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Abstract—We are increasingly in situations of divided 

attention, subject to interruptions, and having to deal with an 

abundance of information. Our cognitive load changes in these 

situations of divided attention, task interruption or multitasking; 

this is particularly true for older adults. To help mediate our 

finite attention resources in performing cognitive tasks, we have 

to be able to measure the real-time changes in the cognitive load 

of individuals. This paper investigates how to assess real-time 

cognitive load based on psycho-physiological measurements. We 

use two different cognitive tasks that test perceptual speed and 

visio-spatial cognitive processing capabilities, and build accurate 

models that differentiate an individual's cognitive load (low and 

high) for both young and older adults. Our models perform well 

in assessing load every second with two different time windows: 

10 seconds and 60 seconds, although less accurately for older 

participants. Our results show that it is possible to build a real-

time assessment method for cognitive load. Based on these 

results, we discuss how to integrate such models into deployable 

systems that mediate attention effectively. 
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I. INTRODUCTION 

Cognitive load is a complex concept that is often not well 
defined [1]. In the field of human-computer interaction (HCI), 
Oviatt [2] has defined it as the mental resources a person has 
available for solving problems or completing tasks at a given 
time; it depends on the amount of information or number of 
elements that need to be processed simultaneously. The actual 
amount of cognitive load experienced by a person is influenced 
by the tasks, individual differences, and social and 
environmental factors [2]. We are increasingly exposed to a 
deluge of information every day. Given that human attention is 
a finite resource, the balance of our cognitive load or attention 
demands can easily fluctuate.  

While driving, for example, we can experience attention 
interference due to an expected or unexpected interruption 
(e.g., the need to change lanes or a pedestrian crossing in front 
of a driver, respectively). There is also increased cognitive load 
when switching our attention between virtual/information 
spaces and physical spaces (e.g., using a navigation display 
while driving) or between two distinct user interfaces (e.g., 
using a smart phone and a laptop together) [3]. While these 
moments are often short-lived, they can have significant impact 
on a person’s ability to attend to the task at hand. 

In order to help users effectively manage their attention and 
cognitive effort, systems can provide appropriate support for 
these moments (e.g., providing a driver with information about 
available parking spaces in a congested urban area) and can 
avoid providing inappropriate distractions at these moments 
(e.g., presenting the driver with an advertisement for cheap 
gas). To remedy this situation, future systems must be able to 
provide the right cognitive aid at the most appropriate time.  

One’s cognitive ability changes with age [4]. As we age, 
deficits in cognitive abilities increase, and more support is 
needed [5]. Older adults have difficulty focusing on relevant 
information, and are prone to distractions. Also mental 
processing and reaction time become slower with age [6]. 
However, the magnitude and speed of these changes also vary 
widely from person to person [4]. In order to design usable and 
accessible systems for older adults, we need to first understand 
if cognitive load assessment tools that are used for younger 
adults will work for older adults. This is particularly 
challenging, given changes in psycho-physiological abilities 
that occur as a part of aging [7]. 

Especially in situations where cognitive load is high (e.g., 
interruption, divided attention, multitasking), perceptual speed 
and visio-spatial cognitive processing capabilities [8]  are very 
important. Perceptual speed, also known as ‘inspection time’, 
is the cognitive ability to quickly and accurately find target 
information in literal, digital or figural forms, make 
comparisons and carry out other very simple tasks involving 
perception [9]. Visio-spatial cognitive processing capabilities 
refer to our ability to perceive visual stimuli and both spatially 
and cognitively integrate them with what we have seen 
previously. Understanding these capabilities is important for 
determining when and how to present information to 
individuals. Doing so at the wrong time can dramatically 
increase one’s cognitive demands, can have negative impacts 
on task performance and emotional state, and, in extreme 
cases, even be life-threatening [10]. Given the transient nature 
of these situations, it is clear that a real-time method of 
measuring cognitive load is required.  

There are reliable methods for assessing cognitive load, 
based on task performance and subjective ratings [11,12]. 
However, due to their post-hoc (measured after a completed 
experience) and static (measured at a single point in time) 
nature, these methods are inappropriate for measuring 
variations in cognitive load over a continuous time frame.  



In addition, one’s performance may not always change, even 
though their cognitive load varies considerably.  

Our previous research has shown that a psycho-
physiological response-based assessment method can 
sensitively detect time-based variations in cognitive load, 
which could be effective over a number of cognitive processes, 
including memory, perception, and spatial processing [13]. 
Such a system could respond with an appropriate signal to help 
mediate a shortfall in a particular cognitive process. However, 
our previous work only supported coarse-grained assessment 
(up to minutes) instead of real-time, and has focused solely on 
assessment for young adults. 

In order to determine how to respond to the temporal and 
subtle changes of cognitive load, it is necessary to measure the 
cognitive load of individuals in real-time and in-situ. With a 
real-time, objective measure, we can develop novel interfaces 
that react to users’ cognitive load. In this paper we will 
particularly focus on a method of measurement that is 
noninvasive, inexpensive, easy-to-use and accessible to as wide 
a range of users as possible by using low-cost, off-the-shelf 
psycho-physiological wearable sensors.  

