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Abstract

Background: Runs of Homozygosity (ROH) are genomic regions where identical haplotypes are inherited from

each parent. Since their first detection due to technological advances in the late 1990s, ROHs have been shedding

light on human population history and deciphering the genetic basis of monogenic and complex traits and diseases.

ROH studies have predominantly exploited SNP array data, but are gradually moving to whole genome sequence

(WGS) data as it becomes available. WGS data, covering more genetic variability, can add value to ROH studies, but

require additional considerations during analysis.

Results: Using SNP array and low coverage WGS data from 1885 individuals from 20 world populations, our aims were

to compare ROH from the two datasets and to establish software conditions to get comparable results, thus providing

guidelines for combining disparate datasets in joint ROH analyses. By allowing heterozygous SNPs per window, using

the PLINK homozygosity function and non-parametric analysis, we were able to obtain non-significant differences in

number ROH, mean ROH size and total sum of ROH between data sets using the different technologies for almost all

populations.

Conclusions: By allowing 3 heterozygous SNPs per ROH when dealing with WGS low coverage data, it is possible to

establish meaningful comparisons between data using SNP array and WGS low coverage technologies.
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Background
Runs of Homozygosity (ROH) are contiguous regions of

the genome where an individual is homozygous across all

sites. ROH arise when two copies of an ancestral haplo-

type are brought together in an individual. Consequently,

that haplotype would be autozygous, i.e. homozygous by

descent. ROH were first discovered using genome-wide

microsatellite scans in the mid 1990s [1]. Members of two

families recruited to construct the first human genetic

maps carried 4–16 ROH typically 2–40 cM in length; the

most extreme individuals had a total of 253 cM in ROH,

consistent with close inbreeding. Henceforth, ROH were

found to be ubiquitous even in outbred populations; in-

deed, we are all inbred to some degree and ROH captures

this aspect of our individual demographic histories [2–5].

Soon after the first ROH study using short tandem re-

peat polymorphisms (STRPs) was released, the first SNP

arrays started to become available. During those first

years, using arrays with densities of 40 K and 120 K

SNPs, ROH were discovered to be ubiquitous across all

human populations [5]. However, it was not until the

first arrays with more than 300 K SNPs were used that

the analysis of ROH started to shed light on the under-

standing of human demographic history and in deci-

phering the genetic structure of traits and complex

diseases [6–8]. Currently array-based genotyping covers

around 1.9 to 2.2 million SNPs, allowing meaningful de-

tection of ROH longer than 1 Mb, and even though this

is an important improvement over previous arrays, it

covers only ~ 2% of the total common SNPs present in

the human genome [9, 10]. This prevents the use of

array data for detecting shorter ROH, an essential com-

ponent contributing to the understanding of human

genetics. WGS will soon allow shorter ROH to be more
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reliably called; permitting the effect of very short ROH

on diseases risk to be quantified. Thus, analyzing the ef-

fect of different lengths of ROH may reveal the relative

contributions of multiple rare and common variants to

the demographic history of human populations and to

explore and test new approaches to understand complex

traits [11].

ROH have been a subject of study for understand-

ing human population structures and disease genetics

[11–13]. The number and length of ROH reflect indi-

vidual and population history while the homozygosity

burden can be used to investigate the genetic archi-

tecture of complex disease. They contributed to stud-

ies for different diseases and risk factors, from cancer

to cognition, and have been tested for association

with either the burden of ROH (total sum of ROH),

their abundance (number of ROH), or for association

of individual ROH with a phenotype. To date, ROH

have been found to be associated with an increased risk of

schizophrenia [14, 15], Alzheimer’s disease [16, 17], autism

[18, 19], intellectual disabilities [20], lung [21], breast [22]

and thyroid cancer [23], and coronary artery disease [24].

