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Abstract
Motivation: In cDNA sequencing projects, it is vital to know
whether the protein coding region of a sequence is complete,
or whether errors have occurred during library construc-
tion. Here we present a linear discriminant approach that
predicts this completeness by estimating the probability of
each ATG being the initiation codon.
Results: Because of the current shortage of full-length cDNA
data on which to base this work, tests were performed on a
non-redundant set of 660 initiation codon-containing DNA
sequences that had been conceptually spliced into mRNA/
cDNA. We also used an edited set of the same sequences that
only contained the region following the initiation codon as
a negative control. Using the criterion that only a single
prediction is allowed for each sequence, a cut-off was
selected at which discrimination of both positive and
negative sets was equal. At this cut-off, 67% of each set could
be correctly distinguished, with the correct ATG codon also
being identified in the positive set. Reliability could be
increased further by raising the cut-off or including homo-
logues, the relative merits of which are discussed.
Availability: The prediction program, called ATGpr, and
other data are available at http://www.hri.co.jp/atgpr
Contact: swintech@hri.co.jp

Introduction

During the past decade, two major types of large-scale se-
quencing project have been initiated. The first approach is
complete genome sequencing (Fleischmann et al., 1995)
which has the obvious advantage of mapping all the DNA for
a particular organism. However, because of the amount of
time required to sequence even a small eukaryotic genome
(Goffeau et al., 1997), the subsequent difficulties in predict-
ing open reading frames (ORFs), as well as the absence of
expression information, researchers have also used cDNA
libraries as a more direct route to identifying novel gene
products and expression data (Adams et al., 1995).

In cDNA projects, the selection of clones to be sequenced
is essentially a random approach, so for efficiency and cost,
most high-throughput methods have only initially sequenced
short regions, known as expressed sequence tags or ESTs
(Adams et al., 1991). By comparing with public databases,

the ESTs can be divided into those which match known se-
quences and those which appear to be novel. Full-length se-
quencing can then be limited to the novel genes, provided
that the clone from which the EST was derived is complete.

Our meaning of complete requires all of the sequence start-
ing from the cap site and moving through the 5′UTR, initi-
ation codon, protein coding region, termination codon,
3′UTR and poly(A) tail. This relates directly to the full-
length sequencing project recently set up at our institute
(Barker, 1996) which is establishing techniques (Maruyama
and Sugano, 1994) whereby full-length clones can be relia-
bly constructed and sequenced. The main problem in this
field is that the fragility of mRNA makes it difficult to guar-
antee that the cDNA generated is really complete (Gubler
and Hoffman, 1983). Therefore, approaches for analysing
such data will not only need to identify different regions of
the cDNA, but also be able to assess whether the sequenced
clone was really complete. Creating a program that success-
fully balances these different aims is the challenging part of
this work.

We consider that the two main ‘junctions’ in a piece of
cDNA lie at the initiation codon, which separates the 5′UTR
from the beginning of the coding region, and the termination
codon which separates the end of the coding region from the
3′UTR. If the presence or absence of these two features could
be reliably identified (together with their location when pres-
ent), most of the regions of a cDNA would be reliably identi-
fied, as the poly(A) tail is trivial to determine. In fact, this
would only leave completeness of the 5′UTR at the cap site
undetermined. We have therefore considered ways to dis-
criminate these features.

Our approach is to concentrate on the initiation codon, be-
cause successful identification will enable us to determine
nearly all other data. For example, in sequences which con-
tain the initiation codon, identification will lead to the parti-
tion of the 5′UTR/coding region. This, in turn, facilitates the
detection of the termination codon when present, and hence
the coding region/3′UTR boundary. Failure to locate the in-
itiation site would imply that the coding region was incom-
plete and the 5′UTR was missing. Absence of the poly(A) tail
would give similar information about the 3′ end of the
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Fig. 1. Occurrence of ATG and Kozak-type patterns in our 133 sequence dataset. KK is complete [AG]ATGG pattern, whereas KO is just
{AG]ATG, OK is ATGG and OO is ATG.

