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ABSTRACT

Motivation:Pathwaymodeling requires the integration ofmultiple data

including prior knowledge. In this study, we quantitatively assess the

application of Gene Ontology (GO)-derived similarity measures for the

characterization of direct and indirect interactions within human regu-

latory pathways. The characterization would help the integration of

prior pathway knowledge for the modeling.

Results: Our analysis indicates information content-based measures

outperform graph structure-based measures for stratifying protein

interactions.Measures in termsofGObiological processandmolecular

function annotations can be used alone or together for the validation of

protein interactions involved in the pathways. However, GO cellular

component-derived measures may not have the ability to separate

true positives from noise. Furthermore, we demonstrate that the func-

tional similarity of proteins within known regulatory pathways decays

rapidly as the path length between two proteins increases. Several

logistic regression models are built to estimate the confidence of

both direct and indirect interactions within a pathway, which may be

used to score putative pathways inferred from a scaffold of molecular

interactions.

Contact: s.guo@wriwindber.org

1 INTRODUCTION

The function of a biological system relies on a combinatory effect of

many semantic elements, which interact non-linearly. We need to

take a global view of the entire biological network, at many levels of

abstraction, to manage complex biological states such as disease.

Biological pathways and networks are built upon the identification

of protein interactions. Traditionally, information about protein–

protein interactions is collected from small-scale screening. The

accuracy of each interaction is often validated with multiple experi-

ments. With the development of high-throughput methods such as

the two-hybrid assay and protein chip technology, the information

within interaction databases has increased tremendously (Drewes

and Bouwmeester, 2003). In addition, a number of computational

methods have been developed for the prediction of protein–protein

interactions based on protein structure and/or genomic information

(Valencia and Pazos, 2002). The increased coverage of the protein–

protein interaction map provides deeper insight into the global

properties of the interaction networks. However, interaction data

derived from large-scale assays and computational methods are

often very noisy. Thus, it is essential to develop strategies to

validate putative protein interactions such that pathways can be

rebuilt from a scaffold of reliable molecular interactions (Chen

and Xu, 2003).

Various genomic features exist in sequence, structure, functional

annotation and expression-level databases which may be used for

interaction prediction and validation (Valencia and Pazos, 2002).

Recently, Lu et al. (2005) have evaluated the predictive power of

16 features, ranging from coexpression relationships to similar

phylogenetic profiles. Among those features, semantic similarity

between two proteins has the dominant performance in discrimin-

ating true interactions from noise. The maximum predictive power

is approached by integrating only a few features including the

functional similarity of protein pairs.

Semantic similarity is traditionally assessed as a function of

the shared annotation of proteins in a controlled vocabulary system,

such as Gene Ontology (GO) (Sprinzak et al., 2003). GO terms and

their relationships are represented in the form of directed acyclic

graphs (DAGs). The ontology provides computationally accessible

semantics about the gene functions they describe. GO comprises

three categories: molecular function (MF), biological process (BP)

and cellular component (CC). MF describes activities at the molecu-

lar level, and a BP is accomplished by one or more assemblies ofMF

(Ashburner et al., 2000). Although interacting proteins often

participate in the same BP, they are less likely to have the same

MF. Jansen et al. calculate the similarity of a protein pair by iden-

tifying the set of GO terms shared by the two sets of protein annota-

tions (2003). Their method can only use annotations derived from

BP subontology, but not MF subontology. In addition, even though

two annotations are different, they can be closely related via their

common ancestors in DAG. Traditional methods also fail to take

into account the specificity of GO terms. Although some proteins

share the same GO terms, these terms may be too general to verify

the functional association of the annotated proteins.

There are two strategies that can be used to overcome these

limitations. The first strategy is based on the graph structure of

GO. For each protein we may obtain an induced graph which

includes the specific set of GO annotations for the protein and

all parents of those GO terms. The similarity between two induced

graphs can then be used to estimate the similarity between

two proteins (Gentleman, 2005, http://www.bioconductor.org/

repository/devel/vignette/GOvis.pdf). The second strategy is

based on the assumption that the more information two terms�To whom correspondence should be addressed.
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share, the more similar they are. The shared information is indicated

by the information content of the terms that subsume them in DAG.

