
Aparicio et al. 
European Transport Research Review           (2022) 14:28  
https://doi.org/10.1186/s12544-022-00552-3

ORIGINAL PAPER

Assessing robustness in multimodal 
transportation systems: a case study in Lisbon
Joao Tiago Aparicio1, Elisabete Arsenio2*    and Rui Henriques3 

Abstract 

Introduction:  Worldwide public transport systems are exposed to disruptions caused by malfunctions, accidents, 
maintenance, reduced fleet, and disasters, compromising mobility. Transport networks’ multimodal planning and 
management can be explored to increase their robustness against these events. In this context, this research paper 
proposes and empirically compares methods to assess the robustness of a multimodal transport network, looking at 
aspects regarding the single-mode and multimodal network topology.

Materials and Methods:  We hypothesize that the appropriate multilayered and traffic sensitive modeling of a 
multimodal transport network can help characterize robustness and further unravel vulnerabilities related to the 
integration of different transport modes. Using metric-based targeting, we evaluate how the network decreases 
performance when simulating failures on stations and pathways using different scenarios. The following six extraction 
strategies for nodes and edges were used in the simulation: Random removal; Initial Degree removal; Initial Between-
ness removal; Recalculate Degree removal; Recalculate Betweenness removal; and Multimodal Hubs removal. Lisbon’s 
public transport is used as a case study and is modeled as a multiplex network integrating eight different modes of 
transport. Proposing a novel normalized version of assessing the impact of failures, we were able to compare side by 
side the robustness of each modality layer, regardless of their size. Lastly, we simulate cascading events such as the 
breakdown of an entire transportation line.

Conclusions:  Using different ways to induce failures in the network, we observe that to leave all nodes completely 
disconnected, we would need to remove about half the network nodes, highlighting the robustness of the Lisbon 
public transport network. Comparing different failure scenarios, methods that rely on recalculating network metrics 
yield a higher impact on the network robustness assessment. The impact of different events is quantified, showing 
that failures in stations are generally more dangerous than in pathways and offering views on the consequences of 
deactivating particular network modules. Overall, the results of this study allow decision-makers to gain further under-
standing of the topological vulnerabilities of a transportation network.
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1  Introduction
Around 55% of the world’s population lives in urban 
areas [37]. However, such areas represent only a minor 
percentage of the total surface area. Therefore, daily 
commuting patterns and mobility services’ consumption 

impact factors such as the usage of natural resources 
and impact time in transportation, pollution, and quality 
of life, among others, yield extreme importance in 
sustainable development goals [3, 4, 6]). In this context, 
numerous studies attempt to optimize transportation 
systems planning and usage in urban scenarios [10, 28, 
30].

Among the studied solutions, the importance of a 
multimodal transportation system arises due to the high 
demand for some traffic corridors. According to [21], an 
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improved articulation of multimodality aspects within 
a transport system is significantly associated with lower 
carbon emissions. This assertion leads us to believe 
that successfully coordinating the interfaces in this kind 
of network is a viable solution for promoting carbon 
neutrality in the long run. However, according to [15], 
the study of multimodal transportation systems “has 
historically been underrepresented in travel surveying 
efforts. This lack of consideration has implications 
for widely accepted statistics for nonmotorized travel 
behavior (walking, bicycling, among others). It affects 
researchers and professionals in travel modeling, urban 
planning, public health, and urban design”. An integrated 
view of how specific failures affect the overall multimodal 
system is also relevant. Since it is relatively common to 
have planned or unplanned disruptions (i.e., construction 
works, technical failures, attacks, and natural disasters), 
causing delays and possibly inhibiting the usage of a 
pathway or station [11]. This observation raises the 
need to assess how robust these transportation systems 
are. Therefore, our main research objective is to assess 
the robustness of multimodal transportation systems 
in an urban scenario. In the context of this study, this 
assessment is applied at a topological level. Particularly 
we would like to understand how the different types 
of percolation tests have different results depending 
on network topology, the main topological fragilities 
regrading mono and multimodal public transport, and 
the differences between them and a metric to access the 
topological robustness of the network, that allows for 
direct comparison regardless of the network size and 
shape.

Making stops along our path from origin to our 
destination is often required, and the more stops we 
make, the more time we spend on transportation. So 
naturally, how nodes and edges failures affect the Average 
Path Length (APL) is an important research question 
that we are interested in answering. This is the case since 
the effectiveness of a path between two stations can 
be assessed by the number of stops in a trip (the APL). 
Besides the effects on the APL, understanding how many 
nodes (or stations) have to fail to fragment the network 
into isolated components is a requirement to understand 
further the impact of a disaster on a station or stop (in 
creating isolated components). In addition, we also aim 
to infer the effect of removing edges (pathways) versus 
nodes (stations) since this helps us infer if incidents have 
a higher impact on pathways or stations. To empirically 
test the simulation-based robustness testing, we aim 
to understand if metrics should be recalculated after 
each extraction and the measurement of the impact 
of cascading failures. Such as what happens if a station 
failure causes chain reactions on other stations located 

along the same line or in the nearby stations or stops 
from other modes.

The current study contributes to increasing the 
knowledge of the robustness assessment of multimodal 
transportation systems. Hence, we do a comprehensive 
review of modeling multimodal transportation systems 
and quantitatively assess their robustness. Another 
contribution of this study is the possibility of supporting 
public transportation policies focusing on actionable 
priorities for a more resilient system design. For 
instance, where should the focus of actionability be in 
case of an accident on different stations or pathways. By 
understanding which elements are more important for 
network integration.

For this research, the city of Lisbon is used as an 
example to improve the integration of the current 
multimodal transport network. This analysis is 
fundamental in the context of the Lisbon Metropolitan 
Area (LMA), where the average occupancy rate for 
individual private transport (cars) is 1.60 passengers 
per vehicle. This is also where the daily traffic inflow 
in the county of Lisbon is also the cumulative result 
of commuting traffic inflows between Lisbon and the 
eighteen municipalities that integrate the LMA [24]. 
Several road traffic corridors are flooded daily with 
single occupancy vehicles that could use another public 
transport alternative. Despite stable establishments and 
integrating the operators’ systems with a single card, 
challenges to the public transport network’s integrated 
operation and multimodal planning still persist within 
LMA.