3′UTR. The only characteristic that would escape consider-
ation is whether the 5′UTR is complete to the cap site.

Ideally, we would like to work with a large non-redundant
set of full-length cDNA sequences in which the coding re-
gion, UTRs and other features have been fully documented.
Unfortunately, such data are limited; indeed, this is the rea-
son why our institute has undertaken such a sequencing pro-
ject. Of the mRNA/cDNA deposited in Genbank, little of it
is truly full length and certainly not enough to make a suitable
test set. Looking at cases where both the mRNA and genomic
DNA have been deposited, we find that most mRNA se-
quences cover the protein coding region, but have a truncated
5′UTR. Use of these mRNA data for analysis would incor-
rectly imply that the initiation codon was easy to detect, as
5′UTR truncation frequently results in the initiation codon
being the first ATG in the sequence. Given this situation, we
have opted to start with high-quality, annotated, genomic
DNA and then splice our own mRNA/cDNA from this in-
formation.

The essential question for our work is how to identify the
initiation codon correctly, when present, while also rejecting
incomplete sequences. Researchers have previously used
many ‘rules of thumb’ to determine whether the initiation
codon is present. One of the best known trends is the prefer-
ence for an [AG]xxATGG pattern around the initiating ATG
codon (Kozak, 1986). However, while the absence of such
a pattern will usually exclude an ATG from being the initi-
ation site, the pattern is so general that it will match many
other ATG triplets in each sequence. A recent review (Kozak,
1996) has suggested that the best way of identifying the initi-
ation site would be to find the ATG closest to the 5′ end hav-
ing a pattern that matched the above. As we stated above, if
one used the current mRNA data from sequence databases,
this approach is likely to be quite successful, but in truly full-
length clones the 5′UTR will be longer and the likelihood of
a non-initiating ATG preceding the initiation codon will be

higher. Even this discussion negates a further complication
of introns being retained in the 5′UTR. In cases where a
5′UTR intron has not been spliced out during pre-mRNA
processing, the region preceding the initiation codon will be
even larger, making detection even more difficult.

In order to quantify the problems of an approach that mere-
ly chooses the most 5′ consensus matching ATG, we made
conceptually spliced mRNA from 133 high-quality human
gene entries from Genbank, in which information regarding
the complete 5′UTR as well as 5′UTR introns was clearly
documented (Figure 1). We found that even when all 5′UTR
intronic regions had been removed from consideration (i.e.
making the likelihood of success higher), there remained a
significant number of ATG triplets in the 5′UTR that also
corresponded to the most prevalent [AG]xxATGG and
[AG]xxATG  patterns.

In fact, there would be three distinct scenarios if such an
approach were used. If the 5′UTR were complete, the
method would frequently fail, but if the 5′UTR became trun-
cated, while still retaining the initiation codon, the approach
would become more successful. However, if the sequence
were so incomplete that even the initiation codon were mis-
sing, success would fall to zero as the method would continue
to predict the most 5′ Kozak consensus as the initiation
codon.

Clearly, a more comprehensive method is required, and in
this paper we describe an approach that uses linear discrimin-
ant analysis to combine a number of empirical observations
reported in the literature. Discriminant analysis has previous-
ly been used in various aspects of gene recognition (Solo-
vyev et al., 1994) and independent tests have shown the ap-
proach to be as effective as other more complex methods
(Burset and Guigo, 1996). The following discussion concen-
trates on sequences from human cell lines, but the method is
general and could be applied to any other species, given that
sufficient training data were available.
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System and methods

133 sequence data set

All human sequences having the annotation ‘prim-transcript’
in the feature table were selected from Version 100 of Gen-
Bank, and those having any the following problems were re-
moved: (i) proposed start codon was not ATG; (ii) initiation
codon was not located in the exon stated to be the first coding
exon; (iii) coding region did not end with a stop codon; (iv)
an in-frame stop codon was identified in the proposed coding
region; (v) the number of bases constituting the proposed cod-
ing region was not a multiple of three; (vi) donor and acceptor
splice sites lacked highly conserved GT and AG dinucleo-
tides, respectively. Then, coding regions of the remaining se-
quences were subjected to all-against-all global sequence
alignment (Myers and Miller, 1988) and 133 entries with pair-
wise sequence identities of <50% were selected. Finally, from
each entry, the 5′UTR introns were removed according to the
annotation information.

