 

trees;74 while isoprene emission from trees in the Northeastern United States is less of a 

concern. Secondary organic aerosol that results from isoprene has different absorption than 

other PM2.5 components,75 which is not well captured by AOD. AAI provides some 

information about absorption profile, which helps our hybrid model perform much better in 

the Southeast and almost the same or a little better in the Northeast.

Second, our hybrid model integrated most variables that are known to be informative to 

PM2.5 modeling and improved model performance. This study reminds the importance of 
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hybrid framework and also proposes a possible neural network-based approach to implement 

that. Atmospheric mechanism is complex, and a single variable can only capture an 

incomplete picture. For example, AOD measures the light extinction due to aerosol in the 

whole atmosphere column. Different aerosols vary in terms of aerosol absorption, which can 

affect AOD. More complexly, even the same aerosol type could have various absorptions 

under different meteorological conditions and emission features.39 This discovery suggests 

that when modeling PM2.5 with AOD data, AAI (proxy for aerosol type), meteorological 

fields, and emission profiles are also necessary. There could be many unknown mechanisms 

intertwining with other variables. Multiple variables are not redundant but complementary, 

which can recover the original picture of atmospheric process and improve model 

performance to the best.

Third, we used a convolutional layer in the neural network for PM2.5 modeling, which is an 

innovation of our study. Primarily used in computer science, a convolutional kernel is placed 

over nearby pixels to produce a convolutional layer. Similarly, we used convolutional layers 

in exposure assessment to aggregate variable values from nearby grid cells or monitoring 

sites. Previous studies incorporated nearby information by using nearby monitoring 

measurements, nearby road density, or others, which were all prespecified. Our hybrid 

model takes multiple convolutional layers, which stand for various ways of aggregating 

nearby information, and lets learning algorithm decide their relative importance in the 

model. This approach is versatile and is able to model different neighboring influences, as 

well as potential interactions with other variables.

Last but not least, we used AOD data with missing values been filled by some calibration 

model. No further processing is required to deal with missing AOD data, which could have 

been lengthy and cumbersome in previous studies.

For the east-west gradient in model performance (Figure 1), previous studies also reported 

that correlation between MODIS AOD and ground-measured PM2.5 is better in the eastern 

part but poor in the western part, and they attributed poor model performance to relative low 

PM2.5 level and variability of terrain.31, 41 This study lends support to both statements. We 

quantified the relationship between model performance and elevation at each monitoring site 

and found a negative correlation despite of much noise (Figure S10). Similarly, a positive 

association exists between PM2.5 level and model performance (Figure S10), which implies 

that the drop of model performance after 2010 is probably caused by substantive reduction 

in PM2.5 level after 2010. This is also the reason why the Mountain region, with low PM2.5 

level, has poor model performance. A lower level of PM2.5 means a lower signal-to-noise 

ratio, and model performance drops as model uncertainty keeps constant. Besides, the 

reduction of sulfate is mainly responsible for decreasing the PM2.5 level. Sulfate is better 

modeled in GEOS-Chem than other major components like nitrate and ammonium,76 so 

dropping sulfate causes unsatisfying model performance. For the same reason, we saw a less 

satisfying model performance in California despite its high PM2.5 level, for the reason that 

California has a high amount of nitrate originated from vehicle exhaust compared with the 

Eastern United States. This argument suggests that it would be informative to include sulfate 

in PM2.5 modeling work in the future.

Di et al. Page 9

Environ Sci Technol. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our model performance is still good even at low PM2.5 levels. To prove that, we fitted a 

spline regression of prediction PM2.5 to measured PM2.5. Linearity between measured and 

predicted PM2.5 holds when PM2.5 level is below 70 μg/m3 and become less obvious above 

80 μg/m3 due to insufficient measurements (Figure 5). Bias at high concentration is less of 

our concern, since there are few days with the PM2.5 level above 80 μg/m3 in the study area. 

If constraining to monitored PM2.5 below 35 μg/m3, the EPA daily standard for PM2.5, our 

hybrid model performed even better. Mean R2 increased to 0.85; slope is close 1; and 

intercept is close to 0 (Table S5). Good model performance at low PM2.5 concentrations 

enables epidemiologists to estimate the adverse effect of PM2.5 even below EPA daily 

standard.

