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ABSTRACT 

We present detailed experimental work involving a commercially available large scale 

shared memory multiple instruction stream-multiple data stream (MIMD) parallel com­

puter having a software controlled cache coherence mechanism. To make effective use 

of such an architecture, the programmer is responsible for designing the program's 

structure to match the underlying multiprocessor's capabilities. We describe the tech­

niques used to exploit our multiprocessor (the BBN TC2000) on a network simulation 

program, showing the resulting performance gains and the associated programming 

costs. We show that an efficient implementation relies heavily on the user's ability to 

explicitly manage the memory system.© 1992 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

1.1 Overview 

Large scale general purpose machines, such as 

the BBN TC2000 [1] and the nCUBE [2] hyper­

cube machines, are achieving wide performance 

advantages (and cost advantages) over the tradi­

tional mainframe technology. Yet these new par­

allel computers come with their own unique de­

sign and implementation problems with regards to 
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shared and nonshared memory paradigms, l3J 
scalability, and cache coherence mechanisms 
[4-6]. 

In this paper, we present experimental results 

of a network simulation program mapped onto the 

BBN TC2000 multiprocessor. The program devel­

opment is divided into phases, where each phase 

attempts to exploit a feature of the machine's ar­

chitecture. Performance measurements are made 

at each phase of experimentation. Mapping the 

network simulator efficiently onto the BBN multi­

processor requires considerable modification be­

cause it is the programmer's responsibility to ex­

plicitly manage data locality. 

1.2 Motivation 

Detailed mappings of real-world application pro­

grams onto specific parallel machines often un­

cover the most desirable features and also the crit­

ical weaknesses inherent in the computer's 

design. The network simulator program is one of 
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these applications, and by examining the resulting 

performance gains and associated programming 

costs, we make progress in the development of 

parallel processing. 

We perform this study in phases to determine 

the software costs and the resulting performance 

gains achieved by exploiting specific architectural 

features of the BBN TC2000. The program modifi­

cations begin at a general level and progressively 

become more architecturally dependent. This 

study revolves about the effective use of the mem­

ory hierarchy, including the programmer's main­

tenance of the caches to avoid coherence prob­

lems. 

We organize the remaining sections of this pa­

per as follows. In Section 2, we describe past work 

on the network simulator and give an overview of 

the BBN multiprocessor used by the Massively 

Parallel Computing Initiative (MPCI) at Lawrence 

Livermore National Laboratory (LLNL). We in­

troduce the network simulator algorithm in Sec­

tion 3 and present the parallel implementations 

and performance results in Section 4. In Section 

5 we discuss the software costs associated with 
' 

overcoming the lack of hardware support for co-

herent shared memory caches. In Section 6, we 

give a summary and discuss open issues. 

2 BACKGROUND 

2. 1 Recent and Past Work 

The network simulator program [7] determines 

the performance of a scalable multiprocessor in a 

vector processing environment. It is also a vital 

component of the Cerberus multiprocessor simu­

lator [8], which performs simulation of parallel 

programs at the instruction level. The network 

simulator also executes on Sequent Symmetry [9] 

and Alliant FX/8 [10] multiprocessors. 

Programmers of the above multiprocessors of­

ten regard these machines as easy to program be­

cause of the benefits of (1) using a single, shared 

address space, and (2) having hardware support 

for coherent caches. We, however, are interested 

in large scale systems on the order of hundreds or 

thousands of processors, where cache coherent 

shared memory systems currently do not exist. 

2.2 BBN TC2000 Multiprocessor 

The TC2000 multiprocessor [ 1] is a commercial 

parallel processor designed by BBN Advanced 

Computers Inc. It is a scalable shared memory, 

88100 CPU/FPU 

J Sequencer J Floating Point Unit 

J Register File J ~: ~~~ f~~1i~;: J 

J Integer Unit J [~~~i}>!y: ~i~ll~e~ 

FIGURE 1 BBN TC2000 processing element. 

multiple instruction stream-multiple data stream 

(MIMD) multiprocessor having up to 512 high 

performance processing elements (PEs) and 

memory modules. Processors and memories com­

municate through a variant of a multistage cube 

network [11] in aPE-to-PE model.* 

Each PE (Figure 1) consists of a processor, 

memory, memory management units, and a net­

work switch interface. The processor is a Motorola 

88100 reduced instruction set computer (RISC) 

operating at 20 MHz [12]. The 88100 combines 

the central processing unit (CPC) and the floating 

point unit (FPU) on a single integrated circuit. 