660 sequence data set

To construct our test set, we started with GenBank sequences
in Version 100 that had not been deposited by large-scale
sequencing projects, as these were likely to have been veri-
fied experimentally (but see more detailed check later on).
From these data, we first extracted 2432 human entries con-
taining CDS information and having the ‘DNA’ label in the
LOCUS field. Although our aim is to predict the initiation
codon from a cDNA/mRNA sequence, we ‘constructed’ our
own cDNA data by splicing out introns from the coding re-
gions of complete genes. This was because only half of the
human mRNA/cDNA entries available had >50 bp upstream
of the initiation codon. In other words, most data do not start
at the cap site and do not contain a significant portion of the
5′UTR. As the deposited mRNA/cDNA entries are signifi-
cantly different to the data currently being sequenced from
full-length cDNA libraries (Maruyama and Sugano, 1994),
our approach of generating conceptually spliced cDNA from
gene data is the most appropriate.

This initial set was cleaned to remove entries in which any
of the following observations were made: (i) proposed start
codon was not ATG; (ii) initiation codon was not located in
the exon stated to be the first coding exon; (iii) coding region
did not end with a stop codon; (iv) an in-frame stop codon
was identified in the proposed coding region; (v) the number
of bases constituting the proposed coding region was not a
multiple of three; (vi) donor and acceptor splice sites lacked
highly conserved GT and AG dinucleotides, respectively;
(vii) more than one gene was present in the entry; (viii)
5′UTR was <50 bp; (ix) protein coding region was <100 bp.
The remaining sequences were then checked in detail to en-
sure that they were experimentally verified genes. Entries

containing the names of well-known prediction programs
were eliminated by a computer search, and then the remain-
ing entries were subjected to a manual analysis.

This left 1110 sequences. Introns occurring within the pro-
tein coding region were removed in order to simulate mRNA
data, but in this test set (unlike our 133 sequence set de-
scribed in the Introduction) 5′UTR introns were retained, as
mRNA sequences sometimes have unspliced 5′UTR introns
(Kozak, 1996). This has the effect of making our test set as
difficult as possible.

Finally, to obtain a non-redundant dataset, we conducted
all-against-all global alignments of the predicted protein
products (Myers and Miller, 1988) and selected 660 se-
quences, with pairwise sequence identities of <50%. A total
of 660 sequences contained 660 real (‘true’) ATG start co-
dons and 35 668 other (‘false’) ATG trinucleotides. We refer
to these sequences as the positive set. However, we also gen-
erated a negative set which only includes the regions which
occur after the initiation codon. This is an important control
because in real predictions we will not know whether the
cDNA has the initiation codon present or not.

Cross-validation procedure

Predictions were tested by a 20-fold cross-validation ap-
proach in which 577 sequences were used to calculate stat-
istical preferences, 50 were used to estimate coefficients for
the linear discriminant function and 33 sequences for set
aside for testing. Once this procedure had been repeated 20
times, all entries had been included once in the test set.

Constituents of the linear discriminant function

Discrimination of initiation codons from all other ATG trinu-
cleotides was performed by linear discriminant analysis which
has been successfully applied to gene recognition (Solovyev
et al., 1994). Discriminant analysis allows the statistical sig-
nificance of various characteristics to be assessed (Afifi and
Azen, 1979) and in our case we used contextual nucleotide
preferences to discriminate real ATG start codons (positive
class) from all other ATGs which might occur in the 5′UTR,
coding and 3′UTR regions (negative class). We found the fol-
lowing characteristics to be the most useful for this task.

(1) Positional triplet weight matrix around an ATG. This is
a simple extension of a singlet weight matrix approach,
which has previously been used for the prediction of
5′-exons (Solovyev et al., 1995). Our tests (data not shown)
suggested that the triplet weight matrix gave better discri-
mination of start codons than singlet or doublet weight ma-
trices. For each triplet i (i = 1, 64) and position j = (–14, +5),
we first calculate the frequency for the subset of initiation
ATGs and then repeat the calculation for all ATGs. Dividing
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these two gives the propensity for a particular triplet to be in
a specific position relative to the initiation codon.