The information content is defined as the frequency of each term,

or any of its children, occurring in an annotated dataset. Less

frequently occurring terms are said to be ‘more informative’.

Given the information content of each term, several measures

may be calculated to estimate the semantic similarity between

annotated proteins (Lord et al., 2003b). Recently, both approaches

have been applied in the analysis of protein interactome (Brown and

Jurisica, 2005; Chen and Xu, 2004). However, a systematic evalu-

ation of their performance remains to be done.

Given the large amount of protein interaction data, we can build

a comprehensive scaffold of interactions. One popular paradigm

for cellular modeling involves rebuilding pathways from this

scaffold. The mining usually uses global data pertaining to molecu-

lar and cellular states such as gene expression profiles and protein

post-translational modifications. The active subnetworks extracted

from the large interaction scaffold may represent concrete hypo-

theses as to the underlying mechanisms governing the observed

state change (Ideker and Lauffenburger, 2003). However, the

noisy nature of both high-throughput interactions and state meas-

urements makes pathway modeling extremely difficult. The integ-

ration of prior pathway knowledge would increase the reliability of

newly inferred pathways. KEGG (Kyoto Encyclopedia of Genes

and Genomes) includes current knowledge on molecular interaction

networks such as pathways and complexes (Kanehisa et al., 2004).
Characterization of KEGG pathways may help us to develop new

methods for the pathway modeling.

In this study, we quantitatively assess the application of

GO-based similarity methods in human protein–protein interaction

and pathway analysis. First, receiver operating characteristic (ROC)

analysis is used to assess the ability of GO graph structure and

information content-based methods to stratify protein interactions.

For each method, there are three measures in terms of BP, MF or CC

annotations. We investigate the possibility to integrate the three

measures by logistic regression for performance improvement.

Based on the logistic regression model, we then estimate the

reliability of several protein–protein interaction datasets. More

importantly, we characterize semantic similarity of proteins within

human regulatory pathways. Several logistic regression models are

built to validate indirect protein interactions in a pathway. These

models may be used to infer or rank putative pathways given the

scaffold of protein interactions.

2 METHODS

2.1 Estimation of semantic similarity

Graph similarity-based measures are estimated using GOstats package of

Bioconductor (Gentleman, 2005). Each protein is associated with an induced

graph that is obtained by taking the most specific GO terms annotated with

the protein and by finding all parents of those terms until the root node has

been obtained. Two methods, union-intersection (UI) and longest shared

path (LP), are used to calculate the between-graph similarity. The first

method uses the number of nodes two induced graphs share divided by

the total number of nodes in two graphs. The resulting similarity values

are bounded between 0 and 1 with more similar proteins having values near

1. The second method, LP, adopts the depth of the longest path shared by two

induced graphs as the similarity score. The larger the depth the more similar

two proteins are. If two proteins are both quite specific and similar, they

should have long shared path and thus high similarity score.

Information content-based measures are implemented using a locally

installed GO database. We use the associations between GO terms and

UniProt-Human (Bairoch et al., 2005) proteins to calculate the information

content p(t) which is the frequency of each GO term or any child term

occurring within the corpus. Both ‘is-a’ and ‘part-of’ links are used to define

the child term. Given the information content, we have applied the three

measures to calculate the semantic similarity between terms. The first meas-

ure (Resnik) is solely based on the information content of shared parents of

the two terms. If there is more than one shared parent, the minimum informa-

tion content is taken. Then the similarity score is derived as shown in

Equation (1).

simðt1‚ t2Þ ¼ � ln
min

t 2 Sðt1‚ t2Þ fpðtÞg
� �

‚ ð1Þ

where S(t1, t2) is the set of parent terms shared by t1 and t2 (Resnik, 1999).