In addition, ROH were found to have an effect, in terms

of inbreeding depression, on bone mineral density [25],

height [12], cognitive ability [26] and education [27]. The

application and usefulness of ROH is not limited to

humans; ROH have been used to study conservation of

endangered species, such as the great apes [28, 29], and to

studying inbreeding depression and genomic features in

livestock [30, 31]. In view of their usefulness the number

of articles published using ROH as a central methodology

has recently increased significantly (162 in 2005, 322 in

2010 and 620 in 2016, PubMed search using R package

RISmed) and have used predominantly DNA SNP array

genotypes. It is expected that, with the current availability

of full genome sequences, ROH will be used extensively as

an augmentative approach to study population structure,

demographic history and in deciphering the genetic struc-

ture of complex diseases [13].

The first aim of this article is, therefore, to compare

the outcomes and general conclusions drawn for array-

based data and low coverage (3-6×) whole genome

sequence data from the same groups of individuals. The

second is to obtain appropriate parameters of ROH call-

ing that allow meaningful comparison between ROH

obtained from both technologies.

There are two major methods for identifying ROH:

observational genotype-counting algorithms [32] and

model based algorithms [33]. Observational approaches

use algorithms that scan each chromosome by moving a

fixed size window along the whole length of the genome

in search of stretches of consecutive homozygous SNPs

[32]. This approach is implemented in PLINK v1.9 where

a given SNP is considered to potentially be in an ROH

by calculating the proportion of completely homozygous

windows that encompass that SNP. If this proportion is

higher than a defined threshold, the SNP is designated

as being in a ROH. In the algorithm, a variable number

of heterozygote positions or missing SNPs can be speci-

fied per window in order to tolerate genotyping errors

and failures. An ROH is called if the number of consecu-

tive SNPs in a homozygous segment exceeds a prede-

fined threshold in terms of SNP number and/or covered

chromosomal length. The simplicity of the approach

used by PLINK allows efficient execution on data from

large consortia [12]. On the other hand, haplotype-

matching algorithms (e.g. Germline) [34] for calculation

of identity-by-descent (IBD) can also be used to identify

ROH, as a special case of IBD within an individual.

Model-based approaches use Hidden Markov Models

(HMM) to account for background levels of LD, like the

one implemented in Beagle (Browning and Browning

[35]). Tests on simulated and real data showed that the

approach using PLINK outperformed Germline and Bea-

gle in detecting ROH [36]. This study simulated data by

mimicking LD properties in European data, allowing the

sequence to resemble expected autozygosity in an out-

bred European population as well as provide information

about true runs of homozygosity. SNP data was obtained

from the sequence by sampling common polymorphisms

that simulated the allele frequency distribution and SNP

density found in modern dense SNP chips.

PLINK, Germline and Beagle software have been used

to find ROH in array and WGS data; yet, the HMM

model approach is also used with Whole Exome Se-

quence (WES) data as an alternative to discover SNP

variants and small to medium length ROH [37, 38].

However, with the sparse nature of the WES target

design, long ROH detection is not possible. Specific soft-

ware, like “homozygosity heterogeneous hidden Markov

model (HMM)” or H3M2, was designed to deal with this

type of data [39].

Accurate ROH calling requires high density SNP

genome-wide scan data. A number of factors influence

the quality of ROH calling, including the marker density,

their distribution across the genome, the quality of the

genotype calling/error rates and minor allele frequency.

Currently ROH studies have been carried out using

genome-wide scan data overwhelmingly from SNP arrays

[7, 12, 40], both because of the availability of this data

and the fact that array data is considered the gold stand-

ard with very low genotyping calling error rates (typically

< 0.001). However SNP arrays usually include ~ 1–2.5

million SNP typically with allele frequencies > 0.05,

chosen to best represent haplotype structure in target

populations. Arrays with more than 300 k SNP genome-

wide coverage have been shown to be good enough to

successfully detect ROH longer than 1 Mb, which
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correspond to true ROH arisen by autozygosity [41].

Indeed, it is expected that long ROH will keep their

homozygous status independently of the SNP coverage.