Ptriplet(i, j) � ƒinitiation ATG(i, j)�ƒtotal ATG(i, j)

To apply these propensities, the total score around each ATG
region is added together for the window –14 to +5. We also
tried the more mathematically correct approach of summing
logarithms of these values, but found that once the linear dis-
criminant function had taken all characteristics into account,
the results were effectively identical. We suspect that the
‘noise’ in sequence data plays a larger role than variations
which result from specific manipulations of the propensities.

Phexamer(k) � ƒcoding(k)�ƒnoncoding(k)

(2) When applying these to the test set, the propensities for
each in-frame hexanucleotide downstream of an ATG is to-
talled, up to a maximum of 300 nucleotides (100 amino
acids) or the end of the cDNA, which ever is shorter. Adding
the propensities gives a preference for longer reading frames
with suitable hexanucleotide compositions, while limiting
the calculation to 300 nucleotides ensures that full-length
cDNA is not required. However, as >85% of the sequences
analysed also contain at least one false ORF of >300 nucleo-
tides, this parameter is only removing short ORFs that are
unlikely to encode proteins, rather than pointing the method
towards the longest candidate. Tests on cDNA from our own
libraries (data not shown) suggest that there is almost always
300 nucleotides of the ORF present when a cDNA is se-
quenced from its 5′ end.

(3) 5’ UTR-ORF hexanucleotide difference. The difference
between the average hexamer coding propensities in the po-
tential 5′UTR region [–1, –50] and potential coding region
[+1, +50] for a given ATG was calculated. For real start co-
dons, this characteristic has a higher value. Although related
to the calculation in (2), this procedure suggests whether the
initiation codon is actually present, whereas the data in (2)
merely suggests the presence of a coding region. In cases
where, for some reason, a cDNA fragment starts after the initi-
ation codon, (2) will score highly whereas (3) will be low.

(4) Signal peptide characteristic. The most hydrophobic
8-residue peptide found within a 30 amino acid window,
downstream of each ATG, was identified. This characteristic
approximates the likelihood of a signal peptide being present
(McGeoch, 1985). Hydrophobicity was calculated using the
hydropathy scale of Kyte and Doolittle (1982).

(5) Presence of another upstream in-frame ATG. This is a
simple binary characteristic with values 0 or 1. If an extra
ATG is found upstream of the ATG under analysis (without
encountering an in-frame stop codon), the likelihood of the
ATG under analysis being the initiation codon is down-
weighted.

(6) Upstream cytosine nucleotide characteristic. The fre-
quency of cytosine in the region [–7, –36] upstream of a
given ATG is included, as it has been observed that 5′UTRs
of human genes are often cytosine rich (Louis and Ganoza,
1988).

These characteristics were then combined into a single lin-
ear discriminant function (LDF). The techniques for comput-
ing optimal coefficients for the LDF and estimating the stat-
istical significance of potential discriminatory characteristics
are the same as those described previously (Solovyev et al.,
1994; Salamov and Solovyev, 1997).

Simple position weight matrix

In order to show the improvements obtained by our ap-
proach, we compared the results to a simple position weight
matrix of the form:

�i � 5

i � �14

P(i, j) � ƒinitiationATG(i, j)�ƒtotalATG(i, j)

where f is the frequency of each nucleotide i at position j for
the initiation codon-containing ATG sites (numerator) and
all ATGs (denominator).

Measures of accuracy

Sensitivity and specificity for the positive, initiation codon-
containing dataset are defined as follows, where Ncorrect is
the number of correct predictions at a particular threshold,
Ntotal is the total number of sequences in the dataset and
NAboveThreshold is the number of sequences with a prediction
that is above the threshold.

sensitivity(%) � �Ncorrect

Ntotal

�100

specificity (%) � � Ncorrect

NAboveThreshold

�100

For the negative set, it is best to consider the sensitivity in
terms of the percentage of sequences correctly rejected at a
particular threshold.

