
Assessing Progrannning Costs of Explicit

Memory Localization on a Large Scale Shared

Memory Multiprocessor*

SILVIO PICAN01·t, EUGENE D. BROOKS 1112 , AND JOSEPH E. HOAG2

1School of Electrical Engineering, Purdue University, West Lafayette, IN 47907
2Massively Parallel Computing Initiative (MPCI), Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550

ABSTRACT

We present detailed experimental work involving a commercially available large scale

shared memory multiple instruction stream-multiple data stream (MIMD) parallel com­

puter having a software controlled cache coherence mechanism. To make effective use

of such an architecture, the programmer is responsible for designing the program's

structure to match the underlying multiprocessor's capabilities. We describe the tech­

niques used to exploit our multiprocessor (the BBN TC2000) on a network simulation

program, showing the resulting performance gains and the associated programming

costs. We show that an efficient implementation relies heavily on the user's ability to

explicitly manage the memory system.© 1992 by John Wiley & Sons, Inc.

1 INTRODUCTION

1.1 Overview

Large scale general purpose machines, such as

the BBN TC2000 [1] and the nCUBE [2] hyper­

cube machines, are achieving wide performance

advantages (and cost advantages) over the tradi­

tional mainframe technology. Yet these new par­

allel computers come with their own unique de­

sign and implementation problems with regards to

*Work performed under the auspices of the L'.S. Depart­

ment of Energy by the Lawrence Livermore National Labora­

tory under contract no. W-7405-ENG-48.

t Author performed work during a summer visit at LLNL
and at Purdue University.

Received February 1992.
Revised April 1992.

© 1992 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 1, pp. 67-78 (1992)

CCC 1058-9244/92/010067-12$04.00

shared and nonshared memory paradigms, l3J
scalability, and cache coherence mechanisms
[4-6].

In this paper, we present experimental results

of a network simulation program mapped onto the

BBN TC2000 multiprocessor. The program devel­

opment is divided into phases, where each phase

attempts to exploit a feature of the machine's ar­

chitecture. Performance measurements are made

at each phase of experimentation. Mapping the

network simulator efficiently onto the BBN multi­

processor requires considerable modification be­

cause it is the programmer's responsibility to ex­

plicitly manage data locality.

1.2 Motivation

Detailed mappings of real-world application pro­

grams onto specific parallel machines often un­

cover the most desirable features and also the crit­

ical weaknesses inherent in the computer's

design. The network simulator program is one of

67

68 PICANO, BROOKS, AND HOAG

these applications, and by examining the resulting

performance gains and associated programming

costs, we make progress in the development of

parallel processing.

We perform this study in phases to determine

the software costs and the resulting performance

gains achieved by exploiting specific architectural

features of the BBN TC2000. The program modifi­

cations begin at a general level and progressively

become more architecturally dependent. This

study revolves about the effective use of the mem­

ory hierarchy, including the programmer's main­

tenance of the caches to avoid coherence prob­

lems.

We organize the remaining sections of this pa­

per as follows. In Section 2, we describe past work

on the network simulator and give an overview of

the BBN multiprocessor used by the Massively

Parallel Computing Initiative (MPCI) at Lawrence

Livermore National Laboratory (LLNL). We in­

troduce the network simulator algorithm in Sec­

tion 3 and present the parallel implementations

and performance results in Section 4. In Section

5 we discuss the software costs associated with
'

overcoming the lack of hardware support for co-

herent shared memory caches. In Section 6, we

give a summary and discuss open issues.

2 BACKGROUND

2. 1 Recent and Past Work

The network simulator program [7] determines

the performance of a scalable multiprocessor in a

vector processing environment. It is also a vital

component of the Cerberus multiprocessor simu­

lator [8], which performs simulation of parallel

programs at the instruction level. The network

simulator also executes on Sequent Symmetry [9]

and Alliant FX/8 [10] multiprocessors.

Programmers of the above multiprocessors of­

ten regard these machines as easy to program be­

cause of the benefits of (1) using a single, shared

address space, and (2) having hardware support

for coherent caches. We, however, are interested

in large scale systems on the order of hundreds or

thousands of processors, where cache coherent

shared memory systems currently do not exist.

2.2 BBN TC2000 Multiprocessor

The TC2000 multiprocessor [1] is a commercial

parallel processor designed by BBN Advanced

Computers Inc. It is a scalable shared memory,

88100 CPU/FPU

J Sequencer J Floating Point Unit

J Register File J ~: ~~~ f~~1i~;: J

J Integer Unit J [~~~i}>!y: ~i~ll~e~

FIGURE 1 BBN TC2000 processing element.

multiple instruction stream-multiple data stream

(MIMD) multiprocessor having up to 512 high

performance processing elements (PEs) and

memory modules. Processors and memories com­

municate through a variant of a multistage cube

network [11] in aPE-to-PE model.*

Each PE (Figure 1) consists of a processor,

memory, memory management units, and a net­

work switch interface. The processor is a Motorola

88100 reduced instruction set computer (RISC)

operating at 20 MHz [12]. The 88100 combines

the central processing unit (CPC) and the floating

point unit (FPU) on a single integrated circuit.