Figure 2 visualizes the spatial distribution of annual and seasonal average of PM2.5. There is 

also an east-west gradient of the PM2.5 level. The Eastern and Central United States suffered 

relatively heavy PM2.5 pollutions, except for the Appalachian Mountains, the Florida 

Peninsula, and some remote areas in the Northeast. The Southeastern United States, 

especially Alabama and Georgia, witnessed a high PM2.5 level in summer and less 

noticeably in spring and autumn, which results from isoprene emission from trees. Isoprene 

emission from trees increases with temperature74, 77 and peaks in hot summer.78 The 

Western United States had relatively low PM2.5 levels, but the San Joaquin Valley, Salt Lake 

City, and Denver stood out for their abnormally high PM2.5 level, which was also featured 

by clear seasonality and a high PM2.5 level in winter. This is caused by temperature 

inversion in winter which prevents atmospheric convection and trapped air pollution near the 

surface. For temporal trend, the Eastern and Central United States witnessed a decreasing 

trend in the PM2.5 level (Figure 3), which is caused by the reduction of sulfur dioxide from 

power plant emission. For seasonal cycle, PM2.5 level peaks in summer in the Eastern and 

Central United States due to long-term transported sulfate from power plants and isoprene-

related organic carbon. The winter peaks are probably caused by increased fuel burning for 

heat and local temperature inversion that prevents pollution dispersion.

Exposure assessments are essential for epidemiological studies. The traditional method of 

exposure assessment relies on nearest monitors, which constraints the number of available 

participants and introduces measurement errors. Besides, monitoring data from some 

monitors are intermittent. Our PM2.5 predictions have temporal resolution of 1 day and 

spatial resolution of 1 km×1 km, which lifts the above limitations. Besides, our hybrid 

model performs still well at low concentrations. Linearity between predicted and monitored 

PM2.5 still holds at low concentrations, without any signal of bias (Figure 5). Cross-

validated R2 indicates a good fit when daily PM2.5 level is below 35 μg/m3 (Table S5), 

which enable epidemiologists to assess the adverse effect of PM2.5 even below the EPA 

standard. In the long term, there is little discrepancy between long-term averages of 

predicted and monitored PM2.5, with difference below 1 μg/m3 (Figure S9).

Some limitations remain. Our model requires quite a lot of variables, which limits the 

application in other countries. This data-intensive approach could be difficulty in other 

regions where public data is sparse. For regions with less data available, we might have to 

make a tradeoff between model performance and resolution. For example, instead of daily 

prediction PM2.5 at 1 km×1 km, we may model annual average of PM2.5 or at coarse spatial 
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resolution. Besides, the chemical profile of PM2.5 is not available in this framework. 

Previous epidemiological studies suggest various toxicities of PM2.5 chemical 

components,79, 80 which is worthy of further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Model performance in the continental United States
We calculated total R2 between monitored and predicted PM2.5 for each monitoring site and 

interpolated R2 to places without monitors using Kriging interpolation. Spring was defined 

as March to May; summer was defined as June to August; autumn was defined as September 

to November; winter was from December to February of the next year (same below). The 

red color stands for high R2, and the blue color stands for low R2.
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Figure 2. Spatial distribution of predicted PM2.5
Trained neural network predicted daily total PM2.5 concentration at 1 km×1 km grid cell in 

the study area. The red color stands for high concentrations, and the blue color stands for 

low concentrations.
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Figure 3. Annual means by month of year and by region
Annual averages were computed by averaging all predicted PM2.5 values at 1 km×1 km grid 

cells in that region or in that month.
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Figure 4. Relationship between correlation and distance between any two monitor sites
For 1,928 monitoring sites in the study area, we computed the correlation of PM2.5 

measurements and distance (in degree) between any two monitoring site pairs and plotted 

the between-site correlation versus between-site distance (red dots). We repeated the same 

process for predicted PM2.5 and plotted the correlation of predicted PM2.5 and monitored 

PM2.5 between two site pairs versus distance (blue dots). This figure is for year 2012.
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Figure 5. Relationship between measured PM2.5 and predicted PM2.5
We fit a penalized spline between measured PM2.5 and predicted PM2.5 without specifying 

degree of freedom. This figure is for year 2009.
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