Shared memory per PE consists of from 4 to 16 

megabytes and has local cache memories.t The 

Motorola 88200 cache memory management unit 

(CMMU) [13] facilitates both virtual memory 

management and cache memory support. Sepa­

rate instruction and data caches help reduce the 

access times required for local and remote mem­

ory references. The cache organization is a 16 ki­
lobyte, four-way set associative design,* and each 

PE has two instruction caches and one data 

cache. There is no hardware mechanism for 

*The "PE-to-PE" model specifies that a cpu port and a 

memory port share a common port into the multistage network. 

t The LLNL MPCI's TC2000 has 128 PEs, each having 16 

megabytes of shared memory. 

* A four-way set associative design allows memory refer­

ences to be placed in one of four dedicated locations in the 

cache. 



ASSESSMENT OF PROGRAMMING COSTS 69 

Table 1. Hierarchical Memory Access Times (Microseconds) 

Mode 

Inhibit 

Write-through 

Copyback 

Write-through 

Copyback 

Cache 

::"Jone 

Hit 

Hit 

Miss 

Activity 

Miss with no writeback 

Miss with local write 

Miss with remote write 

maintaining data cache coherence for shared 

memory. The application programmer must ex­

plicitly control the data caches to ensure correct 

program operation. Similar to the IBM RP3 mem­

ory design concept [ 14], regions of shared mem­

ory are marked as either cacheable or noncache­

able. However, the memory design in the BBN 

machine can further specify each cacheable re­

gion a~ having either copyback or write-through 

operatiOn. Copyback caching mode is a memory 

update policy that allows memory updates to oc­

cur directly to cache memory, and not necessarilv 

to main memory at the same points in time. Write~ 
through caching mode always enforces a strict up­

date policy such that cache memory and main 

memory are always consistent. In Table 1 [1], we 

show the access times for the TC2000 memorv 

hierarchy. The large difference in access time~ 
between cache memory references (0.150 micro­

seconds) and shared memory references ( 1. 913 

microseconds) causes severe performance 

degradation if a relatively large fraction of dy­

namic instructions reference shared memory. . 

Each PE has a bidirectional switch interface to 

the network responsible for satisfying remote 

memory requests. The Motorola 88200 CMMU on 

each PE is responsible for performing the virtual 

to physical address translation. Specific portions 

of the physical address determine the access route 

to ~ithe_r local memory (and local caches) or to the 

SWitch mterface (remote memory). The intercon­

nection ~etwork design is based on a multistage 

cube vanant called the butterfly switch. This net­

wo_rk has bidirectional paths and supports circuit 

SWitched transmissions to memory modules on 

other PEs. Individual switch nodes are composed 

of 8 X 8 crossbar modules, having 8 bit wide data 

paths clocked at 38 MHz. 

Local 

Read 

0.550 
0.150 
1.150 
0.850 
0.850 
1.500 
2.905 

Memory Response Delays 

Local Remote 

Write Read 

0.600 
0.600 
0.150 
1.200 
1.200 
1.850 
3.255 

1.913 
0.150 
0.150 
2.529 
2.529 
3.179 
4.534 

3 THE NETWORK SIMULATOR 

3.1 Preliminaries 

Remote 

Write 

1.889 
1.889 
1.150 
4.168 
4.168 
4.818 
6.173 

The network simulator program 7 simulates and 

computes performance statistics of a proposed 

communications network for a scalable multipro­

cessor. Simulated CPUs interface to this network 

and communicate with other CPUs via packet re­

~uests and responses. The network organization 

IS based on the multistage cube network, which 

has equidistant paths to other resources. 

The multistage cube interconnection networks 

provide the communication vehicles for any num­

ber of simulated cpu and memory ports. Specifi­

cally, the cpu and memory ports are connected to 

a request network per the dance hall model.* A 

separate response network returns the words of 

memory to the requesting cpu port (Figure 2). 

