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1 Introduction

A successful study of the 3D-structure of nucleons depends on our ability to efficiently

extract transverse momentum dependent (TMD) parton densities from experimental data.

These functions encode non-perturbative information on the inner composition of hadrons

in terms of their elementary constituents, and on the dynamical mechanisms which confine

partons inside hadronic states.

The extraction of TMD parton distribution functions (PDFs), however, is a complex

task that involves a series of steps not often free of pitfalls. On one side we have a “theory”

(QCD in our case) which in principle provides a full description of the underlying physics

relevant to the dynamical processes considered. Often, however, theory cannot be applied

directly because it is not exactly solvable, or incomplete, or simply impractical.

Beyond the unpolarized TMD, the most interesting and studied polarized TMD-PDF

is perhaps the Sivers function [1, 2], which correlates the motion of unpolarized partons

with the spin of the parent nucleon, and can be accessed through azimuthal asymmetries in

polarized Drell-Yan (DY) and Semi-Inclusive Deep-Inelastic Scattering (SIDIS) processes.

Remarkably, the Sivers function is predicted to have opposite signs in these two processes [3,

4]. This sign change, in fact, has been the focus of several phenomenological analyses,

although none has been totally conclusive [5–8].

Very recently the COMPASS Collaboration has presented a new re-analysis of their

SIDIS measurements [9], based on a two-dimensional binning: the Sivers asymmetries are

presented as functions of the kinematic variables, x, PT and z, one at a time, for four regions
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of the photon virtuality Q2. These Q2 ranges correspond to the four regions of the di-muon

mass explored in the ongoing analyses of the COMPASS Drell-Yan measurements [8].

The large number of data, together with a considerably increased precision and a finer

binning in Q2 as well as in x, poses the question of whether one can extract the Sivers

function within a full QCD scheme, as those defined in refs. [10, 11]. In this theoretical

framework, one must determine, based on the data, an input function which can be inter-

preted as the Sivers function at a given initial scale, and the non-perturbative function gK ,

which is responsible for the broadening of the TMDs as a function of the scale. Moreover,

it requires a full knowledge of the unpolarized TMD PDF and FF, for which studies are

still at a very early stage [12–14]. Further complications arise from considerations as those

discussed in refs. [15, 16], where it has been suggested that at the kinematics of the current

data, the errors of factorization may not be completely under control. Note that when

performing a fit on experimental data, it may happen that large theoretical errors are “ab-

sorbed” by the model-dependent parts of the TMDs, which can make the interpretation of

the analysis results more problematic.

For a reliable extraction of the Sivers function, it is also crucial to understand the

extent to which different aspects associated with TMDs are visible in the data. Given the

complications discussed above, it makes sense to use a bottom-up approach, that addresses

questions that regard only the data and the information which can be inferred from them.

In this paper, we will focus on these particular issues and study the extent to which effects

relevant to TMD physics are likely to be observed in the existing sets of SIDIS experimental

data. For this analysis, in fact, we will model the Sivers function using a parameterization

similar to that used in our past work [7, 17, 18], but we will relax the assumption that the

Sivers functions should be parameterized in terms of the corresponding unpolarized TMD

PDF. The chosen parametrization will be simple but flexible enough to allow for a realistic

evaluation of the uncertainties affecting the extracted functions.

Finally, as the new COMPASS experimental data are separated in different Q2 re-

gions, it will be interesting to compare the results obtained by using different Q2 evolution

schemes. We will analyze the scale dependence of the Sivers function predicted by three

assumptions: the no-evolution case, where the Sivers function does not depend at all on

the scale Q, the collinear twist-three approach, where the Sivers function varies with Q

only through the kinematic variable x, and a TMD-like scheme, in which the Q2 evolution

proceeds through a modification of the width of the Sivers k⊥-distribution with varying

Q. The new functional form of the parameterization we have introduced, independent of

the unpolarized TMD PDFs, is particularly suited to be applied to the full TMD-evolution

scheme.

The paper is organized as follows. In section 2 we will describe the general frame-

work used in our analysis and the parametrization which will be adopted. In section 3

the two main best fits performed to extract the Sivers function will be presented and il-

lustrated in detail, together with a thorough analysis of the corresponding uncertainties

and comparisons to the experimental measurements. In section 4 some results based on

the error projections of a new run of the COMPASS II experiment with polarized deu-

terium targets [19] will be presented. The uncertainties obtained using present data and
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new projected errors will be compared. In section 5 we will comment on how possible

signals of scale dependence can be detected in the examined SIDIS data. Final remarks

and conclusions will be drawn in section 6.