Shared memory per PE consists of from 4 to 16

megabytes and has local cache memories.t The

Motorola 88200 cache memory management unit

(CMMU) [13] facilitates both virtual memory

management and cache memory support. Sepa­

rate instruction and data caches help reduce the

access times required for local and remote mem­

ory references. The cache organization is a 16 ki­
lobyte, four-way set associative design,* and each

PE has two instruction caches and one data

cache. There is no hardware mechanism for

*The "PE-to-PE" model specifies that a cpu port and a

memory port share a common port into the multistage network.

t The LLNL MPCI's TC2000 has 128 PEs, each having 16

megabytes of shared memory.

* A four-way set associative design allows memory refer­

ences to be placed in one of four dedicated locations in the

cache.

ASSESSMENT OF PROGRAMMING COSTS 69

Table 1. Hierarchical Memory Access Times (Microseconds)

Mode

Inhibit

Write-through

Copyback

Write-through

Copyback

Cache

::"Jone

Hit

Hit

Miss

Activity

Miss with no writeback

Miss with local write

Miss with remote write

maintaining data cache coherence for shared

memory. The application programmer must ex­

plicitly control the data caches to ensure correct

program operation. Similar to the IBM RP3 mem­

ory design concept [14], regions of shared mem­

ory are marked as either cacheable or noncache­

able. However, the memory design in the BBN

machine can further specify each cacheable re­

gion a~ having either copyback or write-through

operatiOn. Copyback caching mode is a memory

update policy that allows memory updates to oc­

cur directly to cache memory, and not necessarilv

to main memory at the same points in time. Write~
through caching mode always enforces a strict up­

date policy such that cache memory and main

memory are always consistent. In Table 1 [1], we

show the access times for the TC2000 memorv

hierarchy. The large difference in access time~
between cache memory references (0.150 micro­

seconds) and shared memory references (1. 913

microseconds) causes severe performance

degradation if a relatively large fraction of dy­

namic instructions reference shared memory. .

Each PE has a bidirectional switch interface to

the network responsible for satisfying remote

memory requests. The Motorola 88200 CMMU on

each PE is responsible for performing the virtual

to physical address translation. Specific portions

of the physical address determine the access route

to ~ithe_r local memory (and local caches) or to the

SWitch mterface (remote memory). The intercon­

nection ~etwork design is based on a multistage

cube vanant called the butterfly switch. This net­

wo_rk has bidirectional paths and supports circuit

SWitched transmissions to memory modules on

other PEs. Individual switch nodes are composed

of 8 X 8 crossbar modules, having 8 bit wide data

paths clocked at 38 MHz.

Local

Read

0.550
0.150
1.150
0.850
0.850
1.500
2.905

Memory Response Delays

Local Remote

Write Read

0.600
0.600
0.150
1.200
1.200
1.850
3.255

1.913
0.150
0.150
2.529
2.529
3.179
4.534

3 THE NETWORK SIMULATOR

3.1 Preliminaries

Remote

Write

1.889
1.889
1.150
4.168
4.168
4.818
6.173

The network simulator program 7 simulates and

computes performance statistics of a proposed

communications network for a scalable multipro­

cessor. Simulated CPUs interface to this network

and communicate with other CPUs via packet re­

~uests and responses. The network organization

IS based on the multistage cube network, which

has equidistant paths to other resources.

The multistage cube interconnection networks

provide the communication vehicles for any num­

ber of simulated cpu and memory ports. Specifi­

cally, the cpu and memory ports are connected to

a request network per the dance hall model.* A

separate response network returns the words of

memory to the requesting cpu port (Figure 2).

Furthermore, the networks are packet switched,

allowing packets to be buffered in the presence of

network conflicts. The design of the individual

switch nodes in the network provides efficient

packet switched communications. The design of a

K-input port, K-output port switch node uses K2

buffers to perform necessary storage and also has

control logic to perform packet routing. In Figure

3, we show examples of simplified switch node

designs.

The proposed network and switch node designs

achieve virtually ideal performance in a vector

processing environment [7]. Briefly, each simu­

lated cpu port will fetch a number of memory

words from consecutive memory ports (a vector

fetch). For example, if we simulate a 2,048 word

*The "dance hall" model specifies that the cpu ports and

the memory ports lie at opposite sides of a multistage network.

70 PICANO, BROOKS, AND HOAG

CPU
Ports

Request
Network

Memory
Ports

Response
Network

FIGURE 2 Network simulator architecture.

vector fetch in a system using 2-ary 10-cube net­

works, we are effectively simulating a 1,024 cpu

system that uses 1 0-stage networks having 2 X 2

switch nodes (210 = 1,024), where each cpu per­

forms 2,048 memory fetches. These memory

fetches begin at a random memory port and cycle

consecutively through the memory ports in a mo­

dulo fashion. For example, simulated cpu (i)

would fetch its first word from memory port (j), its

second fetch from memory port (j + 1) mod 1024,

its third fetch from memory port (j + 2) mod 1024,

etc. until all the fetches from all the memories are

received. Vector stride refers to the incrementing

value between consecutive, regular references. In

the above example, the vector stride is one ele­

ment.