Furthermore, the networks are packet switched, 

allowing packets to be buffered in the presence of 

network conflicts. The design of the individual 

switch nodes in the network provides efficient 

packet switched communications. The design of a 

K-input port, K-output port switch node uses K2 

buffers to perform necessary storage and also has 

control logic to perform packet routing. In Figure 

3, we show examples of simplified switch node 

designs. 

The proposed network and switch node designs 

achieve virtually ideal performance in a vector 

processing environment [7]. Briefly, each simu­

lated cpu port will fetch a number of memory 

words from consecutive memory ports (a vector 

fetch). For example, if we simulate a 2,048 word 

*The "dance hall" model specifies that the cpu ports and 

the memory ports lie at opposite sides of a multistage network. 
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CPU 
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Request 
Network 

Memory 
Ports 
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FIGURE 2 Network simulator architecture. 

vector fetch in a system using 2-ary 10-cube net­

works, we are effectively simulating a 1,024 cpu 

system that uses 1 0-stage networks having 2 X 2 

switch nodes (210 = 1,024), where each cpu per­

forms 2,048 memory fetches. These memory 

fetches begin at a random memory port and cycle 

consecutively through the memory ports in a mo­

dulo fashion. For example, simulated cpu (i) 

would fetch its first word from memory port (j), its 

second fetch from memory port (j + 1) mod 1024, 

its third fetch from memory port (j + 2) mod 1024, 

etc. until all the fetches from all the memories are 

received. Vector stride refers to the incrementing 

value between consecutive, regular references. In 

the above example, the vector stride is one ele­

ment. 

The network simulator program input parame­

ters include the following: 

1. The vector length 

2. The vector stride 

(a) 

(b) 

FIGURE 3 Examples of packet switched, node de­

signs: (a) 2 X 2 design, (b) 4 X 4 design. 

3. The buffer length in a switch node 

4. The order (number of stages in the net­

works) 

5. The base (number of CPUs wired to one 

switch node) 

The network simulator program output statis­

tics include the following: 

1. The average bandwidth 

2. The average packet latency 

3. The number of simulation cycles 

4. The standard deviation among the individ­

ual finish times 

3.2 The Algorithm 

The network simulator is a logic type of program, 

performing a large number of boolean operations 

to submit, forward, and receive packets, resolve 

conflicts, and compute packet statistics. In the 

phases of interest, the program executes no float­

ing point instructions and performs only a small 

amount of work per packet move operation. The 

resulting performance is strongly dependent on 

data placement, movement, and allocation strate­

gies. 

The simulator program consists of four major 

phases on each simulation clock cycle: ( 1) a cpu, 

memory set phase, (2) a network set phase, (3) a 

network move phase, and ( 4) a cpu, memory move 

phase. The main loop of the network simulator is 

shown below: 

while (any more packets to move) { 

cpu -memory _set() 

network_set() 

barrier-synchronization() 

network_move () 

} 

cpu-memory _move() 

barrier_ synchronization() 

seriaL code() 

barrier_ synchronization() 

The cpu, memory set phase sets and resets 

boolean flags depending on the following states: 

1. cpu ports are able to submit packets into the 

request network 

2. Memory requests have propagated back to 

cpu ports 

3. Memory response ports can accept packets 



The network set phase sets and resets boolean 

flags depending on the following states: 

1. cpu ports in the request network can ad­

vance packets and there is available buffer 

space on the corresponding switch node in­

put ports 

2. Memory ports in the response network can 

advance packets and there is available 

buffer space on the corresponding switch 

node input ports 

3. Switch nodes can advance packets and 

there is available buffer space on the corre­

sponding switch node, cpu, or memory in­

put ports 

4. Determine packet winners when conflicts 

arise 

The network move phase performs the follow­

ing actions based on the flag states determined in 

the first two phases: 

1. Packets move from cpu ports into the corre­

sponding switch nodes in the request net­

work 

2. Packets move from switch node output 

ports into the corresponding switch node or 

memory input ports in the request network 

3. Packets move from memory ports into the 

corresponding switch nodes in the response 

network 

4. Packets move from switch node output 

ports into the corresponding switch node or 

cpu input ports in the response network 

The cpu, memory move phase performs the fol­

lowing actions based on the flag states determined 

in the first two phases: 

1. Advance packets in memory request ports 

to the memory response ports 

2. Advance packets in cpu response ports, 

count packets received, and record network 

latencies 

3. Initialize information for packets entering 

the network and increment the counters of 

packets sent 

Barrier synchronization primitives force all pro­

cessors to wait for all other processors at points 

specified in the program. After all processors 

reach such synchronization points, they continue 

executing useful instructions. Barrier synchroni­

zation is necessary in this program to ensure the 
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proper ordering of memory accesses among the 

asynchronous processors to maintain program 

correctness. 