Additionally, as noted previously, in a general sense, 
it is essential to note the impact of natural hazards on 
disrupting a working transportation system as well. Pre-
vious literature [32] denotes the natural hazard risk in 
different zones of the LMA (see Fig. 1). This map shows 
us the spatial distribution of risk for earthquakes, flood-
ing, and landslides in the county of Lisbon. This stresses 
the importance of understanding various risk impacts on 
the network’s structure. Along with the general risk from 
natural incidents, other incidents through the city have 
a higher incidence rate, and these usually have a more 
localized effect [19]. Such incidents may be caused by 
faults in energy and water suppliers, traffic accidents, and 
fires that disable stations and pathways. [19] rendered a 
map of incidents from a diverse standpoint (see Fig.  2). 
This shows us that a study on the impact of network 
robustness at a local level is relevant.

Since the Lisbon public transportation network is 
susceptible to these failures that can affect the daily 
commute of its users, a way to guarantee and improve 
the robustness of this critical component of our public 
services is crucial. To tackle this problem, we aim to 
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understand how robust the Lisbon public transport 
network is. This assessment starts by quantitatively 
measuring robustness [40]. Since the Lisbon public 
transportation network is also complex, examining how 
different stations and stops may have similar properties, 
bridging different lines (routes as linear road/rail/
other mode infrastructures) and transportation modes 
is essential. Topological attributes and concepts of 
network resilience, besides simulation, will play a role 
in this research study. We ask ourselves which nodes 
(e.g., stations) are central and the role of degree-
degree correlations. This is, if central stations connect 
to other central stations in this particular topology, 
this may cause a higher fragility [41]. Also, looking at 
how different extraction strategies (or simulations) for 
quantifying robustness affect the connectedness of the 
network will shed some light on which method has the 
highest impact on breaking the critical pathways that 

keep the transportation system usable throughout the 
city.

The above concepts will be applied to Lisbon’s 
multimodal transport network in the ILU (Integrative 
Learning from Urban data and the situational context 
for city mobility optimization) project. This project 
joins research institutes, the Lisbon municipality, 
and public transportation operators to promote more 
efficient and sustainable mobility.

2 � Literature review
Robustness can be understood as the quality of the capa-
bility of a system to work under disruptions [23]. Robust-
ness has been alternatively defined as an optimization 
problem [26]. A robust solution can be seen as having 
the best performance under high-stress conditions. To 
further understand this property of the system perturba-
tion, the literature review shows that experiments are a 
dominant approach, which can be done in silico (using 

Fig. 1  Lisbon Metropolitan Area, natural hazard map, extracted and translated from [32]
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computer simulations) [29]. In the context of a multi-
modal transportation system, we can inherently see the 
redundancy since the transportation modes usually pro-
vide alternative routes for the same places.

Previous studies indicate that the first step in 
measuring the robustness of a transportation system 
is to model the transportation network. Accordingly, 
the modeling of multimodal transportation systems 
recurring to multilayer networks has been previously 
proposed to analyze urban transportation systems [2]. 
This allowed the analysis of superlayer interdependence. 
Multilayer networks are also used to model air 
transportation networks. This can, for instance, be 
used to study how the degree–degree correlations 
of a network affect the spreading of an epidemic [5]. 

Different types of multimodal transport networks have 
been modeled in several empirical studies, as shown in 
Table  1 [39]. Note that air travel can be modeled as a 
heterogeneous mode of transport, as different air travel 
companies constitute different layers of a network [20].

Different authors have modeled and assessed diverse 
types of networks. [8] addressed the evolution along 
time using historical data. [36] developed a method 
for choosing different routes in shipment according 
to demand. [16] studied connectedness in India using 
community membership and betweenness centrality. 
[38] applied a weighted multiplex to air traffic to then 
make a network analysis with metrics such as average 
degree and assortativity. 

[18] modeled an air traffic network in layers based on 
flight frequency and concluded that it is less redundant 
in the Chinese network than the worldwide network. [5] 
modeled an air traffic network and assessed assortativity 
and rich-club effect (nodes with high degrees connect 
to nodes with high degrees) in international flights. 
[2] modeled the Madrid urban transport network, the 
measured overlap between different modes and transfers, 
and the time from one station to another. [17] studied 
how the network’s topology affected the formation 
of communities and how betweenness centrality 
and closeness centrality  affect growth. [27] create a 
methodology to assess the spatial accessibility of public 
transportation networks using a case study in Shanghai, 
China.

To answer the need for measuring the resilience of 
networks, [25] noted in their robustness and resilience 

Fig. 2  Distribution of incidents in the city of Lisbon from [19]. On the right is the occurrence of incidents and on the left, their impact on pathways, 
i.e., the number of roads affected

Table 1  Empirical studies of multilayer transportation networks 
by Zhan et al.

Authors Networks Area Basis

[8] Road, canal, port England Transport mode

[36] Maritime, road World Transport mode

[16] Rail, road, air South Asian Transport mode

[38] Air Europe Country

[18] Air China City

[5] Air Europe Company

[2] Tram, metro, buses Spain Transport mode

[17] Rail, road Malaysia Transport mode

[27] Bus, metro China Transport mode
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review that a network should be considered resilient 
if it sustains a high number of node failures before it 
becomes disconnected. In that sense, performing node 
percolation tests is suggested to measure resilience. 
Measuring this property in transport networks has been 
the focus of several studies. [35] have evaluated system-
wide robustness by finding critical isolating links in road 
networks. They reduced the link capacity and measured 
the travel time to measure robustness. This allowed for a 
dynamic perspective as well. Later on, [42] conducted a 
similar study but induced the vulnerabilities by blocking 
lanes instead, same as deleting an edge, which ranked the 
links by how critical they were building upon the much 
earlier work that did just that [33].

These studies are related to the earlier studies on 
reliability by [13], where they measured the reliability 
of networks given the demand change based on route 
choice models. This study extended capacity reliability 
to network equilibrium models as well as accounts 
for route-choice actions of drivers. [1] measured the 
reliability using network capacity and travel time by 
changing demand and inducing link degradation and 
non-persistent congestion. These studies show how 
different demand levels affect capacity and reliability in 
an analytical way. It is important to note that reliability 
is fundamentally different from resilience. Reliability is 
usually a measure of susceptibility to the interruption 
of service. Resilience, on the other hand, measures the 
ability to recover from such interruptions in service 
[14]. Robustness, on the other hand, can be seen as a 
dimension of resilience and as a cause for reliability.