Two other measures use not only the information content of the shared

parents, but also that of the query terms. Given query terms t1 and t2,

the Lin’s similarity is defined as

simðt1‚ t2Þ ¼
2 · ln

�
min

t 2 Sðt1‚ t2Þ fpðtÞg
�

ln pðt1Þ þ ln pðt2Þ ‚ ð2Þ

where p(t1), p(t2) and p(t) are information content values for t1, t2 and their

parents, respectively (Lin, 1998). Lin’s method generates normalized sim-

ilarity values between 0 and 1. In contrast, Jiang’s method uses the same

components for the calculation, but generates semantic distance which can

vary between infinity and 0 (Jiang and Conrath, 1997).

simðt1‚ t2Þ ¼ 2 · ln
min

t 2 Sðt1‚ t2Þ fpðtÞg
� �

� lnpðt1Þ � lnpðt2Þ· ð3Þ

Given those measures, the semantic similarity between two proteins could

be derived accordingly. If a protein is annotated with several GO terms, the

maximum similarity between all terms is taken as the between protein

similarity.

All five methods (UI, LP, Resnik, Lin and Jiang) are based on the April

2005 release of GO database. The mappings fromGene IDs to GO IDs can be

restricted based on evidence codes. We drop those annotations inferred from

physical interaction (IPI) to avoid circular reference. In addition, the annota-

tions associated with ‘BP unknown’ (GO:0000004), ‘MF unknown’

(GO:0005554) and ‘CC unknown’ (GO:0008372) are eliminated from our

analysis.

2.2 ROC curve analysis

These five methods are assessed for their ability to stratify human protein–

protein interactions. Each method generates three sets of similarity values

corresponding to BP, MF and CC categories of GO. The positive dataset is

assembled fromKEGG. It comprises pairwise interactions among proteins of

the same complex and interactions of neighboring proteins within human

regulatory pathways. After discarding proteins with indirect interaction

effect, the interaction nature of neighboring proteins includes activation,

inhibition, binding/association, dissociation, state change, phosphorylation,

dephosphorylation, glycosylation, ubiquitination and methylation. As to the

negative dataset, we randomly choose two distinct human proteins from

Entrez Gene database as a non-interacting protein pair. This is valid

since the chance of identifying protein–protein interactions at random is

very small (0.024% based on the two-hybrid data by Utez et al., 2000).

An ROC curve depicts relative trade-offs between sensitivity and speci-

ficity of certain method for different values of the threshold. Sensitivity is

defined as the ability to identify a true positive in a dataset. Specificity is

defined as the ability to identify a true negative in a dataset. The area under

an ROC curve (AUC) is generally used as a measure of the performance. It

denotes the probability that the classification method will rank a randomly

chosen positive instance higher than a randomly chosen negative instance.

Random guessing generates the diagonal line y ¼ x, which has an AUC of

X.Guo et al.
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0.5. A realistic classification method must have an AUC larger than 0.5.

Curves from different cross-validation runs are averaged by sampling at

fixed thresholds, and standard deviations are used to visualize the variability

across the runs (Fawcett, 2003). We use the ROC and ROCR libraries in R to

draw the graph and calculate the AUCs (Sing et al., 2004).

2.3 Logistic regression

Multiple logistic regression is effective when the response variable is

dichotomous and the input variables are continuous, categorical or dicho-

tomous. It is a commonly used model for the prediction of true protein–

protein interactions (Bader et al., 2004; Lin et al., 2005). The form of the

model is

log
p

1 � p

� �
¼ b0 þ b1X1 þ b2X2 þ . . . þ bkXk‚ ð4Þ

where p is the probability of a putative interaction to be true and X1,

X2, . . . ,Xk are independent variables such as semantic similarity measures.

Logistic regression thus forms a predictor variable log[p/(1 � p)] which is a

linear combination of the explanatory variables. The values of this predictor

variable are then transformed into probabilities by a logistic function.We use

the glm function in R to perform the logistic regression. Likelihood ratio test

is applied to see if a model including a given independent variable provides

more information than a model without this variable. The generalization

error and performance of each logistic regression model is estimated by

10-fold cross-validation and ROC curve analysis.