4 PARALLEL IMPLEMENTATIONS 

4.1 Phase 0 Parallel Program 

The above algorithm decomposition represents 

the original serial implementation and an immedi­

ate parallel implementation is easy to see: given a 

multiprocessor with N PEs, PE i would be respon­

sible for maintaining and computing information 

on the simulated cpu ports [ i, i + N, i + 2N, 

. . . ], memory ports [ i, i + N, i + 2N, . . . ], and 

switchnodes [(i,j), (i+N,j), (i+ 2N,j), ... ] for 

0 ~ j < order (Figure 4). 

The original parallel program implementation 

mentioned above is the starting point for measur­

ing performance of the BBN TC2000 on the net­

work simulator program. Because of the lack of 

hardware support for coherent caches, this imple­

mentation is unable to make effective use of the 

local data caches in the TC2000. This program 

uses interleaved shared memory for all shared 

data accesses. Interleaved shared memory design 

is a memory mapping technique that automati­

cally places consecutive memory references (or 

groups of references) in successive memory mod­

ules that require different communication paths. 

Interleaving data structures throughout shared 

memory allows multiple PE access to different ele­

ments of the data structure without incurring un­

necessary network conflict and delay. In Figure 5, 

we show parallel and serial execution time results. 

Recall that the vector length corresponds to the 

FIGURE 4 Phase 0 parallel program decomposition 
of a 2-ary, 3-cube network simulator using four 
TC2000 PEs. 
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100000 2-ary 10-cube Simulation 

10000 

Exec. Time 
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FIGURE 5 Phase 0 execution time requirements. 

number of memory words fetched by each simu­

lated cpu. The 2-ary 10-cube network parameters 

specify the simulation of a 10-stage network using 

2 X 2 switch nodes (N = number of PEs = 210). 

The serial program is the parallel program com­

piled in a manner that strips all synchronization 

operations and uses only local memory with copy­

back cache mode enabled. (The performance of 

the serial program is marked "SERIAL" in Figure 

5.) In Figure 5, we show that eight processors, 

working in parallel, are required to match the se­

rial program requirements. While the serial pro­

gram simply uses local and cache memory ac­

cesses, the parallel program uses interleaved 

shared memory accesses. Note that the 32-pro­

cessor results actually perform worse than the 16-

processor results, possibly due to (1) increasing 

initialization time, (2) increasing communication 

time with respect to computation time, and (3) 

increasing amounts of network conflicts. In partic­

ular, read-only hot spot [15] accesses are poten­

tially significant because severe network blockage 

and excessive communication delays result. "Hot 

spot" accesses are memory references made to a 

single shared location by several processors at 

similar points in time. 

This parallel program also executes on the Al­

liant FX/8 and Sequent Symmetry multiproces­

sors, obtaining excellent speedup results [16]. Re­

call that these multiprocessors have hardware 

support for cache coherence. For the execution of 

large scale problems, however, the above systems 

lack the required performance. The BBN TC2000 

promises a scalable solution to finding that perfor­

mance. However, the BBN machine lacks hard­

ware support for coherent shared memory caches. 

We need to recover from the performance penalty 

(Figure 5) resulting from the dependence of the 

Phase 0 implementation on coherent cache sup­

port . 

4.2 Phase 1 Parallel Program 

Our second attempt at a parallel implementation 

makes use of the data caches whenever possible. 

From Table 1, cache memory hit references are 

about 4 times faster than local memory references 

(150 vs. 600 nsec) and about 13 time~ faster than 

remote memory references (150 vs. 1,889 nsec). 