The network simulator program input parame­

ters include the following:

1. The vector length

2. The vector stride

(a)

(b)

FIGURE 3 Examples of packet switched, node de­

signs: (a) 2 X 2 design, (b) 4 X 4 design.

3. The buffer length in a switch node

4. The order (number of stages in the net­

works)

5. The base (number of CPUs wired to one

switch node)

The network simulator program output statis­

tics include the following:

1. The average bandwidth

2. The average packet latency

3. The number of simulation cycles

4. The standard deviation among the individ­

ual finish times

3.2 The Algorithm

The network simulator is a logic type of program,

performing a large number of boolean operations

to submit, forward, and receive packets, resolve

conflicts, and compute packet statistics. In the

phases of interest, the program executes no float­

ing point instructions and performs only a small

amount of work per packet move operation. The

resulting performance is strongly dependent on

data placement, movement, and allocation strate­

gies.

The simulator program consists of four major

phases on each simulation clock cycle: (1) a cpu,

memory set phase, (2) a network set phase, (3) a

network move phase, and (4) a cpu, memory move

phase. The main loop of the network simulator is

shown below:

while (any more packets to move) {

cpu -memory _set()

network_set()

barrier-synchronization()

network_move ()

}

cpu-memory _move()

barrier_ synchronization()

seriaL code()

barrier_ synchronization()

The cpu, memory set phase sets and resets

boolean flags depending on the following states:

1. cpu ports are able to submit packets into the

request network

2. Memory requests have propagated back to

cpu ports

3. Memory response ports can accept packets

The network set phase sets and resets boolean

flags depending on the following states:

1. cpu ports in the request network can ad­

vance packets and there is available buffer

space on the corresponding switch node in­

put ports

2. Memory ports in the response network can

advance packets and there is available

buffer space on the corresponding switch

node input ports

3. Switch nodes can advance packets and

there is available buffer space on the corre­

sponding switch node, cpu, or memory in­

put ports

4. Determine packet winners when conflicts

arise

The network move phase performs the follow­

ing actions based on the flag states determined in

the first two phases:

1. Packets move from cpu ports into the corre­

sponding switch nodes in the request net­

work

2. Packets move from switch node output

ports into the corresponding switch node or

memory input ports in the request network

3. Packets move from memory ports into the

corresponding switch nodes in the response

network

4. Packets move from switch node output

ports into the corresponding switch node or

cpu input ports in the response network

The cpu, memory move phase performs the fol­

lowing actions based on the flag states determined

in the first two phases:

1. Advance packets in memory request ports

to the memory response ports

2. Advance packets in cpu response ports,

count packets received, and record network

latencies

3. Initialize information for packets entering

the network and increment the counters of

packets sent

Barrier synchronization primitives force all pro­

cessors to wait for all other processors at points

specified in the program. After all processors

reach such synchronization points, they continue

executing useful instructions. Barrier synchroni­

zation is necessary in this program to ensure the

ASSESSMENT OF PROGRAMMING COSTS 71

proper ordering of memory accesses among the

asynchronous processors to maintain program

correctness.

4 PARALLEL IMPLEMENTATIONS

4.1 Phase 0 Parallel Program

The above algorithm decomposition represents

the original serial implementation and an immedi­

ate parallel implementation is easy to see: given a

multiprocessor with N PEs, PE i would be respon­

sible for maintaining and computing information

on the simulated cpu ports [i, i + N, i + 2N,

. . .], memory ports [i, i + N, i + 2N, . . .], and

switchnodes [(i,j), (i+N,j), (i+ 2N,j), ...] for

0 ~ j < order (Figure 4).

The original parallel program implementation

mentioned above is the starting point for measur­

ing performance of the BBN TC2000 on the net­

work simulator program. Because of the lack of

hardware support for coherent caches, this imple­

mentation is unable to make effective use of the

local data caches in the TC2000. This program

uses interleaved shared memory for all shared

data accesses. Interleaved shared memory design

is a memory mapping technique that automati­

cally places consecutive memory references (or

groups of references) in successive memory mod­

ules that require different communication paths.

Interleaving data structures throughout shared

memory allows multiple PE access to different ele­

ments of the data structure without incurring un­

necessary network conflict and delay. In Figure 5,

we show parallel and serial execution time results.

Recall that the vector length corresponds to the

FIGURE 4 Phase 0 parallel program decomposition
of a 2-ary, 3-cube network simulator using four
TC2000 PEs.