2.4 Reliability estimation

Experimentally determined human protein–protein interactions have been

collected in the Biomolecular Interaction Network Database (BIND) (Bader

et al., 2003). Interaction data in BIND are organized into low-throughput

(LTP) and high-throughput (HTP) sections based on the number of records in

the same publication. HTP data are imported from papers that have more

than 40 interaction results arising from the same experimental design and

methodology. Examples include those derived from exhaustive 2-hybrid

hybridizations, immunoprecipitations and microarray methods. LTP inter-

actions are manually curated from papers with less than 40 interaction results

identified by the same method. They include not only data identified by

traditional small scale screening, but also two-hybrid assay and other newer

approaches. Recently, an approach based on evolutionary cross-species

comparisons has emerged for the completion of protein interaction maps

(Matthews et al., 2001). Human protein–protein interactions may be pre-

dicted from lower eukaryotic protein interaction maps through the identi-

fication of orthologous genes between different species (Lehner and Fraser,

2004; Brown and Jurisica, 2005).

We compare the reliability of the three human protein interaction datasets

using Resnik measures. Experimental datasets (LTP and HTP) are down-

loaded from BIND, and the orthology-inferred dataset (Ortho) is from the

core dataset computed by Lehner and Fraser. The reliability of each dataset is

estimated by the fraction of interactions with scores more than the defined

threshold over all protein–protein interactions with corresponding measures

available. For BP, MF and CC-derived measures, a different threshold is

chosen to achieve maximum accuracy in discriminating true and false inter-

actions for our training dataset described in Section 2.2. The accuracy is the

weighted average of true positive and true negative rates. For the logistic

regression model, 0.5 is used as the threshold.

2.5 Regulatory pathway analysis

KEGG Markup Language (KGML) facilitates computational analysis and

modeling of protein pathways and networks (Kanehisa et al., 2004). Cur-

rently, there are approximately 30 human regulatory pathways with KGML

files available. For each pathway, we calculate the semantic similarity values

for proteins within the same complex, neighboring proteins and protein pairs

with different distance in the pathway. Neighboring pairs represent proteins

that directly interact with each other, while distant pairs represent proteins

that interact indirectly through various numbers of bridge proteins.

The distance of two proteins is defined as the length of their shortest

path in the pathway. Mean similarity values are calculated for each category

of protein pairs. Permutation test is used to see how often random chance

would generate a mean similarity at least as high as the observed value. For

each category, the same number of random pairs is picked from all proteins

in the pathways, and the mean similarity value is calculated and compared

with the original mean similarity. This process is repeated 1000 times, and

the P-value is defined as the frequency that the random dataset generates

mean similarity value equal or higher than the original value. In addition, the

mean similarity (y) is fitted against the distance (x) with exponential distri-

bution such that the rate of decay may be estimated by mean life of the

distribution.

3 RESULTS

3.1 Performance of semantic similarity measures for

stratifying protein–protein interactions

We assemble proteins within a complex or neighboring to each

other in KEGG regulatory pathways as the positive protein–

protein interaction dataset (total number 1649). Among them,

there are 1500 protein pairs with BP annotations, 1425 pairs

with MF annotations and 1255 pairs with CC annotations available

for both proteins. The negative dataset with the same number of

protein pairs is built by randomly choosing human proteins from

Entrez Gene. As shown by the ROC curve analysis, similarity

measures based on BP annotation have the highest ability to stratify

protein–protein interactions (Figs 1 and 2). MF-derived measures

follow, and CC-derived measures have the worst discriminating

power. Since GO associations with evidence code TAS (Traceable

Author Statement) are regarded as the most accurate, we investigate

if the performance can be improved by restricting GO annotations to

TAS only. Interestingly, no significant improvement is achieved

while less protein pairs have similarity values available.