There are two ways to maintain cache coherence 

on the TC2000. One method is to cache all refer­

ences and explicitly flush them when another PE 

requires access to the cached data. The alterna­

tive method is to find data references that only a 

single PE will access while the remaining shared 

data references are simply interleaved throughout 

the memory system. 

We performed separate, simple experiments to 

determine which of the above two methods would 

be better for our application. Explicit cache 

flushes require 11 microseconds per cache line 

using a BBN -specific routine. This coherence 

scheme was not used because we determined that 

the 11 microseconds and the additional software 

required would be intolerable for our application. 

(Recall that our application performs very small 

quantities of work between communication opera­

tions.) Using this technique, cache flushing could 

dominate execution time due to its high overhead. 

Therefore, we chose to explicitly and carefully al­

locate all data that was not shared as local cache­

able memory, restructuring the program to make 

use of the cacheable regions as much as possible. 

We also manually identified and removed write­

o~ce, read-many hot spot accesses by shadowing 

this data with copies in each PE. In Figure 6, we 

show a sample parallel decomposition for the re­

quest network (the response network is done simi­

larly). 

The decomposition shown in Figure 6 differs 

slightly from the one shown in Figure 4. We al­

tered the program to handle the switch node, 

memory module interface more efficiently. In Fig­

ure 6, we see that the last stage of the network and 

the corresponding memory modules are handled 

by the same physical processor. This one proces­

sor is sharing some* data with itself so no coher-

* Part of the memory port data structure can now be safely 

cached, while other parts must still reside in shared memory 

for correct operation. 



CPUs Stage #I Stage #2 Stage #3 Memories 

FIGURE 6 Phase 1 parallel program decomposition 

of a 2-ary, 3-cube network simulator using four 

TC2000 PEs. 

ence problems will occur. Therefore, we can safely 

cache part of these data structures used in this 

part of the network simulator program. In Section 

4.3, we find more examples of data sharing having 

similar behavior as above. 

The resulting program has a message passing 

flavor. In the original version of the program, cpu, 

memory, and switch node structures explicitly 

need information from other structures in the next 

stage (buffer space availability and packet buffer 

access) for correct operation. For example (see 

Figure 6): before a packet can propagate on the 

link between switch node (0, 0) and switch node 

(1, 2), switch node (0, 0) must be certain that 

buffer space is available in switch node ( 1, 2). 

Because these switch node structures reside on 

different physical PEs, they cannot be cached and 

must reside in shared memory. The new version of 

the program extracts the shared data necessary 

for interprocess communications from each cpu, 

memory, and switch node structure so that we can 

allocate these structures in local cache memory. 

This removed shared data is left in shared mem­

ory so that inter-PE communication can proceed, 

maintaining program correctness. We use simple 

static scheduling* methods in the program be­

cause the individual instruction streams are simi­

lar in execution time. The static scheduling 

scheme also forces a PE to control the same data 

structures on each iteration to prevent extraneous 

and expensive data movement. We show parallel 

• We use the term "static scheduling" to refer to a fixed 

decomposition of the work load, independent of any execution 

time parameters. 
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FIGURE 7 Phase 1 execution time requirements. 

and serial execution time results in Figure 7 and 

show speedup results in Figures 8 and 9. 

We see an impressive improvement in parallel 

execution time with respect to Phase 0 execution 

times (Figure 5). The large effort in restructuring 

the program also resulted in marginal improve­

ments to the serial execution time, thereby pro­

ducing unambiguous speedup results. At larger 

vector lengths, two parallel processors now sur­

pass the serial execution time in contrast to the 

eight processors required in Phase 0. 