Accordingly, this paper explores the following questions: 

• Can we acquire a real-time measure of cognitive load 
for both younger and older adults by examining 
psycho-physiological sensor streams?  

• Can we use the same sensors to measure cognitive 
load in older adults as for young adults?  

To address these questions, we derived a real-time measure 
of cognitive load using two elementary tasks that measure 
perceptual speed and visio-spatial cognitive processing, good 
indicators of attention demand. We manipulated the levels of 
difficulty in each elementary task, and presented these tasks to 
13 younger participants and 17 older participants over the age 
of 65. We used four sensor devices to measure their psycho-
physiological responses. We validated the induction of 
different levels of cognitive load by using assessment methods 
based on time-on-task and subjective ratings. Through this 
effort, we developed individual models for measuring 
cognitive load in real-time (every second) for young and older 
adults. We present these models along with a discussion of 
how to integrate our models into a deployable attention 
management system. 

II. RELATED WORK 

A. Cognitive load in HCI and UI design 

In Human-Centered Design, Cognitive Load Theory (CLT) 
[14], one of the most important theories in educational 
psychology, has been applied to the designing of interfaces that 
effectively minimize cognitive load [2]. According to CLT, 
decreasing cognitive load associated with an interface frees 
people’s available intellectual resources for their main task [2]. 
CLT has been used, for example, to design educational 
interfaces that effectively minimize students’ load and to 
optimize their learning efficiency by matching the learning task 
with their mental capabilities [15]. It has also been applied in 
traffic control [16] and in safety critical applications [17]. 

 In HCI, a real-time technique for assessing cognitive load is 
needed to minimize users’ cognitive load to navigate an 
interface, and to dynamically adapt to users’ current cognitive 
state, resources and context. For example, in computer-based 
healthcare environments, UIs must be designed with 
consideration of requirements, cognitive capabilities and 
limitations of the end users, and adapt to their information 
needs [18]. However, the older the users, the slower they are to 
react to or realize that an update occurred in the user interface 
[19]. 

Users’ context is important, especially in multimodal 
interaction. From [20] guidelines, we should maximize human 
cognitive and physical abilities, by supporting dynamic 
adaptivity. In cars, CoDrive [21] successfully adapted the 
navigation system by replacing the map from the display with 
arrows when drivers’ workload was higher. 

B. Cognitive load assessment methods 

Performance-based methods for assessing cognitive load 
are frequently employed in dual-task settings. These methods 
examine how a participant’s responses deteriorate (e.g., lag in 
reaction time or increase in errors) when using finite cognitive 
resources to perform two or more tasks. This objective 
approach has been demonstrated to have a strong link with 
cognitive load [12]. However, it is less sensitive to subtle 
differences in cognitive load and can only be measured after a 
task is complete and not during the task itself when the result 
may be the most useful.  

Subjective rating-based methods such as the NASA TLX 
[11] use participants’ own judgment of their task execution 
efforts. This approach is applied post-hoc (after task 
completion), is reliable and is non-intrusive to the task 
performed [12]. However, it is inappropriate in assessing 
dynamic changes in cognitive load and less promising for 
automated or immediate assessment. Also, even when users 
struggle to complete a task in a timely fashion, they may self-
report the task as low workload, if they believe they did not 
make any errors [22]. 

Psycho-physiological response-based methods can also be 
used to assess cognitive load. Some believe that this approach 
can more sensitively assess load over a continuous time frame 
[12], allowing for the detection of changes in cognitive load 
even when no deterioration in task performance is 
demonstrated. The approach supports assessment for tasks that 
leverage major cognitive processes such as perception, 
memory or reasoning [23]. 

Accordingly, we choose psycho-physiological 
measurements as our assessment method. However, given its 
sensitive nature, we cannot rely on a small number of 
physiological measures that have been demonstrated in the 
literature as being useful for assessing cognitive load (e.g., 
gaze information [24,25], heart rate [25,26], 
electroencephalography - the electrical activity of the brain 
(EEG) [27,28], electrocardiography - the electrical activity of 
the heart (ECG) [26], galvanic skin response (GSR) [25,26], 
breathing rate (BR) [26], and skin temperature [26]. In our 
previous work [13] we compared features calculated from 
different psycho-physiological signals for assessing cognitive 



load. However, those results were limited to models of young 
adults based on one single feature and supported assessment of 
cognitive load on a granularity that ranged from seconds to 
minutes. 

