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Assessing sensitivity in a multidimensional space:
Some problems and a definition of a general d'

ROBIN D. THOMAS
Miami University, Oxford, Ohio

This article provides a formal definition for a sensivity measure, d;, between two multivariate stim
uli. In recent attempts to assess perceptual representations using qualitative tests on response proba
bilities, the concept of a d' between two multidimensional stimuli has played a central role. For exam
ple, Kadlec and Townsend (1992a, 1992b) proposed several tests based on multidimensional signal
detection theory that allow conclusions concerning the perceptual and/or decisional interactions of
stimulus dimensions. One proposition, referred to as the diagonal d' test, relies on specific stimulus
subsets of a feature-complete factorial identification task to infer perceptual separability. Also, Ashby
and Townsend (1986),in a similar manner, attempted to relate perceptual independence to dimensional
orthogonality in Tanner's (1956) model, which also involves d' between two multivariate signals. An

analysis of the proposed d ~ reveals shortcomings in the diagonal d' test and also demonstrates that the
assumptions behind equating perceptual independence to dimensional orthogonality are too weak.
This d; can be related to a common measure of statistical distance, Mahalanobis distance, in the spe
cial case of equal covariance matrices.

A central issue that has dominated research in multi

dimensional perception concerns whether variations in

one dimension (say, frequency ofan auditory tone) affect

the perceptual processing ofanother (e.g. , amplitude). In

a classic approach, various operational tasks were devised

that, together, provided evidence ofthe separability or the

integrality of stimulus dimensions (e.g., Garner, 1974).

For example, if the performance of observers who were

required to classify stimuli on the basis of a relevant di

mension was impeded by variations of an irrelevant di

mension, the stimulus dimensions were deemed integral.

Ifno interference resulted, then the stimulus dimensions

were said to be separable. Examples ofintegral dimensions

are hue, saturation, and brightness ofa color patch, as well

as pitch and loudness of an auditory tone. Separable di

mensions are shape ofa form (circle vs. square) and bright

ness, as well as size of a circle and orientation of an em

bedded radial line.

Problems in applying these operational definitions

emerged when results of one test for interactive process

ing conflicted with others. Some phenomena that were

interpreted as revealing interactions between dimensions

at the perceptual level have been shown to be simply the

result ofdiffering decision strategies employed by the par

ticipants ofthe study (see Maddox, 1992, for a review). In

addition, stimulus integrality is not the only type of di

mensional interaction that could appear. More micro-level,

within-stimulus interactions are also possible (Townsend,

Hu, & Ashby, 1980, 1981). A promising tack to under-
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standing the perception of multidimensional stimuli has

grown out ofunidimensional signal detection theory (SDT;

Green & Swets, 1966). Like SDT, the general recognition

theory (GRT; Ashby & Townsend, 1986) decomposes the

identification process of an object into the subprocesses

of perception and decision. Common to both theories is

the assumption that the perceptual representation of an

object is inherently noisy. Both SDT and the GRT cap

ture this idea by representing the stimulus as a probability

distribution (usually normal) defined on one (as in SDT)

or multiple dimensions (as in the GRT). Facing the per

ceiver is the (statistical) decision problem of identify

ing the stimulus distribution that gave rise to the internal

representation.

By adopting the rich structure of multidimensional

probability theory, the GRT offered a unifying theoretical

framework capturing several notions of dimensional

interaction. Within the GRT, rigorous definitions of per

ceptual "independences" that relate observable behavioral

measures, such as response probabilities and (later, e.g.,

Ashby & Maddox, 1994) response times, to underlying

theoretical constructs are possible. Recall that a hallmark

of the GRT, as in SDT, is the distinction between percep

tual and decisional processes. This allows the defining of

dimensional interactions as potentially occurring at both

levels. The GRT has since been refined and extended to

various experimental paradigms, such as categorization

(Ashby & Gott, 1988; Maddox & Ashby, 1993), similar

ity judgments (Ashby & Perrin, 1988), preference judg

ments (Perrin, 1992), Garner filtering (Ashby & Maddox,

1994; Maddox & Ashby, 1996) and same-different clas

sification (Thomas, 1996).

In the problem of identifying the nature ofthe percep

tual and decisional processes underlying stimulus iden-
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tification from empirical data, different approaches can

be taken. One approach is to systematically develop para

metric models that differ in their assumptions and fit

(i.e., estimate parameters) these models to obtained data

to determine which GRT-based model yields the best

overall performance relative to the number offreely vary

ing parameters (Ashby & Lee, 1991). From this best

fitting and most parsimonious model, inferences regard

ing the perceptual and decisional processes are immedi

ate. A different methodological approach is to derive var

ious theorems from basic axioms that relate properties

holding among observable quantities, such as response

probabilities or response times, to unobservable percep

tual and/or decisional process assumptions. Then, em

pirical data could be queried for the satisfaction of those

properties. This latter approach affords a possible non

parametric analysis ofthe data (though not always) and

is usually implementable for simpler experimental de

signs than would be required for model fitting. Estimating

parameters ofcomplex models requires a great many de

grees offreedom in the data for the model to be identifi

able. This can pose practical problems for the experimenter

collecting the required data, especially if the processes

under study may undergo a qualitative change as a result

of extended practice, as in the development ofautomatic

ity (Shiffrin & Lightfoot, in press). For these reasons,

adopting an axiomatic approach to theory evaluation

may be preferred. However, the cost of taking this tack

is to reduce the statistical power that is essential in iden

tifying interesting perceptual characteristics.

Given the utility of understanding the qualitative con

sequences of theoretical assumptions, several investiga

tors have taken on the task of researching the mathemat

ical properties of the GRT (e.g., Kadlec & Townsend,

1992a, I992b; Thomas, 1995) and relating the results to em

pirical applications. For example, Kadlec and Townsend

outline several theorems and propositions allowing signal

detection parameters (such as d', a sensitivity measure,

and /3, a decision bias measure) to be used to draw con

clusions regarding how the observer perceives multiple

stimulus attributes. Among many other propositions,

they offer a test (their Proposition Ic) to assess the per

ceptual separability (a kind of stimulus independence)

of a pair of stimulus components referred to as the diag

onal d' test. This test requires a sensitivity measure to be

defined between two stimuli that physically differ on

more than one dimension. In the earlier paper, Ashby and

Townsend (1986) utilized a similar detection sensitivity

parameter in an attempt to relate dimensional orthogo

nality in Tanner's (1956) detectability model (a previous

concept of stimulus independence) to perceptual corre

lation as defined within the multidimensional GRT (see

below). Both the Kadlec and Townsend and the Ashby and

Townsend theoretical analyses involved the use of Eu

clidean geometric concepts to prove the results. This re

liance on geometric constructs to establish relationships

derived from probability concepts will be shown to lead to

erroneous conclusions.