Implementation

The code for this algorithm, called ATGpr, has been written
in C and has been implemented on standard Sun and Silicon
Graphics platforms.

Results

We have applied our method to the prediction of initiation
codons in a dataset of 660 initiation codon-containing se-
quences, as well as an edited set which only contain the se-
quence after the initiation codon. The reason for this ap-
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Fig. 2. (a) (Left) Results for the positive and negative set when only one prediction is allowed per entry. Black squares show the percentage
of initiation codons correctly predicted in the positive set, and green diamonds shows the per cent correctly rejected in the negative set. The red
circles show the increase in specificity for the positive set (i.e. when only predictions above the threshold are considered). The dotted line shows
the point at which identification in the positive set is equal to rejection in the negative set and the x identifies the specificity for this threshold.
The solid line corresponds to the threshold at which specificity for the positive set is equal to the sensitivity in the negative set. (b) (Right). The
effect of threshold when all ATGs lying above the threshold are considered. The blue triangles describe the percentage of initiation codons lying
above a particular threshold, whereas the pink circles show the percentage of non-initiating ATG triplets that lie below. The point at which these
two percentages are equal (93%) is shown by a dotted line.

proach is that not only do we need to find the initiation codon
when present, but we also need the ability to reject incom-
plete sequences. There are only 660 initiation codons in the
complete sequences, yet there are 35 668 other ATG nucleo-
tides which must be rejected. In contrast with methods for
predicting protein secondary structure, where even a random
assignment of helix, strand or coil to each residue will lead
to a reasonably high percentage of correct predictions, the
aim of finding the correct initiation codon is much harder.

Our first test is the most simple, in which only the top scor-
ing ATG from each sequence in the positive test set (see
methods) is predicted to be the initiation codon. Using this

approach, we are able to predict 79% of the initiation codons
correctly (Figure 2a). This is the upper limit for our method
when only a single prediction is permitted per sequence and
every sequence must be predicted, because the remaining
21% will always have an ATG triplet which scores more
highly than the real initiation codon. The discriminant func-
tion that achieves this result has six components (see
Methods), of which the most important two are the positional
triplet weight matrix around an ATG (which performs better
than a simple position weight matrix) and the ORF hexanu-
cleotide characteristic (Table 1).

Table 1. Variation of accuracy with different components of discriminant function and comparison with a simple position weight matrix

% of correct initiation
codons identified in
positive set

% of correct
rejections in negative
set at same threshold

% correct when 
positive and negative
sets are equal

All six characteristics 79 12 67

Only ORF length 35 5 27

Only triplet weight matrix 29 2 27

ORF length and triple weight matrix 57 6 42

Simple position weight matrix 23 4 21
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This would be quite a good result if it was certain that all
the sequences analysed had an initiation codon. Unfortunate-
ly, we do not have this guarantee and, at the threshold which
enables 79% of the initiation codons to be predicted in the
positive test set, only 12% of the sequences in the negative
test would be correctly identified as having no initiation
codon. This result is not nearly as good and so it is necessary
to find a balance between these conflicting aims.

To do this, we first defined a stricter threshold at which the
number of initiation codons identified in the positive set was
equal to the number of rejected sequences from the negative
set (Figure 1). At this threshold, 67% of each set of 660 se-
quences could be identified correctly. However, while this
adequately describes the negative set, the situation in the
positive set has become more complex as it now includes
sequences that are above the threshold and correctly pre-
dicted, others that are above the threshold but with the wrong
initiation codon predicted, and finally some that are below
the threshold and not predicted at all.

It is advantageous, therefore, to use two distinct measures
when considering the positive dataset. Sensitivity is ex-
pressed in terms of the total number of sequences in the da-
taset and is the measure that has been used so far in this paper.
Specificity, however, is calculated in terms of the number of
predictions that lie above the threshold (see Methods). In a
real situation, we may have automatically decided that pre-
dictions below a certain threshold were unsuitable and would
therefore be most concerned about the reliability of those
which lie above the threshold. This is the measure that spe-
cificity addresses.