While the information on subcellular localizations can be used to

define robust negative controls for protein interactions, our analysis

indicates that localization-based similarity measures may not have

the ability to separate true protein interactions from noise. The

reason may be 2-fold. In contrast to the existence of over 9000

BP terms and over 7000 MF terms, the total number of CC

terms is only around 1600. This subontology is much less complete

and specific compared with the MF and BP subontologies, thus it

may not be expressive enough to validate protein–protein interac-

tions. The other possible reason is related to the bias in link type

usage among the different subontologies. GO terms are placed

within a structure of relationships with the link type of ‘is-a’

between parent and children as well as the type of ‘part-of’ between

part and whole. Generally, only the ‘is-a’ links are considered for

similarity measures (Resnik, 1999), but the omission of the ‘part-of’

links would result in orphan terms which make the semantic com-

parison impossible. Our similarity measures consider two links

equally, which may not be optimal. The ratio of ‘part-of’ links

versus ‘is-a’ links is 17% in BP category and there are only

2 ‘part-of’ links in MF category, but the ratio increases to 70%

in CC category. The high percentage of ‘part-of’ relationships may

make the CC-derived measurement less accurate than the other

measures.

In all three GO categories, the information theoretic methods

consistently perform better than graph structure-based methods

(Fig. 2). Among the five methods, UI has the worst performance

Assessment of semantic similarity measures
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in terms of BP and MF-derived similarity measures. This approach

estimates the overlap of all GO terms and their parents associated

with two proteins, but it does not discriminate general and specific

terms. LP improves the performance by considering the specificity

of shared annotations. Long shared path suggests that two proteins

are both specific and similar. However, this method assumes that

nodes and links in ontology are uniformly distributed. This assump-

tion is not accurate in GO where link densities vary because of the

vagaries of biological knowledge. Instead of solely using the struc-

ture of the ontology, information content-based methods explore the

usage of GO terms within the corpus. They generate high AUC

values indicating the better performance of those measures for the

validation of protein–protein interactions. Resnik’s measure seems

to outperform Lin and Jiang’s measures. This measurement has also

been reported to be the most discriminatory in terms of the correla-

tion between semantic similarity and sequence similarity, while

Jiang’s distance shows the weakest correlation (Lord et al.,
2003a). Therefore, we will use Resnik’s approach for all other

analyses in the article.

3.2 Integration of similarity measures by

logistic regression

Based on Resnik’s method, we explore the possibility of improved

performance through integrating BP, MF and CC-derived measures.

We select 974 positive protein pairs with annotations for all three

GO categories, along with the same number of negative protein

pairs. Using the three measures as explanatory variables, we

have compared the performance of logistic regression models for

the prediction of true protein–protein interactions. Likelihood ratio

tests indicate that the model combining BP and MF-derived meas-

ures provides a better fit than the model using either measure alone

(p < 0.001). However, the inclusion of CC-based measure does not

improve the fit (P > 0.05), which is consistent with the poor

performance of this measurement revealed by ROC analysis

(Fig. 2). The results also suggest that the maximum predictive

power of GO annotation is reached by integrating two features

(BP and MF) only.

We then rebuild the logistic regression model with two measures

using a larger dataset (2660 positive and negative protein pairs with

both BP and MF annotations). The false positive rate is 20.6%, and

the false negative rate is 17.4% if we use 0.5 as the threshold for

discriminating positive and negative predictions. AUC for this set of

data is 0.89. The generalization error is estimated by 10-fold cross-

validation. The dataset is split in 10 parts, subsequently each part is

used as a test set for the logistic regression model which is built from

the remaining 9/10th of the data. ROC curves are generated from 10

sets of prediction obtained from the cross-validation, and these

curves are combined by threshold averaging (Fig. 3). The total

error rate is 18.8% and the cross-validated AUC estimate is 0.89

± 0.04, indicating the model is not overfit.

3.3 Reliability of human protein–protein interaction

datasets

Using Resnik measures, we have estimated the probability of

experimental and computationally inferred protein–protein interac-

tions to be involved in biological pathways (Table 1). As expected,

Fig. 2. AUC summary for 15 semantic similarity measures derived from

5 different methods in terms of 3 GO categories (BP, MF and CC).

Fig. 1. ROC curves for the comparison of five semantic similarity estimation methods. They illustrate the trade-off between sensitivity and specificity for all

possible thresholds of similarity measures in terms of (A) biological process, (B) molecular function and (C) cellular component annotations, respectively. The

curve for a random classifier is shown as a line extending from the origin with a slope of 1.