The information used for cognitive load assessment 
impacts the temporal granularity achieved. Most commonly, 
coarse granularities, such as 2 minutes [25] or 5 minutes [29], 
have been used in studies considering psycho-physiological 
data only. Others have combined psycho-physiological signals 
with performance data [26,30] to achieve assessment 
granularities of 10-30 seconds. Studies considering multi-
channel EEG measurements have experimented with shorter 
window sizes, such as between 2-120 seconds with a 32-
channel EEG cap for working memory load classification [28], 
and 5 or 10 seconds with a 6 lead EEG for mental workload 
assessment [31]. However, these experiments used wet 
electrodes requiring proper skin preparation and conductive gel 
application, and hence are impractical for naturalistic use. 
Knoll et al. [32] used a 14-channel dry electrode EEG headset 
for cognitive load assessment at a granularity of 1.5 seconds. 
All of these studies suggest that relatively high classification 
accuracies can be attained even with shorter windows, but 
Grimes et al. [28] demonstrate that there exists a tradeoff 
between window size and classification accuracy. In this study, 
we took the approach of using an easy-to-use, low-cost and off-
the-shelf one-channel EEG device together with other 
minimally obtrusive wearable sensor devices. 

Both individual and cross-user models for psycho-
physiological data have been previously implemented. Solovey 
et al.’s recent results [30] demonstrate potential of building 
models based on heart rate and skin conductance 
measurements that work across individuals to identify elevated 
cognitive workload levels while driving. However, Grimes et 
al. [28] concluded that, because of individual differences in 
EEG characteristics, cross-user models only appear to be 
reliable when data is averaged over long time periods, whereas 
individual models are needed to assess user state in real-time. 
Their results emphasize the importance of individual feature 
selection, as this accounts for most of the individual 
differences, similar to Wilson et al. [31]. Moreover, Mehler et 
al. [25] emphasize that individuals differ in the extent to which 
they show reactivity across different physiological measures. 

C. Cognitive aging and psycho-physiological changes 

There are only a few studies where the use of a psycho-
physiological assessment method has been explored for older 
adults’ cognitive load [25,30,33] and, to the best of our 
knowledge, no studies where implementation aspects of real-
time models have been compared between age groups. 
However, numerous efforts have been devoted to addressing 
cognitive decline of older adults [4,34], investigating psycho-
physiological changes [7,34] and cognitively assisting their 
everyday tasks [35]. 

It is widely agreed that different cognitive variables have 
different patterns of relations with age [4]. Perceptual speed 
and episodic memory are known to decline with increased age 
[4,34]. There are also age-related differences in tasks involving 
working memory, attention, task switching and interruption, 
and older adults have a generally slower processing speed [34]. 

III. EXPERIMENTAL METHODS 

A. Participants 

We recruited 30 participants split across two age groups: 13 
younger participants with their ages ranging from 18-30 
(M=22.9; SD=3.9), including 6 males and 7 females, and 17 
older participants with ages ranging from 65 to 88 (M=74.3; 
SD=5.7), including 6 males and 11 females, with normal or 
corrected-to-normal vision. One of the older participants (#3) 
suffered from a neurological disorder (hand tremor). 
Participants were recruited through study fliers, advertising at a 
lifelong learning institute at two local universities and a local 
center for behavioral decision research. They were 
compensated $20 US for their time. 

B. Elementary Cognitive Tests (ECTs) 

Many studies in the area of cognitive aging have made use 
of elementary cognitive tasks (ECTs). An ECT refers to any of 
a range of basic tasks that require only a small number of 
mental processes and that easily specify correct outcomes [8]. 
ECTs have been widely and reliably employed to compare 
individual differences between two population groups of 
interest (e.g., young vs. older adults, patients vs. health-
controlled people) [8,36], and to compare cognitive factors 
associated with age-related trends [37]. Different levels of task 
complexity have also been used in some cognitive aging 
studies. For example, Salthouse et al. [6] showed that higher 
task complexity has a greater impact on older adults’ task 
performance impairment than younger adults’. In our study, we 
also make use of ECTs that incorporate differing task 
complexity. 

We presented two different types of ECTs to the 
participants: the Pursuit Test (PT), in which subjects determine 
where a line begins and ends, and the Scattered X’s test (SX), 
in which subjects locate all the X’s in a display (Fig. 1). These 
tests measure perceptual speed and visio-spatial cognitive 
processing capabilities that were identified from the fields of 
psychology and cognitive science [38]. The tests were 
displayed on a computer screen (Fig. 2) and participants 
answered them using a mouse and a keyboard. After finishing 
each question, they clicked on a ‘next’ button positioned at the 
bottom of the screen to be directed to the next question. 

For each of the two tests, we prepared two sets of questions 
that were more and less difficult, that we expected would 
induce different levels of cognitive load on the participants, for 
details see [13]. To confirm this, we piloted the question sets 
before the actual study with 10 individuals not participating in 
the study. 



C. Psycho-physiological sensors 

We measured participants’ psycho-physiological responses 
with four sensor devices (Fig. 2): a wireless ECG monitor 
(Bioharness BT) that also records heart rate and breathing rate, 
an armband that measures heat flux (rate of heat transfer on the 
skin) (SenseWear Pro3), a wireless EEG headset (NeuroSky 
Mindset) with one dry electrode located on the participant’s 
forehead (position Fp1, as defined by the 10-20 system [39]), 
and a GSR finger sensor (LightStone). As mentioned before, 
these signals have been shown to have value in assessing 
cognitive load in previous studies. 