MULTIDIMENSIONAL d' 225

In the next two sections, a construction ofa generalized

multidimensional d' is offered. This measure represents

the perceptual difference between two stimuli differing

on more than one dimension that takes into account a rea

sonable decision strategy and the probabilist representa

tion. Following this construction, an analysis of Kadlec

and Townsend's (1992a) Proposition Ic falls short of its

goal. This analysis motivates an examination of Theo

rems 2 and 3 of Ashby and Townsend (1986), which are

also found to be incomplete. The conditions that are

needed to correct Kadlec and Townsend's Proposition l c

are just those needed to adequately relate dimensional

orthogonality in an early model of multidimensional

SDT (Tanner, 1956) to perceptual independence defined

in the GRT (Ashby & Townsend, 1986). The relationship

between the proposed multidimensional d' and existing

concepts of statistical distance (e.g., Mahalanobis, 1936)

is explored. Finally, the utility ofthis construct and other

related issues appear in the General Discussion section.

Multidimensional Probabilistic

Representations and Decision Bounds
For exposition, suppose there are two multidimensional

stimuli, PI and Pz, to be discriminated in a two-choice

identification task. On any given trial, when a stimulus,

say PI' is presented to an observer, its internal represen

tation is assumed to be a point, x = (Xl' XZ, ... ,xn ) , in an
n-dimensional perceptual space in which the dimensions

are assumed to correspond to the object's attributes.

Across trials, due to perceptual variability, repeated pre

sentations of PI give rise to a probability distribution of

perceptual effects. Hence, for the overall experiment, a

stimulus is modeled as a probability distribution that

may be described by means, variances, and covariances.

A graph ofa two-dimensional distribution appears on the

left in Figure I. It is useful to view the distribution by way

of an equal likelihood contour, which is obtained from a

cross section of the distribution at a constant height (in

the right of Figure I). To determine what response to

give to the stimulus, the observer divides the perceptual

space into two mutually exclusive (and exhaustive but

not necessarily connected) subsets, such that each is as

sociated with a unique response, Rj("PI " or "Pz"). For

mally, a discrimant function, h, is learned, such that if

h(x) > 0, one response is made; whereas if h(x) < 0, the

other response is given. The set ofpoints for which h(x) =

°is referred to as the decision bound, which serves to
demarcate the response regions. A special case of inter

est arises when the response given depends on which

stimulus' mean (i.e., perceptual prototype) is closer to the

observed percept. This type of decision rule is referred

to as the distance classifier (Ashby & Gott, 1988).

If one assumes that the probability distributions for PI

and Pz are multivariate normal, as in standard SDT, we

can define a general discrimination sensitivity as the

"standardized" distance between the two perceptual

means, similarly to the typical d' in SDT. The difficulty

arises when we ask, "Standardized with respect to what?"
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Figure 1. A bivariate Gaussian (normal) joint density function and its equal likelihood contour.

The case for two hypothetical bivariate stimuli is graphed

in Figure 2. One plausible approach would be to try to

measure the distance weighted by the probability densi

ties of each stimulus distribution along a chord connect

ing the two perceptual means (i.e, the dotted line in Fig

ure 2). Ifboth two-dimensional distributions are collapsed

into univariate distributions (which will be normal) over

the connecting chord by integrating in the direction or

thogonal to that chord (i.e., the solid line in the figure),

then a distance between the means relative to the result-

ing univariate standard deviations can be defined in es

sentially the same manner as an ordinary d', This distance,

d;, is a multivariate generalization ofthe sensitivity mea

sure, d', from ordinary SDT.

Formal Development of a
Generalized d; and the Distance Classifier

This section formalizes the above concepts and pro

vides a mathematical definition of the multidimensional

d;. Suppose the two perceptual distributions are multi-

Figure 2. An illustration of the geometrical nature of the proposed generalized d; for two
arbitrary distributions. Its computation assumes that a distance classifier is used to dis
criminate between the stimulus pair. The resulting decision criterion is a line perpendicular
to the sensory axis defined by the two stimulus means (i.e., the chord connecting IJ.I and 1J.2)'
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and

Var( [f;) = VTLiV

(e.g., Flury, 1997; Fukanaga, 1990), where T denotes the

vector transpose. Define a general d; as the difference be

tween the two univariate means relative to an "average"

variance'

and variance-covariance matrix

where c = 0 indicates no bias, when, for example, the

classes are equally likely. This decision strategy is opti

mal (in the sense of maximizing percent correct) only in

very restricted situations (when the stimulus distributions

have equal covariance matrices that are also proportional

to the identity matrix). However, it may be just the kind

of strategy used by novice observers in categorization

tasks (Ashby & Gott, 1988; Ashby & Maddox, 1990;

Maddox & Ashby, 1993; but see Ashby & Maddox, 1992).

It is an open question whether this decision strategy

emerges in signal detection-identification situations, al

though, because it is usually computationally simpler

than optimal responding in a general situation, it may be

the one used, particularly if the difference in accuracy

obtained between optimal and distance classifying is not

too large (Ripley, 1996).

