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1 Introduction

One often wants to rank competing point forecasts by accuracy. Invariably one proceeds

by ranking by expected loss, E(L(e)), where e is forecast error and the loss function L(e)

satisfies L(0) = 0 and L(e) ≥ 0, ∀e.1 Typically, however, little thought is given to the loss

function L(e). Instead, Gauss’ centuries-old quadratic loss, L(e) = e2, remains routinely

invoked, primarily for mathematical convenience.

Against this background, in this paper we approach the accuracy ranking problem di-

rectly, basing rankings on the entire distribution of e. In particular, recognizing that any

reasonable loss function must satisfy L(0) = 0, we study accuracy measures based directly

on the distance between F (e), the c.d.f. of e, and F ∗(e), the unit step function at 0,2

F ∗(e) =

{
0, e < 0

1, e ≥ 0.

F ∗(e) is the error cdf that corresponds to perfect forecasts; hence we compare F (e) to F ∗(e),

and we favor forecasts that minimize the integrated absolute distance between the two, or

“stochastic error distance” (SED). This approach turns out to yield useful insights with

important practical implications. We proceed as follows. In section 2 we introduce SED

loss and relate it to traditional loss functions, and in section 3 we assess the likely empirical

relevance of our basic result. In section 4 we introduce a weighted version SED and again

relate it to traditional loss functions. In section 5 we generalize SED in a way that facilitates

relating it to other divergence and distance measures, such as Cramér-von-Mises divergence

and Kolmogorov-Smirnov distance. In section 6, building on the results of section 5 for

our generalized generalized SED, we provide a complete characterization of the relationship

between generalized SED minimization and traditional expected loss minimization. We

conclude in section 7. All proofs appear in an appendix.

1More general representations are possible, which recognize that the actual and forecasted values (y and
ŷ, say) need not enter loss only through their difference, which is the forecast error, e = y − ŷ. See, for
example, Patton (2015) and the references therein. We could instead rank by E(L(y, ŷ)), where the loss
function L(y, ŷ) satisfies L(y, y) = 0 and L(y, ŷ) ≥ 0, ∀y, ŷ. In the vast majority of the literature, however,
the simple L(e) form is used, and we shall follow suit here.

2In an abuse of notation, throughout this paper we use “F (·)” to denote any cumulative density function.
The meaning will be clear from context.



2 Ranking Forecasts by Stochastic Error Distance

We propose simply using the distribution of e directly, ranking forecasts by stochastic dis-

tance of F (e) from F ∗(·), the unit step function at 0. That is, we rank forecasts by

SED(F, F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de,

where smaller is better. We call SED(F, F ∗) the stochastic error distance. It will prove

useful for what follows to split the SED(F, F ∗) integral at the origin, yielding

SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗)

=

∫ 0

−∞
F (e) de+

∫ ∞
0

(1− F (e)) de.
(1)

Hence SED(F, F ∗) has both “integrated c.d.f.” and “integrated survival function” compo-

nents.3 In Figure 1a we show SED(F, F ∗) and its components, and in Figure 1b we provide

an example of two error distributions such that one would prefer F1 to F2 under SED(F, F ∗).

2.1 The Relation Between SED(F, F ∗) and Other Loss Functions

We motivated SED(F, F ∗) as directly appealing and intuitive. It turns out, moreover, that

SED(F, F ∗) is intimately connected to one, and only one, traditionally-invoked loss function,

and it is not quadratic. We now state a key result.

Proposition 2.1 (Equivalence of SED and Expected Absolute Error Loss)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|) < ∞,

we have

SED(F, F ∗) = E(|e|). (2)

That is, SED(F, F ∗) equals expected absolute loss for any error distribution.

Hence if one is comfortable with SED(F, F ∗) and wants to use it to evaluate forecast accu-

racy, then one must also be comfortable with expected absolute-error loss and want to use

it to evaluate forecast accuracy. The two criteria are identical.

3Note that in the symmetric case SED(F, F ∗) = 2
∫ 0

−∞ F (e) de.
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(a) c.d.f. of e. Under the SED(F, F ∗) criterion, we prefer smaller SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗).

(b) Two forecast error distributions. Under the SED(F, F ∗) criterion, we prefer F1(e) to F2(e).