Studies of network resilience have also been done 
in the context of multimodal transport. [31] recently 
showed that the same idea of percolation could be used 
in multiplex networks. This notion opens this test as a 
way to measure the robustness of multimodal transport 
networks accurately.

Another view on resilience measurement on 
multimodal transport networks is given by [7], who 
postulates that a whirlpool network structure on a 
multimodal transport network leads to a cyclic steady 
state, unlike a tree structure, under the flow simulations 
proposed. A whirlpool state is one that points towards 
another, and the following states recursively point 
to the following until it completes a circle. Then the 
measurement of robustness is given by the ratio of states 
in a whirlpool structure and the total number of states in 
the multimodal transport network.

Besides a topological resilience test, dynamic meas-
urement of such property has also been studied in 
multimodal urban transport. [34] studied resilience to 
extreme weather events (EWE) in several European cit-
ies by measuring the percentage of change in working 

segments during the EWE. Then claimed this could 
be used for prediction tasks by using past rail, air, and 
road usage data. However, this method lacked action-
able information because prevention is only attainable 
if we know where to act. Later on, [12] defined a frame-
work to assess robustness. This helped the description 
of robustness assessment as an economic problem. This 
kind of assessment is very relevant for this study because 
it provides a baseline for understanding the impact of dif-
ferent disruption scenarios in specific links, quantifying 
their criticality. This is a type of assessment that provides 
specific enough data to be actionable in the real world, 
showing that the number of critical links distribution fol-
lows a left-skewed behavior (Fig. 3). This is relevant since 
we can see that most links are not that critical, and others 
are significant to keep the network connected. By identi-
fying such links and providing redundancy, priority poli-
cies, and other measures, the robustness of the network 
can actually increase.

3 � Methods and modelling
3.1 � Methods
To answer the questions stated in the introduction 
regarding the topological robustness, we use different 
strategies. As we have seen, there are several approaches 
to assessing robustness. One of them is removing nodes 
or edges from a network to measure the impact of a sim-
ulated station failure [31]. The simplest way to do this 
is by injecting random failures in the network, i.e., ran-
domly removing nodes from the network. It is expected 
that this simple strategy may not maximize the damage to 
the network, but it can be a reasonably realistic approach 
since the Lisbon public transport network may have sta-
tion failures due to unpredictable and unexpected events.

Fig. 3  [12] link criticality study results
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Other more precise strategies were defined by [22], 
and we followed their strategy. We also simulated the 
failure of nodes and edges to be able to compare, which 
yields the highest impact, as the optimization stress 
handling can be part of the definition of robustness, as 
seen previously. These more precise node extractions 
(simulated station failures) utilize attributes from the 
network, such as degree and centrality. To test a net-
work with more precision, an effective strategy should 
be to extract the most critical node. This notion of 
importance can vary depending on the attribute to 
which we give attention.

We could select nodes in descending order of degree. 
This extraction is called Initial Degree removal—ID 
removal—because we base the extraction on only the 
initial calculation of the degrees, and we do not update 
it after removing nodes.

Another critical attribute is the centrality of a 
node. There are a few types of centralities, but the 
betweenness centrality is crucial since it represents the 
nodes that have edges that unify communities/groups 
inside the network. These nodes are the ones with 
the highest criticality for network connectivity since 
they connect the communities of the network. This 
extraction is called Initial Betweenness removal—IB 
removal—like ID removal, it only calculates the initial 
betweenness centrality of each node at the beginning 
and does not update it.

Both extractions only calculate the attributes, 
degree distribution, and betweenness centrality at 
the beginning of the algorithm. When we remove 
nodes from the network, it changes the degree of the 
neighbors of the removed node, and it modifies the 
betweenness centrality of all the nodes. Two new 
strategies appear called Recalculate Degree removal—
RD removal—and Recalculate Betweenness removal—
RB removal. These strategies are identical to the ID 
and IB ones, except they update/recalculate the degree 
and the betweenness centrality after each node/edge 
removal. The RD and RB algorithms are considerably 
more time and computation expensive for each 
interaction, but we wanted to study if they are more 
efficient at disconnecting the network. Efficiency, in 
this case, is a way to simulate the highest stress levels.

ID and RD removal are local strategies because when 
a node is removed, it only changes the degree of the 
neighbors of that node. Thus, only these local nodes need 
to be updated. On the other hand, IB and RB removal are 
global strategies since by removing a node, we need to 
recalculate the betweenness centrality globally, i.e., of all 
nodes.

Every calculation of the betweenness centrality of the 
network costs around 5  min, and since we must apply 

thousands of recalculations (one per node removal), 
this would be very time-consuming and less sustain-
able. Because of that, we decided only to recalculate the 
betweenness centrality when batches of 5% of the nodes 
were removed. Being N the number of Nodes and E the 
number of Edges, the ID algorithm is O(N+ E) , the RD 
is O(N(N+ E)) , and the IB is O(NE)(using a faster algo-
rithm for betweenness centrality created by [9]), and the 
RB is O N 2E .

3.2 � Modeling
Most worldwide public transportation networks are 
multimodal. Therefore, these are modeled as multilayers. 
Moreover, we also wanted to test if removing nodes that 
connect layers of the graph is critical, i.e., if it disconnects 
the network faster. We call these nodes multimodal hubs, 
and this extraction strategy is Multimodal Hubs removal. 
For example, two multimodal hubs are Alameda, which 
connects Metro and Carris, and Gare do Oriente, which 
connects Carris, Metro, and CP. It is worth noting that 
the Multimodal Hubs removal strategy only makes 
sense when evaluating the multilayer network. When 
evaluating each modality, this strategy is invalid because 
there are no multimodal hubs.

Removing nodes from this network may correspond to 
a stop being deactivated or being in construction, while 
removing edges may correspond to cutting roads or 
accidents preventing any vehicle from passing through. 
Edges can also fail. All our node extraction strategies 
can be applied to edges with a few modifications. For 
example, how can we get the degree of an edge? The edge 
degree depends on the nodes that are connected by it. 
We used the following four different methods to calculate 
edge degrees:

A.	ke = kv · kw

B.	 ke = kv + kw

C.	ke = min(kv , kw)

D.	ke = max(kv , kw)

where ke is the edge degree and kv and kw are the 
degree of the nodes that are connected by the edge e. 
Since our network is directed, we also assume that v is 
the source and w is the destination node of the edge. 
However, there are other ways to calculate the degree of 
an edge, such as ke = kv or ke = kw.