However, the relative sparsity of SNPs on an array may

mean that true heterozygous SNPs between the markers

on the array may be missed, thereby making two close-

by ROHs appear as one, longer ROH. ROH boundaries

will be fuzzier in comparison with WGS and because

arrays have fewer SNP they will systematically present

and underestimate of ROH shorter than 1 Mb.

A WGS approach, on the other hand, assays every

variant so all accessible bases can now be genotyped and

more than several million variants, from the most com-

mon to the most private can be obtained for each indi-

vidual [42, 43]. For cost reasons, low coverage

sequencing is often employed to maximize the number

of participants in a study and strengthen its power. In

this case rare SNPs are called significantly less often,

with higher error rates, than common SNPs. Whole gen-

ome sequence with low-coverage (e.g. 4× average) has a

high probability that only one of the two chromosomes

of a diploid individual has been sampled at a specific site

[42, 43]. Error rates of low coverage WGS can get up to

15% or higher. Of course, reducing and quantifying the

uncertainty associated with SNP calling may be accom-

plished using sophisticated algorithms, and this

approach has been subject to extensive research [43].

However, the error rate for low coverage WGS is signifi-

cantly higher than for array data, which will lead to in-

accuracy in ROH calling. This is particularly important,

as the cost of WGS becomes more affordable and data

more available [44], opening up new possibilities to

study ROH in greater detail, replicate results from SNP

array data studies, or to the study the relationship of

ROH, especially shorter ones, with new populations or

traits. Hence, parameters of ROH calling algorithms

require tuning to the characteristics of the underlying

data in order to obtain meaningful comparable results

between studies using different technologies. While in

the long run, high coverage data (> 30×) will become

more affordable, for the medium-term at least, low-

coverage WGS data will be an important source for

many analyses.

Results

Comparing variant calling between technologies

In order to have a meaningful comparison of ROH

obtained from array and WGS low coverage data it is

important to first analyze the differences in presence of

heterozygous SNPs and variant calling between both

technologies. To assess the error rate in heterozygote

calling in the WGS, the percentage of concordance in

the variant calling between the array and the WGS data,

is shown for every population studied (Table 1). As

expected, WGS included more heterozygotes SNPs since

the SNP array captured only data from ~ 2.5 M nucleo-

tide positions in the autosomal genome, whereas the

WGS provided data for the entire length of the genome

(~ 2.8 × 109 nucleotide positions). On average, for all the

populations analyzed, the WGS low coverage data had

6.3 times more heterozygous SNPs (2,558,000 ± 71,700)

compared to the array (404,700 ± 7717) (Table 1). In

WGS data there is 1 heterozygous SNP per 1.1 Kb vs 1

in 7.1 Kb in array data. On average the concordance in

variant calling by array and WGS is 99.6% (±0.05%). Of

the 0.4% (±0.05) discordant calling, on average, 0.1%

(±0.03) of the SNPs was called heterozygous by the array

and homozygous by WGS and 0.3% (±0.02) of the SNPs

was called heterozygous by WGS, but homozygous by

array. Considering that array genotyping is the gold

standard, WGS data, on average, led to erroneous calling

of 0.3% (±0.02) of heterozygous SNP, which would incor-

rectly be reported as a break in a given ROH. On aver-

age, for all the populations, there will be 6500 SNPs

(±714) per individual wrongly called as heterozygous,

and that is roughly 2.4 SNP (±0.3) per Mb. This error

rate is however different across the studied populations,

with the JPT having the higher error rate (13,000

wrongly called heterozygotes; 4.5 SNPs per Mb) and the

ZUL having the lowest (740 wrongly called heterozy-

gotes; 0.3 SNPs per Mb).

Assessing the impact PLINK tolerating heterozygous SNPs

in the search for ROH

Due to its better performance in comparison to other soft-

ware available, its efficiency execution on data from large

consortia and the fact that is the software most used when

searching for ROH we use PLINK 1.9 to develop this study.