X.Guo et al.
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LTP has the highest percentage of reliable interactions among three

datasets based on BP-derived measure. The relatively low reliability

(65%) may be caused by the definition of LTP and curation errors

in BIND. LTP interactions are from publications with less than

40 results in one experiment, and some of them may be identified

by two-hybrid assay and other less reliable experimental methods,

which may increase the high false positive rate. HTP dataset has

a reliability rate of 39%, which is consistent with the estimation

by BIND’s own support vector machine scoring system-Protein

Interaction Confidence Kernel Scores (PICKS). Similar ratio has

also been reported for high-throughput interactions in other species

(Deane et al., 2002). Ortho dataset includes human protein inter-

actions inferred from high-confidence ‘core’ protein interactions in

worm, fly and yeast (Lehner and Fraser, 2004). Their reliability is

comparable with that of high-throughput experimental data. Sharan

et al. (2005) have shown that the orthology-based method has a

success rate in the range of 40–52% based on two-hybrid tests of

predicted yeast interactions. Our estimation is in line with their

experimental verification.

Similar reliability estimations are seen when we calculate the

percentage using either MF-derived measure or the logistic regres-

sion model integrating two measures. However, the CC-derived

measure generates higher estimation for HTP and Ortho datasets,

and the latter even has a higher reliability rate than LTP dataset.

It verifies that the CC-based measure may not be applicable for the

validation of protein interactions.

3.4 Semantic similarity of proteins within

regulatory pathways

Biological networks have the properties of a small-world network.

They have high clustering coefficient and short characteristic path

length. These networks can be fragmented into clusters of proteins

having similar characteristics. Our analysis shows that the semantic

similarity between two proteins decreases as their distance within

the pathway increases (Fig. 4). Proteins within the same complex

and neighboring proteins in the pathway directly interact with each

other, so they have the highest similarity in terms of all three GO

categories. In addition, the complex proteins have higher similarity

values than the neighboring proteins, which suggests a relationship

between protein complex membership and GO-based semantic sim-

ilarity measures. The higher the semantic similarity between two

proteins, the more likely they are in the same complex.

KEGG pathways and GO BP are two annotation systems for the

description of biological process in which each gene product par-

ticipates. As expected, our analysis shows that all pairs of proteins

within KEGG pathways have significantly higher similarity than

Table 1. Reliability of human protein–protein interaction datasets

Data Source # (Total) # (BP) % (BP) # (MF) % (MF) # (CC) % (CC) # (BP & MF) % (BP & MF)

LTP 5783 3297 65 2980 60 2170 64 2515 63

HTP 12 747 6599 39 6441 45 5296 49 5206 39

Ortho 9283 5249 46 6080 41 3663 65 4461 43

LTP andHTPdenote the low-throughput and high-throughput datasets retrieved fromBIND, andOrtho denotes the orthology-inferred human protein–protein interactions. Columns (#)

list the number of total protein pairs, and protein pairs with BP,MF, CC or both BP andMF annotations available. Columns (%) list the percentage of true interactions predicted by BP,

MF, CC, or both BP and MF similarities integrated by logistic regression.

Fig. 3. ROCanalysis of the logistic regressionmodel for the discrimination of

true protein–protein interactions from false positives. Threshold averaging is

used to combine 10 ROC curves derived from 10-fold cross-validation into

one curvewith standard deviation bars. The curve position for the cutoff of 0.5

is specified in the graph.

Fig. 4. Distance-dependent semantic similarity in human regulatory path-

ways. Mean similarity for protein pairs within the complex (C), neighboring

proteins (N) and protein pairs with shortest path length of 2–7 in the pathway.

The statistical significance is calculated based on permutation test (��P< 0.01,
n ¼ 1000). Curves denote the exponential distribution fit for the distance-

dependent semantic similarity values.
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expected by chance in terms of BP. In contrast, similarity values of

remote protein pairs are not different from those of random pairs in

terms of MF and CC. As we know, a series of different functional

steps comprise a pathway. Neighboring proteins perform one func-

tional step, while distant proteins may play different functional

roles in different cellular location. Our results are consistent with

the pathway biology. In addition, CC-derived similarity values

decrease in a stepwise pattern, since two or three sequential func-

tional steps are likely to occur in the same cellular compartment.