the computation of a d', the observer's decision bound

must be perpendicular to the chord connecting the two

perceptual means. As stated earlier, the decision strategy

yielding this type ofa boundary is the distance classifier

and is structurally equivalent to a prototype model in the

categorization literature (Ashby & Gott, 1988; Reed,

1972). For the n-dimensional case, the distance-classifier

decision rule is to identify a random observation x as com

ing from distribution PI if

Ilx - PII12 -llx - P211 2 < c,

Characterizing Dimensional
Interactions within the GRT

One application of the multidimensional representa

tion scheme ofthe GRT that has proven extremely fruitful

is the characterization of perceptual interactions among

multiple attributes of an object. To make the discussion

concrete, assume that a stimulus ensemble contains

four stimuli generated by the orthogonal combination of

two levels of two stimulus components, A and B. The de

finitions given below generalize to more than two dimen

sions (Kadlec & Townsend, I992b), but, for exposition,

this will be the case considered here. On an individual

trial, one stimulus is presented for which the observer

must give a unique response (i.e., identification). Denote

an individual stimulus by AiBj , where i = 1 or 2 and j = 1

or 2, indicating the level of the stimulus component. In a

feature-complete factorial design, all four stimuli

are used. The stimulus components A and B (e.g., fre

quency and amplitude ofsound) are assumed to map onto

two perceptual dimensions, X and Y, respectively (e.g.,

pitch and loudness). A stimulus, AiBj , is represented by

a bivariate random variable, (Xi), Yij), with joint density

J4B(x,y). If the perceptual distribution is normal for

stimulus A,Bj , it is completely characterized by a mean

vector

(1)

~---_._--~

~vTLI v+v
TL

2v

(P2-PI)T(P2-Pl)

E(U2 ) - E(U\)
dg (R. ,P2 )' = ----r=,----=~ ='======

I/Var(U,)+ Var(U,)

T T
vP2- VPI

variate normal with XI = (Xl' X 2, .•• Xn)1 denoting the

random vector for PI' and X2 = (XI' X 2, '" Xnh for P2 •

Let Pi and L i denote the mean vector and variance

covariance matrix of11, and let v be the normalized vec

tor parallel to the chord connecting the two perceptual

means-that is, v = (P2 - PI)/II P2 - Pili, where 11-11
denotes the vector length. Ifa = (a I' a2) is a vector, then

II a II = VaT + a~

Define U, as the univariate distribution that results from

integrating 11 along the orthogonal direction to the chord

through P2 and Pl' It is known from statistics that the U,

are univariate normal random variables that are equiva

lent to special linear combinations of the original set of

variables-that is, U, = VTX i . Consequently, their ex

pected values and variances are

E(UJ =VTPi

This generalized d; is interpreted as the distance between

the distribution means relative to the combined variance

along the line connecting the two means, as shown in Fig

ure 2.

For this measure to be useful empirically, it must be

computable from obtained data. In a two-choice signal

detection experiment, two types ofresponse probabilities

are used in the computation of d;: the probability of re

sponding "P2" given P2 (a hit) and the probability of re

sponding "P2" given PI (afalse alarm). Once these quan

tities are estimated, one consults tables of hit and

false-alarm rates, such as those found in Macmillan and

Creelman (1991), to compute sensitivity. These response

probabilities are assumed to correspond to areas under

neath a standard normal distribution. Theoretical response

probabilities in multidimensional detection theory are

obtained by integrating the perceptual distributions (i.e.,

computing the volume under the distribution) over the

relevant response regions demarcated by the observer's

decision bounds. In order to ensure that the theoretical

response probabilities from the multidimensional theory

correspond to those computed from the data and used in
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A slightly different notation from that used previously is

adopted for convenience of the reader in which the sub

scripts on the mean vector and covariance matrix will in

dicate which stimulus in the orthogonal set is being con

sidered.

The observer is assumed to have divided the perceptual

space into mutually exclusive and exhaustive response re

gions to be used for the decision process. Consequently,

the identification process is simply to determine into

which region a percept falls and then emit the associated

response. The probability that a response "akbL" is given

when the stimulus is AiBj is just

P(akbL / AiB)= If fAs (x,y)dxdy,«,«, I)

where the integration is taken over the region Rakb
L

in the

perceptual space that has been associated with the re

sponse "akbL'"

Corresponding to each joint density are two marginal

densities, gls(x) and gXB(y), associated with each per

ceptual dimension after the representation of the oppos

ing dimension has been integrated out,

g~B (x)= r:fA,B}. (x,y)dy
, )

g~B (y) = J:fA,B}. (x,y)dx.
, )

Perceptual independence (PI) ofA and B holds within a

stimulus, AiBj, ifand only ifthe perceptual effects are sta

tistically independent. That is,JA,B(x,y) = g~s(x)g~s(Y).

If the densities are normal, PI is} equivalent to corfela

tion coefficient, p, equaling 0 in the stimulus. Perceptual

separability (PS) of stimulus component A holds if and

only if, for i = I and 2, gl,B,(x) = gl,B/x). Assuming nor
mality, PS of component A implies that the perceptual

means and variances for the X dimension are invariant

across levels of component B. That is, ILl,B! = ILl,B2, and

a;(A,BI) = a;(A,B2). Similar definitions hold for PS of

component B. If the decision regarding the level of one

component, say,A, does not depend on the perceived value

ofthe other component, then decisional separability (DS)

holds for that component (i.e., A). For a fuller account of

the various constructs and definitions emanating from

the GRT, see Ashby and Townsend (l986), Kadlec and

Townsend (l992a, 1992b), and Thomas (l995). Figure 3

diagrams the equal likelihood contours for a four-stimulus

situation. For bivariate normal distributions, these contours

are always ellipses. Ifp = 0, then the contours are circles

(ifthe variances are equal, i.e., ax = ay) or ellipses (in the

unequal variance case) whose major and minor axes are

parallel to the perceptual axes. Ifa perceptual correlation

exists, then these axes are tilted.

The Diagonal d' Test

The diagonal d' test of Kadlec and Townsend (l992a)

is a test that was proposed to reveal whether PS between

stimulus components is satisfied in a data set. The test

requires the following experimental trials, in addition to

the feature-complete design, for its implementation. A

series of blocks of trials are included that contain only

AIBI and A 2B2 or only A IB2 and A 2B!, in which the ob

server still identifies the one (of now two) presented

stimulus. This latter condition is simply a two-stimulus

choice task along one of the diagonals of the original

stimulus ensemble square.