2 General strategy

For the current study, we adopt a model for the Sivers function similar to that of refs. [7,

17, 20, 21]. We assume a factorized form for the x and k⊥ dependences, and use a Gaussian

model for the latter

∆Nfq/p↑(x, k⊥) = 4Nqx
αq(1− x)βq

Mp

〈k2⊥〉S
k⊥

e−k2
⊥
/〈k2

⊥
〉S

π〈k2⊥〉S
. (2.1)

As mentioned above, the main difference between this parametrization and those used in

previous analyses [17, 20, 22] is that in eq. (2.1) the x-dependent part of the Sivers function,

for each flavour, is no longer parametrized in terms of the corresponding unpolarized PDF.

In the past, when data were scarce and affected by rather large experimental uncer-

tainties, this parametrization provided a useful input to allow for a successful extraction

of the Sivers function even though the information contained in the experimental data was

quite incomplete. It also had the advantage of ensuring the automatic fulfillment of the

required positivity bounds. In the current study, however, we relax this assumption in

order to test in the most agnostic possible way aspects of the data related to TMD physics,

like flavour separation and scale dependence. Our approach is also flexible enough to allow

for a realistic determination of the uncertainties in the extraction of the Sivers function.

Furthermore, in the new model the width of the Sivers function is not written in terms

of the width of the unpolarized TMD PDF; instead, we parametrize the Sivers function

directly in terms of its TMD width, 〈k2⊥〉S . Note also that the parameterization of eq. (2.1)

has been arranged in such a way that its first moment assumes a much simpler form,

namely

∆Nf
(1)

q/p↑
(x) =

∫

d2k⊥
k⊥
4Mp

∆Nfq/p↑(x, k⊥) = Nqx
αq(1− x)βq = −f

⊥(1)q
1T (x) , (2.2)

where the rightmost equation provides the relation of the first moment with the Amsterdam

notation. For the unpolarized TMD PDFs and FFs we use the same functional forms as

that adopted in ref. [7], namely

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥
/〈k2

⊥
〉

π〈k2⊥〉
, (2.3)

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥
/〈p2

⊥
〉

π〈p2⊥〉
, (2.4)

where fq/p(x) and Dh/q(z) are the usual unpolarized PDFs and FFs, which we will take

from the CTEQ6l [23] and DSS [24] leading order (LO) sets, respectively; 〈k2⊥〉 and 〈p2⊥〉

are the widths of the corresponding TMD distributions, which will be fixed according to

the values extracted in ref. [12], as we will explain in detail below. Although not explicitly
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indicated, our model for the unpolarized TMD PDFs and FFs depend on Q2, according to

Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) equations [25–27].

The SIDIS Sivers asymmetry, defined as

A
sin(φh−φS)
UT = 2

∫

dφSdφh [dσ
↑ − dσ↓] sin(φh − φS)

∫

dφSdφh [dσ↑ + dσ↓]
=

F
sin(φh−φS)
UT

FUU
, (2.5)

can be expressed, within this framework, through the following relations

F
sin(φh−φS)
UT (x, PT , z) = 2 z

PTMp

〈P 2
T 〉S

e−P 2

T
/〈P 2

T
〉S

π〈P 2
T 〉S

∑

q

e2q

(

Nqx
αq(1− x)βq

)

Dh/q(z) , (2.6)

FUU (x, PT , z) =
e−P 2

T
/〈P 2

T
〉

π〈P 2
T 〉

∑

q

e2q fq/p(x)Dh/q(z) , (2.7)

〈P 2
T 〉 = 〈p2⊥〉+ z2〈k2⊥〉 , 〈P 2

T 〉S = 〈p2⊥〉+ z2〈k2⊥〉S . (2.8)

We will examine different possible scenarios: our starting point is to set αq = 0 and

〈k2⊥〉S = constant in eq. (2.1) and to consider only the contributions from u and d flavours.

This provides a reference best fit that will be used as a baseline for comparison. Then, we

analyze the data with different modifications of the above reference parametrization, each

of them properly devised to address different aspects regarding the sensitivity of the data

to some chosen features.

Specifically, we will investigate to which extent the present experimental data support

the flavour separation of the Sivers function and, in turn, how we can estimate its uncer-

tainties in the low-x region, where the sea contributions are expected to become dominant.

Moreover we will explore the sensitivity of the experimental measurements to Q2 and x

correlations, to Q2 dependence and, possibly, to TMD-evolution effects.

3 Extracting information from the Sivers asymmetry in SIDIS

3.1 A closer look to data

Our fits will include all experimental data presently available on the Sivers asymmetries in

SIDIS processes: from the HERMES Collaboration for π±, π0 and K+ SIDIS production

off a proton target [28], from the COMPASS Collaboration for π±, K0 and K+ on LiD [29]

and for h± on NH3 targets [9] with z > 0.2, which correspond to a very recent reanalysis

of COMPASS 2010 measurements using a novel Q2 binning, and finally from JLab data

on 3He target [30]. We will not include the K− data, as they are mainly driven by the sea

contributions of the Sivers function; as explained below in this analysis sea and valence

will not be separated.

For all experiments, these data are provided as functions of x, PT and z kinematic

variables, with the exception of JLab data which provides only x dependent asymmetries.