In accordance with the study of [22], where they 
concluded that method A. ke = kv ∗ kw was the best 
fit for the majority of the network types that they 
studied. Method A showed the best correlation of the 
four methods between the edge degree and the edge 
betweenness centrality. It is expected that the node with 
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a higher degree should also have a higher betweenness 
centrality. To calculate the betweenness centrality of an 
edge, we also used the [9] O( NE) algorithm.

We can expect that the extractions based on centrality 
measures may be more harmful than the random failures. 
Concerning the nodes vs. edges, we believe that there 
could be a slight difference between these extractions, but 
this is hard to predict. Degree-based strategies probably 
will split the network into many subgraphs of vertices 
with low degrees. Betweenness centrality strategies can 
create clusters that are highly connected since they tend 
to destroy the bridges that connect communities first.

We understand that not only single nodes fail but also 
more catastrophic events can happen in the network, 
bringing the notion of cascading effect. For the cascading 
effects, we described and implemented two extraction 
strategies.

The cascading effect simulating a Line Failure removes 
an entire transportation line in the network. This could 
happen with an underground implosion that made the 
whole line stop. We simulate this by removing all the 
nodes that have the attribute of that line. Some nodes 
may belong to more than one line, even from different 
modalities. For example, Gare do Oriente stop is a 
multimodal hub that belongs to Metro, Carris, and CP 
(railway company).

The cascading effect simulating a Neighbours Failure 
removes neighbors from several layers of a failed node. 
One example of this in the Lisbon public transportation 
network could be a recursive failing of transports in the 
same spot. When a station fails, the neighbor stations 
could experience overflows because of relocated traffic, 
and this could potentially cause them to fail as well. To 
simulate this type of cascading effect, we collect several 
layers of the node’s neighbors, and then remove all these 
nodes at the same time. An example of this could be a 
flood that affected all transport modes in a particular spot 
of the city to the point of not being usable. In conclusion, 
we used the six following extraction strategies for nodes 
and edges:

(1)	 Random removal
(2)	 Initial Degree removal (ID)
(3)	 Initial Betweenness removal (IB)
(4)	 Recalculate Degree removal (RD)
(5)	 Recalculate Betweenness removal (RB)
(6)	 Multimodal Hubs removal

We also used the two following extraction strategies for 
cascading effects:

(1)	 Line Failure
(2)	 Neighbours’ Failure

3.3 � Assessment metrics
To assess the impact of each strategy, we explore 
the impact of each removal based on different 
metrics through the simulations. To understand how 
connectedness is affected, we measure the average path 
length (also known as average geodesic distance), average 
degree, number of isolated components, and the size 
of the strongly connected component [5, 16, 38]. To 
understand how the average path length is impacted by 
each removal, we only average out the shortest paths 
that still exist in the network. This approach allows us 
not to need to calculate the inverse path length, l−1 . 
As the study of this network is applied to a multimodal 
transportation network, we also measure the impact of 
the described extractions on the use of multimodality.

By implementing the different extraction strategies 
discussed previously. For each iteration, we compute 
the largest SCC and its size. This size decreases with 
the removal, and if a critical station is removed, the 
size decreases even faster. Ergo the strategy which has 
a faster decrease has a more significant impact on the 
network. This means that networks that exhibit a steeper 
decrease sooner, as the percentage of iteration steps, are 
less robust. In the same fashion, a high-performance 
extraction strategy is one in which the SCC descends 
faster.

To compare different removal strategies, we propose 
a novel metric, the discrete normalized Area Under 
Curve (AUC), to compare the resilience of the different 
layers and the multilayer network. The normalized 
AUC ⊂ [0,100] allows us to compare the values of 
networks of different sizes and shapes. This is calculated 
using the following formula:

where χ is the number of steps of the simulation, τi , is 
the size of the largest strongly connected component at 
timestep i , and V  is the number of nodes of the network. 
This measurement allows us to compare the different 
resilience side by side. It is important to note that this 
metric might have a higher variability (for both inflation 
and deflation) in smaller networks, given the granularity.

4 � Results and discussion
4.1 � Data extraction and pre‑processing
Firstly, we identified the criteria used for the inference 
of the multiplex network, followed by an analysis of the 
robustness of the topology. To transform route plan-
ning from GTFS data files of each mode into a network, 
we joined the routes and the stops of each one of the 
transportation modalities: Carris, CP, Fertagus, Metro, 

AUCNormalized =

χ
∑

i=0

τi

V
·

100

χ
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Rodlisboa, Sulfertagus, Transtejo, and TST (bus, railway, 
riverway, subway, tram companies’). This merge con-
tains information regarding the id, geographical posi-
tion, sequence within the line, and name of the station. 
This allows us to verify which stops are connected to one 
another.

Given the structure of the data, we created a directed 
graph (digraph) for each transportation modality (bus, 
railway, riverway, subway, tram), forming a layer for each. 
We resorted to digraphs for each layer because transport 
does not always flow in both directions within the same 

path. This allows us to create each layer of our multilayer 
network. We apply a multilayer representation hence the 
edges of different layers have different types that repre-
sent different realities. Modeling such characteristics is 
not possible with a single layer (or monolayer) network.

After the representation of each layer, we must account 
for possible multimodal interactions, i.e., the possibil-
ity to shift to different transportation modes within a 
trip. These links are of extreme importance because they 
allow us to assess the connectivity of the transportation 
system as a whole. To accurately understand where these 
edges could be located, we created a script that extracted 
the Lisbon city map and calculated the walking distance 
between every two stations, and combined it with a 
standard coordinate distance calculation to get faster cal-
culations (Fig. 4). After getting this result, we selected the 
pairs of stations from different modes and linked them 
based on distance. The intermodal interfaces are about 
0,0040% of the distances calculated. We connected the 
eight modes of transportation in the city of Lisbon using 
the described method.

By programming a 3-dimensional method for visualiz-
ing such a network, using the geographical information 
available, we were able to see its structure (Fig.  5). This 
network is composed of 8 layers, 7972 nodes, and 11,892 
edges. The complete network required the computation 
of 46 399 492 distances to join all the layers with the mul-
timodal connections.

Fig. 4  The distribution of distances associated with the 1878 
intermodal connections has a very high cardinality of distances close 
to 0 m. This represents the stations/stops that simultaneously link 
layers

Fig. 5  Multilayer Lisbon transport network topology on a 3D representation with all the layers
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4.2 � Network analysis
The number of nodes and edges per layer is disclosed in 
Table 2. It is clear that the distribution of stations is not 
equitable across layers. Additionally to the edges in each 
layer, 1502 edges represent multimodal changes. The 
average in and out-degree are approximately the same at 
1.4917, which means that the majority of the edges are 
reciprocally directed.