The empirical conditions described above allow the

estimation of several discrimination sensitivities (i.e.,

d's). According to Kadlec and Townsend, for component

A, there are two marginal d's, one for each level ofB, and

two diagonal d's, one describing the discrimination sen

sitivity between A IB I and A2B2 and the other describing

the sensitivity between stimuli A !B2 and A2BI' The mar

ginal d's are estimated from the feature-complete iden

tification task, and their estimation requires the assump

tion of decision separability, whereas the diagonal d's

are estimated from the additional "diagonal" blocks. Un

fortunately, as we will see below, the authors do not provide

an assumption for the decision strategy in the diagonal

blocks. The authors provide the following definitions for

the marginal d's. The marginal d' for feature A at the jth
level of feature B is written as2

J1x - J1x
, A2B) A,B)

dAB = ~=======} I 2 2
lJaxCA2Bj) +ax(A!Bj)

and for feature B at the ith level ofA

J1 y - J1Y
A.B A.B

d~,B = 12 I 1

, I 2 2
lJay(AiB 2)+ay(A iB I)

The diagonal d's are not defined by formulas but are de

fined as Euclidean distances in the perceptual space be

tween the means associated with the two presented stimuli

(see Kadlec & Towsend's, 1992a, Figure 2, p. 337). Kadlec

and Townsend relate these detection parameters to PS in

their Proposition lc (assuming decisional separability

for the four stimulus task):

PROPOSITION lc of Kadlec and Townsend (l992a). PS

holds for both features if and only if all three of the fol

lowing conditions hold:

(i) the variances ofthe marginal densities, for each fea

ture across the levels ofthe second feature, are equal (i.e.,
aX = o: = a aX = a: = (J a Y = a Y = (JA,B, A,B2 x,, A2B, A2B2 X2' A,B, A2B, y,'
and a1,B2= a12B2= ay2);

(ii) marginal d's for both features are constant across

levels of the other feature (i.e., d;B = d;B = dA, and d; B=
, 1 2 1

dA2B = dB);

(iii) (d;)2 + (d~)2 = (d;B) 2, where d;B denotes the

diagonal distance between the means of fA,B,(X,y)

andfA2Bix,y). We call this the Euclidean diagonal d' con

dition.

Proposition Ic will be shown to be in error, given our

definition ofa multidimensional d'. The problems in the

original proofofProposition Ic ar~ the use of Euclidean

geometry (i.e., cosines and d's) for concepts defined on
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00

Figure 3. Equal likelihood contours offour bivariate normal densities together with their marginal den

sity functions. Perceptual and decisional separability hold for component B but not for component A. Also,
perceptual independence is violated in all stimuli but A tB2 0

(2)

probability spaces and the absence ofa specified decision

strategy for the diagonal trials. PS implies Conditions i and

ii of the proposition. Thus, the difficulty concerns Condi

tion iii.

Consider the discrimination between A ,B) and A2B2

with perceptual means

and

[
J1

X

]

_ A,B,
PA,B, - J1Y .

A,B,

The unit length vector in the direction of the line

through PA,B, and PA,B, is

E(U)=VTpAB.
it i I

and

VarCUu) =

v T [ cr;CA;B)

PA,B,crxCA ;B; )cryCA;B;)

Denote by U;; the (univariate) random variable ob

tained by integration oflA B(X,y) in the perpendicular di
rection of v for i = land 'i From the previous develop

ment of the multidimensional d;,

v=-------

IlcPA,B, - PA,B, )11

= [II ~ 11 2 :cr;CAiB)(J1~'B' - J1~,B,y
J1A,B, J1A,B,

+2PA,B,crxCA;B )cryCA;B )(J1~,B, - J1~,B,)

(J1~ ,B,- J1~ ,B,)+cr;CA;B )(J1~,B, - J1~ ,B, Y.
(3)
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where p > °is the correlation between the perceptual di

mensions.

For the trials using only stimuli A}B} and A 2B2, from

Equations 2, 3, and 4,

Figure 4 illustrates the equal likelihood contours for a

very simple stimulus configuration that reveals the prob

lem with the Kadlec and Townsend proposition. The con

figuration shown in Figure 4 is described by means and

covariance matrices given by

From Equation 1, the d' between A IB} and A2B 2 is

s: - E(U22)-E(Ull ) (4)
A,B"A,B, - I

1/VarCUIl + Var(U22)

To compute the d'betweenA IB2 andA2B}, one would in

sert the relevant perceptual means into Equations 2 and

3 with another unit length vector, W, in the role ofV, which

is found from

~~B, = aA.B, = ax" ~~B, = aA,B2 = aX2' al,B, = a12B, = ay"
and al,B, = aA2B2= ay,);

(ii) marginal d's for both features are constant across

levels of the other feature (i.e., d1B, = d1B2= dA, and d1,B
= dA,B = dB);

(iii) (d~)2 + (d;)2 = (d1B)2, where d~B denotes the diago

nal distance between the means of.f4,Blx,y) and.f42B2(x,y).

We call this the Euclidean diagonal d' condition.
That is, stimulus configurations exist such that (a) Con

ditions i, ii, and iii hold but PS fails, and (b) PS holds but

the conjunction of Conditions i, ii, and iii fails. In partic

ular, Condition iii fails. All proofs can be found in the Ap

pendix. The example just given above (Figure 4) estab

lishes (b).

Rather than a distance classifier, an alternative decision

strategy for theA]B] andA2B2 trials might be to use one of

the DS decision bounds from the feature-complete task.

For example, the observer may selectively attend to the

A component by using the criterion for the X perceptual

dimension to classify the two stimuli. In this case, the hit

rate equals

Dimensional Orthogonality
and Perceptual Independence

Tanner (1956) developed an empirical test to determine

whether a pair of tones, Sl and S2' differing in frequency,

f ~ f~ fA B (x,y)dxdy = f ~ gX (x)dx,
-00 Xo 2 2 X o A2B1

and the false-alarm rate equals

f ~ f ~ t, B (x,y)dxdy = f ~ gX (x)dx.
-00 Xo 2 I Xo AlB!

The d' estimated from these univariate normal distribu

tions is simply the sensitivity for the A component across

A]B] andA2B2. IfPS holds, then this "diagonal" d' would

equal both marginal d's for component A, and, hence,

Condition iii of the Kadlec and Townsend proposition is

false. A similar argument shows that ifthe observer used

a DS bound for component B, then the diagonal d' would

equal the marginal d' for B. Therefore, the Kadlec and

Townsend proposition is not correct, even if an assump

tion were added that DS holds. A final possible decision

strategy would be to use some kind ofnonlinear decision

bound (e.g., quadratic; Ashby & Maddox, 1990, 1992;

Maddox & Ashby, 1993), which would likely be optimal

in most cases. However, simply too many unknown pa

rameters exist and too few degrees of freedom are in the

data for the computation of a diagonal d' to be possible.