Figure 1: Stochastic Error Distance (SED(F, F ∗))
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Figure 2: Absolute-Error Loss vs. Squared-Error Loss, e1 ∼ N(0, 1), e2 ∼ N(µ2, σ
2
2). We

show the disagreement region in black.

3 On MAE vs. MSE Accuracy Rankings

Squared-error loss (mean-squared error, MSE, or its square root, RMSE) and absolute-error

loss (mean absolute error, MAE) are the two great workhorses of point forecast accuracy

evaluation. Primary focus, however, is generally on MSE rankings, with MAE rankings

something of a sideshow. Our results argue for a reversal of emphasis, with primary focus

on MAE. (Recall Proposition 2.1, which says that SED is MAE.) But does it matter?

That is, do MAE and MSE rankings agree, in which case it doesn’t matter which is used?

Empirically, MSE rankings and MAE rankings agree often, but not always. Theoret-

ically, MSE rankings and MAE rankings certainly don’t have to agree – they’re simply

different loss functions – which is why both are typically calculated and examined. However,

little is known theoretically about whether and when MSE rankings and MAE rankings do
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or don’t agree; the question is largely unexplored.4

Provision of a full answer turns out to be quite difficult, but we can obtain some results

for extremely-restrictive cases. If, for example, forecast errors are Gaussian, e ∼ N (µ, σ2),

then |e| follows the folded normal distribution with mean

E(|e|) = σ
√

2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
.

Hence for unbiased forecasts (µ = 0) we have E(|e|) ∝ σ, so that MAE rankings and MSE

rankings must be identical.

Even in the restrictive Gaussian case, however, the rankings can diverge if one (or both)

of the forecasts are biased. Consider, for example, two forecast errors, e1 ∼ N(0, 1) and

e2 ∼ N(µ2, σ
2
2), with µ2 ∈ [−1.3, 1.3] and σ2 ∈ (0, 1.3]. By numerical computation we

identify situations MAE and MSE rankings diverge, which we show in Figure 2. The

regions are not large, but they are certainly not negligible. We conjecture, moreover, that

divergences may be much more pronounced in non-Gaussian situations involving asymmetry

and/or fat tails.

4 Weighted Stochastic Error Distance

In some circumstances one may feel that the basic idea behind SED(F, F ∗) is appropriate,

but that divergence of F (·) from F ∗(·) on one side of the origin is more harmful than on the

other. This leads to the idea of a weighted SED (WSED) criterion, given by a weighted

sum of SED−(F, F ∗) and SED+(F, F ∗).

In particular, let,

WSED(F, F ∗; τ) = 2(1− τ)SED(F, F ∗)− + 2τSED(F, F ∗)+

= 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

(1− F (e)) de,

where τ ∈ (0, 1).5 The following result is immediate.

Proposition 4.1 (Equivalence of WSED and Expected Lin-Lin Loss)

4Patton (2015) performs some related, but nevertheless different, explorations.
5Note that when τ = 0.5, WSED(F, F ∗; τ) is just SED(F, F ∗).
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For any forecast error e, with cumulative distribution function F (e) such that E(|e|) < ∞,

we have

WSED(F, F ∗; τ) = 2E(Lτ (e)), (3)

where Lτ (e) is the loss function

Lτ (e) =

(1− τ)|e|, e ≤ 0

τ |e|, e > 0,

and τ ∈ (0, 1).

The loss function Lτ (e) appears in the forecasting literature as a convenient and simple

potentially asymmetric loss function.6 It is often called “lin-lin” loss (i.e., linear on each side

of the origin), or “check function” loss, again in reference to its shape. Importantly, it is the

loss function underlying quantile regression; see Koenker (2005).

Because WSED(F, F ∗; τ) is proportional to expected lin-lin loss as established by Propo-

sition 4.1, we are led inescapably to the insight that point forecast accuracy evaluation by

WSED(F, F ∗; τ) is actually point forecast accuracy evaluation by expected lin-lin loss. The

primacy of lin-lin loss in the WSED(F, F ∗; τ) case, like the primacy of absolute error loss

in the leading special case of WSED(F, F ∗; 1/2) (SED(F, F ∗)), emerges clearly.