For ideal speedup behavior, the curves in Fig­

ures 8 and 9 should shadow the horizontal lines 

for the appropriate number of PEs used. Asymp­

totically, we see good performance because the 

relatively large amount of initialization time 

(memory allocation and initialization, cache tran­

sients, and network transients), when compared 

to actual processing time, becomes less signifi-

Speedup 
(log scale) 

20 21 22 23 24 25 26 27 28 29 210211212213214 

Vector Length 
(log scale) 

SPEs 

4PEs 

2PEs 

1PE 

FIGURE 8 Phase 1 speedup results (one-, two-, 

four-, and eight-processor results). 
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FIGURE 9 Phase 1 speedup results (16- and 32-pro­
cessor results). 

cant. From the details of the network simulation 

program, we note that initialization time is a con­

stant term, independent of the vector length pa­

rameter, for a given processor count. Because ini­

tialization time is a constant as the problem size 

increases (as the vector length increases), longer 

computation time amortizes the effects of initiali­

zation time. In Figure 7, we can see that at short 

vector lengths (less than 2 6
), small increases in the 

vector length result in negligible increases in exe­

cution time. However, at vector lengths beyond 2 8 , 

execution time becomes a linear function of the 

vector length, resulting in amortized initialization 

time with respect to large computation time. 

Shared memory reference delay always degrades 

performance on such a multiprocessor. In the next 

phase, we deal with identification and elimination 

of unnecessary shared memory references. 

4.3 Phase 2 Parallel Program 

In Phase 1, we use shared memorv locations to 

handle the data communication oc~urring on the 

links between the cpu ports, memory ports, and 

the switch nodes, ignoring the actual location of 

these data structures. This point of view is the 

data parallel one, programming as if each port or 

switch node data structure needs its own virtual 

processor. In Phase 2, we determine if communi­

cation occurs between cpu, memory, and switch 

node ports represented by the same physical pro­

cessor and arrange that local cache memory be 

used for this purpose. 

For example, suppose we are simulating a 2-

ary 3-cube network. In Figure 10, one can see the 

decomposition of the request network using two 

TC2000 PEs. When moving a packet or checking 

buffer space availability for cpus (0), (4) with 

PE #0 

PE#l 

PE #0 

PE#I 

CPUs Stage #I Stage #2 Stage #3 Memories 

FIGURE 10 A 2-ary 3-cube decomposition with two 

processors. 

switch nodes (0, 0), (1, 0), and (1, 2), we notice 

that only physical PE#O accesses the necessary 

data. (PE#1 operates in a similar manner with a 

different subset of structures in the same stages of 

the network model.) When moving packets or 

checking buffer space availability in the cpu ports 

and in network stage 1, the PE communicates 

with itself using shared memory. Also, when mov­

ing data between network stages 2 and 3, and the 

memory ports, we must use shared data refer­

ences because different PEs are responsible for 

moving packets and checking buffer space avail­

ability.* As the network order grows for a fixed 

number of physical processors applied, more con­

secutive stages of the network will be able to ex­

ploit local cache memory in this manner. Blind 

use of the data parallel model (not taking into ac­

count the actual physical processor and the data it 

contains) leads to extraneous use of shared mem­

ory when a processor communicates with itself. 

In Phase 2, we remove much of the extraneous 

use of shared memory by shadowing the shared 

arrays with arrays allocated in local cache mem­

ory. When we operate in a stage of the network 

simulator program that would normally suffer 

from extraneous sharing of data, we simply access 

local cache memory data because we know no 

other PE will ever access this data. When we oper­

ate in a region of the network that requires sharing 

of data, we access shared data because we know 

other PEs will access this data. \Ve show the par­

allel and serial execution time results in Figure 11 

* Although the memory ports for this example appear to be 

cacheable, the decomposition of the corresponding response 

network (not shown) prohibits it. 
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FIGURE 11 Phase 2 execution time requirements. 

and show the speedup results in Figures 12 and 

13. 

To eliminate extraneous use of shared data in 

the network simulator program, we perform a sim­

ple test at the stage of the network from which we 

are attempting to move packets. Factors including 

the order of the network, the number of inputs to a 

switch node, and the number of physical PEs de­

termine the stages where extraneous sharing oc­

curs. Note that a shared memory multiprocessor 

possessing hardware enforced cache coherence 

does not have this extraneous shared data prob­

lem because this data is always cached and never 

invalidated by another PE. 