One would need to augment the stimulus ensemble to in

clude several levels of the components or use confidence

judgments, and so on, so that different GRT models could

be applied to the identification data that would allow in

ferences regarding the perceptual representation to be

made (Ashby & Lee, 1991). As the discussion following

will establish, the Kadlec and Townsend proposition can

not be saved even if PI is assumed. A stronger condition

will be required.

#LA,B, =(~JLA'B' =G ~}

#LA,B, =(~}LA'B' =G ~}

#LA,B, =(~JLA2B' =G ~}

#LA,B, = (~}LA'B' =G~).

d'. - 1
A,B"A,B, - ~l+p'

and for trials with A ]B 2 and A 2B l'

d' 1_
A,B"A 2B, - ~

1/1- P

All marginal d's are 1/V2. Clearly, Condition iii of

the Kadlec and Townsend proposition fails, even though

PS (which entails Conditions i and ii) holds.

The definition of a generalized d; allows a further

demonstration that PS is actually logically independent of

the three conditions of Proposition l c, The following

proposition is offered.

PROPOSITION A. When the diagonal d' is given by

Equation 1,3 PS is logically independent of the conjunc

tion of the three following conditions:

(i) the variances ofthe marginal densities, for each fea

ture across the levels ofthe second feature, are equal (i.e.,

W=

II(#LA,B, - #LA,B, )11
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Figure 4. A stimulus configuration illustrating the failure of the diagonal d' test. The Y) axis corresponds to the sensory axis

for stimuli A)B. and A2B2 along which the diagonal d' is computed. The resulting diagonal d' does not satisfy Condition iii of
Proposition Ic of Kadlec and Townsend, yet perceptual separability clearly holds.

were perceived independently when accompanied by
white noise. His yes-no experiment consisted of three
conditions: Sl + noise trials and noise alone; S2 + noise
trials and noise alone; or Sl + noise trials and S2 + noise
trials (i.e., a two-stimulus identification task). Never were
Sj and S2 presented simultaneously in a trial; so any per
ceptual interaction had to be inferred from a comparison

ofdetection sensitivities across conditions. Tanneradopted
the bivariate normal representation for the noise and for
each signal embedded in noise assuming equal variance
on both dimensions and zero correlation yielding circular
contours of equal likelihood (see Figure 5).

With the mean of the noise distribution at (0,0), the
means ofthe two signal distributions define the perceptual
axes. The degree ofperceptual dependence, according to

his model, is expressed by the departure from orthogonal
ity ofthe angle, (J, between the perceptual dimensions de
fined by the signal means. To measure this, he used the

Pythagorean relation

(d;,2)2 = (d;)2 + (d~)2 + 2d;d~cos(J.

Note the change in subscripts on the d's from our earlier
notation. Here, the subscripts indicate which signal, Sj or

S2' is being considered. The d[2 is computed from the two
signal identification task and will need to assume that
the decision process used is the distance classifier. The
value of (J is estimated by computing the three d's from
the three experimental conditions and solving for (J in the

Equation 5. This model will be referred to as the Tanner

detectability model.
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N+S1

Figure 5. Contours of equal likelihood from Tanner's (1956)

signal detectability model.

Ashby and Townsend (1986) consider in Theorems 2

and 3 the relationship between the Tanner detectability

model and the GRT that assumes normal distributions.

Theorem 2 claims that the Tanner model is a special case

of the GRT, with cos 0 = - Pxy and all covariance matrices

equal. In Theorem 3, an equivalence between PI as defined

in the GRT (see above) and dimensional orthogonality

(i.e., 0= 90°) in the Tanner model is apparently described.

However, with the aid of the construction and analysis of

the proposed multidimensional d;, it will be shown that

the assumptions underlying these previous theorems are

too weak.

The linear transformation, L, given by Ashby and

Townsend (see the proof of Theorem 2 in the Appendix

ofAshby & Townsend, 1986) renders the perceptual axis

defined by Sz to be orthogonal to the one defined by S\,

LJ~ -~F;j.
l sm()

Note that the first column of L leaves the S, perceptual

axis unchanged, whereas the second column rotates the

Szaxis through an angle of90° - O. The common variance

ofthe Tanner model is not identifiable since d(= IlJa, so

the equivalent GRT will be unique up to a constant scal

ing factor, a.

Several aspects ofthis relationship need to be clarified.

First, if a Tanner model adequately describes the exper

imental data, then the equivalent GRT exhibits stronger

properties than simply equal covariance matrices. The

circular contours ofequal likelihood in the Tanner model

(with radius unique up to the scaling factor a), say, for the

noise distribution, will be mapped onto ellipses defined

by the following equation,

XZ + y Z + 2cosOxy = 1. (6)

In general, for any bivariate normal distribution, the con

tours of equal likelihood are described by the equation

(
X- ll x ) Z+[Y-IlY)-2Pxy (x-llx)(Y-lly) =cz (7)

ax a y «»,
for arbitrary constant c. With (llx,lly ) = (0,0), and letting

cZ = 1to», a comparison of Equations 6 and 7 show that

it must be the case that ax = ay = a. (Recall that the Tan

ner contours are unique up to a scaling factor o.) Also,

for signal S\, the mean from the Tanner model maps to

II _[Ilf fa)
r-N+S -

I 0

and the mean for Sz becomes

Thus, Theorem 2 needs to be augmented to reflect that the

true properties ofthe (Gaussian) GRT model that is equiv

alent to the Tanner model are that the means satisfy PS

and the covariance matrices for the three stimuli are equal

in which the variances on both dimensions are the same

(i.e., ax = ay = a). In examining their proofofTheorem 2,

it appears that these assumptions may have been implic

itly made but were not carefully stated. It is interesting to

note that Equation 5 was used to relate PS to the diagonal

d' in Proposition 1c ofKadlec and Townsend (1992a) with

no mention of any perceptual correlation coefficient, as

required by Ashby and Townsend's (1986) Theorem 2.

Ashby and Townsend (1986) go on to state in Theorem 3

that, assuming again all covariance matrices are equal, PI

(in the GRT) holds if and only if dimensional orthogo

nality (i.e., e= 90°) holds in the Tanner model. The above

observation demonstrates that these conditions are also

too weak. A formal restatement of the theorem is pre

sented for reference.