As we are studying a directed network, it is essential to 
assess the strongly connected components (SCCs) since 
it measures the numbers that connect with each other 
regarding the direction of each pathway. These are graph 
partitions, where the nodes are connected through a 
path. It is quite normal to have many single-node SCCs 
in unidirectional lines. This is precisely the case in this 
network. We observe 417 SCCs in the whole network 
as some layers, such as METRO and CP, have only bidi-
rectional relationships between nodes. An example that 
would cause a higher number of SCCs would be, for 
instance, a set of isolating lines from the rest of the net-
work by eliminating a critical station. Lines that are natu-
rally isolated within the present topology happen in the 
TST Sesimbra line and the RODLISBOA Vila nova line. 
The remaining small SCCs in the multilayer network 
are single stations where the flow is unidirectional. The 
biggest strongly connected component has 7512 nodes 
which are about 94% of the total nodes of the network. 
The number of SCC’s per each layer are: CARRIS: 67, 
CP: 3, FERTAGUS: 1, METRO: 1, RODLISBOA: 263, 
SOFLUSA: 1, SULFERTAGUS: 6, TRANSTEJO: 3, TST: 
177. The fact that the number of SCCs of the individual 
layers summed is higher than the SCCs in the multilayer 
network means that the multimodal edges are signifi-
cantly well placed on improving network connectivity.

4.3 � How many stations are connected with each station?
In this multilayered network, we can examine the kind of 
degree distribution we have, shown in Fig. 6. We can see a 

high tendency of having both the in-degree and out-degree 
equal to one (part of a line) and two to four (stations that 
have intersections of lines of one or more modes). We can 
also see some nodes with an out-degree of 0. These are 
start and end stations, respectively, that have no recipro-
cal edges in the opposite direction. Stations with in-degree 
and out-degree equal to one can be caused by a signifi-
cant amount of stations that flow only in one direction, 
or career end stops have different identifiers depending 
on orientation. This fact is also explaining the high num-
ber of low distances in the figure above. The in-degree is 
always very close to the out-degree. Since we are looking at 
a transportation network, this tells us that the majority of 
the connections between stations flow both ways, forming 
what is known as a chain (or a line), even though there are 
apparent exceptions (stations that connect with many sta-
tions) as we can see on the tail of the plot with a log scale.

4.4 � How many stops do we have on average between each 
station?

To answer this question, we look at the average path 
length in the number of stops between two stations 
(not the length of the path itself ). For the largest mutu-
ally connected component, the average path length 
(APL) is about 34.6878. This means that, on average, to 
get from a station/stop to any other on the network, we 
have to go through about 35 stations/stops before reach-
ing the destination (this number includes multimodal 
travels as well). Per layer, this value is usually smaller 
(METRO: 7.7176, CP: 10.2072, FERTAGUS: 5.0, CAR-
RIS: 25.8734, RODLISBOA: 36.9525, SULFERTAGUS: 
34.7543, TRANSTEJO: 1.5, TST: 43.3558). However, each 
layer covers a smaller area than the composition of all the 
layers. In the case of TST, the APL is higher than in the 
composition of all the layers. This means that multimo-
dality can be helpful in avoiding many stops.

Table 2  The number of edges and nodes for each transport 
operator.

Here we can clearly see that the distribution of the station is not equitable in 
terms of layers, as carriers have a very high variance in the number of stations

Carrier Nodes Edges

CARRIS 2144 2894

CP 58 125

FERTAGUS 13 25

METRO 49 105

RODLISBOA 2210 2752

SULFERTAGUS 110 187

TRANSTEJO 8 12

TST 3372 4281

Fig. 6  Degree distribution of the multimodal transport network
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4.5 � Which stations connect travelers from different parts 
of the city?

In the case of transportation networks, it is interesting to 
measure the betweenness centrality to understand which 
nodes connect different communities of stations, i.e., sets 
of interconnected stations within a region. In the multi-
layer network, we identify some stations that have a very 
high centrality (See Fig. 7). These are mainly from TST. 
This may be a sign that TST is a kind of bridging layer 
in some zones. Some examples of such bridging stations 
are Lisboa Gare do Oriente (0,2529), Setúbal Ciprestes 
(0,1639), Lisboa Alcântra (0,1592) at TST. METRO also 
has three stations with exceptionally high betweenness 
centrality, including Campo Grande (0,1813), Oriente 
(0,1504), and Cidade Unversitária (0,1480). Rod Lisboa 
also has a station with a very high betweenness central-
ity, Lisboa Campo Grande (0,1879). With this simple 
analysis, we can see that both Lisboa Campo Grande and 
Lisboa Oriente are multimodality hubs that bridge across 
different layers.

The left skew on the betweenness centrality may indi-
cate the same type of distribution on node criticality 
since the betweenness centrality on the node measures 
the number of shortest paths that include that node. So 
these results are similar to the ones found in the litera-
ture [12].

4.6 � Are the central stations directly connected with one 
another?

To understand the role of degree-degree correlations, 
we look at degree assortativity to understand if central 
stations are connected to one another. This measures the 
similarity of connected nodes concerning their degree. 
[5] noted that in multilayer networks, degree-degree 
correlations should be measured system-wide. In that 

same study, they generalize this concept for these types 
of networks and apply it to an airport transportation 
multilayer network. There they also note that the rich-
club effect is, in fact, present in such networks, masked 
due to the high number of peripheral nodes that connect 
the hubs. However, intralayer, the networks tend to be 
disassortative as they focus on one specific region.

We observed a similar behavior from Arruda et  al. 
regarding the assortativity, even with the differences, in 
reality, being represented (air travel versus urban trans-
portation). We calculated the assortativity for the mul-
tilayer network and for each layer, observing the same 
results. In Fig.  8, we see the same pattern described by 
[5]. We can observe a much higher assortativity in the 
multilayer network than in any of the single layers. This 
is reasonably simple to understand since the assortativ-
ity is influenced by the high number of multimodal hubs 
that connect to one another. Analogous to the properties 
found in past case studies, we may find a kind of a rich-
club effect that may not be there because of the many 
peripheral nodes. This means that between the central 
stations within the layer, there are less central stations 
connected to more central stations. Since this is not the 
focus of this work, it will be left for future studies.