We will not include the z-distributions, as in our model the z dependence of the asymmetries

is essentially fixed by the FFs, and it has essentially no sensitivity to our free parameters.

In order to estimate the uncertainties in our extractions, we carefully explore the parameter
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space and consider a 2σ confidence level (C.L.), corresponding to a coverage probability

of 95.4%. We then consistently accept parameter configurations that render a value of χ2

in the range [χ2
min, χ

2
min + ∆χ2]. Note that the value of ∆χ2 depends on the number of

parameters considered and will be reported in the tables corresponding to each fit.

In order to extract the Sivers function, the first necessary ingredients are the unpo-

larized TMD PDFs and TMD FFs. This poses a big complication, since knowledge of

these TMD functions from SIDIS data is very limited. In our study, we use the Gaussian

functional forms of eqs. (2.3) and (2.4) for the unpolarized TMDs, with the minimal pa-

rameters obtained in [12], where HERMES and COMPASS multiplicities were analyzed

and fitted within the same scheme adopted here. There, it was found that COMPASS and

HERMES multiplicities could be well reproduced by a simple Gaussian model, like that

of eq. (2.7), using only two free parameters 〈k2⊥〉 and 〈p2⊥〉, i.e. the widths of the TMD

PDF and the TMD FF, respectively. We stress that in ref. [12] data sets from the two

experiments had to be fitted separately and no simultaneous extraction was possible. In

fact, it is likely that a simultaneous extraction can only be achieved by fully accounting for

the highly non-trivial dynamics encoded in TMD-evolution equations, and properly deal-

ing with the delicate interplay between perturbative and non-perturbative regimes. This

is indeed a topic of ongoing research [15, 16, 31–33]. For our current purposes all what is

needed is that we consistently use the results of ref. [12] for each individual experiment.

Furthermore, we use the unpolarized widths from the HERMES extraction for the JLab

Sivers asymmetries, since these two experiments were shown to be compatible in ref. [12].

In order to illustrate this last point, we performed a simple test, where we evaluated the

effects of using different Gaussian widths for the computation of unpolarized HERMES and

COMPASS cross sections, i.e. our asymmetry denominators. We compared two hypothe-

ses: i) using the same unpolarized widths for both HERMES and COMPASS asymmetries

(namely the widths extracted from HERMES), ii) using different unpolarized widths cor-

responding to each experiment. In each case, we performed three fits on π+ production

from a proton target, considering only the u contributions (all other flavours being set to

zero): HERMES only, COMPASS only, HERMES+COMPASS simultaneously. Results

are shown in figure 1, where scatter plots for the parameter space are displayed, at 2σ

C.L. The left panel shows that choosing the same unpolarized widths for the HERMES

and COMPASS data sets results in fits that populate different regions of the parameter

space (red and blue areas). In fact, the almost completely disjoint sets signal some ten-

sion. As a consequence, the combined fit (black area), although still giving a good value

of the χ2, will have to compromise, rendering values of the normalization parameter Nu

which end up being “half way” between the red and the blue regions. In contrast, the

regions in the parameter space explored in the right panel all overlap, visibly reducing the

tension. This supports our choice to use the appropriate unpolarized Gaussian widths for

each experimental set in our analysis.

This preliminary investigation illustrates how having a good knowledge of the unpolar-

ized TMD distribution and fragmentation functions is of crucial importance for the analysis

and extraction of any polarized observables. In this particular case, the fact that two dif-

ferent experimental data sets seem to point to different unpolarized Gaussian widths could
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Figure 1. Compatibility tests on π+ production from a proton target using only the u-contribution

(all others flavours being set to zero) of the Sivers function, as described in the text. In each panel,

we show the scatter plot of the allowed values of βu and Nu, corresponding to a 2σ C.L., for three

cases: HERMES data (red), COMPASS data (blue), HERMES+COMPASS(black). Left panel:

same unpolarized widths (〈k2⊥〉 = 0.57GeV2 and 〈p2⊥〉 = 0.12GeV2 as obtained from HERMES

multiplicities). Right panel: different unpolarized widths for each experiment (〈k2⊥〉 = 0.57GeV2

and 〈p2⊥〉 = 0.12GeV2 for HERMES data, 〈k2⊥〉 = 0.60GeV2 and 〈p2⊥〉 = 0.20GeV2 for COM-

PASS data).

be attributed to many different origins; possibly, a signal of TMD evolution effects. We

will not get into this here, but clearly this is an issue which deserves further investigation.

3.2 Reference fit

The baseline of our analysis is given by eq. (2.1), in which we set αu = αd = 0, so that the

first moment of the Sivers function simply reduces to

∆Nf
(1)

q/p↑
(x) = Nq(1− x)βq . (3.1)

Furthermore, we assume the width of the Sivers function, 〈k2⊥〉S , to be independent of other

kinematic variables and of flavour. This introduces only one extra free parameter.