Patton and Timmermann (2007) suggest a different route that also leads directly and

exclusively to lin-lin loss. Building on the work of Christoffersen and Diebold (1997) on

optimal prediction under asymmetric loss, they show that if loss L(e) is homogeneous and

the target variable y has no conditional moment dependence beyond the conditional variance,

then the L-optimal forecast is always a conditional quantile of y. Hence under their conditions

WSED(F, F ∗; τ) loss is the only asymmetric loss function of relevance.

Our results and those of Patton and Timmermann are highly complementary but very

different, not only in the perspective from which they are derived, but also in the results

themselves. If, for example, y displays conditional moment dynamics beyond second-order,

then the L-optimal forecast is generally not a conditional quantile (and characterizations

in such cases remain elusive), whereas the WSED(F, F ∗; τ)-optimal forecast is always a

conditional quantile.

In closing this section, we also note that WSED(F, F ∗; τ) can be used as a forecast

model estimation criterion. By Proposition 4.1, this amounts to estimation using quantile

6See Christoffersen and Diebold (1997).
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regression, with the relevant quantile governed by τ . When τ = 1/2, the quantile regression

estimator collapses to the least absolute deviations (LAD) estimator. Similarly, because

the forecast combination problem is a regression problem (Granger and Ramanathan, 1984),

forecast combination under WSED(F, F ∗; τ) simply amounts to estimation of the combining

equation using quantile regression, with the relevant quantile governed by τ .

5 Generalized Weighted Stochastic Error Distance

Here we generalize and represent SED in a way that facilitates relating it to other divergence

and distance measures.

5.1 A Natural Extension

As always let F (e) be the forecast error c.d.f., and let F ∗(e) be the unit step function at

zero. Now consider the following generalized weighted stochastic error distance (GWSED)

measure:

GWSED(F, F ∗; p, w) =

∫
|F (e)− F ∗(e)|pw(e) de, (4)

where p > 0. All of our stochastic error distance measures are of this form. When p = 1 and

w(e) = 1 ∀ e, we have SED(F, F ∗), and when p = 1 and

w(e) =

2(1− τ), e < 0

2τ, e ≥ 0,

we have WSED(F, F ∗; τ). The GWSED(F, F ∗; p, w) representation facilitates comparisons

of WSED(F, F ∗; τ) to other possibilities that emerge for alternative choices of p and/or

w(·).
Interesting connections emerge between GWSED(F, F ∗; p, w) and various other impor-

tant distance and divergence measures. We now discuss several.

5.2 GWSED and Cramér-von Mises Divergence

When p = 2 and w(e) = f(e), the density corresponding to F (e), GWSED(F, F ∗; p, w) is

Cramér-von Mises divergence,

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e) de. (5)

7



Note that the weighting function w(e) in Cramér-von Mises divergence CVM(F ∗, F ) is

distribution-specific, w(e) = f(e). We can decompose Cramér-von-Mises divergence as

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e) de

=

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
f(e) de

=

∫
R−

F (e)f(e)de+

∫
R+

(1− F (e))f(e)de−
∫
R

F (e)(1− F (e))f(e) de

=

∫ F (0)

0

p dp+

∫ 1

F (0)

(1− p) dp−
∫ 1

0

p(1− p) dp (by change of variable, e = F−1(p))

= F (0)2 − F (0) +
1

3

≥ 1

12
.

CVM(F ∗, F ) achieves its lower bound of 1/12 if and only if F (0) = 1/2, which implies that

CVM(F ∗, F ) ranks by “closeness to median unbiasedness,” just as does SED(F, F ∗).

Remark 5.1 (Directional properties of CVM).

Although CVM(F ∗, F ) is well-defined, CVM(F, F ∗) is not, because

CVM(F, F ∗) =

∫
|F (e)− F ∗(e)|2 f ∗(e) de,

where f ∗(e) is Dirac’s delta.

Remark 5.2 (Comparative directional properties of CVM and Kullback-Leibler divergence).7

The Kullback-Leibler divergence KL(F ∗, F ) between F ∗(e) and F (e) is

KL(F ∗, F ) =

∫
log

(
f ∗(e)

f(e)

)
f ∗(e) de,

where f ∗(x) and f(x) are densities associated with distributions F ∗ and F . Unlike CVM(F ∗, F ),

KL(F ∗, F ) does not fit in our GWSED(F, F ∗; p, w) framework as it is ill-defined in both di-

rections.