THEOREM 3 of Ashby and Townsend (1986). If the co

variance matrices in the general Gaussian (i.e., normal)

GRT are equal, then dimensional orthogonality holds in

Tanner's signal detectability model and in Tucker's (1972)

general Euclidean scaling model- if and only if compo

nents A and B are perceived independently.

To see that the conditions ofequal covariance matrices

are not enough, consider the following example. Let the

three distributions (N, N + S\, N + Sz) have the Gaussian

GRT representation,

PI holds and all covariance matrices are equal; yet when

one computes the three d's (assuming a distance classifier



is used for the discrimination between the two signals)

and estimates 8 from Equation 5, 8 will not be 90°. This

is because, (using the formula for d' as in Kadlec &

Townsend),

Statistical Measures of Distance

and the Generalized d'

In statistics, there exist several concepts describing dis

tances between multidimensional random variables (Kull

back, 1968) known as measures of class separability or

divergence. A complete discussion ofthose measures and

their relationship to the proposed one is beyond the scope

(
,)2 2 (,)2 (,)2 5

d l ,2 =5* d; + d2 =8'

Note that neither defining d; 2 as Euclidean distance

nor rescaling the diagonal d' by'\!2 will yield the desired

result. The critical aspect of this counterexample is the

unequal variance for the two perceptual dimensions. The

variance problem was intuited by Cohen (1997) but was

incorrectly diagnosed as a failure ofthe distributions to be

Gaussian.

To capture all of this discussion, an amended proposi

tion is offered.

PROPOSITION B. Dimensional orthogonality (8 = 90° in

Equation 5) holds in Tanner's (1956) detectability model

if and only if all of the following conditions are met:

(i) the representation in the GRT is bivariate normal;

(ii) all covariance matrices are equal and are propor

tional to the identity (i.e., L = a2I) ;

(iii) PS on the means holds (i.e., ILlI, ILli + s, and IL~ +

s );
I (iv) the decision strategy is a distance classifier.

Again, the proof can be found in the Appendix. One

might take note that, under Conditions i-iii, the decision

strategy that is optimal (i.e., that maximizes accuracy) is

the distance classifier (Ashby & Perrin, 1988; Fukanaga,

1990). Consequently, Condition iv could be equivalently

stated as "the decision strategy is optimal."

The reader may have intuited that the conditions under

which Theorem 3 of Ashby and Townsend (1986) is true

are exactly those conditions under which Proposition lc

of Kadlec and Townsend (1992a) is true (with the correct

definition of diagonal d'). The equivalence between the

two concepts becomes transparent when one compares the

Tanner model diagramed in Figure 5 here to the Kadlec

and Townsend discussion ofPS and the diagonal d' con

dition captured by their Figure 2 (Kadlec & Townsend,

1992a, p. 337).

and

However,

d ' I
1= 2y12'

d ' I
2= yI2'

d' = _2_
1,2 ill'
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of this article. However, one common distance measure,

referred to as Mahalanobis distance (Mahalanobis, 1936),

can be readily compared to the proposed generalized d; in

the special case when the two distributions are normal and

have the same covariance matrix. Consider two distribu

tions, PI - N(ILI' L) and P2 - N(IL2' L) where - is read
"is distributed as." The Mahalanobis distance squared,

L12, between them is defined as

L12 = (IL2 - ILI)T L -I (IL2 - ILl)'

It can be shown that when the task is to classify samples

drawn from either ofthe two distributions, the optimal (in

the sense of maximizing percent correct) decision strat

egy is to use a linear discriminant function (Fukanaga,

1990). This function, label D, is a univariate normal ran

dom variable with mean (Y2) L12 and variance LV. Thus,

Mahalanobis distance describes the divergence ofthe two

distributions in an optimal decision situation. In the spe

cial case in which the chord connecting the two means is

parallel to the linear discriminant function, L12 can be re

lated to d;.
PROPOSITION C. Assume two distributions are multi

variate normal with equal covariance matrices. That is, PI

- N( ILl' L) and P2 - N(IL2' L). If the chord connecting
ILl and IL2 is parallel to the optimal linear discriminant

function, D, then L12 = 2(d;)2.

The proof can be found in the Appendix. For a related

result, see Ashby and Alfonso-Reese (1995), Theorem 4.

One consequence of this relation between d; and L12 is

to observe that, in general, the distance classifier under

lying d' is always going to be suboptimal except in the spe

cial ca~e of equal covariance matrices when it is equiva

lent to L12 (see also Ashby & Perrin, 1988).

GENERAL DISCUSSION

A definition ofa general sensitivity parameter, d;, in the

multidimensional signal detection context was proposed.

This is the standardized distance between the means of

two multivariate normal distributions that emerges when

the decision strategy is the distance classifier. A detailed

analysis ofthe computation of this d; demonstrates that PS

is logically independent of the diagonal d' condition pro

posed by those authors. Specifically, it was shown that,

under most reasonable decision strategies, Proposition Ic

of Kadlec and Townsend (1992a) does not hold without

incorporating the much stronger assumptions (i.e., PS,

equal covariance matrices proportional to the identity, and

a distance classifier decision strategy on the diagonal tri

als) needed to relate dimensional orthogonality in Tanner's

(1956) detectability model to PI in the GRT. The relation

ship between one common measure ofstatistical distance,

Mahalanobis distance, and d; was also discussed. The need

for a proposal and thorough understanding of the gener

alized d' is evidenced by recent empirical studies, such as

those b ~ Kingston and Macmillan (1995), Kingston,

Macmillan, Dickey, and Thorburn (1997), Cohen (1997),

and Kubovy, Cohen, and Hollier (1999). In each ofthese
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papers, the amount ofperceptual interaction, specifically

perceptual integrality, between two stimulus dimensions

was inferred from the relation between various d's in a

manner similar to the diagonal d' condition ofKadlec and

Townsend (1992a). Fortunately, in all cases, the authors

assumed the perceptual correlation to be 0, which, by

virtue of Proposition B in the present article, allows the

desired comparisons to be made.