4.7 � Impact of different extraction strategies on network 
connectedness

In this section, we attempt to answer this question by 
analyzing the behavior of the size of the largest strongly 
connected component—SCC—over time for the dura-
tion of the simulation. Observing Table 3, the most resil-
ient layer is FERTAGUS, and the least resilient layer is 
RODLISBOA.

Table 3 shows that the RD and RB strategies usually 
yield the best results across all layers. In other words, 
this is more often than not the best strategy to meas-
ure robustness. Nevertheless, the RB strategy tends to 
have a faster descent among the different layers, as we 
can see in Fig. 9. Hence, the failure of intermodal hubs 

Fig. 7  Betweenness centrality distribution: In the graph, we can 
clearly see a few nodes with very high centrality. These are the nodes 
that represent the stations mentioned above

Fig. 8  Assortativity distribution of each layer and the multilayer 
network
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that have a high degree has devastating effects on the 
multimodal topology. Moreover, the IB and Random 
strategies seem to have the least impact on the size of 
the largest SCC. This is expected, and it is a good base-
line to understand that the targeting techniques work 
to measure robustness. There seems to be no strong 
reason why the ID strategy has a better result than the 
RD. However, this is the case in SULFERTAGUS, and 
it should be investigated further. However, the degree 
is clearly not the targeting metric that yields the most 
effective stress strategy, so this may be due to the ran-
dom removal of stations with the same degree and 
lower betweenness. We postulate that this happens 
because there may be reasonably large components 
that have nodes with a high degree; however, remov-
ing nodes from these components does not affect the 
size of the largest component. So, this phenomenon 

probably has more to do with the metric we are using 
than the strategy itself. So this means that single-mode 
networks are more robust targeting in high degree sta-
tions. In Fig. 9, we observe that the RD strategy yields 
a faster decrease. This checks out with the Normal-
ised AUC with the lowest value. In the third graph, we 
observe that we still need many more edge removals to 
get the same result of the size of the largest SCC as in 
node strategies.

4.8 � Impact of node and edge targeting on average path 
length

To understand the evolution of path length when 
targeting stations and pathways, we calculated the APL 
only for existing paths along with the network. So, if there 
was no path using the transportation system between 
two points, this was not accounted for. It is important to 
note that this strategy may not be the best to measure the 
robustness of on-road transportation since alternative 
paths may be available on roads that are not on the usual 
route. So, we expect the APL to reduce along each time 
step quickly. We ran the result for each layer and the 
whole network as well.

Regarding the results for station and pathway target-
ing of the CARRIS network in Figure  11, the RD is the 
best strategy. This means that removing the stops with 
the highest degree has the highest impact on the length 
of stations one can reach. Note that it may change with 
alternative routes and redundancy techniques. The 
remaining strategies have about the same efficiency, with 
RB being slightly ahead towards the end of the simu-
lation. This result is not unanimous, as we can see in 
Fig. 10. As we see, RB can either be the best or the worst 
strategy, depending on the network. This can be due to 
nodes with high betweenness centrality being part of 
paths that do not have alternatives. RB providing an effi-
cient strategy indicates lower network robustness. This is 

Table 3  Normalized AUC across all networks: RB is the most 
effective node removal strategy in all the networks, with the 
exception of TRANSTEJO and the multilayer network

The bold enables a quicker visualization of the best node removal strategy. 
It reads for each column (node removal strategy) and line (public transport 
network layer). The best strategy corresponds to the lowest value for the 
Normalised AUC​

Strategy

Network Random ID IB RD RB

CARRIS 9.8306 4.9715 8.1610 4.4104 1.2501
CP 10.7915 17.3442 14.5977 9.4074 6.0337
FERTAGUS 27.5555 30.2222 27.9999 24.8888 22.2222
METRO 17.9930 18.3006 16.9550 11.8800 10.2652
RODLISBOA 7.0540 2.7484 6.7469 1.7580 0.6569
SULFERTAGUS 2.4251 1.6707 12.4929 2.9098 0.8832
TRANSTEJO 19.0 20.0 20.0 15.0 20.0

TST 5.7429 2.5852 7.3845 2.1839 0.6288
Multilayer 11.4000 6.6333 10.7513 5.9189 8.7007

Fig. 9  Evolution of SCC size along node extraction strategies for a single layer, CARRIS (left), all layers (middle), and edge removal in multilayer 
network (right)
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the case because it is a topological fragility to have most 
of the shortest paths within a network going through a 
single station. In the multimodal network with all the lay-
ers (Fig. 11), we see that RB is a strategy that promotes 
a fast decrease in the APL. This indicates lower network 
robustness. In the multimodal network, we see that 
many shortest paths go through the intermodal hubs, 

allowing parts of the city that have a single mode to be 
connected with the rest of the city. We can see that the 
APL decreases much faster in the RB than in the RD for 
the multilayer, unlike in the CARRIS network. We can 
also see a slight increase at the beginning of the simula-
tion (only for other extraction strategies). This is due 
to the removal of less critical stations. The number of 

Fig. 10  Evolution of APL along node extraction strategies for METRO (left) and SULFERTAGUS (right)

Fig. 11  Evolution of APL along node (above) and edge (bellow) extraction strategies for the CARRIS and the Multilayer network
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removals needed to get the same APL is much higher for 
edge strategies, meaning node removal is more effective 
for decreasing APL.

4.9 � How many nodes or edges do we have to delete 
to fragment the network into isolated components?

An isolated component is when a node loses all its edges. 
Since our graph is directed, when we talk about all the 
edges, we are mentioning both the in and out edges. To 
be able to answer this question, we used the extraction 
strategies proposed in the methods and evaluated the 
evolution of the network by showing the distribution of 
the isolated components. To accurately understand the 
extraction strategies, we ran them across every layer in 
isolation and then in the complete network, except for 
multimodal hub removal on isolated layers because there 
are no multimodal hubs in isolated layers. Figure  12 
shows the evolution of isolated components for each 
strategy in the CARRIS layer. In these graphs, we clearly 
see that RD had the best results. This is the only one that 
stopped before the end of the simulation because there 
are only isolated components when it stops. We obtained 
about the same results in every layer and for multilayer 
network is also very similar.