72 PICANO, BROOKS, AND HOAG

100000 2-ary 10-cube Simulation

10000

Exec. Time
(sec)

(log scale)

1000

1 PE

2PEs
4PEs
SPEs

SERIAL
. -:: 32PEs
. 16 PEs

10· Ll;:--':--1::-.l::-~:-l:---1::---l::-....I:--..1...-L-I---l._J... _ _j
20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

FIGURE 5 Phase 0 execution time requirements.

number of memory words fetched by each simu­

lated cpu. The 2-ary 10-cube network parameters

specify the simulation of a 10-stage network using

2 X 2 switch nodes (N = number of PEs = 210).

The serial program is the parallel program com­

piled in a manner that strips all synchronization

operations and uses only local memory with copy­

back cache mode enabled. (The performance of

the serial program is marked "SERIAL" in Figure

5.) In Figure 5, we show that eight processors,

working in parallel, are required to match the se­

rial program requirements. While the serial pro­

gram simply uses local and cache memory ac­

cesses, the parallel program uses interleaved

shared memory accesses. Note that the 32-pro­

cessor results actually perform worse than the 16-

processor results, possibly due to (1) increasing

initialization time, (2) increasing communication

time with respect to computation time, and (3)

increasing amounts of network conflicts. In partic­

ular, read-only hot spot [15] accesses are poten­

tially significant because severe network blockage

and excessive communication delays result. "Hot

spot" accesses are memory references made to a

single shared location by several processors at

similar points in time.

This parallel program also executes on the Al­

liant FX/8 and Sequent Symmetry multiproces­

sors, obtaining excellent speedup results [16]. Re­

call that these multiprocessors have hardware

support for cache coherence. For the execution of

large scale problems, however, the above systems

lack the required performance. The BBN TC2000

promises a scalable solution to finding that perfor­

mance. However, the BBN machine lacks hard­

ware support for coherent shared memory caches.

We need to recover from the performance penalty

(Figure 5) resulting from the dependence of the

Phase 0 implementation on coherent cache sup­

port .

4.2 Phase 1 Parallel Program

Our second attempt at a parallel implementation

makes use of the data caches whenever possible.

From Table 1, cache memory hit references are

about 4 times faster than local memory references

(150 vs. 600 nsec) and about 13 time~ faster than

remote memory references (150 vs. 1,889 nsec).

There are two ways to maintain cache coherence

on the TC2000. One method is to cache all refer­

ences and explicitly flush them when another PE

requires access to the cached data. The alterna­

tive method is to find data references that only a

single PE will access while the remaining shared

data references are simply interleaved throughout

the memory system.

We performed separate, simple experiments to

determine which of the above two methods would

be better for our application. Explicit cache

flushes require 11 microseconds per cache line

using a BBN -specific routine. This coherence

scheme was not used because we determined that

the 11 microseconds and the additional software

required would be intolerable for our application.

(Recall that our application performs very small

quantities of work between communication opera­

tions.) Using this technique, cache flushing could

dominate execution time due to its high overhead.

Therefore, we chose to explicitly and carefully al­

locate all data that was not shared as local cache­

able memory, restructuring the program to make

use of the cacheable regions as much as possible.

We also manually identified and removed write­

o~ce, read-many hot spot accesses by shadowing

this data with copies in each PE. In Figure 6, we

show a sample parallel decomposition for the re­

quest network (the response network is done simi­

larly).

The decomposition shown in Figure 6 differs

slightly from the one shown in Figure 4. We al­

tered the program to handle the switch node,

memory module interface more efficiently. In Fig­

ure 6, we see that the last stage of the network and

the corresponding memory modules are handled

by the same physical processor. This one proces­

sor is sharing some* data with itself so no coher-

* Part of the memory port data structure can now be safely

cached, while other parts must still reside in shared memory

for correct operation.

CPUs Stage #I Stage #2 Stage #3 Memories

FIGURE 6 Phase 1 parallel program decomposition

of a 2-ary, 3-cube network simulator using four

TC2000 PEs.

ence problems will occur. Therefore, we can safely

cache part of these data structures used in this

part of the network simulator program. In Section

4.3, we find more examples of data sharing having

similar behavior as above.

The resulting program has a message passing

flavor. In the original version of the program, cpu,

memory, and switch node structures explicitly

need information from other structures in the next

stage (buffer space availability and packet buffer

access) for correct operation. For example (see

Figure 6): before a packet can propagate on the

link between switch node (0, 0) and switch node

(1, 2), switch node (0, 0) must be certain that

buffer space is available in switch node (1, 2).

Because these switch node structures reside on

different physical PEs, they cannot be cached and

must reside in shared memory. The new version of

the program extracts the shared data necessary

for interprocess communications from each cpu,

memory, and switch node structure so that we can

allocate these structures in local cache memory.

This removed shared data is left in shared mem­

ory so that inter-PE communication can proceed,

maintaining program correctness. We use simple

static scheduling* methods in the program be­

cause the individual instruction streams are simi­

lar in execution time. The static scheduling

scheme also forces a PE to control the same data

structures on each iteration to prevent extraneous

and expensive data movement. We show parallel

• We use the term "static scheduling" to refer to a fixed

decomposition of the work load, independent of any execution

time parameters.

ASSESSMENT OF PROGRAMMING COSTS 73

/ 1PE

I 0000 2-ary 10-cube Simulation
.. /_.SERIAL

/ / 2PEs

........ ·::-:- 4 PEs

///.-SPEs
.. ...-· _./ 16 PEs

1000

.......... ····· : :•········· ;: ;:; ;_:,.:.::>:>···· " ...

Exec. Time
(sec)

(log scale)

10~-L-L-L-L-L-L-L-L-L-L-L-L~~--__J

'20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

FIGURE 7 Phase 1 execution time requirements.

and serial execution time results in Figure 7 and

show speedup results in Figures 8 and 9.