7There are of course many other distance/divergence measures, exploration of which is beyond the scope
of this paper. On Hellinger distance, for example, see Maasoumi (1993).
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Remark 5.3 (Kolmogorov-Smirnov distance, CVM , and SED).

Kolmogorov-Smirnov distance is

KS(F, F ∗) = sup
e
|F (e)− F ∗(e)| = max (F (0), 1− F (0)) .

Like CVM(F ∗, F ), KS(F, F ∗) achieves its lower bound at F (0) = 1/2, and KS(F, F ∗)

therefore ranks by “closeness to median unbiasedness,” just as does SED(F, F ∗).

Remark 5.4 (Preferences for low-variance errors among unbiased forecasts).

Note that although CVM divergence and KS distance value median unbiasedness, as

emphasized earlier in this section, they don’t invoke a notion of variance to rank unbiased

forecasts. In contrast, as emphasized in section 3, SED ranks unbiased forecasts by variance,

preferring forecast errors with smaller variance.

Remark 5.5 (Bias-variance tradeoffs).

Although CVM and KS don’t consider variance among unbiased forecasts, they do

consider it among biased forecasts. But they do it in a counter-intuitive way, due to the

choice of weighting function.

5.3 GWSED and Cramér Distance

When p = 2 and w(e) = 1, GWSED(F, F ∗; p, w) is Cramér distance, also known as Mallows

distance, or Monge-Kantorovich distance, or earth-movers distance; see Levina and Bickel

(2001). Closely related, moreover, are the “energy distance” used in higher dimensions (e.g.,

Székely and Rizzo, 2013) and the “continuous ranked probability score” of Gneiting and

Raftery (2007).8

We can decompose Cramér distance as∫ ∞
−∞

[
F (e)− F ∗(e)

]2
de =

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
de

=

∫ 0

−∞
F (e)de+

∫ ∞
0

[
1− F (e)

]
de−

∫ ∞
−∞

F (e)(1− F (e)) de

= SED(F, F ∗)−
∫ ∞
−∞

F (e)(1− F (e)) de.

(6)

8The continuous ranked probability score, however, is not used to compare point forecasts, but rather to
compare density forecasts.
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Equation (6) is particularly interesting insofar as it shows that Cramér distance is closely

related to SED(F, F ∗), yet not exactly equal to it, due to the adjustment term,
∫
F (e)(1−

F (e)) de. One can show that9∫
F (e)(1− F (e)) de =

1

2
E(|e− e′|),

where e′ is a stochastic copy of e, revealing that the adjustment term, like the leading term,

is a measure of forecast error variability.

One can also rewrite Cramér distance solely in terms of two SED’s. We state this result

as a proposition.

Proposition 5.6 (SED and Cramér distance)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|) < ∞,

we have ∫ ∞
−∞

[
F (e)− F ∗(e)

]2
de = SED(F, F ∗)− 1

2
SED(G,F ∗),

where G is the distribution function of e− e′ and e′ is a stochastic copy of e.

6 GWSED(F (e), F ∗(e); p,w(e)) vs. E(L(e)):

A Complete Characterization

Equivalence of GWSED(F (e), F ∗(e); p, w(e)) minimization and E(L(e)) minimization can

actually be obtained for a wide class of loss functions L(e). In particular, we have the

following proposition.

Proposition 6.1 (Equivalence of GWSED minimization and E(L) minimization)

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for e > 0 and dL(e)/de < 0

for e < 0, and suppose also that F (e) and L(e) satisfy F (e)L(e) → 0 as e → −∞ and

(1− F (e))L(e)→ 0 as e→∞. Then∫ ∞
−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E(L(e)). (7)

That is, minimization of GWSED(F (e), F ∗(e); p, w(e)) when p = 1 and w(e) = |dL(e)/de|
corresponds to minimization of expected loss E(L(e)).

9See Gneiting and Raftery (2007).
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Several remarks are in order.

The importance of the proposition is its highlighting the fact that for any L there is a

corresponding and easily-calculated GWSED, and similarly, for any GWSED there is a

corresponding and easily-calculated L. Hence the result clarifies what it means to chose a

loss function: choosing a loss function amounts to choosing a GWSED weighting function.