We selected these sensors because of their ease of use and 
relative non-invasiveness as well as their low cost and off-the-
self availability. While most of the previous studies have used 
high-end EEG caps with a high number of channels (e.g., 32 
channels by Grimes et al. [28]), low-cost EEG has previously 
been successfully used for task classification (a 2-channel EEG 
system) by [40] and cognitive load assessment (a 14-channel 
headset) by [32]. 

Right before the onset of the data collection, the ECG 
monitor and the armband internal clocks were synchronized 
with the computer running the study software and logging the 
headset and GSR data. The data transmission times were 
assumed to be so short that they would not affect our analysis 
at a 10-second granularity. 

D. Protocols and Procedures 

Participants filled out a participation consent form after a 
brief introduction to the study. We helped them put on each of 
the sensor devices and then provided them with descriptions of 
each of the ECTs and how to answer the questions using the 
mouse and keyboard. During this time, the sensors took 
baseline readings (allowing for initiation time and time for 
participants to feel at ease). To minimize distractions and noise 
in the sensor readings, we ensured that there was no ambient 
noise and asked participants to keep their non-dominant hand 
on the desk, maintaining a stable pose. These tasks took 
approximately 10 minutes.  

The ECTs began after a 90-second relaxation period, 
during which participants were asked to close their eyes for 
mental relaxation. The study consisted of three blocks of 
questions, each block containing one question set for each of 

the difficulty levels for each of the two ECTs (3 blocks × 2 test 

types × 2 difficulty levels). The duration of the question sets in 
the first block was 4 minutes, 3 minutes in the second, and 2 
minutes in the last one. The participants were asked to answer 
as many questions as they could during each question set at a 
good pace but without rushing. They were not informed about 
how much time they had left. The durations of the question sets 
were kept short to maintain the participants’ interest in solving 
the tasks throughout the set, while, at the same time, 
maximizing the amount of data we would have to build our 
models. After each question set in the first block, the 
participant was automatically directed to a task difficulty rating 
slide, where we used the NASA TLX (Task Load index) 
method [11]. A 30-second relaxation time was given between 
question sets.  The order of the ECT question types and the two 
difficulty question sets were counterbalanced. 

E. Validation of different cognitive load induction 

We validated that the two sets of questions we designed 
actually induced distinguishable levels (i.e., low and high) of 
cognitive load. For this, we examined two measures: 1) Time 
on task and 2) Taskload index (NASA TLX). 

1) Time on Task 

For both young and older participants the differences in 
time on task between the two task difficulty levels were 
significant (One Sample t-test, Young: t(12) = 8.36, d = 2.32 
(PT), t(12) = 10.28, d = 2.85 (SX), p < .0001; Older: t(16) = 
10.35, d = 2.51 (PT), t(16) = 18.07, d = 3.15 (SX), p < .0001). 
Older participants consistently took longer to complete tasks. 
On average, the young participants took 33.1 seconds (low) 
and 94.8 seconds (high) to complete a PT task. Older 
participants took longer, 59.8 seconds (low) and 160.7 seconds 
(high). On the SX task, young participants took 7.7 seconds 
(low) and 22.1 seconds (high), while older participants took 
10.0 seconds (low) and 35.1 seconds (high).  

 

Fig. 1. Two elementary cognitive tasks (ECTs) with two task difficulty 
levels (low and high). 

 

Fig. 2. Experimental setup with four sensor devices. 



We then inspected how both age groups experienced the 
difference between the two difficulty levels in each task. There 
was no significant difference for the PT task, where the young 
participants took on average twice as long to solve the difficult 
questions (high) than the easy questions (low), and the older 
participants took 1.7 times longer (Welch Two Sample t-test, 
t(26.50) = 1.18, p = .25, d = .43). On the other hand, for the SX 
task, the corresponding numbers are 2.0 and 2.7, a significant 
difference (t(27.51) = -2.24, p = .03, d = .78). 

2) Subjective Rating (NASA TLX) 

The difference between easy and difficult level TLXs 
significantly differed for both young and older participants 
(Young: t(12) = 7.09, d = 1.97 (PT), t(12) = 6.41, d = 1.78 
(SX), p < .0001; Older: t(16) = 7.46, d = 1.81 (PT), t(16) = 
5.85, d = 1.42 (SX), p <.0001). On average, the younger 
participants rated the task load of PT tasks to be 2.5 (low) and 
3.3 (high), whereas the older participants rated 2.6 (low) and 
3.9 (high) on a scale of 1 to 5. In the SX task the young 
participants’ ratings were 2.0 (low) and 3.0 (high) and the older 
participants’ ratings 2.0 (low) and 2.9 (high).  

Across the age groups, the difference in how the 
participants experienced the difference between the two 
difficulty levels was significant for the PT task (t(26.25) =  
-2.35, p = .03, d = .81), where the younger participants’ 
difference in ratings was, on average, 0.78 and the older 
participants’ difference was 1.26. The corresponding 
differences for the SX task, 1.03 and .91, were not significant 
(t(27.14) = .54, p = .60, d = .20). 