We see an impressive improvement in parallel

execution time with respect to Phase 0 execution

times (Figure 5). The large effort in restructuring

the program also resulted in marginal improve­

ments to the serial execution time, thereby pro­

ducing unambiguous speedup results. At larger

vector lengths, two parallel processors now sur­

pass the serial execution time in contrast to the

eight processors required in Phase 0.

For ideal speedup behavior, the curves in Fig­

ures 8 and 9 should shadow the horizontal lines

for the appropriate number of PEs used. Asymp­

totically, we see good performance because the

relatively large amount of initialization time

(memory allocation and initialization, cache tran­

sients, and network transients), when compared

to actual processing time, becomes less signifi-

Speedup
(log scale)

20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

SPEs

4PEs

2PEs

1PE

FIGURE 8 Phase 1 speedup results (one-, two-,

four-, and eight-processor results).

74 PICANO, BROOKS, AND HOAG

Speedup
(log scare)

32 -----------------------------

16~----------------------------

8
_. 32 PEs

~---16PEs

20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

FIGURE 9 Phase 1 speedup results (16- and 32-pro­
cessor results).

cant. From the details of the network simulation

program, we note that initialization time is a con­

stant term, independent of the vector length pa­

rameter, for a given processor count. Because ini­

tialization time is a constant as the problem size

increases (as the vector length increases), longer

computation time amortizes the effects of initiali­

zation time. In Figure 7, we can see that at short

vector lengths (less than 2 6
), small increases in the

vector length result in negligible increases in exe­

cution time. However, at vector lengths beyond 2 8 ,

execution time becomes a linear function of the

vector length, resulting in amortized initialization

time with respect to large computation time.

Shared memory reference delay always degrades

performance on such a multiprocessor. In the next

phase, we deal with identification and elimination

of unnecessary shared memory references.

4.3 Phase 2 Parallel Program

In Phase 1, we use shared memorv locations to

handle the data communication oc~urring on the

links between the cpu ports, memory ports, and

the switch nodes, ignoring the actual location of

these data structures. This point of view is the

data parallel one, programming as if each port or

switch node data structure needs its own virtual

processor. In Phase 2, we determine if communi­

cation occurs between cpu, memory, and switch

node ports represented by the same physical pro­

cessor and arrange that local cache memory be

used for this purpose.

For example, suppose we are simulating a 2-

ary 3-cube network. In Figure 10, one can see the

decomposition of the request network using two

TC2000 PEs. When moving a packet or checking

buffer space availability for cpus (0), (4) with

PE #0

PE#l

PE #0

PE#I

CPUs Stage #I Stage #2 Stage #3 Memories

FIGURE 10 A 2-ary 3-cube decomposition with two

processors.

switch nodes (0, 0), (1, 0), and (1, 2), we notice

that only physical PE#O accesses the necessary

data. (PE#1 operates in a similar manner with a

different subset of structures in the same stages of

the network model.) When moving packets or

checking buffer space availability in the cpu ports

and in network stage 1, the PE communicates

with itself using shared memory. Also, when mov­

ing data between network stages 2 and 3, and the

memory ports, we must use shared data refer­

ences because different PEs are responsible for

moving packets and checking buffer space avail­

ability.* As the network order grows for a fixed

number of physical processors applied, more con­

secutive stages of the network will be able to ex­

ploit local cache memory in this manner. Blind

use of the data parallel model (not taking into ac­

count the actual physical processor and the data it

contains) leads to extraneous use of shared mem­

ory when a processor communicates with itself.

In Phase 2, we remove much of the extraneous

use of shared memory by shadowing the shared

arrays with arrays allocated in local cache mem­

ory. When we operate in a stage of the network

simulator program that would normally suffer

from extraneous sharing of data, we simply access

local cache memory data because we know no

other PE will ever access this data. When we oper­

ate in a region of the network that requires sharing

of data, we access shared data because we know

other PEs will access this data. \Ve show the par­

allel and serial execution time results in Figure 11

* Although the memory ports for this example appear to be

cacheable, the decomposition of the corresponding response

network (not shown) prohibits it.

I 0000 2-ary 10-cube Simulation

1000

.· 4PEs

./ .·· SPEs

./ ./ .·· 16PEs
///32PEs

Exec. Time
(sec)

(log scale) .. ·······:::·.·::::::::_.::::::::·::::::: ... ····

100 .·· .·:···

··:.· .. ::::·::=,:<:>·,······
····:::

:::::::::::::::::·::::: ...

to~~~~~~._L-~~~~~~----~

20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

FIGURE 11 Phase 2 execution time requirements.

and show the speedup results in Figures 12 and

13.

To eliminate extraneous use of shared data in

the network simulator program, we perform a sim­

ple test at the stage of the network from which we

are attempting to move packets. Factors including

the order of the network, the number of inputs to a

switch node, and the number of physical PEs de­

termine the stages where extraneous sharing oc­

curs. Note that a shared memory multiprocessor

possessing hardware enforced cache coherence

does not have this extraneous shared data prob­

lem because this data is always cached and never

invalidated by another PE.