One interesting consequence ofdefining d; in this way

is to note that the marginal d' for one component, say, be

tween A jB 1 and A 2B1 as defined in Kadlec and Townsend

(1992a) and above, will not, in general, be equal to the

d; between the same two stimuli. These quantities will be

equal only in the case in which the chord connecting the

two perceptual means is parallel to the perceptual dimen

sion associated with that component. This insight can be

used to help alleviate the difficulties in detecting true PS,

which Proposition lc of Kadlec and Townsend (1992a)

intended to do. The Kadlec and Townsend proposition

was an attempt to empirically discriminate between a par

allelogram (nonrectangular) perceptual configuration

(see their Figure 2, p. 337) and a rectangular one given

by PS. Both configurations would yield equal marginal

d's for both components assuming DS. In the feature

complete factorial design, a decisionally separable strat

egy might be the most likely to be used by an observer,

due to the structure of the stimulus set, instructions, and

cognitive demands. However, if one included only trials

in which two stimuli that shared a value on one compo

nent, say, B, in a series of blocks, then a more accurate

decision strategy might be a distance classifier. The d'
estimated from these trials then would equal d; proposed

here. If the observed d; equaled the marginal d' for com

ponent A from the feature-complete factorial trials, then

evidence for PS of component B would be obtained, at

least for the perceptual means. A similar suggestion to

augment the feature-complete factorial design with trials

of this type was made by Thomas (1995) in clarifying a

test for PI proposed by Ashby and Townsend (1986, The

orem 4). Other reasons to add such trials includes the

ability to use response time distributions to convergently

assess separability (Ashby & Maddox, 1994).

The definition and use ofthe multidimensional d' is in

the spirit of the axiomatic tradition of model evaluation.

The virtues ofthe axiomatic approach over a model fitting

approach include the former's applicability to empirical

designs yielding fewer data points. To fit a full GRT

model to identification data requires the estimation of a

great many parameters (i.e., all the means, variances,

correlations, and, in general, the type and location ofthe

decision boundaries). In many cases, this type ofappli

cation may make the theory difficult to test due to fitting

noise in the data rather than capture genuine perceptual

trends, a situation referred to as overfitting or overpara

meterization (McKinley & Nosofsky, 1996; Nosofsky &

Smith, 1992). Experimental designs that generate suffi-

cient amounts of data for this purpose often require nu

merous trials, placing an undue burden on the participant.

The resulting extensive practice may lead to a fundamen

tal change in the nature of the perceptual representation

(Shiffrin & Lightfoot, in press), obscuring the original

representation. Consequently, simpler and shorter exper

iments may be preferred. On the other hand, the model

fitting approach has been shown to be more powerful, in

the statistical sense, than testing broad properties in the

data (Kadlec, 1993), such as the equivalence ofmarginal

d's. High statistical power is essential before conclusions

of independence and/or separability can be drawn-con

clusions that are essentially acceptances of the null hy

pothesis (Loftus, 1996). The modeling approach also al

lows a full specification ofthe observer's decision process,

which can become quite complex (Maddox & Ashby, 1993).

Both perceptual and decisional strategies are involved in

the identification process, so neither can be ignored when

the one or the other is of interest.

In summary, a generalized measure of multidimen

sional perceptual distance, d;, was proposed on the basis

of the decision strategy of classifying an observation as

from the stimulus with the nearest perceptual mean. A

full analysis of the relationship between PI, PS, and sig

nal detection parameters indicates that previous propo

sitions in Kadlec and Townsend (1992a, 1992b) and

Ashby and Townsend (1986) are incomplete. The present

discussion highlights the importance ofthe decision pro

cess and the inapplicability ofgeometric concepts to the

computation of detection sensitivities.
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NOTES

I. To be consistent with ordinary SDT, the formula would also need

to divide the quantity under the square root sign in the denominator by

2. However, when Kadlec and Townsend defined d' along an individual

dimension for distributions with potentially unequal variances, for un

known reasons, the 2 was omitted. Thus, the present definition is of

fered to be consistent with their definition.

2. The definitions for the marginal d's given by Kadlec and

Townsend are also not estimable from the data in a 2 X 2 feature

complete factorial design. In the estimation of d' in this case an as

sumption of equal variances for the two stimuli in question would have

to be made as in standard SDT

3. One objection to the above analysis is that in Proposition Ie of

Kadlec and Townsend, the diagonal d' is defined as the Euclidean dis

tance between the means for the stimuli occupying the corners of the

configuration. Perhaps the proposition would be true if the diagonal d'

were defined in such a way. Unfortunately, the proposition is not cor

rect even with Euclidean definition. Consider the stimulus configura

tion shown in Figure 4. Now, let p ~ O. The Euclidean distance between

the means for AlB) and A 2B 2 is V2,yet the two marginal d's are both

equal to I /Y2. A check of Condition iii shows that the diagonal d' con

dition fails, even though the stimulus condition enjoys perceptual sep

arability and independence. The difficulty is that the distance needs to

be weighted by the probability functions.

4. Ashby and Townsend (1986) do not discuss the Tucker scaling

model but refer the reader to a later published paper, Ashby and Perrin

(1988) for this model's relationship to the GRT

(Continued on next page)
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APPENDIX

Proof of Proposition A

PROOF a. Let the four stimulus distributions have the following means and covariance matrices:

/LA,B , =(~}LAIBI =C

l

l t PIll}/LA IB' = (;J'LAIB' = (pl

t2 P;2)

(
x2) ~ (I P2t) (X 1+X2) ~ (I P

I
22) .

/LA,B , = Yt 'L.A,B, = P21 I ,/LA,B, = Yl+ Y2 'L.A,8, = P22

Clearly, Condition i holds with all variances equal to I, and Condition ii holds with all marginal d's on the X

dimension equal to X2rV2 and the marginal d's on the Y dimension equal to Y2rV'2, with the Kadlec and
Townsend definition of marginal d', Note, however, because the means on each dimension are not invariant

across levels of the other component, perceptual separability fails. All that needs to be shown is that the diag

onal d ' condition is nonetheless satisfied.