These two measures validated that our participants 
experienced a significant difference in difficulty between the 
two difficulty levels. Regardless of participants’ experience 
with computers, both age groups experienced the difference in 
difficulty between the two question sets similarly. Therefore, 
we confirm that our ECTs with different difficulty levels can 
reliably induce distinguishable levels of cognitive load from 
both younger and older participants, and that we can reliably 
use them in our psycho-physiological assessment. 

IV. DATA ANALYSIS 

A. Data 

Seven psycho-physiological signals were measured with 
the four sensors: average heat flux recorded by the armband (at 
a sampling rate of 32 Hz); raw EEG signal measured by the 
headset (128 Hz); raw ECG signal (250 Hz), breathing rate (1 
Hz), breathing wave amplitude (1 Hz), and heart rate measured 
by the ECG monitor; and GSR measured by the finger sensor 
(30 Hz). The headset also gave 8 band powers: delta 1-3 Hz, 
theta 4-7 Hz, low alpha 8-9 Hz, high alpha 10-12 Hz, low beta 
13-17 Hz, high beta 18-30 Hz, low gamma 31-40 Hz and high 
gamma 41-50 Hz, as well as two mental state outputs: attention 
and meditation, calculated at 1 Hz. We extracted R-R intervals 
from the raw ECG signal using a peak detection algorithm 
[41]. As a pre-processing step, the raw GSR and heat flux 
signals were convoluted with a Bartlett window to smoothen 
and differentiated to remove trends, such as an increasing level 
of GSR during the course of the experiment. 

We encountered some challenges with noisy or missing 
sensor data, especially with the EEG and ECG sensors. The 
poor quality of the EEG signal may be caused by poor contact 
of the sensor/ground/reference electrodes to a participant’s 
skin, motion of the participant, environmental electrostatic 
noise, or non-EEG biometric noise (i.e., EMG, ECG, EOG, and 
others) [42]. Other researchers have reported on technical 
problems with a similar headset [43]. Sources of recording 
noise in the ECG can include artifacts caused by movement of 
the electrode away from the contact area on the skin or EMG 
noise due to muscle contractions under the sensor surface [44]. 
Particularly, ECG measurements from the older participants 
had irregularities that may have influenced the extraction of 
R-R intervals. For each participant, missing or noisy 
measurements (EEG signals flagged with the headset’s poor 
signal quality metric or ECG data with notable recording noise) 
are presented in Table I (missing or ‘○’, respectively). Previous 
work found EEG [27,28] and ECG [13,26] to be good 
indicators for cognitive load and therefore we expect them to 
perform well on real-time cognitive load assessment. 
Participants who had missing or noisy ECG and EEG data 
were excluded from the analysis (2 young subjects and 5 older 
subjects, highlighted in grey in Table I). In addition, the heat 
flux signal was missing from one participant due to a device 
malfunction and the GSR measurement had to be dropped from 
5 participants because of incomplete readings. This left us with 
11 young and 12 older participants with whom we continued 
our analysis. 

B. Feature extraction 

Cognitive load models were built at two different 
granularities based on features derived from 10-second and 60-
second segments of raw measurement data.  For both feature 
sets, statistical features were calculated on sliding windows 
with a step of one second. Five seconds of data from the 
beginning of each question set shown to the participant was 
excluded from the analysis to allow for a changing cognitive 
load level. These granularities were selected on one hand to 
minimize the time lag when performing the assessment in real- 
time and on the other hand to compare how a longer window 
size would affect the detection accuracy. 

In total, 128 features were extracted from the signals. The 
mean, median, variance, standard deviation, 10th, 25th, 75th and 
90th percentile, interquartile range (IQR), root mean square of 
successive differences (RMSSD), mean of the absolute values 
of the first (MAFD) and second (MASD) differences [45], 
mean crossing rate and the difference of the last second mean 
and the first second mean of the window (end-start difference) 
were calculated from the heat flux, GSR and the R-R interval 
signal. Further, correlation and standard deviation of 
successive differences (SDNN), relative occurrence of 
successive differences exceeding 20ms (pNN20) and 50ms 
(pNN50) [46], and mean peak amplitude were calculated from 
the R-R data. In addition to these time domain HRV features, 
no frequency domain HRV features were extracted from the 
R-R intervals because of the short duration of the data 
segments used. According to [47], at least 2 minute but 
preferably 5 minute segments of R-R data are needed to 
calculate the spectral components. The count, maximum 
amplitude, mean amplitude, mean duration and area under skin 



conductance response (SCR) occurrences were extracted from 
the GSR measurement. The SCR occurrences were detected 
using an algorithm that locates zero-crossings in the 
differentiated GSR signal (adapted from [29]). The heart rate, 
breathing rate and breathing wave amplitude were described by 
seven features: minimum, maximum, mean, median, variance, 
standard deviation and end-start difference. The mean, median, 
variance, standard deviation and end-start difference were used 
to summarize the 8 EEG power values and 2 mental state 
outputs. For comparison, the power was also calculated from 
the raw EEG data on five commonly used bands: delta (1-4 
Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (12-30 Hz) and 
gamma (30-50 Hz).  