Through the elimination of extraneous use of

shared memory, execution time results show sig­

nificant improvements. The greatest benefits of

this phase occur when the simulated network is

Speedup
(log scale)

8F=====================~---,

4 ~--·-·---·-·-·-· --~SPEs
, ••••••.•.• 4PEs

2
...... ,.> ,;·•"'····~ ."::: .. : .: :· ... ::·: .: .. ·• ·:· • 2 PEs

............ . .•.. ··•··

20 21 22 23 24 25 26 27 28 29 210211212213214

Vector Length
(log scale)

1 PE

FIGURE 12 Phase 2 speedup results (one-, two-,

four-, and eight-processor results).

ASSESSMENT OF PROGRAMMING COSTS 75

Speedup
(log scale)

32 ··-----------------------·-··

lfil--------------------_,.....:·..::'_". 32 PEs

8

4

FIGURE 13 Phase 2 speedup results (16- and 32-

processor results).

large with respect to number of parallel processors

employed because more stages of the network will

be able to use local cache arrays instead of shared

arrays. In particular, note the significant perfor­

mance gains using 32 processors on the longer

vector length problems in the 2-ary 10-cube sim­

ulations (compare Figure 13 to Figure 9). Note

that for vector lengths of less than 2 9
, 16-proces­

sor results are consistently better than 32-proces­

sor results because we are dealing with relatively

small execution times on the order of 20 seconds.

As noted earlier, run time is not sufficient in such

cases to amortize initialization time on these rela­

tively small problem sizes.

4.4 Phase 3 Parallel Program

In the previous phases, we blindly interleave

shared data references throughout the system. For

example, when a packet advances through the

network, the program transfers a pointer to a

packet structure in shared memory between com­

municating structures. The program performs this

packet transfer in two steps (on the same simula­

tion clock cycle): (1) the cpu port, memory port, or

switch node that contains the packet writes this

pointer into interleaved shared memory, then (2)

the communicating neighbor simply reads this

pointer from shared memory, thereby simulating

the moving of the packet. This method requires

two remote shared references: one for the write

operation and one for the read operation. For ex­

ample (refer to Figure 6), when a packet propa­

gates from switch node (0, 0) (on physical PE#O)

to switch node (1, 2) (on physical P£#2), the op­

eration requires two remote shared references:

switch node (0, 0) writes the packet pointer to an

76 PICANO, BROOKS, AND HOAG

I PE
I 0000 2-ary 1 0-cube Simulation SERIAL

2PEs

4PEs

SPEs

1000 16PEs

Exec. Time
(sec)

(log scale)

32PEs

.···:

10~~~~~~~~~~~~-L~--__j
2o 2 1 2z 23 24 2s 26 21 28 29 21o 2 11

2
Jz

2
13

2
14

Vector Length
(log scale)

FIGURE 14 Phase 3 execution time requirements.

interleaved shared memory location while switch

node (1, 2) reads this packet pointer from this

location. The BBN TC2000 supports explicit

placement of shared data on specific PEs. By

mapping shared data arrays favorably, one can

arrange for faster accesses.

In Phase 3, we take advantage of this BBN­

specific architectural feature by replacing the re­

mote read operation (1,913 nsec, Table 1) with a

lo~al read operation (550 nsec). We accomplish

thts replacement by having the writer explicitly

place a packet pointer into the local (shared, non~
cached) memory of the PE which will read it. Each

packet movement operation now requires approx­

imately 2,439 nsec (550 local read + 1,889 re­

mote write) instead of 3,802 nsec (1,889 remote

write + 1, 913 remote read). The program uses

this mapping scheme for the packet pointer move­

ment routines only, however, this scheme could

also be applied to the buffer space availability

Speedu_p
(log scare)

Sp===================~--~
SPEs

2o 2 1 2z 23 24 2s 26 21
2

8
2

9
2

Jo
2

J1
2

1z
2

13
2

14

Vector Length
(log scale)

4PEs

2PEs

1 PE

FIGURE 15 Phase 3 speedup results (one-, two-,

four-, and eight-processor results).

Speedup
(log scale)

32 F-=~-="'-=-=-=-=--=--=-- =--=-=-_::-:_:-:_,..,._..,._...,_ -="'-=-=-=-=--=--=--=--=-:. _,...----.

• • •• 32 PEs

r---------------~~-

-1 ~

2o 21 2z
2

3 24 2s 26 21
2

8 29 2 1o 2 11
2

Jz 2 J3 2 14

Vector Length
(log scale)

FIGURE 16 Phase 3 speedup results (16- and 32-

processor results).

variables if the resulting gains are significant. We

show parallel and serial execution time results in

Figure 14 and show speedup results in Figures 15

and 16.

These speedup results show marginal perfor­

mance increases with respect to the previous

phases. Once again, the serial execution time did

not increase, thereby yielding unambiguous

speedup results. The programming effort to per­

form this faster packet pointer movement is oner­

ous. We perform explicit allocation and initializa­

tion of several global and local tables to facilitate

the additional translations of the packet pointer's

destination. We expect similar (marginal) gains if

the same idea is applied to the buffer space avail­

ability variables.