For all of the cases considered in this article, we will not attempt a flavour separation

of sea and valence contributions. In fact, we have tested different hypotheses regarding

the flavour content of F
sin(φh−φS)
UT ; our results are shown in table 1, where the left column

indicates which flavour component has been included in each fit (all other components

being set to zero). As it can be seen in the upper panel of table 1, the u flavour Sivers

function represents the leading contribution to the asymmetries. The total χ2 improves

significantly if one more flavour is added to the fit, as shown on the lower panel of table 1.

Any further addition of different flavour contributions will not improve the quality of the

fit, making convergence to the minimum more cumbersome and exposing us to the risk of

over-fitting. For our analysis, we use the configuration that renders the smallest minimal

χ2, i.e. we directly parametrize the total u and d flavours as follows:

∆Nfu/p↑ = ∆Nfuv/p↑ +∆Nfū/p↑ = 4Nu(1− x)βu
Mp

〈k2⊥〉S
k⊥

e−k2
⊥
/〈k2

⊥
〉S

π〈k2⊥〉S
, (3.2)

∆Nfd/p↑ = ∆Nfdv/p↑ +∆Nfd̄/p↑ = 4Nd(1− x)βd
Mp

〈k2⊥〉S
k⊥

e−k2
⊥
/〈k2

⊥
〉S

π〈k2⊥〉S
. (3.3)
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n. of data points = 220

One flavour fits (3 parameters)

χ2
tot χ2

dof

u 408 1.88

d 914 4.21

Two flavour fits (5 parameters)

χ2
tot χ2

dof

u, ū 266 1.24

u, d̄ 228 1.06

u, d 213 0.99

Table 1. Comparison of minimal χ2 values obtained by fitting the Sivers asymmetries according

to the model of eqs. (2.1) to (2.8), under different hypotheses for the flavour content of F
sin(φh−φS)
UT .

The left column indicates the flavour contribution considered in each fit (all others being set to

zero). The top panel shows how the u flavour contribution dominates the effects visible in the

data. The bottom panel shows the improvement on the description of the data when including one

more flavour to the leading u contribution. We highlight the chosen configuration for our study: u

and d contributions only. Note that adding more parameters to disentangle the sea, would put the

analysis procedure at risk of over-fitting.

This results in a fit with a total of 5 free parameters, Nu, Nd, βu, βd and 〈k2⊥〉S . We call

this “reference fit”. The role of the sea contributions, which are expected to be relevant at

small x where the behaviour of the Sivers function is mainly driven by the αq parameters,

will be addressed in section 3.3.

As explained above, the k⊥ widths of the unpolarized TMDs are fixed according to the

values extracted in ref. [12], to make sure that the unpolarized cross sections appearing in

the asymmetry denominator reproduce well the measured multiplicities for both HERMES

and COMPASS experiments. In this first, simple fit no Q2 evolution is applied to the Sivers

function, and the corresponding plots are labeled by “no-evolution”; the extracted function

will therefore represent the Sivers function at the average Q2 scale of the experimental data.

Table 2 shows the values of the free parameters as determined by our best fit, together

with the minimal values of the χ2 and the total number of data points included. The errors

reported in table 2 are MINUIT [34] errors, corresponding to 2σ C.L., i.e. to a coverage

probability of 95.4%.

The top panels of figure 2 show the χ2
tot profiles as functions of the parameters Nu

and Nd. In these two plots the correlations between the parameters Nu and Nd are colour-

coded: yellow corresponds to lowest, green to intermediate and purple to highest allowed

values of Nu (top left panel) and Nd (top right panel). It is evident that these profiles

are quite well approximated by a quadratic function, confirming that the Hessian method

adopted to evaluate the errors on the parameters is reliable. In fact, the errors reported

in table 2 are well in agreement with the uncertainties on the free parameters that can

easily be inferred by looking at the scatter plots. The lower panels of figure 2 represent

– 7 –
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Figure 2. Scatter plots representing the parameter space of the reference best fit. The shaded

regions correspond to our estimate of 2σ C.L. error band.

Reference fit — no evolution

χ2
tot = 212.8 n. of points = 220

χ2
dof = 0.99 n. of free parameters = 5

∆χ2 = 11.3

HERMES 〈k2⊥〉 = 0.57GeV2 〈p2⊥〉 = 0.12GeV2

COMPASS 〈k2⊥〉 = 0.60GeV2 〈p2⊥〉 = 0.20GeV2

Nu = 0.40± 0.09 βu = 5.43± 1.59

Nd = −0.63± 0.23 βd = 6.45± 3.64

〈k2⊥〉S = 0.30± 0.15GeV2

Table 2. Best fit parameters and χ2 values for the reference fit. The parameter errors correspond to

2σ C.L. Notice that these errors are well in agreement with the uncertainties on the free parameters

shown in the scatter plots of figure 2.
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Figure 3. Allowed values for the width of the Sivers function 〈k2⊥〉S as a function of χ2
tot. The

region displayed corresponds to our estimate of 2σ C.L. error band.