 

All the features were normalized to equalize their 
importance. The feature data from each participant in each 
question type (three sets with low difficulty level and three 
sets with high difficulty level) was scaled linearly so that the 
5th and 95th percentiles of each of the features met the range 
[0,1]. 

C. Modeling 

Quadratic discriminant analysis (QDA) was used to classify 
the feature values calculated on the sliding windows. A block 
cross-validation scheme similar to the one recommended by 
Grimes et al. [28] was adopted to avoid temporal dependence 
of the data segments and distortion of the results. The three 
data sets corresponding to the three blocks of the study design 
were used to train the models, select subsets of the original set 
of 128 features that would give the highest accuracy in 
measuring cognitive load, and to simulate a real-time system to 
provide an estimate of how the model would perform on a 
previously unseen set of data, respectively. Hence, mutually 

 

TABLE I. SENSOR SIGNAL QUALITY PER PARTICIPANT. 

Younger 

# 
Heat 

flux 
GSR EEG 

ECG, 

BR, HR 

1 ● ● ● ○ 

2 
  

● ● 

3 ● 
 

○ 
 

4 ● ● 
 

● 

5 ● ● ● ● 

6 ● ● 
 

● 

7 ● ● ● ○ 

8 ● ● ● ○ 

9 ● ● ● ○ 

10 ● ● ● ○ 

11 ● ● 
 

● 

12 ● ● ● ○ 

13 ● ● 
 

○ 

Older 

1 ● ●  ○ 

2 ● ● ● ● 

3 ● ●  ● 

4 ● ●  ● 

5 ● ● ● ● 

6 ● ● ● ● 

7 ● ●  ○ 

8 ● ● ● ● 

9 ● ● ● ● 

10 ● ● ● ○ 

11 ● ●  ● 

12 ●  ● ○ 

13 ● ● ● ● 

14 ● ●  ○ 

15 ●   ○ 

16 ●  ● ● 

17 ● ●  ○ 

 ● – Good  ○ – Poor    – Missing 

TABLE II. COGNITIVE LOAD ASSESSMENT ACCURACIES FOR 

YOUNGER AND OLDER PARTICIPANTS IN THE TWO ECT'S. ASSESSMENT 

WAS PERFORMED AT A ONE-SECOND FREQUENCY. 

Younger 
 PT SX 

# 10s 60s 10s 60s 

1 30% 53% 44% 66% 

2 71% 100% 88% 39% 

4 77% 100% 70% 50% 

5 94% 86% 100% 100% 

6 50% 50% 62% 89% 

7 76% 100% 76% 69% 

8 49% 54% 63% 31% 

9 76% 53% 63% 85% 

10 79% 74% 45% 86% 

11 74% 95% 98% 100% 

12 52% 100% 92% 100% 

Avg 66% 79% 73% 74% 

Older 

2 57% 91% 63% 66% 

3 62% 79% 63% 79% 

4 53% 81% 77% 77% 

5 62% 100% 62% 52% 

6 88% 98% 55% 50% 

8 49% 85% 77% 100% 

9 69% 95% 90% 58% 

10 54% 50% 50% 24% 

11 72% 99% 61% 99% 

12 51% 53% 80% 100% 

13 72% 100% 50% 50% 

16 80% 96% 50% 28% 

Avg 64% 86% 65% 65% 



exclusive data sets were always used for training, model 
selection, and testing of our models. The simple algorithm of 
selecting the three best individual features was used for the 
feature subset selection. More sophisticated methods were also 
tested, but because of overfitting, this simple method proved 
the most efficient for the task.  

A model with individual feature selection was trained for 
each participant’s data for each ECT task to distinguish the two 
difficulty levels. We implemented the models both on the 
feature set with the 10-second time window and the set with 
the 60-second time window. 

V. RESULTS 

Cognitive load assessment accuracies for the young and 
older participants for the two ECT’s are presented in Table II. 
Classification accuracy is computed as the percentage of 10- or 
60-second windows classified correctly. Very high accuracies 
are achieved for many of the young participants but with high 
variation. The rationale for the models not working for all 
participants might include noise in the measurement data or 
individual differences in how the changes in cognitive load 
manifest themselves in psycho-physiological signals. 
Participants might also have experienced the two levels of task 
difficulty differently, even though we did not find clear 
evidence of this in the subjective ratings and the task 
performance. Also our decision to fix the number of features at 
three might explain the inferior accuracies for some of the 
participants. This parameter value resulted in the best results 
for most of the participants but some of them would have 
benefitted from a higher number of features in the model. 

The accuracies for the longer windows are generally better 
than for the shorter windows in the PT task, but in the SX task 
the assessment performance is equal at both granularities. It is 
worth noticing here that even the 10-second assessment is able 
to differentiate the two levels of cognitive load at a very high 
accuracy for some of the participants. The results are 
particularly good for the young participants 5, 11 and 12. On 
the other hand, our models did not work for young participants 
1, 6, and 8. However, participant 6 was missing EEG data, and 
participants 1 and 8 had poor ECG, HR and BR data (all 
measured with the same sensor). The results for the older 
participants are very similar and the 60-second granularity 
results are comparable to those of the young adults. However, 
for the older adults, the difference in accuracy between the two 
granularity levels is greater than for the younger participants. 
This might be a consequence of the psycho-physiological 
changes related to aging [7] resulting in a slower reaction time 
to changes in cognitive load. Our models did not work well for 
older participants 2, 5, 10 and 13. We suspect that the reason 
for this is that some older adults do not express cognitive 
function with a high enough signal through psycho-
physiological responses.  