We also find that all extraction strategies, except RD, 
increase and then decrease the number of isolated com-
ponents (Fig.  12). This means that after we reach the 
maximum number of ICs, we are only removing iso-
lated nodes. This means that the lower the maximum 
and the later it is reached, the less effective at measuring 
the robustness of the isolation of different parts of the 
city the strategy is. Halfway through RB, we start to see 
rapid growth. This is because after removing the main 
bridges from communities, there still are redundancy 
paths. Once these paths start to be removed, it is simpler 
to disconnect each community individually. It should be 
noted that it is likely that a node with a high degree also 

has a high betweenness centrality since multimodal hubs 
are often points that connect communities. However, 
this is not the case since less-connected stations may be 
essential in connecting different parts of the city. The IB 
extraction is the worst because we are dividing the prob-
lem infinitely. This is virtually dividing the path from A to 
B into two recursively. In summation, the only effective 
strategy to measure the vulnerability of disconnecting the 
network from different parts of the city is RD.

So, to answer the highlighted question in this section, 
we look at the number of iterations when RD ends the 
simulation. This is the number of nodes that have been 
removed when all the remaining nodes are isolated. The 
higher the percentage of nodes that need to be removed 
from the total of nodes in this network, the more robust 
the network is, see Fig. 13. We can see that the robustness 
across all networks using this metric is about the same.

To understand the multimodal hub removal, we 
recurred to another graph due to scale and purpose. As 
the graph reaches a pique and then decreases, we can see 
that we do not need to remove all the multimodal nodes 
to get isolated layers. As we can see, there is a slight vari-
ation when some nodes are removed. This means that 

Fig. 12  Evolution of the Isolated components (IC) in the CARRIS layer (left) and multimodality network (right) for node removal

Fig. 13  Minimum percentage of nodes that need to be removed to 
separate the network into only isolated components, using targeted 
extractions. The lower this value, the less resilient this network is
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removing specific nodes has more impact on the inter-
layer connections (Fig. 14). We can see that node removal 
is much better than edge removal, which makes sense 
since in edges, we only separate in at most 8 ICs (single 
layers). This is not directly comparable with other strat-
egies, as it only encompasses the removal of about 10% 
of the nodes. However, from what we can assess, in the 
beginning, the growth in the number of isolated compo-
nents follows approximately a linear function, which is 
slower than RD. However, we can safely conclude that the 
redundancy of intermodal hubs is the best way to ensure 
connectedness in this multimodal network since not all 
layers are redundant in all areas of the city. Redundancy 
in all areas of the city would be much more costly and 
may even cause other issues like consuming space of the 
already established routes.

On the other hand, there are edge extractions. In this 
case, it is expected that we have to remove all the edges 
to have all nodes isolated; Fig.  15 shows precisely that. 
The behavior of extraction per layer and in the multi-
layer network is identical, as can be seen in both graphs 

in Fig. 15. Contrary to node targeting, the worst strategy 
is RD, and the best strategy is IB. The RD is always the 
worst strategy. This is the case because we are removing 
edges from nodes with high degrees. We can conclude 
that the betweenness centrality is an adequate metric 
for edge targeting and degree is better for node target-
ing. This means that removing single pathways that are in 
many shortest paths has a higher impact than removing 
single pathways that lead to high degree stations. How-
ever, deactivation or failure of high degree stations has 
the highest impact. High degree stations are the ones that 
are usually more central geographically and have a more 
critical role in connecting different modes of transport.

4.9.1 � Impact of removing nodes versus edges
We found that node extractions are more efficient than 
extracting the edges, as we need more removals to 
get the same increase of ICs and decrease of APL and 
decrease of SCC. This means that removing the high 
degree stations has a much higher impact than removing 
every single pathway that leads to each important station 
individually. As previous Figures indicate, it takes much 
more iterations to disconnect a network by extracting 
the edges. This happens for various reasons. Expectedly, 
there are more edges than nodes, so more iterations are 
needed to create the same impact. Another important 
reason is that when we remove a node, we also remove 
all the edges of that specific node, and the contrary is not 
the case. This happens because an incident in a pathway 
to a station may not impact the station, and an incident 
on a station may more probably impact the pathways 
through it. This makes the node removal more damaging 
to the network.

On the SCC and the APL evaluation, we also see that 
edges’ extractions are very similar to each other and also 
less efficient at disconnecting the network than nodes 
removal. We can conclude that the network has various 

Fig. 14  Evolution of the Isolated components using the Multimodal 
Hubs removal strategy

Fig. 15  Evolution of Isolated components along edge extraction strategies for CARRIS (left) and for the multilayer network (right)
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redundant paths. Hence, by removing edges, we can go 
to the same destination by going through more stations.

It is also important to note that in the IC evaluation, 
the ID and RD removal extractions on the edges are not 
as efficient as in the nodes and have a slow impact. With 
a slow impact, we mean that we need to remove more 
edges to create the same damage as the node removal. 
This happens because, when we base the extraction on 
the edge degree, we are extracting edges of hub nodes 
(nodes with high degrees). This means that we are 
removing edges from nodes with lots of edges and so it 
does not show the effect at first.

4.9.2 � Should we recalculate the degree and betweenness 
after each extraction?

Often, the random strategy is better than the strategies 
which do not recalculate the new metrics of the new 
graph (IB and ID). On the other hand, RB and RD 
removal strategies can be very effective (Table  3) yet 
not so computationally efficient. They take much more 
computational power to compute metrics, especially the 
RB. As can be seen in previous sections, recalculating 
degree after each node removal has proven to be 
beneficial, but recalculating betweenness centrality has 
yielded relatively stable results for ICs and wildly variable 
results in APL evolution. Intuitively this could probably 
be explained by the lack of redundant paths in some 
networks, which is a fair way to assess its robustness. 
Both RB and RD strategies have the same similar results 
across layers and are the best ones to reduce the SSC.

For the edge removing strategies, in the case of the 
goal being generating more isolated components, 
recalculating the betweenness centrality yields the 
worst results. These results are curious as they are quite 
different from the ones proposed by [22]:1), “suggesting 
that the network structure changes as important vertices 
or edges are removed.”

Despite the RD and RB strategy overall having better 
results for node extractions, in massive graphs seems 
unfeasible to calculate the betweenness centrality per 
each iteration. Another possible strategy is, instead of 
calculating per each iteration, i.e., each node removal, to 
calculate this metric per each percentage of removals. In 
this way, we are avoiding the complexity with the trade-
off of slightly disrupting the result. This is a suboptimal 
solution; however, it is shown to be viable to the extent of 
the empirical results.