PLINK, by allowing a flexible number of heterozygous

SNPs per window (the default value being 1 heterozygous

SNP per window), already takes into account possible call-

ing errors that may wrongly break a long ROH. By allowing

this heterozygous SNP, the software produces an error that

depends on the number of SNP (in homozygous state) per

ROH. Figure 1 shows the ep(P,h) as a measurement of the

empirically observed number of heterozygous SNPs found

in ROHs in population P when allow h heterozygous SNPs

per window (1 heterozygous SNP in the array data and 1 to

5 in WGS data, see Materials and methods). This figure

shows that for most of the populations the ep(P,h) produced

by allowing a single heterozygous SNP per window in array

data is equivalent to allowing 4 to 5 heterozygous SNPs in

WGS data. A few populations deviated from this observa-

tion: TSI (0.27% for the array data vs 0.17% after allowing

for 5 heterozygous in WGS data), ASW (0.185 vs 0.122),

ACB (0.185 vs 0.138), YRI (0.13 vs 0.114), BAG (0.161 vs

0.133) and ZUL (0.136 vs 0.105). These differences are pro-

voked by differences in the mean number of SNPs per
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ROH as it can be seen in Additional file 1. For example, the

TSI population has, on average, 368 SNPs in the homozy-

gous state per ROH in the array data, less than half of the

average SNP per ROH in array data across all populations

(714.7).

Obtaining equivalent ROH estimates using data from

both technologies

According to both Table 1 and Fig. 1 it seems appropri-

ate to compare ROH from both technologies allowing 1

to 5 heterozygote SNPs in WGS data in order to obtain

Table 1 Mean number of heterozygote SNPs (per called SNP) in array and WGS low coverage data for 20 world populations

VARIANT CALLING

Ave N of Het. WGS Ave N of Het. Array Concor. Discor. He A − Ho W Ho A − He W ROH error

FIN 2,432,921.7 398,280.1 99.6929 0.3071 0.0402 0.2669 0.227

GBR 2,463,526.4 405,223.1 99.6898 0.3102 0.0430 0.2672 0.224

IBS 2,440,125.2 399,870.1 99.6547 0.3453 0.0412 0.3041 0.263

TSI 2,445,524.4 401,124.4 99.6015 0.3985 0.0424 0.3562 0.314

CEU 2,479,523.5 417,837.2 99.6365 0.3635 0.0402 0.3232 0.283

ACB 3,283,726.5 454,173.7 99.6723 0.3277 0.0403 0.2874 0.247

ASW 3,262,716.1 462,107.3 99.6526 0.3474 0.0448 0.3026 0.258

MXL 2,524,698.2 385,362.1 99.7197 0.2803 0.0433 0.2370 0.194

CLM 2,317,649.7 377,844.5 99.6716 0.3284 0.0460 0.2825 0.236

PEL 2,100,245.2 352,485.3 99.6987 0.3013 0.0411 0.2601 0.219

PUR 2,421,174.0 381,603.3 99.4125 0.5875 0.0448 0.5427 0.498

CDX 2,313,375.1 371,361.9 99.7197 0.2803 0.0351 0.2452 0.210

CHB 2,330,226.6 377,553.5 99.7197 0.2803 0.0366 0.2437 0.207

CHS 2,317,649.7 377,844.5 99.6991 0.3009 0.0451 0.2558 0.211

JPT 2,320,417.1 375,586.6 99.3659 0.6341 0.0354 0.5988 0.563

KHV 2,350,584.8 368,521.5 99.8549 0.1451 0.0343 0.1109 0.077

YRI 2,840,113.4 463,890.4 99.5746 0.4254 0.0383 0.3871 0.349

LWK 2,840,253.9 441,435.7 99.5545 0.4455 0.0457 0.3998 0.354

ZUL 2,840,578.1 441,536.6 98.7062 1.2938 0.6338 0.6600 0.026

BAG 2,840,658.6 441,412.3 99.2791 0.7209 0.3157 0.4052 0.090

Concor. Concordant, Discor. Discordant
He A – Ho W SNP called heterozygote by array and homozygote by WGS
Ho A – He W SNP called homozygote by array and heterozygote by WGS
ROH error % of SNPs that being wrongly called can break a ROH
Mean variant calling concordance (in %) is shown. Discordance is discomposed in SNP called heterozygous by array but homozygous by WGS and
vice versa. Finally a ROH error is defined as the % of SNP that according to variant calling discordance would break ROH in WGS low coverage data