Through the elimination of extraneous use of 

shared memory, execution time results show sig­

nificant improvements. The greatest benefits of 

this phase occur when the simulated network is 

Speedup 
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FIGURE 12 Phase 2 speedup results (one-, two-, 

four-, and eight-processor results). 
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4 

FIGURE 13 Phase 2 speedup results (16- and 32-

processor results). 

large with respect to number of parallel processors 

employed because more stages of the network will 

be able to use local cache arrays instead of shared 

arrays. In particular, note the significant perfor­

mance gains using 32 processors on the longer 

vector length problems in the 2-ary 10-cube sim­

ulations (compare Figure 13 to Figure 9). Note 

that for vector lengths of less than 2 9
, 16-proces­

sor results are consistently better than 32-proces­

sor results because we are dealing with relatively 

small execution times on the order of 20 seconds. 

As noted earlier, run time is not sufficient in such 

cases to amortize initialization time on these rela­

tively small problem sizes. 

4.4 Phase 3 Parallel Program 

In the previous phases, we blindly interleave 

shared data references throughout the system. For 

example, when a packet advances through the 

network, the program transfers a pointer to a 

packet structure in shared memory between com­

municating structures. The program performs this 

packet transfer in two steps (on the same simula­

tion clock cycle): ( 1) the cpu port, memory port, or 

switch node that contains the packet writes this 

pointer into interleaved shared memory, then (2) 

the communicating neighbor simply reads this 

pointer from shared memory, thereby simulating 

the moving of the packet. This method requires 

two remote shared references: one for the write 

operation and one for the read operation. For ex­

ample (refer to Figure 6), when a packet propa­

gates from switch node (0, 0) (on physical PE#O) 

to switch node (1, 2) (on physical P£#2), the op­

eration requires two remote shared references: 

switch node (0, 0) writes the packet pointer to an 
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FIGURE 14 Phase 3 execution time requirements. 

interleaved shared memory location while switch 

node ( 1, 2) reads this packet pointer from this 

location. The BBN TC2000 supports explicit 

placement of shared data on specific PEs. By 

mapping shared data arrays favorably, one can 

arrange for faster accesses. 

In Phase 3, we take advantage of this BBN­

specific architectural feature by replacing the re­

mote read operation (1,913 nsec, Table 1) with a 

lo~al read operation (550 nsec). We accomplish 

thts replacement by having the writer explicitly 

place a packet pointer into the local (shared, non~ 
cached) memory of the PE which will read it. Each 

packet movement operation now requires approx­

imately 2,439 nsec (550 local read + 1,889 re­

mote write) instead of 3,802 nsec (1,889 remote 

write + 1, 913 remote read). The program uses 

this mapping scheme for the packet pointer move­

ment routines only, however, this scheme could 

also be applied to the buffer space availability 
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FIGURE 15 Phase 3 speedup results (one-, two-, 

four-, and eight-processor results). 
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FIGURE 16 Phase 3 speedup results (16- and 32-

processor results). 

variables if the resulting gains are significant. We 

show parallel and serial execution time results in 

Figure 14 and show speedup results in Figures 15 

and 16. 

These speedup results show marginal perfor­

mance increases with respect to the previous 

phases. Once again, the serial execution time did 

not increase, thereby yielding unambiguous 

speedup results. The programming effort to per­

form this faster packet pointer movement is oner­

ous. We perform explicit allocation and initializa­

tion of several global and local tables to facilitate 

the additional translations of the packet pointer's 

destination. We expect similar (marginal) gains if 

the same idea is applied to the buffer space avail­

ability variables. 

5 PROGRAMMING COSTS 

As one measure of programming complexity, we 

document the total number of actual program 

lines necessary in the original program and its 

successive modifications. In Table 2, we show 

each program phase of interest with its respective 

number of program lines. The"% Incremental In-

Table 2. Programming Costs Summary 

Number % Incremental %Total 

Program of Lines Increase Increase 

Serial 1,451 
Phase 0 1,501 3.4 3.4 
Phase 1 1,814 20.8 25.0 

Phase 2 2,224 22.6 53.3 

Phase 3 2,327 4.6 60.4 



crease" entries indicate the series of consecutive 

additions to the program. For example, the 

"Phase 3" costs with respect to "Phase 2" costs 

resulted in a 4.6% incremental increase. The "% 

Total Increase" entries indicate the increase with 

respect to the serial program. For example, the 

"Phase 3" costs with respect to "Serial" costs 

resulted in a 60.4% total increase. 