the correlations between the parameters Nu, βu (lower left) and Nd, βd (lower right). Here

it is the corresponding χ2
tot which is colour-coded: yellow corresponds to the lowest χ2

tot

values, green to intermediate and purple to the highest χ2
tot values. As expected from a fit

consistent with a Hessian approximation, the correlations among parameters cover regions

of reasonably regular, ellipsoidal shapes. Figure 3 shows the χ2
tot profile of the Sivers k⊥

width, 〈k2⊥〉S , and its correlation with Nu (color coded). Also in this case the uncertainties

indicated by the scatter plots of the parameter space are perfectly consistent with the errors

estimated by adopting the Hessian approximation, reported in table 2.

Plots showing the u and d Sivers functions and their estimated uncertainty bands, as

extracted in this fit will be shown below. They will be extensively discussed in section 3.3.

The reference fit, with 5 free parameters, is able to reproduce all the existing SIDIS

experimental measurements. Moreover, it provides a successful extraction of the Sivers

function as well as a reliable estimate of the uncertainties, over the kinematic region covered

by the bulk of experimental data (i.e. approximately 0.03 < x < 0.3). Below this region,

where only very few data points are present, the error bands from the reference fit are

at risk of being artificially small. In section 3.3, we will consider the case where the α

parameters in eq. (2.1), which regulate the low-x behaviour of the Sivers function, may be

different from zero. As we will discuss, this provides error bands that better reflect the

amount of information which can be inferred from data.

3.3 Low-x uncertainties

Starting from the reference fit described above, which represents the basis for all further

studies presented in this paper, we now move on to explore in more detail the low-x kine-

matic region. To do this, we perform a different fit in which we allow our parametrization

to become more flexible at small x by including two extra parameters, αu and αd, in the

following way

∆Nf
(1)

q/p↑
(x) = Nqx

αq(1− x)βq . (3.4)

This best fit will be referred to as the “α-fit”. Table 3 shows the χ2 and the values of

the parameters obtained in this case. As it is immediately evident, the value of χ2
dof is

– 9 –
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α fit — no evolution

χ2
tot = 211.5 n. of points = 220

χ2
dof = 0.99 n. of free parameters = 7

∆χ2 = 14.3

HERMES 〈k2⊥〉 = 0.57GeV2 〈p2⊥〉 = 0.12GeV2

COMPASS 〈k2⊥〉 = 0.60GeV2 〈p2⊥〉 = 0.20GeV2

Nu = 0.40± 0.09 βu = 5.93± 3.86 αu = 0.073± 0.46

Nd = −0.63± 0.23 βd = 5.71± 7.43 αd = −0.075± 0.83

〈k2⊥〉S = 0.30± 0.15GeV2

Table 3. Best fit parameters and χ2 values corresponding to the α-fit. Notice that, despite the

presence of two extra parameters w.r.t. the reference fit presented in table 2, the value of χ2
tot remains

practically unchanged. However, the uncertainty on the free parameters increases considerably. This

generates much larger uncertainty bands in the low-x region, as shown in figure 5.

unchanged, therefore the overall quality of the fit does not improve. Moreover, the central

values of the free parameters are extremely close to those obtained in the reference fit.

This suggests that the experimental data currently used are not sensitive to the particular

choice of value for αu and αd. Consequently, further constraining the low-x behaviour of

the Sivers function seems at the moment unlikely.

One can notice, however, a sizable increase of the parameter errors. This has an effect

on the uncertainty bands of the extracted Sivers function, as shown in figure 5, where

the light-blue bands correspond to the reference fit, while the wider, gray bands refer to

the “α-fit”.

The modifications on the parameter space induced by adding the two α parameters is

shown in detail in figure 4. The top panels show the χ2
tot profiles as functions of the pa-

rameters Nu (top-left) and Nd (top-right). Contrary to the reference fit, these profiles are

very far from resembling quadratic functions, and therefore the Hessian method adopted

to evaluate the errors on the parameters cannot be trusted. The MINUIT errors reported

in table 2, in fact, largely underestimate the uncertainties on the free parameter determi-

nation: by looking at the plots in figure 4, one can easily see that, to 2σ C.L., Nu can go

as low as 0.1 and as large as 4.0, over a very asymmetric range. Similarly for Nd, which

can span over an even larger range, from 0 to −45, on an extremely asymmetric range. A

clear indication, however, is given on the sign: Nu is positive and Nd is negative, signaling

a preference of the data for a positive u and a negative d Sivers function.