Fig. 1 Effect of allowing heterozygous SNPs per window evaluated by ep(P,h) as a measure of the empirically observed actually number of heterozygous

SNPs found in population P when we allow h heterozygous SNP. (See Materials and methods for the definition)
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equivalent results. Violin plots show the distribution

of mean number of ROH (Fig. 2), mean ROH size

(Fig. 3) and mean total sum of ROH (Fig. 4) per

population and using array data, compare to WGS

data with 1, 2 or 3 tolerated heterozygotes. Without

exception, the distribution between array and WGS

data is most similar when 3 heterozygous SNPs in the

WGS data are allowed per window. Mean values and

standard deviations for up to 5 heterozygous SNPs

allowed per window are shown in Additional file 2.

Figure 5a–c show the correlations with the array data

as heat-maps between number of ROH (5a), mean

ROH size (5b), and total sum of ROH (5c) for each

population and a different number of allowed hetero-

zygous SNPs in the WGS data (values and probabil-

ities shown in Additional file 3). The correlations, as

expected, increase with more heterozygous SNPs be-

ing allowed in the WGS data. Correlations are not

homogeneous, south and East Asian populations show

lower correlations in comparison with other popula-

tions. An alternative representation by line charts is

shown in Additional file 4, where differences between

populations are perceived more easily. In addition, non-

parametrical statistical analysis was used. Results of the

statistical comparison between ROH obtained from array

and WGS (with a different number of heterozygous SNPs

allowed) by the Mann-Whitney-Wilcoxon (MWW) test

are shown as a heat-map of significance (p values; blue =

not significant) in Figs. 5d–f. P-values are presented in

Additional file 3. These figures show heterogeneous re-

sults across populations. In general, by allowing 3 hetero-

zygotes SNPs per window in WGS the statistical

outcomes in the number of ROH, mean ROH size and

total sun of ROH are similar between array and WGS

data. However, Fig. 5d–f also show that for the Asian pop-

ulations, especially the JPT, for the number of ROH and

total sum of ROH differences between array and WGS

data are significant for every heterozygous SNP allowed.

Fig. 2 Violin plots of the mean number of ROH longer than 1 Mb. Populations are colored by 5 biogeographical groups by admixture analysis. Admixed

(Hispanic-American: CLM, MXL; African-American: ACB, ASW) – blue, Native Americans (PEL) – green, East (CHS, CDX, JPT) and South (KHV)

Asia – tan, North (FIN, GBR, CEU) and South (IBS, TSI) Europe – violet, South (ZUL), East (BAG, LWK) and West (YRI) Africa – red. Four

distributions per population are shown, array data with 1 heterozygous SNP allowed per window and WGS with 1 to 3 heterozygous

SNPs allowed
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Comparing ROH with different lengths

Once we established that the best PLINK condition

to obtain comparable results is to allow 3 heterozy-

gous SNPs per window when dealing with WGS low

coverage, we compared the mean sum of ROH in

both technologies for different ROH length categor-

ies (Fig. 6). This is relevant because the study of dif-

ferent ROH lengths has different applications, as

indicated in Table 2. Figure 6 shows that for ROH

longer than 1 Mb, the array and WGS mean total

lengths are very similar, with some exceptions like

the JPT, in the case of ROH longer than 8 Mb.

However, WGS data systematically detected more

short ROH (0.3 – 1 Mb) than array data. This out-

come is expected and is caused by the lower SNP

coverage of array data, since PLINK considered just

ROH containing at least 50 SNPs. This gap between

array and WGS data can be corrected for small

ROH by changing PLINK parameters and relaxing

the number of SNPs needed to call a ROH (−-homo-

zyg-snp 30, data not shown).