5 PROGRAMMING COSTS

As one measure of programming complexity, we

document the total number of actual program

lines necessary in the original program and its

successive modifications. In Table 2, we show

each program phase of interest with its respective

number of program lines. The"% Incremental In-

Table 2. Programming Costs Summary

Number % Incremental %Total

Program of Lines Increase Increase

Serial 1,451
Phase 0 1,501 3.4 3.4
Phase 1 1,814 20.8 25.0

Phase 2 2,224 22.6 53.3

Phase 3 2,327 4.6 60.4

crease" entries indicate the series of consecutive

additions to the program. For example, the

"Phase 3" costs with respect to "Phase 2" costs

resulted in a 4.6% incremental increase. The "%

Total Increase" entries indicate the increase with

respect to the serial program. For example, the

"Phase 3" costs with respect to "Serial" costs

resulted in a 60.4% total increase.

The costs associated with the original parallel­

ization of the program resulted in only a 3.4%

increase in program size. To make effective use of

the TC2000 multiprocessor, Phase 1 and 2 pro­

gram modifications added significant amounts of

code to extract the desired performance. The de­

velopment, debugging, and performance evalua­

tion of Phase 1, 2, and 3 programs required ap­

proximately 4 man-months to complete. The

availability of the original code developer and the

advanced parallel programming tools significantly

accelerated this development work.

The resulting source programs are difficult to

understand if the reader has little knowledge of

the BBN TC2000 multiprocessor. The code modi­

fications are necessary to explicitly place data in

the multiprocessor's memory hierarchy to provide

the fastest access possible. Furthermore, the suc­

cessive program modifications have left the pro­

gram somewhat dependent on the multiprocessor.

The Phase 0 parallel program is applicable to all

shared memory multiprocessors, while the Phase

1 and 2 programs are applicable only to those

architectures supporting a shared memory and a

fast local memory. The Phase 3 parallel program

is restricted to architectures that support explicit

placement of shared data. The availability of a

hardware enforced coherent cache system would

free the programmer from the coding costs re­

quired in Phases 1 and 2, and at the same time,

would maintain program portability. The en­

hancements performed in Phase 3 would not be

done automatically, however, such enhancements

would also improve this system's performance.

It is difficult to ascertain the programming costs

that would be incurred during the development of

significantly large production codes (100,000 line

programs). From this experiment, we note that a

significant amount of work was done to identify

and initialize data regions with the proper protec­

tion (for example, enabling selective caching and

manually identifying write-once, read-many hot

spot references in Phase 1). We duplicated several

data structures in an attempt to separate private

and shared regions, so that faster access can be

obtained when necessary (adding private and

ASSESSMENT OF PROGRAMMING COSTS 77

shared variables in Phase 2). In addition, we sep­

arated some routines to facilitate locality and syn­

chronization when accessing data structures

(done in Phase 2). Although the "% Total In­

crease" numbers shown in Table 2 may not hold

true for production codes, we believe such codes

would have to undergo similar analysis stages as

we have done on the network simulator program

to extract the desired performance level.

While this paper analyzes only one specialized

application mapping on the TC2000, interested

readers are also referred to an annual report17 de­

tailing similar work. This reference contains the

MPCI's executive summary, TC2000 parallel pro­

gramming support and scheduling, and several

application mappings and resulting performance

on the TC2000 and other computer systems.

6 SUMMARY AND OPEN ISSUES

The network simulation program makes critical

demands on parallel computers because of the

relatively high communication requirements it

poses. The resulting performance depends heavily

on data placement, movement, and allocation

strategies. We have demonstrated effective map­

ping techniques to extract high performance from

a commercially available large scale shared mem­

ory multiprocessor. Using incremental program

modifications, we obtain significant performance

gains through the effective use of the memory hi­

erarchy, eventually increasing program size by

60%. When there is more potential performance

to be had, it is reasonable to expect programmers

to work harder and longer to attain it. However,

we believe that the above costs are overly unyield­

ing and arduous for prospective users.

At this point, however, it is unclear exactly how

close the network simulator parallel program can

approach ideal speedup even if all unnecessary

shared references are eliminated. This question

could easily be answered if we had at our disposal

a scalable cache coherent multiprocessor. It is

also unclear how much better a scalable cache

coherent system would perform on this problem

(currently under study). Certainly the programmer

would be relieved of the burden of identifying data

structure allocation to cacheable memory seg­

ments. Quantifying the degradations due to

shared memory latencies and the increased net­

work traffic for automatic cache coherence main­

tenance is still an open question.

Whether or not we can build a scalable, hard-

78 PICANO, BROOKS, AND HOAG

ware enforced coherent cache multiprocessor is

still an open question. Although no such systems

are currently offered by vendors, considerable

progress on the design and performance of such

systems has been made in the research commu­

nity [5, 18, 19]. We are also investigating more

aggressive CPU designs to tolerate long memory

access delavs based on multithreaded and von

Neumann d~taflow hybrid processors. 20
-

23

The authors wish to thank Brent Gorda, Tammy W el­

come and Linda Woods of the MPCI at LLNL and Ken

Sed~ck for their assistance with the parallel program­

ming support for the BBN multiprocessor. We also

thank the anonymous referees for their helpful criti­

cisms and suggestions on this paper.