In the upper panels of figure 4 the correlations (Nu, αu) and (Nd, αd) are colour-

coded: the very evident structure in bands of the same colour points to extremely strong

correlations. This becomes even more explicit in the bottom panels of figure 4, where we

show Nu vs. αu (bottom left) and Nd vs. αd (bottom right). In these scatter plots, the

expected ellipsoidal shapes are replaced by very thin and stretched distributions, which

indicate that an extremely large number of equally good fits can be obtained provided N ,

– 10 –



J
H
E
P
0
7
(
2
0
1
8
)
1
4
8

Figure 4. Parameter space scatter plots for the α-fit, which includes the αu and αd free param-

eters. The regions displayed correspond to our estimate of 2σ C.L. error band. Notice that the

uncertainties on the parameters which can be inferred from the scatter plots are much larger than

the errors reported in table 3.

α (and β) are in the appropriate ratio among each other. In other words, even very large

values of the α and β parameters can result in an acceptable χ2, provided the corresponding

N parameter is adequately large in size. Conversely, low values of α and β are also equally

appropriate if N is small enough. The strong correlations introduced by α, in fact, make

it cumbersome to find a good fit by a simple minimization procedure.

Nonetheless, the study of the parameter space including the α parameters allows for

a more realistic estimate of the uncertainty bands in the small-x region. This is shown in

figure 5, where the gray shaded areas represent the uncertainty bands corresponding to the

α-fit, while the light-blue bands represent the uncertainties corresponding to the reference

best fit. Clearly, the two fits have very similar bands over the region 0.03 < x < 0.3,

while the α-fit uncertainties grow larger outside this range, where experimental data are

less dense. Notice that the Sivers width, 〈k2⊥〉S , is not significantly affected by this strong

broadening of the uncertainty bands: its central value remains the same (see tables 2

and 3), while error bands show no significant change, as it is clearly evident in the bottom

panels of figure 5, where the u and d Sivers functions are plotted vs. k⊥ at x = 0.1.

Figure 6 shows the results obtained from this reference fit compared to older data,

from HERMES-proton (top panels) and COMPASS-deuterium (middle panels), which have

historically been present in our previous fits, together with JLab-neutron measurements

(bottom panels).
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moments of the Sivers function, eqs. (3.1) and (3.4), are shown versus x. Middle panel: relative

uncertainties, given by the ratio between the upper/lower border of the uncertainty bands and the

best-fit curve for the reference fit. Lower panel: the Sivers functions, eqs. (2.1), is shown versus

k⊥, at x = 0.1. Here we have no Q2 dependence. The shaded bands correspond to our estimate of

2σ C.L. In all panels, the light blue bands correspond to the uncertainties of the reference fit (only

Nu(d) and βu(d) free parameters), while the large grey bands correspond to the uncertainties for the

fit which includes also the αu and αd parameters.

The bands corresponding to the reference best fit are shown in light-blue. The enlarge-

ment of the gray bands for the α-fit provides a more sensible estimate of the uncertainties at

low x. In fact, as seen in the central panels of figure 6, the agreement of the light blue bands

with the deuteron data seem to deteriorate at small x, while the gray bands corresponding

to the α-fit improve the compatibility with these experimental measurements. Note that,

since separating valence and sea contributions is not possible with the current data, the

effect on the uncertainties introduced by allowing α 6= 0 also reflects our ignorance about

the sea contributions.

This supports the need to learn more about the Sivers function in the low-x region

and, in turn, about its sea contributions. In fact, this is one of the main tasks of the
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Figure 6. The results obtained from the reference fit and the α-fit are compared to the HERMES

measurements of the SIDIS Sivers asymmetry for π± production off a proton target [28] (upper

panels), to the COMPASS measurements of the SIDIS Sivers asymmetry on a LiD target [29] for

π± production (middle panels), and to the JLab data for π± production on a 3He target [30] (bottom

panel). Here we show the x dependence only. The shaded region corresponds to our estimate of

2σ C.L. error band. The light-blue bands correspond to the uncertainties of the reference fit (only

Nu(d) and βu(d) free parameters), while the (larger) gray bands correspond to the uncertainties of

the α-fit, which includes also the αu(d) parameters.
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future Electron-Ion-Collider (EIC) [36], which is planned to be built in the next few years

in the U.S.A. Besides the clear benefits of an EIC to resolve the sea of the Sivers func-

tion, we stress the importance of the deuteron target measurements as those performed by

COMPASS [29]. Recall that the α-fit uncertainties only have a significant impact in the

description of these data in the low-x regime, where the reference fit delivered uncomfort-

ably small uncertainties. Thus, an improvement on the statistics for these measurements

may prove very useful in constraining the low-x regime, rendering information about the

sea distributions (see section 4).

In figure 7 we compare the results obtained from the reference fit to the newest COM-

PASS data on the SIDIS Sivers asymmetry on a NH3 target [9], for h+ production, binned

in four values of Q2 (the average value of Q2 corresponding to the bin is indicated on each

panel). Only the x and the PT dependences are shown, as the z dependences are not in-

cluded in the fit. However, we have checked that all z-distributions are always successfully

reproduced. The shaded regions correspond to our estimate of 95.4% C.L. error band.