The real-time functioning of our model is demonstrated in 
Fig. 3 where estimations of a participant’s cognitive load levels 
are provided once a second on the 10-second granularity level 
during execution of the two difficulty levels of the PT task. We 
can see the fluctuations of the predicted cognitive load 
especially during the low cognitive load task variant. When 
designing the experiment, we had to assume that our task 

difficulty levels would uniformly fix the participant’s cognitive 
load for the entire duration of the question set. Although 
unrealistic in practice, this assumption provided ground truth 
for our models. Our validation of different cognitive load 
induction shows this was true on average. However, it may not 
be true for all of the 10-second data segments for which our 
model gave an estimate of cognitive load. In some cases, we 
may have actually classified the load correctly even though it 
may not match the label we have assigned based on average 
task difficulty.  

We then analyzed the features selected for each of the 
models at the 10-second granularity. The relative count of 
times a feature was selected into the set of three best features 
normalized by the number of participants in the age group, 
from whom that sensor stream was available, is shown in Fig. 
4. For this we only considered the participants and tasks that 

 

 

Fig. 3. Real-time prediction of cognitive load level for PT task, 10-
second granularity. Top: young participant 10 (79% accuracy). Bottom: 

young participant 5 (94% accuracy). 

 

Fig. 4. Relative count of the times a feature from each sensor stream was 
selected into the models (both tasks, 10-s). 



had an accuracy over 75%. The most often selected features for 
both the young and the older participants originate from the 
EEG and BR signals. The EEG signal was more important and 
the BR measurement less important for the older than for the 
younger participants. R-R signals are also fairly well 
represented among the most common features for both age 
groups, whereas GSR features were seldom used for the 
younger participants and never for the older participants. 

When looking at the features selected for the three above 
mentioned young participants 5, 11 and 12, we notice that for 
participant 5, five of the six selected features for the two task 
types were calculated from the EEG signal and one from the 
RR intervals; for participant 11, five of the features originated 
from the BR signal and one from the RR signal, and for 
participant 12 the feature sets selected consisted of four BR 
features and two EEG features. 

VI. DISCUSSION 

In this study, we investigated how to build a real-time 
system based on psycho-physiological measurements to assess 
the cognitive load of a person while he/she is executing tasks 
of different difficulty. We especially examined the 
applicability of our approach for two different age groups, 
young and older (over the age of 65) adults. We used three 
separate data sets to train the models, to select the features to 
be used and to simulate the real-time functioning of our models 
on previously unseen data. 

A. Model performance 

We built models for each ECT task, where we were able to 
accurately (on average 64-73%) and quickly (time-scale of 10 
seconds) discriminate the two levels of task difficulty based on 
psycho-physiological measurements. Models for both age 
groups performed roughly the same (Table II). As expected, 
our results for the longer time-scale of 60 seconds were better 
(65-86%). With these results, we satisfy our first question: we 
are able to create an accurate real-time assessment tool for 
measuring cognitive load for both young and older adults. 

B. Differences between the young and the older participants 

Our second question of interest was whether we could use 
the same set of sensors to measure cognitive load for young 
and older adults. We found that the sensors were the same: for 
both age groups, EEG and BR proved most informative of 
cognitive load. Overall, the consistency across sensors means 
that it will be easier to deploy a system for both young and 
older adults because the hardware aspects of the system would 
be the same.  The EEG measurement appeared to be even more 
informative of cognitive load for older participants while the 
BR signal was more valuable for the younger participants. The 
fact that several of our older participants had missing EEG data 
might explain some of the less accurate results for older 
participants. The importance of the EEG recording for the 
older adults is an interesting finding considering that many of 
the cognitive deficits of normal aging involve dysfunction in 
the prefrontal cortex [7], where the electrode of our EEG 
headset is connected.  

C. Comparison with previous work 

In addition to considering two different age groups, a topic 
that has not yet been widely researched, the main contribution 
of this work is our real-time models of cognitive load. The time 
granularity of 10 seconds, shown to result in good 
classification accuracies for most of our participants, has 
previously been achieved by Solovay et al. [30] in a study 
where driver workload was classified at a 10 to 30-second 
granularity based on HR and skin conductance measurements. 
In their study, however, the HR data was manually reviewed 
and edited for artifacts and anomalies whereas we used our 
data without manual correction. Our modeling accuracies are 
comparable with their individual models with varying time 
granularity where accuracies of 75%, on average, were 
achieved.  