Consider stimuli A 1B t and A2B2. From Equation 2, E(U Il ) = 0,

E(U22) =~~;)2+(;1+ Y2 )2-,

(X 1+X2i +2Ptt(x 1+X2)(Yl+ Y2 )+(Yt+ Y2)2
Var(U11) = ,

(x t+ x 2)2 + (y 1+Y 2) 2

and

(x 1+X2 )2+2P22(Xt+x 2)(Y 1+Y 2 )+(y 1+Y 2)2
Var (U22) =----------------

(Xl+X 2 )2+(Yt +Y 2)2

Substituting these quantities into Equation 4 and simplifying,

Xt(X2- Xl)+ Y2(YI- Y2)
E(UI2) = ~... _ -,

I} (x 2-X 1 )2+(y t- Y2)2

X2(X2 -x 1)+Yt(Yt- Y2)
E(U21)= _. ,

~X 2- X 1 )2+(y 1- Y 2)2

(x 2-X t )2+ 2pdx 2-Xl)(Y r Y2 )+(Yl- Y 2)2

Var(U12) = ,
(x 2-X 1 )2+(Yt- Y l)2

and

Again, from Equation 4,

d' = ----------------------
AI8"A,B , i 2-- - 2

\l2(X2- Xt) +(2Pt2 +2P2d(X2- Xt)(Yt- Y2)+2(Yl- Y2)

For the diagonal d' condition (i.e., Condition iii of the Kadlec and Townsend proposition) to be satisfied,

any Xl' xl' Yt, Yz, PI I' P 12' P 21> and P 22 that satisfy three simultaneous equations

! -.- 2 ._-_.. -- -_. -_..- ---- ·-2

\l2(X2- Xl) +2(Pt2+P21)(X 2-X1)(Yt- Y2)+2(Yl- Y2)

(X 1+X 2)2+(YI+ Y2)2
(A.I)
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APPENDIX (Continued)

(A.2)

(A.4)

(A.3)

(A.5)

and

2 2 2 2
X2 Y2 (x 2- Xl) + (y 1- Y 2)
-+-=. . ,

2 2 ~2(X2-XI)2+2(P12+P21)(X2-XI)(YI-Y2)+(YI-Y2)2

with 0 < XI < X2' 0 < YI < Y2' and -1 ,Pi} < 1, will suffice. Equation A.3 is actually entailed if both Equa
tions A. I and A.2 are satisfied. These constraints can be expressed as a relationship between the correlation

coefficients and the mean parameters that must hold,

[(XI+X 2)2+(YI+ Y2)]2_(xi + yn(Xl+X2)2_(x~+ yn(Yl+ Yz)2

(Pl1+P22)= (2 2)
X2+ Y2 (X 1+X2)(Yl+ Y2)

and

[(X2-X 1)2+(Yl+ Y 2 ) 2 P - ( X ~ + Y ~ ) ( X 2 - X l ) 2 _ ( X ~ + yn(Yl- Y2)2

(P12 + P21) = (2 2)
X2+ Y2 (X2 -X 1)(Yl- Y2)

Possible mean parameter values for which the right-hand sides of Equations AA and A.5 lie in the open in

terval ( - 2,2) provide the solutions. The reader can verify that ifx1 = 1/4, x2 =2, Yl =1/4, and Y2=2, this will

give P 11 + P 22 = 17/32 and P 12 + P 21 = 15/32. For these values,

( )2 ( )2 ()2 2d'. = d'. =4 = d'. + d'.A,B,.A,B, A,B,.A,B, ABj (A,B)'

PROOF b. A stimulus configuration satisfying perceptual separability but failing Condition iii is shown in

Figure 4 with the parameters given in the text. It is straightforward to show that, for p*-o (and *- ± 1), that

Condition iii fails. This is because d ~ \ B \ ' A , B , = 1/yT+p and dA\B,.A,B\ = 1/\!T=P.

Proof of Proposition B

The ordinary formula for d's are used (i.e., taking the average of the variance in the denominator) rather

than the Kadlec and Townsend version to facilitate comparison with standard signal detection theory.

NECESSITY. Without loss of generality, assume that the noise distribution is centered about (0,0). IfCondi

tions i, ii, and iii hold, then the assumptions of the Tanner model are explicitly true, and d{ = .ulla and d; =

.uj/a. Condition iv implies that d{.2 can be found from Equation 1 (or 4). Let Vi be the univariate projection of

the distribution for S, onto the line connecting

IL N+S, = (.uof)
and

Then

and

with, for i = 1,2,
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Thus,

, $;(Y +(J1~r
d 1 2 = .

. a

Substituting the three d's into Equation 5 gives e= 90°, as desired.

SUFFICIENCY. Suppose the Tanner detectability model holds with e= 90°. Thus, the y-axis in the GRT model

is the line through ILN= (0,0) and ILN+5, = (O,d~), and the x-axis is through ILN= (0,0) and ILN+ 51 = (d~,o). The
linear transformation, L, is simply the identity, so the resulting distributions are Gaussian in the GRT repre

sentation, and the covariance matrices are equal and satisfy the Tanner assumptions of equal variances across

the dimensions and zero correlation (i.e., Conditions i, ii, and iii hold), If the d~ 2 satisfies Equation 5, then the

response probabilities used to compute it come from a decision process that is equivalent to the distance clas

sifier between Sl and S2'

Proof of Proposition C
The proof follows from the observation that the decision strategy generating d; is the distance classifier.

The discriminant function can be written as

D=bTx,

where b is a vector ofdiscriminant coefficients and x is the random observation. The coefficients of b satisfy

b = L- I
(1L2 - ILl)'

If the linear discriminant function, D, is parallel to v = (1L2 - ILl)' then b = cv for some scalar, c ~ O. That is,

L- I
(1L2 - ILl) = c(1L2 - ILl)

or

l(1L2 - J-tl)= L(J-t2 - J-tl)
C

A(J-t2 - J-tl)= L(J-t2 - J-t,).

This implies that A(= lie) is an eigenvalue ofL, and (1L2 - J-tl) is the associated eigenvector. Recall, the Ma

halanobis distance squared is

~ 2 (~, P2 ) = (J-t 2- J-tIlL -I (J-t2- IL I)

= (J-t2- J-t I )T[±(J-t 2- J-t I)]

= 1(J-t 2- J-t ,l(J-t 2- J-t I).

Now, from Equation I, with L, = L2 = L,

2 [(J-t 2- J-tIl(J-t 2- J-t I)r
2(dg) =-'-----------"---

(J-t 2- J-tII[A(J-t 2- J-t 1)]

= ( ± )cJ-t2- J-t II(J-t2- J-t I),

which proves the result.

The fact that (J-t2 - J-tl) is an eigenvector ofL means that, in the special case when the best linear discrim

inant is equivalent to the distance classifier, the decision axis lies along one of the (common) principal axes

of the distributions (a situation depicted in Figure 4).
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