REFERENCES

[1] BBN Advanced Computers Inc., Inside the

TC2000. Cambridge, MA, 1989.

[2] nCUBE Corp., nCUBE 2 Processor Manual, P:'-1

101636, r. 2.0 edition, Beaverton, OR. Dec.
1990.

[3] S. Picano and T. L. Casavant, "An experimental

analysis of image correlation on shared vs. non­

shared memory MIMD parallel computers," Proc.

of the Int. Conf on Parallel Processing, St.

Charles, IL: Penn State University Press, 1990,
pp. 92-96.

[4] L. M. Censier and P. Feautrier, "A new solution

to coherence problems in multicache systems,"'

IEEE Trans. Comput., vol. C-27. no. 12, pp.

1112-1118, Dec. 1978.

[5] E. D. Brooks III and J. E. Hoag, "A scalable co­

herent cache system with incomplete directory

state," Pro c. of the Int. Conf on Parallel Process­

ing. St. Charles, IL: Penn State university Press,
1990, pp. 553-554.

[6] C. Wamer and D. G. Meyer, "Directory Based

Cache Coherence Protocols for Shared Memory

Multiprocessors," Technical Report TR-EE 90-

33, Purdue Cniversity, West Lafayette, Il'l, .\1ay
1990.

[7] E. D. Brooks III, "The indirect K -ary]\;-cube for a

vector processing environment,., Parallel Com­

put., vol. 6, no. 3, 1988, pp. 339-348.

[8] E. D. Brooks III, T. S. Axelrod, and G. A. Dar­

mohray, Parallel Processing for Scientific Com­

puting. Philadelphia: SIAM, 1989, pp. 384-390.

[9] Sequent Computer Systems, Sequent Technical

Summary, Beaverton, OR, 1987.

[10] Alliant Computer Systems Corp., FX/ SERIES Ar­

chitecture Manual, P~ 300-00001-B edition,
Jan. 1986.

[11] H. J. Siegel, Interconnection Networks for Large­

Scale Parallel Processing: Theory and Case

Studies, 2nd ed. New York: McGraw-Hill, 1990.

[12] Motorola, MC88100 RISC Microprocessor User's

Manual, 2nd ed. Englewood Cliffs, l'IJ: Prentice­
Hall, 1990.

[13] Motorola, MC88200 Cache/Memory Manage­

ment Unit User's ll1anual, 2nd ed. Englewood

Cliffs, l\]: Prentice-Hall, 1990.

[14] W. C. Brantley, K. P. McAuliffe, and]. Wei8s,

"RP3 processor-memory element," Proc. of the

Int. Conf on Parallel Processing. St. Charles, IL:

IEEE Computer Society Press, 1985, pp. 782-
789.

[15] G. F. Pfister and V. A. Norton, "Hot Spot" con­

tention and combining in multistage interconnec­

tion networks, Proc. of the Int. Conf un Parallel

Processing. St. Charles, IL: IEEE Computer Soci­

ety Press, 1985, pp. 790-797.

[16] E. D. Brooks Ill, "Effective use of shared memory

multiprocessors," Proc. of the Int. Conf on Su­

percomputing. Boston, MA: lntemational Super­

computing Institute Inc., 1988, pp. 365-371.

[17] E. D. Brooks III and K. H. Warren, "The 1991

MPCI Yearly Report: The Attack of the Killer .\li­

cros," Technical Report UCRL-ID-1 0 7022,

Lawrence Livermore National Laboratory, Liver­
more, CA, Mar. 1991.

[18] A. Gupta, W. Weber, and T. Mowry, "Reducing

memory and traffic requirements for scalable di­

rectory-based cache coherence schemes," Proc.

of th~ Int. Conf on Parallel Processing. St.

Charles, IL: Penn State university Press, 1990,

pp. 312-321.

[19] P1596 Working Group, "P1596/Part IliA- SCI

Cache Coherence Overview," Technical Report

0.33, IEEE Computer Society, :"'ov. 1989.

[20] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiato­

wicz, "APRIL: A processor architecture for multi­

processing," Proc. uf the Ann. Int. S:ymp. on

Computer Arch. Seattle, WA: IEEE Computer So­

ciety Press, May 1990, pp. 104-114.

[21] R. Alverson, D. Callahan, D. Cummings, B.

Koblenz, A. Porterfield, and B. Smith, "The

TERA computer system," Proc. of the Int. Conf

on Supercomputing. New York: ACM. June 1990,

PP· 1-6.

[22] R. Buehrer and K. Ekanadham, ·'Incorporating

data flow ideas into von :"Jeumann processors for

parallel execution," IA~'t· Trans. Cumput., vol.

C-36,no. 12, pp. 1515-1522,Dcc. 1987.

[23] R. S. -"ikhil. G. P. Papadopoulos. and Arvind,

"'*T: A .\1ultithreaded :Vlassivcly Parallel Archi­

tecture," Technical Report Computation Struc­

tures Group .\1emo 325-1, :YilT. 1\"ov. 1991.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