Discussion
Runs of homozygosity are an excellent tool to delve into

the exploration of different aspects of human genetics.

Large genomic datasets, using array and whole genome

sequence data, are now becoming available and offer the

researcher a unique opportunity to better understand

the influence of ROH on complex diseases architecture

and demographic history.

Ideally, WGS deep coverage would be the best option

to study ROH, since genotype calling will be robust for

low MAFs and ROH of virtually any size would be

detected. However, two major issues prevent the use this

technology. First, the lack of WGS deep coverage data

for population studies and secondly, the extreme com-

putational expense of analyzing this type of data using

current software. Unlike deep coverage, low coverage

WGS data is more abundant and affordable, and the

computational effort of obtaining ROH is less computa-

tionally intensive. The only drawback of using this data

is the calling error associated with it. By comparing

ROH obtained from array data, we demonstrate in this

Fig. 3 Violin plots of mean ROH size longer than 1 Mb (in Mb). Different biogeographical groups have different x-axis scales in an attempt to

maximize the difference between distributions within populations. See Fig. 2 legend for population codes
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article that this problem can be mitigated by allowing 3

heterozygous SNPs per window using PLINK software

to obtain ROH longer than 1 Mb. In all populations, the

highest correlation was achieved when allowing 3 to 4

heterozygous SNPs per window (Fig. 5a–c). Regarding

MWW tests (Fig. 5d–f ), unlike mean number and total

sum of ROH, for most of the populations, mean ROH

size remains equivalent between technologies when

allowing 3 or more heterozygous SNPs per window. As

expected, we get more ROH by allowing more heterozy-

gous SNPs, but the mean size remains constant. As a

consequence, the mean total sum of ROH increases with

more heterozygous SNP allowed.

Interestingly, four populations from East and South

Asia did not conform to the patterns observed in the

other populations; in fact for the Dai and Han popula-

tions from China (CDX, CHS), Kinh population from

Vietnam (KHV) and the Japanese population (JPT), it

was not possible to obtain the same mean number and

total sum of ROH between array and WGS data. This

may be explained by population structure, but perhaps

the inferior performance of the Infinium Omni 2.5–8

Bead chip in Asian populations [45] is the more plaus-

ible explanation. This could also explain why it was not

possible to obtain same number of ROH in the Baganda

population from Uganda (BAG) or the same mean ROH

size in the Zulu population from South Africa (ZUL).

WGS data present the ability to identify shorter ROH

(Fig. 6), however it would be important to compare the

short ROH detected using low coverage, compared to

high coverage data to establish a comparative analysis

guideline. In Table 2 we present a comparison in per-

formance of the application of three different technolo-

gies (SNP array, WGS low coverage and WES data) to

detect short, medium and long ROH.

Conclusions

This study provides evidence-based guidelines for the

combined analysis of array and low coverage WGS data

when studying ROH to investigate population history

and to detect associations with complex diseases and

traits.

We demonstrate that, even though there are differ-

ences between populations around the world, is possible

Fig. 4 Violin plots of mean total sum of ROH longer than 1 Mb (in Gb). See fig. 2 legend for population codes
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to get equivalent results between WGS low coverage

and SNP array technologies by allowing 3 heterozy-

gous SNP per window when dealing with WGS low

coverage data.