Finally, we compare the results obtained from our fit which uses the newly re-ana-

lyzed data by the COMPASS Collaboration [9] to those obtained using the older set of

COMPASS-proton data [35]. These newly released data sets belong to the same measure-

ments (2010 run), but they differ in the way they are binned. In fact, in their more recent

analysis the data are binned in x and PT as well as in four bins of Q2, the same bins in

which the Drell-Yan analysis is being carried out. As shown in figure 8, some reduction of

the uncertainty bands is obtained when using the COMPASS-2017 data set, indicating that

an increased degree of information is reached by applying the new binning. An important

feature of the new binning is the separation of different ranges of Q2. This, for the first

time, allows to explore the possibility of scale dependence in the Sivers function. We will

address this in section 5.

3.4 Large-x uncertainties

The study of large-x uncertainties is indeed very delicate. At present, as shown in this anal-

ysis, the Sivers function is largely unconstrained in the range from x ∼ 0.3 up to x = 1.0.

In this region the Sivers function should approach zero with the only theoretical con-

straint given by the positivity bound, |∆Nfq/p↑ | ≤ 2fq/p, which should hold for any flavour q

and at every value of x and k⊥. Notice, however, that also the integrated unpolarized PDFs

are largely undetermined at large-x, undermining the significance of any phenomenological

application of the positivity bound itself.

To make the large-x uncertainties more visible, in the middle panel of figure 5, we

show the bands corresponding to the relative uncertainties, i.e. the ratios between the

upper/lower border of the uncertainty bands and the best-fit curve for the reference fit, at

each value of x and for any given flavour.

In a similar way, in figure 9, we show the ratio |∆Nf
(1)

d/p↑
|/|∆Nf

(1)

u/p↑
|. For comparison,

we also display the central line of the previous extraction of the Sivers functions from ref. [7].

As expected, in the range 0.03 < x < 0.3, the agreement between the two extractions is

acceptable. As one goes outside of this region, however, the two extractions exhibit more

distinct behaviours. While this does not compromise compatibility at large x, as both
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Figure 7. The results obtained from the reference fit and the α-fit are compared to the COMPASS

Collaboration measurements of the SIDIS Sivers asymmetry on a NH3 target [9] for h+ production.

We show the x and PT dependences, the z depedences are not included in the fit. The shaded

regions correspond to our estimate of 2σ C.L. error band. The light-blue bands correspond to the

uncertainties of the reference fit (only Nu(d) and βu(d) free parameters), while the (larger) gray

bands correspond to the uncertainties of the α-fit which includes also the αu(d) parameters.
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Figure 8. Uncertainties on the first moments of the Sivers distribution for u = uv + ū (left panel)

and d = dv + d̄ (right panel). The shaded bands correspond to our estimate of 2σ C.L. error for

α-fit case. In both panels, the gray bands correspond to the fit which includes the new COMPASS-

2017 data [9] for h+ and h− production off NH3 target, while the meshed areas correspond to the

uncertainties obtained when the COMPASS-2015 data from the older analysis [35] are included.

The lower panels show the relative errors, given by the ratio between the upper/lower border of the

uncertainty bands and the best-fit curve for the reference fit.

Figure 9. Flavour ratio for the first moments of the Sivers TMD distributions, |∆Nf
(1)

d/p↑ |/

|∆Nf
(1)

u/p↑ |, as extracted in the reference fit (α = 0) (light-blue bands) and in the α-fit (gray bands).

The solid line shows the central line for the ratio, according to our reference fit. For comparison, we

include the corresponding central line according to the extraction of ref. [7]. The low-x and large-x

regions, where experimental information is scarse, are highlighted in purple.

central lines fall within the error bands, differences at low x are more dramatic. This

should serve as a warning that model dependence has an important effect outside the

bounds of experimental information.

Future measurements at JLab12 [37] will be able to shed some light on the large-x

kinematic region. These measurements will give a crucial contribution in the extraction of

the unpolarized TMD parton distribution functions as well as the Sivers functions in the

large-x range, and will give us a much clearer signature for the flavour separation of the

valence contributions.
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Figure 10. First moment of the extracted Sivers distributions for u = uv + ū (left panel) and

d = dv + d̄ (right panel). The shaded bands correspond to our estimate of 2σ C.L. error. The

light-blue bands show the uncertainties corresponding to our reference fit (see table 2). The red

(meshed) bands correspond to the uncertainties estimated by using the same model, with the

projected experimetal errors of the future COMPASS run on deuteron target [19].

4 Comments on the precision of deuteron target data

As mentioned above, the d Sivers function is poorly determined by the existing Sivers

data, in spite of the fact that it should be constrained by the identification of the final

state hadrons. Possibly this can be traced back to the large u-dominance of SIDIS on

proton targets.