The costs associated with the original parallel­

ization of the program resulted in only a 3.4% 

increase in program size. To make effective use of 

the TC2000 multiprocessor, Phase 1 and 2 pro­

gram modifications added significant amounts of 

code to extract the desired performance. The de­

velopment, debugging, and performance evalua­

tion of Phase 1, 2, and 3 programs required ap­

proximately 4 man-months to complete. The 

availability of the original code developer and the 

advanced parallel programming tools significantly 

accelerated this development work. 

The resulting source programs are difficult to 

understand if the reader has little knowledge of 

the BBN TC2000 multiprocessor. The code modi­

fications are necessary to explicitly place data in 

the multiprocessor's memory hierarchy to provide 

the fastest access possible. Furthermore, the suc­

cessive program modifications have left the pro­

gram somewhat dependent on the multiprocessor. 

The Phase 0 parallel program is applicable to all 

shared memory multiprocessors, while the Phase 

1 and 2 programs are applicable only to those 

architectures supporting a shared memory and a 

fast local memory. The Phase 3 parallel program 

is restricted to architectures that support explicit 

placement of shared data. The availability of a 

hardware enforced coherent cache system would 

free the programmer from the coding costs re­

quired in Phases 1 and 2, and at the same time, 

would maintain program portability. The en­

hancements performed in Phase 3 would not be 

done automatically, however, such enhancements 

would also improve this system's performance. 

It is difficult to ascertain the programming costs 

that would be incurred during the development of 

significantly large production codes (100,000 line 

programs). From this experiment, we note that a 

significant amount of work was done to identify 

and initialize data regions with the proper protec­

tion (for example, enabling selective caching and 

manually identifying write-once, read-many hot 

spot references in Phase 1). We duplicated several 

data structures in an attempt to separate private 

and shared regions, so that faster access can be 

obtained when necessary (adding private and 
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shared variables in Phase 2). In addition, we sep­

arated some routines to facilitate locality and syn­

chronization when accessing data structures 

(done in Phase 2). Although the "% Total In­

crease" numbers shown in Table 2 may not hold 

true for production codes, we believe such codes 

would have to undergo similar analysis stages as 

we have done on the network simulator program 

to extract the desired performance level. 

While this paper analyzes only one specialized 

application mapping on the TC2000, interested 

readers are also referred to an annual report17 de­

tailing similar work. This reference contains the 

MPCI's executive summary, TC2000 parallel pro­

gramming support and scheduling, and several 

application mappings and resulting performance 

on the TC2000 and other computer systems. 

6 SUMMARY AND OPEN ISSUES 

The network simulation program makes critical 

demands on parallel computers because of the 

relatively high communication requirements it 

poses. The resulting performance depends heavily 

on data placement, movement, and allocation 

strategies. We have demonstrated effective map­

ping techniques to extract high performance from 

a commercially available large scale shared mem­

ory multiprocessor. Using incremental program 

modifications, we obtain significant performance 

gains through the effective use of the memory hi­

erarchy, eventually increasing program size by 

60%. When there is more potential performance 

to be had, it is reasonable to expect programmers 

to work harder and longer to attain it. However, 

we believe that the above costs are overly unyield­

ing and arduous for prospective users. 

At this point, however, it is unclear exactly how 

close the network simulator parallel program can 

approach ideal speedup even if all unnecessary 

shared references are eliminated. This question 

could easily be answered if we had at our disposal 

a scalable cache coherent multiprocessor. It is 

also unclear how much better a scalable cache 

coherent system would perform on this problem 

(currently under study). Certainly the programmer 

would be relieved of the burden of identifying data 

structure allocation to cacheable memory seg­

ments. Quantifying the degradations due to 

shared memory latencies and the increased net­

work traffic for automatic cache coherence main­

tenance is still an open question. 

Whether or not we can build a scalable, hard-



78 PICANO, BROOKS, AND HOAG 

ware enforced coherent cache multiprocessor is 

still an open question. Although no such systems 

are currently offered by vendors, considerable 

progress on the design and performance of such 

systems has been made in the research commu­

nity [5, 18, 19]. We are also investigating more 

aggressive CPU designs to tolerate long memory 

access delavs based on multithreaded and von 

Neumann d~taflow hybrid processors. 20
-
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