This may be helpful not only in helping with introspection as to what loss function might

be “reasonable” in a given situation, but also in obtaining new results by switching from

“L-representations” to “GWSED-representations.”

Remark 6.2 (GWSED weightings other than those corresponding to WSED and SED).

Note that the E(L) minimizers that match various GWSED(F, F ∗; p, w) minimizers gener-

ally correspond to non-standard and intractable loss functions L(e) in all cases but the ones

we have emphasized, namely WSED(F, F ∗; τ) and its leading case SED(F, F ∗).

Remark 6.3 (The GWSED weighting that produces quadratic loss).

The weighting function in (7) that produces expected squared-error loss (E(L(e)) = E(e2))

is immediately |dL(e)/de| = |2e|. It is not obvious why one would generally want to adopt

such a weighting, other than for mathematical convenience.

Remark 6.4 (Relationship between GWSED and Elliott et al. (2005) loss).

GWSED(F, F ∗; p, w) somewhat resembles the Elliott et al. (2005) (ETK) loss function,

LETK(e; p, α) = |e|p (α + (1− 2α)I(e < 0)) .

It differs fundamentally, however, in that GWSED(F, F ∗; p, w) is based on distributional

distance, |F − F ∗|, whereas ETK loss is based on the usual forecast error distance, (y − ŷ).

Ultimately, ETK loss is a special case of GWSED(F, F ∗; p, w), corresponding to a particular

choice of exponent p and weighting function w(e), as per Proposition 6.1, as are all L(e) loss

functions that satisfy the regularity conditions of the proposition.

7 Concluding Remarks

Starting from first principles, we have proposed and explored several “stochastic error dis-

tance” (SED) measures of point forecast accuracy, based directly on the distance between

the forecast-error c.d.f. and the unit step function at 0. SED-type criteria sharply focus
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attention on a particular loss function, absolute loss (and its lin-lin generalization), as op-

posed to the ubiquitous quadratic loss, or anything else. Our results elevate the status of

absolute and lin-lin loss for both point forecast evaluation and for estimation.

SED is related to important recent work on tests of stochastic dominance (SD) of loss

distributions, including Corradi and Swanson (2013), Lee et al. (2014), and Jin et al. (2015).

The SED and SD approaches are related in at least two ways. First, and obviously, both

are based on comparative properties of certain c.d.f.’s. Second, the SD literature focuses on

achieving robustness of accuracy rankings to loss function choices, and SED initially appears

that way too, insofar as it is motivated from first principles without reference to an L(e)-type

loss function.

Yet there is also a clear difference between SD and SED. If SD holds (whether first- or

higher-order), it really does imply robustness to certain classes of loss functions. SED, in

contrast, leads one inextricably to absolute-error loss. Indeed we have shown in Proposition

2.1 that the SED criterion is the absolute-error loss criterion. Hence, in contrast to SD, which

focuses attention on whether one forecast dominates another regardless of loss function, SED

ultimately embraces a particular loss function, absolute error loss, which until now has been

something of a sideshow relative to the ubiquitous quadratic loss.

Several interesting directions arise for future research. One direction concerns multivari-

ate extensions, in which case it’s not clear how to define the unit step function at zero, F ∗(e).

Consider, for example, the bivariate case, in which the forecast error is e = (e1, e2)
′. It seems

clear that we want F ∗(e) = 0 when both errors are negative and F ∗(e) = 1 when both are

positive, but it’s not clear what to do when the signs diverge.

This difficulty is not surprising insofar as it parallels difficulties with multivariate ex-

tensions of the median. Various notions of the multivariate median are available, but it

seems that no single measure dominates others (Small, 1990; Gneiting, 2011). It would be

interesting to investigate how various multivariate versions of SED (for various versions of

the unit step function at zero) relate to various versions of multivariate median.

Another direction is further study of MAE vs. MSE rankings as introduced in section

3. In work building on the research reported here, Ardakani et al. (2015) take interesting

steps in that direction, obtaining analytic results under a “convex ordering” assumption

weaker than a normality. Necessary and sufficient conditions remain elusive, however, for

the general case of non-Gaussian, non-zero-mean forecast errors.
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Appendices

A A Useful Lemma

We begin with a lemma.