Methods

Description of data

Individuals with both genome-wide SNP genotypic data

and WGS low coverage data from the 1000 Genomes

Project – Phase 3 (KGP) [46, 47] and the African Gen-

ome Variation Project (AGVP) [48] were used. For both

datasets the Infinium Omni 2.5–8 Bead chip from Illu-

mina was used. The KGP includes a total of 1685 indi-

viduals from 18 populations with genotypic data

available from array and WGS low coverage (4×). From

Europe: FIN (Finish in Finland, n = 99), GBR (British in

England and Scotland, n = 91), IBS (Iberian populations

in Spain, n = 105), TSI (Tuscany in Italy, n = 102) and

CEU (Utah residents with European ancestry = 99). From

America: ASW (Americans of African ancestry in Hus-

ton, n = 61), ACB (African Caribbean in Barbados, n =

96), PUR (Puerto Rican in Puerto Rico with admix an-

cestry, n = 104), PEL (Peruvian in Lima, Peru with

Amerindian ancestry, n = 85), CLM (Colombian in

Medellin, Colombia with admix ancestry, n = 95) and

MXL (Mexican with admix ancestry in Los Angles,

USA, n = 100). From Asia: CDX (Chinese Han in

Xishuangbanna, China, n = 98), CHB (Chinese Han in

Beijing, China, n = 100), CHS (Southern Han Chinese, n

= 105), JPT (Japanese in Tokio, Japan, n = 100) and KHV

(Kinh in Ho Chi Minh city, Vietnam n = 99). From Af-

rica: YRI (Yoruba in Ibadan, Nigeria, n = 108) and LWK

(Luhya in Webuye, Kenya, n = 99). The AVGP includes

2185 samples from 16 African populations; we use WGS

data for two: 100 Zulu from South Africa and 100

Baganda from Uganda, where genotype data from the

Omni 2.5–8 SNP array and WGS data at 4× coverage

are available. Only SNPs of the 22 autosomes were in-

cluded in this analysis. For each population, data from

both array genotyping and WGS were filtered to remove

SNP with minor allele frequencies lower than 0.05 and

those that divert from H-W proportions with p < 0.001.

This filtering limits the effects of ascertainment bias

caused by the small number of individuals in the SNP

discovery panel, in the case of the array, and the calling

errors associated with a low depth coverage of whole

genome sequence data.

Identification and Characterization of ROH:

We used PLINK v1.9 to identify ROH. The following

conditions were used:

– homozyg-snp 50. Minimum number of SNPs that a

ROH is required to have

– homozyg-kb 300. Length in Kb of the sliding window

– hmozyg-density 50. Required minimum density to

consider a ROH (1 SNP in 50Kb)

Fig. 5 Heatmaps of correlations and MWW tests of mean number of ROH, mean ROH size and mean total sum of ROH between array data allowing 1

heterozygous SNP per window and WGS data allowing 1 to 5 heterozygous SNPs per window (y-axis). a to c Pearson correlations. d to f P-values of

Mann-Whitney-Wilcoxon non-parametrical test (MWW), red shows significant difference between array and WGS while blue shows distributions that

cannot be considered different. See Fig. 2 legend for population codes
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– homozyg-gap 1000. Length in Kb between two SNPs

in order to be considered in two different segments.

– homozyg-window-snp 50. Number of SNPs that the

sliding window must have

– homozyg-window-het (1 to 5). Number of

heterozygous SNP allowed in a window

– homozyg-window-missing 5. Number of missing calls

allowed in a window

– homozyg-window-threshold 0.05. Proportion of

overlapping windows that must be called

homozygous to define a given SNP as in a

“homozygous” segment.

The minimum length of a ROH was set to 300 kb.

PLINK allows the setting of different variable number of

heterozygous SNPs per window, with a default value of 1

heterozygous genotype per window, in order to tolerate

genotyping calling errors (−-homozyg-window-het 1).

This is especially relevant in dealing with WGS low

coverage data and therefore we were testing the equiva-

lence between ROH obtained from array genotyping and

WGS data.

Assessing the impact tolerating heterozygous SNPs while

using PLINK in the search for ROH

Our goal is to determine under which conditions detect-

ing ROHs using low coverage sequence data results in

comparable results as using SNP array data. There are

several characteristics of ROHs we can measure. To be

in a position to combine datasets generated by different

technologies, we need to identify characteristics to allow

their joint assessment, no matter the technology used.

The effect of allowing different numbers of heterozy-

gous SNPs per ROH can be evaluated in different ways.

We define ep(P,h) as a measure of the empirically ob-

served actual number of heterozygous SNPs found in

population P when we allow h heterozygous SNPs.