4.9.3 � What is the impact of cascading failures?
The cascading failures are a complex topic, and we have 
only scratched the surface. On cascading failures, we used 
two removal strategies: entirely deleting a transportation 
line (e.g., route) and removing the neighbors of a given 

node (e.g., station). For the first removal, we simulated 
the crash of each line separately, that is, one line at a 
time, and measured the number of ICs, then repeated 
the process for each line after resetting the network to 
its initial condition. We were able to get the maximum 
number of 6 separated components from a single line by 
doing this assessment. This line/route connects Pontinha 
and Campo Grande, operated by RodLisboa (bus road 
operator). It is mainly a commuting route that connects 
passengers living in Pontinha (county within LMA) with 
Lisbon city, mainly for home-to-work purposes.

In our second simulation, we applied the failure 
removal approach of a neighbor. Line Failure was used as 
a model for the simulation. We estimated the neighbors 
of each node, eliminated them, and gathered the metric 
of the isolated component. We chose three layers of a 
node’s neighbors since the average number was closer 
to the average number of each line when comparing 
the two. Odivelas was discovered to be the key point 
in this method, with a maximum number of isolated 
components of 10.

We can see that the nodes that connect Lisbon city 
with other counties within LMA are critical to the 
organization of the city’s public transportation system. 
Nonetheless, this Neighbour Failure technique has much 
more devastating effects than the Line Failure strategy, 
with nearly double the network damage (6 vs. 10), but 
this is based on a small sample. These results tell us that 
the impact of a localized failure that deactivates that spot 
in several layers has a higher impact than a line failure in 
this topology. However, this result may vary depending 
on the region since localized failures in remote areas have 
a lower relative impact.

5 � Conclusions and future works
In this work, we propose a measurement method of the 
topological robustness of a multimodal network by using 
different network analysis metrics and by performing 
node and edge percolation with specific criteria. Then 
we proceed to apply these measurements to the Lisbon 
Metropolitan Area Multimodal network, to further 
understand applicability. We modeled and analyzed the 
structure of Lisbon’s public transport network to measure 
its robustness according to a multimodal stance. Results 
allow us to understand the geographic information 
inherent to the multiplex network by programming a 3D 
plotting method. After calculating and interpreting some 
of the network metrics, results indicate that multimodal 
coordination can help diminish the number of stops in a 
pathway. After identifying stations that work as bridges 
between different layers and communities, we then 
analyzed different extraction strategies based on previous 
work. This is an important step to guide the assessment 
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of classic robustness metrics in the context of multimodal 
transport networks. The target metrics include the size of 
the largest SCC (strongly connected components), APL 
(average path length), and ICs (isolated components), 
as well as a proposed normalized AUC (area under the 
curve). Hence, we observed that the selection of metrics 
should be constrained to the goal and type of removal 
(edge vs. node).

Results show that the strategies that depend on 
recalculating metrics are generally more effective, 
with the exception of a particular case of edge removal 
using betweenness centrality to maximize ICs, which 
counter-intuitively had better results for the IB (initial 
betweenness) strategy. Even though we were able to 
postulate on this phenomenon, further research needs 
to be done to understand it. We also showed that the 
resilience tests needed to remove about half the nodes 
of the network to leave all the remaining nodes wholly 
disconnected. This is a phenomenon that happens in 
all layers and the multilayer network as well, suggesting 
that betweenness targeting is the best way to measure 
robustness across the different strategies. We also 
verified higher assortativity phenomena in multilayered 
networks, in contrast to single layers, highlighting the 
importance of intermodal hub redundancy.

Based on the robustness tests, we were able to con-
clude that the most effective method for targeting nodes 
is RD (recalculate degree). However, in some cases, RB 
(recalculate betweenness) yielded better results for mul-
tilayer APL decadence (both for nodes and edges strat-
egies), although it showed higher variability. This means 
that the number of pathways to a station is less important 
than how many shortest paths go through that station in 
a multimodal scenario when completely disconnecting 
the network. For decreasing the size of the largest SCC, 
RD yielded better results for the multilayer network. 
However, for most of its individual layers, the best strat-
egy was actually RB. This means that to divide a multi-
modal network into disconnected regions, high degree 
station failures have a higher impact than high between-
ness station failures. However, to yield the same result in 
a single-mode network, betweenness is a more relevant 
metric, highlighting the impact of the network topology 
as the vulnerabilities linked to a multimodal network 
considerably differ from a single-layer network.

With the normalized AUC, we were able to compare, 
side by side, the robustness of each transport operator-
specific network, regardless of its size. Carris, RodLis-
boa, SulFertagus, and TST show inferior robustness to 
the remaining networks. The two most robust networks 
were Fertagus and Transtejo. Nevertheless, this result 
may be due to inflation on smaller sizes, pinpointing 
the need for non-uniform scaling factors for the AUC 

normalization. The multilayer network was more resil-
ient than one-half of the layers but less than the other. 
We also performed cascading failures in the network to 
understand some of the expected impacts. Still, since it 
is a vast and exciting topic, we focused on two major 
strategies. We showed that neighbor failure is more 
effective than line failure in this particular network, 
even though they are moderately similar in the struc-
ture of the present network. The impact yield from dif-
ferent cascading events can be the subject of a future 
study. For example, instead of simulating random line 
crashes, using simulated failures on more than one line 
at a time and using a specific measure would be more 
effective in determining which lines are more critical, 
like what we have done with the degree and between-
ness centrality targeting. The second elimination could 
be investigated further by experimenting with more 
layers of neighbors. The archetype of these might be a 
combination of these two strategies, attempting to fail 
lines that are close to other lines using information 
from each node’s neighbors. We also identified that fur-
ther research is needed on the effect of the rich club on 
peripheral nodes on robustness and cascading effects 
in the context of this network. Last but not least, we 
recognize the importance of the analysis of the capac-
ity, ridership and bottlenecks. Nevetheless, topological 
views also yield interesting results. More specifically, 
the gathered results in this study suggest that robust-
ness can be objectively measured using network met-
rics and percolation simulations. The impact of such 
simulations can be compared regardless of the network 
size or structure in any multimodal transportation sce-
nario. Moreover, research findings point out that we 
can use the targeting techniques to understand net-
work recoverability (resilience stance) by focusing on 
stations with hub characteristics (higher centrality) or 
high betweenness. This study allows practitioners and 
urban transportation policymakers to tackle the impact 
of negative disruption in multimodal transportation 
networks.
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