If we consider the specificity for the positive set (see the
red circles in Figure 2a), we see that this steadily increases
with cut-off because it is limiting consideration to only the
most confident predictions. In the case described above
where the sensitivity is 67%, only 528 predictions are actual-
ly above the threshold, and thus the specificity for the posi-
tive set is 83% (as represented by the cross in Figure 2a). By
selecting higher thresholds, specificity can be increased
further as only the most confident predictions will be in-
cluded. For instance, at the point where the percentage of
sequences correctly rejected in the negative set is equal to the
specificity for the positive set (the point where the green and
red points conveniently cross in Figure 2a), we see that 89%
specificity is obtained for the positive set, though with the
disadvantage that sensitivity is now only 52%.

From a more academic viewpoint, it is also interesting to
look at how we might differentiate between initiation codons
and other ATG triplets in any piece of DNA. This aim is
somewhat different to what we described above, as now we
only need to consider the initiation codon-containing set. It
is immediately clear from Figure 2b that the threshold which
balances the percentages of initiation codons detected and
other ATGs rejected is quite high (93%). Although this

suggests that the procedure is rather effective, enthusiasm
must be tempered by the sheer number of non-initiating
ATGs in 7% of the false data. In fact, this will result in about
four false positives being predicted for every initiation codon
identified. By choosing a higher threshold, we can reduce the
number of false positives, and at the cut-off where there is
only one false positive per initiation codon identified, we are
able to detect 61% of all initiation codons.

Discussion

In our tests, we have used a dataset where bias from sequence
similarity has been minimized and where sequences have
been further jackknifed into training and testing sets. Devel-
oping methods for predicting aspects of gene structure is now
a popular area of research, and for obvious reasons there is
competition to find procedures which have the best sensitiv-
ity and specificity. However, there are two common errors in
papers which report significant improvements. The first
problem is that there is almost always significant redundancy
between the training and testing sets. The second problem is
that direct comparison between results published in different
years will be biased towards the most recent procedure, as
that is the one that had the largest dataset to work from.

In the area of gene recognition, Burset and Guigo (1996)
tried to reduce training and test set bias by creating two large
test sets: one which contained homologous entries and a sec-
ond which was non-redundant. Their results revealed that
when tested independently, all the methods gave rather simi-
lar results and that those for the non-homologous test were
noticeably worse than the redundant test set. Furthermore, all
of the methods performed worse under this independent
assessment than in the original reports. Owing to the popu-
larity of their work, their datasets have since been used as a
benchmark for testing newer algorithms (Kulp et al., 1996;
Burge and Karlin, 1997; Zhang, 1997). However, subse-
quent tests are difficult to perform in a fair manner because
unless one rigorously cross-validates the process using only
the non-homologous dataset, the database bias will always
be a contributing factor. Even if cross-validation, as a
method, is performed correctly, a dataset with redundancy
will almost certainly result in an artificial level of accuracy,
because homologous sequences will have the opportunity to
appear in both the training and test sets simultaneously.

To give some idea of the improvements that can be ex-
pected by adopting a less rigorous attitude, we applied our
algorithm to the Guigo dataset which contains homologues
(Burset and Guigo, 1996) taking care to cross-validate all the
predictions in the manner described in Methods. If we only
allow one prediction per sequence, 86% of the top predic-
tions are now correct. This is an apparent increase of 7% and
is purely due to sequence bias. If we search for the mid-point
where the accuracy in both positive and negative datasets is
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equal, 75% of the data are correctly discriminated. This is an
apparent increase of 8%, but is again purely an effect of data-
base bias. Such increases suggest that improvements result-
ing from less rigorous validation techniques should be
treated with caution.

As different types of sequencing projects come on-line, in-
novative solutions will be required to deal with the specific
problems they encounter. The program we have produced
here offers a general solution to the detection of 5 full-length
cDNA when no homology to a known gene exists. It is ex-
pected that this method, like gene recognition methods, will
be improved by including database searches as a pre-filter
and, with this aim, an integrated approach is currently being
developed.
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