Other studies, where the assessment of cognitive load has 
been based on multi-channel EEG measurements, have reached 
higher accuracies and finer time granularities (e.g., Grimes et 
al. [28] with a 32-lead EEG gap, and Knoll et al. [32] with a 
14-channel EEG headset). In this study, however, we wanted to 
test if acceptable results could be obtained with easy-to-use, 
low-cost and off-the-shelf sensors. Despite the challenges we 
had with the quality of some of the recorded data, the EEG and 
BR measurements turned out to be very valuable for assessing 
cognitive load. These results are different from our previous 
study [13] where ECG and heat flux were found most 
indicative of cognitive load. However, in the previous study the 
assessment was performed over a longer time period (up to 
minutes).  

D. Cognitive Interfaces 

Young participants complete the PT and SX tasks faster 
than older participants, by almost twofold (see Measure 1 – 
Time on task). Both tasks measure perceptual speed and visio-
spatial cognitive processing capabilities [38]. Our findings 
support Trewin et al.’s [19] results that increased age results in 
increased UI reaction time. Furthermore, it is clear that 
unpredictable autonomous interface adaptations do in fact 
reduce a system’s usability and learnability [48]. With our 
models, however, an interface could be designed to gracefully 
degrade the interface update rate, and use prominent UI 
highlights to compensate for users’ higher cognitive load, in 
real-time, therefore minimizing older adults’ cognitive load 
when they need to find or use information. 

E. How to build a system to assess cognitive load? 

We implemented our models at two different time-scales, 
10 seconds and 60 seconds, that both resulted in high 
accuracies for the majority of our participants. In practice, our 
subject-specific models require a short period of training 
before the model can be put to use. This training period, 
consisting of data collection and labeling, feature extraction 
and model specification, can be close to automated and 
accomplished in a matter of minutes as only a few minutes of 
training data is needed for our models. In this study, we 
conducted all the above-mentioned steps in a single session. 
However, to optimize the performance of the models at a later 
occasion without remodeling or calibration, the sensors could 
be disconnected and reconnected between the steps. 



After the training period, to use the model to obtain real-
time estimations of cognitive load, the small set of selected 
feature values can be calculated continuously once per second 
based on the previous 10 or 60 seconds of measurement data, 
depending on the granularity chosen, and the model can be 
applied causing no noticeable delay to the detection system. 
The computational requirements of our system are no greater 
than those of an average processor. After the initialization 
phase, the model could even be implemented on an embedded 
system. 

Our method works for both for young and older adults. 
However, quality of data collection is crucial for both age 
groups, and makes taking the measurements out of the 
laboratory more challenging. Particularly for older adults, 
changes in psycho-physiological signals, for example lower 
heart rate variability, as well as other medical conditions, can 
affect the quality of data. 

To build and integrate these models into deployable 
systems for managing attention, let us assume that a field-
based task comprises of a number of sub-tasks, which roughly 
match the elementary cognitive tasks presented earlier. 
Performance data such as time on task or subjective ratings of 
difficulty could be collected for each user for the ground truth 
of cognitive load. We could then collect sensor data by simply 
using the sensors that provided the most information gain about 
cognitive load in this study: the EEG collected by a 1-channel 
EEG headset and the BR recorded by an easy-to-wear chest 
band sensor. Alternatively, we could also perform the same lab 
study comparing a large number of sensors described in this 
paper, and use the sensors and features that provide the best 
model for each user. New models for each field-based task can 
then be generated. Cognitive load can be determined at a fine-
grained temporal level and a system designer can then 
determine how to respond to the changes in cognitive load. For 
example, when cognitive load is high, foveal visual signals 
could be minimized; and peripheral auditory signals could 
communicate the onset of new information. 

F. Limitations 

Despite our best efforts, we must acknowledge the 
limitations of studying cognitive load with a sample of 30 
participants and that our findings might not be indicative of a 
larger sample. The assessment accuracies of our models had a 
large variability from person to person. In addition to possible 
problems with the quality of the data we collected, it might 
also be the case that cognitive load does not manifest itself in 
the same way in the psycho-physiological signals for all 
individuals.  

VII. CONCLUSION & FUTURE WORK 

In this paper, we have focused on developing a psycho-
physiological response-based assessment for measuring 
cognitive load more sensitively. We presented cognitive tasks 
that test perceptual speed and visio-spatial cognitive processing 
capabilities and collected corresponding psycho-physiological 
data to assess cognitive load for both younger and older adults. 
We successfully built accurate models that can assess whether 
an individual is experiencing high or low levels of cognitive 
load in real-time, for both young and older adults. Our results 

showed that models for both age groups included the same 
sensors and performed roughly the same, although the more 
fine-grained assessment worked for fewer older participants. 

In our future work, we will further study the performance 
of our models in situations where the user’s cognitive load 
fluctuates more quickly and will tune the assessment to work at 
an even more fine-grained temporal level by using the latest 
off-the-shelf sensors. We expect that these sensors will 
improve the data quality for real-time cognitive load modeling 
hence allowing us to extend this approach to models that 
distinguish more than two levels of difficulty. We will explore 
the possibility of building general population models across all 
individuals within an age group and for all age groups (e.g., 
children, young and older adults), and deploy these models in 
interfaces that will help manage user attention according to 
users’ cognitive load. 
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