The distance-dependent similarity fits an exponential decay

model. The rate of decay is characterized by the mean life,

which is the distance needed for the similarity to be reduced by

a factor of e. BP, MF and CC-derived similarity values decay

rapidly with mean lives of 1.51, 2.42 and 0.81, respectively.

Our study has shown that the logistic regression model can be

used to separate direct interacting proteins from random protein

pairs (Fig. 3). The reliability of a putative interaction may be estim-

ated by this model. Similarly, indirect interacting proteins within a

putative pathway may also be validated based on their semantic

similarity. Following the same procedure, we have created three

models using BP and MF-derived measures to assign confidence

scores to protein pairs with distance of 2, 3 or 4 in a pathway. The

10-fold cross-validation shows that the prediction errors of these

models are 26.9, 30.5 and 33.5%. Three models have AUC estim-

ates of 0.82 ± 0.03, 0.79 ± 0.06 and 0.77 ± 0.06, respectively. These

models may be used together to validate putative pathways by

scoring both direct and indirect interactions in the pathway.

4 DISCUSSION

Although various functional similarity measures have been used in

the interactome analysis, a systematic evaluation of their perform-

ance has not been reported. Our results demonstrate that infor-

mation content-based measures have better performance than GO

structure-based measures for the validation of protein interactions

involved in human regulatory pathways. Among them, Resnik’s

approach seems to have the best performance. Measures in terms

of either MF or BP can be used to stratify protein interactions.

However, CC-derived measures may not be sensitive enough for

this purpose.

The application of semantic similarity measures relies on the

completeness and accuracy of GO annotation. Most of the proteins

included in KEGG pathways have accurate and detailed annotation.

However, there may be considerable amount of incorrect or under-

annotated proteins in other databases. The performance of semantic

similarity measures may be decreased when applied to a poorly

annotated dataset. For example, if two proteins are annotated by

a non-specific term ‘signal transducer activity’ (GO: 0004871) only,

Lin similarity will be 1, Jiang distance will be 0, while UI, LP and

Resnik measures generate low similarity scores. Therefore, in the

case of under annotation, Lin and Jiang measures are more likely to

generate false positives while more false negatives may be seen in

other three measures. As the use of GO improves, the performance

of those measures should improve when applied to experimental

datasets.

Brown and Jurisica (2005) have recently adopted information

content-based method to validate their protein interaction datasets.

However, their method does not separate the three GO categories.

The semantic similarity is determined by the maximum similarity

from the set of all GO term pairs between interacting proteins.

Our results show that BP-based measures produce higher similarity

values than MF and CC-based measures (Fig. 4). If there are BP

annotations available for a protein pair, then the similarity value

derived from the method of Brown and Jurisica is most likely equal

to our BP-based similarity value. Currently, BP annotation is the

most comprehensive among the three GO categories. In our dataset,

if an MF-based measure is defined for a protein pair, there is a 93%

chance that a BP-based measure is also defined. Thus, information

included in the MF annotation still remains largely unexplored by

the method of Brown and Jurisica. Our results demonstrate that MF-

derived measures can be used alone or integrated with BP-derived

measures for the interactome analysis.

Our KEGG pathway analysis indicates that protein pairs with

short path length have significantly higher semantic similarity

values than expected by chance alone. These protein pairs can

be separated from random protein pairs by logistic regression

models. Current pathway modeling methods score candidate sub-

networks based on various evidence including semantic similarity

estimates for each protein interaction (Sharan et al., 2005). How-
ever, information about proteins, which interact indirectly through

other bridge proteins, has not been utilized for pathway modeling.

We propose to calculate confidence scores of not only direct inter-

actions but also indirect interactions for the validation of putative

pathways. The logistic regression model is our first step in this

direction. Future work may include integration of more genomic

features such as mRNA coexpression, and the development of a

probabilistic model to score the candidate subnetworks based on the

confidence values assigned to different protein pairs. We believe

that new methods incorporating semantic similarity of proteins that

interact directly and indirectly will greatly aid the extraction of

active pathways and thus improve the interpretation of intriguing

biological phenomenon.
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