� Let R(P,h,x,y) be the set of ROHs with length in the

range [x,y) in population P when allowing h

heterozygous SNP.

� Let |R(P,h,x,y)| be the number of ROHs of length in

the range [x,y) in population P when allowing h

heterozygote

� Let epxy(P,h) = arithmetic mean of the actual number

of heterozygous found in all ROHs in R(P,h,x,y)

found in the population under study

� Finally,

ep P; hð Þ ¼

P
xy RðP; h; x; yj jepxy P; hð Þ
P

xy RðP; h; x; yj j
x 100

We sum over (x,y) є {[1,1.5),[1.5,5),[5,10),[10,∞)}.

This observed number of heterozygous SNPs differs

from the parameter used for detecting ROHs depending

on the population and technology platform characteristics.

Statistical analysis

For comparison purposes three variables per population

were defined. Mean number of ROH as the mean num-

ber of ROH longer than 1 Mb. Mean ROH size as the

mean size of ROH longer than 1 Mb. Total sum of ROH

as the mean total sum of ROH longer than 1 Mb.

Fig. 6 Mean sum of ROH in different length categories. The light colored lines represent WGS with 3 heterozygous SNP allowed per window and

dark colored lines represent array data with 1 heterozygous SNP allowed per ROH. See Fig. 2 legend for population codes
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Considering just ROH longer than 1 Mb allows the selec-

tion of only the ROH arising from identity by descent and

to remove any LD effects. Data distributions were illus-

trated using violin plots. This plot combines a box plot with

a kernel density plot, where the interval width is obtained

by the rule of thumb. The violin shows a colored kernel

density trace with the interquartile range as a black line and

median as a white dot. This representation is especially

relevant when dealing with data or variables that show

skewed distributions and is a good means of comparison

between populations, when dealing with asymmetric distri-

butions where the median is more informative than the

mean. Statistical comparisons between mean number of

ROH, mean ROH size and mean total sum of ROH for dif-

ferent populations, technologies and PLINK conditions

were performed by Pearson’s correlation and Mann-

Whitney-Wilcoxon non-parametric test (MWW). All the

exploratory and statistical analyses were performed using R.
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Table 2 Performance of different technologies (array, WGS low coverage and WES) with different ROH size classes (Short < 1 Mb,

Medium 1 – 8 Mb and Long > 8 Mb)

ROH size
Class

SNP Array WGS low coverage WES Applications

Short
< 1 Mb

Poor performance due to low
SNP coverage. Can be adjusted
to detect ROH by modifying
the number of SNPs required
in a ROH.

Able to detect but need to build
adjustment for genotype calling
errors.

Able to detect but only in
selected genomic regions.
Software like H3M2 allows
meaningful regional analysis
[39].

Detection of rare variants involved
in deleterious recessive alleles and
directional dominance [11, 12].
Analysis of LD patterns and
extreme bottle necks [33].

Medium
1-8 Mb

Able to detect if the array has
at least 300 K SNPs. ROH
boundaries will be fuzzier in
comparison with WGS low
coverage data.

Good performance but need to
build adjustment for genotype
calling errors. Allowing 3
heterozygous SNPs per ROH
would grant meaningful
outcomes.

Able to detect, but only in
selected genomic regions and
boundaries of ROH could be
fuzzy if they reach into non-
exonic regions [49].

Detection of rare variants involved
in diseases. Analysis of inbreeding
depression. Genome architecture
and ROH island detection [50].
Population history, bottle necks,
remote consanguinity and genetic
drift [51].

Long
> 8 Mb

Good performance if the array
has at least 300 K SNPs.

Good performance but need to
build adjustment for genotype
calling errors. Allowing 3
heterozygous SNPs per ROH
would grant meaningful
outcomes.

Poor performance due to short
size of most exons and their
sparsity across the genome.

Analysis of inbreeding depression.
Validation of GWAS findings.
Population history and cultural
practices, close consanguinity
[6, 41].
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