Lemma A.1

(i) Let y be a positive random variable such that E(|y|)) <∞. Then

E(y) =

∫ ∞
0

[1− F (y)]dy,

where F (y) is the cumulative distribution function of y.

(ii) Let y be a negative random variable such that E(|y|)) <∞.10 Then

E(y) = −
∫ 0

−∞
F (y)dy,

where F (y) is the cumulative distribution function of y.

Lemma A.1 (i) is well known in the mathematical statistics literature (e.g., Block and Fang,

1988; Rao, 2009), and it also features prominently in the hazard/survival literature (e.g.,

Neumann, 1999).

B Proofs of Propositions

We now prove the Propositions stated in the paper.

Proposition 2.1 (Equivalence of SED and Expected Absolute Error Loss)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|) < ∞,

we have

SED(F, F ∗) =

∫ 0

−∞
F (e) de+

∫ ∞
0

[1− F (e)] d e = E(|e|).

That is, SED(F, F ∗) equals expected absolute loss for any error distribution.

10In another abuse of notation, we use “y” to denote either a generic random variable or its realization.

13



Proof of Proposition 2.1

SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗)

=

∫ 0

−∞
F (e) de+

∫ ∞
0

(1− F (e)) de

= −
∫ 0

−∞
ef(e) de+

∫ ∞
0

ef(e) de (by Lemma A.1 (i) for SED− and (ii) for SED+)

=

∫ ∞
0

ef(−e) de+

∫ ∞
0

ef(e) de

=

∫ ∞
0

e(f(−e) + f(e)) de

=

∫ ∞
−∞
|e|f(e) de

= E(|e|).

Proposition 4.1 (Equivalence of WSED and Expected Lin-Lin Loss)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|) < ∞,

we have

WSED(F, F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

[1− F (e)] de = 2E(Lτ (e)), (A.1)

where Lτ (e) is the loss function

Lτ (e) =

(1− τ)|e|, e ≤ 0

τ |e|, e > 0,

and τ ∈ (0, 1).
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Proof of Proposition 4.1

WSED(F, F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

(1− F (e)) de

= 2(1− τ)

∫ 0

−∞
(−e)fe(e) de+ 2τ

∫ ∞
0

efe(e) de (by Lemma A.1)

= 2(1− τ)

∫
|e|1{e ≤ 0}fe(e) de+ 2τ

∫
|e|1{e > 0}fe(e) de

= 2

∫ [
(1− τ)|e|1{e ≤ 0}+ τ |e|1{e > 0}

]
fe(e) de

= 2E(Lτ (e)).

Proposition 6.1 (Equivalence of GWSED minimization and E(L(e)) minimization)

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for e > 0 and dL(e)/de < 0

for e < 0, and suppose also that F (e) and L(e) satisfy F (e)L(e) → 0 as e → −∞ and

(1− F (e))L(e)→ 0 as e→∞. Then∫ ∞
−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E(L(e)).

That is, minimization of GWSED(F, F ∗; p, w) when p = 1 and w(e) = |dL(e)/de| corre-

sponds to minimization of expected loss E(L(e)).

Proof of Proposition 6.1∫ ∞
−∞

∣∣F (e)− F ∗(e)
∣∣ ∣∣∣∣dL(e)

de

∣∣∣∣ de = −
∫ 0

−∞
F (e)

dL(e)

de
de+

∫ ∞
0

(1− F (e))
dL(e)

de
de

=

∫ 0

−∞
f(e)L(e) de+

∫ ∞
0

f(e)L(e) de

=

∫ ∞
−∞

f(e)L(e) de

= E[L(e)],

where we obtain the second line by integrating by parts and exploiting the the assumptions

on L(e) and F (e). In particular,∫ 0

−∞
F (e)

dL(e)

de
de = F (e)L(e)

∣∣∣0
−∞
−
∫ 0

−∞
f(e)L(e) de,

15



by integration by parts, but the first term is zero because F (e)L(e) → 0 as e → −∞, and

similarly, ∫ ∞
0

(1− F (e))
dL(e)

de
de = (1− F (e))L(e)

∣∣∣∞
0

+

∫ ∞
0

f(e)L(e) de,

again by integration by parts, and again the first term is zero because (1 − F (e))L(e) → 0

as e→∞.
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