The COMPASS collaboration has recently proposed a new run of their SIDIS mea-

surements on a deuteron target, with increased statistics and precision [19]. It is therefore

interesting to evaluate the impact of such a measurement on the extraction of the first

moment of the u and d Sivers function, using the projected errors for the proposed 2021

deuteron run, as reported in ref. [19].

Our results are shown in figure 10. The 2σ error bands marking the 95.45% C.L. for

the first moments of the u and d Sivers functions, obtained with the reference fit (here

labeled by “current”) are shown in light-blue. The bands obtained when adding to the

data set the projected errors on the asymmetries of the new deuteron run are shown in

red, and labeled “projected”. The plots for the first moments (bottom panels) show the

relative uncertainty, i.e. the ratio between the upper/lower border of the uncertainty bands

and the best-fit curve for the reference fit. As expected, the new deuteron run will have

a small impact on the u-quark first moment of the Sivers function. On the contrary, the

reduction in the error band for the first moment of the Sivers function for the d-quark is

considerable, and is about a factor 2 for x < 0.1.

This new COMPASS run will therefore lead to a remarkable improvement of our knowl-

edge on the other flavour contributions of the Sivers function, besides the already well

constrained u.

5 Signals of scale dependence

In all the results presented above, no Q2 dependence of the Sivers function was considered.

An important aspect of the new COMPASS binning is that it separates different ranges of
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Q2, which poses the question of whether one can distinguish different assumptions about

scale dependence. To test how this scale dependence can affect our analysis, we will consider

two different approaches which will serve us as comparisons: on one side, we will adopt a

collinear, twist-3 evolution scheme based on refs. [38–41]; on the other side, we will apply

to the Sivers function a TMD-like Q2 evolution similar to that described in ref. [18].

In the collinear higher-twist evolution framework, the correlation between spin and

transverse momentum is included into the higher-twist collinear parton distributions or

fragmentation functions. These functions have no probabilistic interpretation: they are

generated as quantum interferences between a collinear active quark state in the scattering

amplitude and a collinear quark-gluon composite state in its complex conjugate amplitude.

There are no intrinsic k⊥ in this case, which are integrated over, and the evolution in Q2

occurs only through x. In other words, twist-3 PDFs and FFs evolve in Q2 by changing

shape in x.

In the TMD factorization approach, spin asymmetries are generated by spin and trans-

verse momentum correlations between the identified hadron and the active parton. This

correlations are embedded in the TMD parton distribution or fragmentation functions,

which can be interpreted as probability densities. Here the Q2 evolution affects the x

dependence as well as the shape in k⊥.

Although they are defined in different contexts, TMD and collinear quark-gluon cor-

relation functions are closely related to each other. In particular, the first k⊥-moment

of the Sivers function is related to the collinear, twist-3 quark-gluon correlation function

Tq,F (x, x) [41]. As the evolution equations for Tq,F (x, x) are known, we can adopt them

in our study to render the Q2 dependence of the Sivers function, from the initial scale

Q2
0 = 1.2GeV2 (which coincides with the lowest Q2 of the experimental data included in

our best fit) to the Q2 corresponding to each specific data point at which the asymmetry

is evaluated. To implement the collinear twist-3 evolution we use the HOPPET code [42],

appropriately modified to include the kernels corresponding to the Sivers function [43].

Notice that while we do not include off diagonal terms in the twist-3 evolution case, this

approximation is enough for our purposes: we will test whether the existing data can dis-

tinguish between an approach with no evolution (reference fit) and another where some

scale dependence appears in the first moment of the Sivers function.

In figure 11 the u and d Sivers first moments extracted in the reference best fit

with no Q2 evolution (solid, black lines) are compared to those obtained by applying

the collinear, twist-3 evolution described above (blue lines). Three values of Q2 are shown:

Q2 = 1.2GeV2 (long-dashed) and Q2 = 40GeV2 (dotted), the lowest and largest Q2 values

of the COMPASS measurements and Q2 = 3.5GeV2 (short-dashed), which is approxi-

mately the mean value of the full data sample. The corresponding values of the χ2 and

best fit parameters are presented in table 4.

The Sivers functions extracted in the reference fit are very similar to those obtained

using the twist-3 evolution scheme at the experiment average value, Q2 = 3.5 GeV2; in

fact, they are very similar in the region where data constraints are stronger, 0.03 < x < 0.3.

Instead, they grow progressively apart when Q2 is varied to reach its lowest and largest

limits. For the u flavour, the Q2 variation of the first moment due to the collinear twist-3
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Figure 11. Extracted first moments of the Sivers function for u = uv+ū (left panel) and d = dv+ d̄

(right panel). The results corresponding to the reference fit with no Q2 evolution (solid, black line)

are compared to those obtained by applying a collinear twist-3 evolution (blue lines), as described

in the text, for three values of Q2: 1.2GeV2 (long-dashed), 3.5GeV2 (short-dashed) and 40GeV2

(dotted). The bands correspond to the reference fit with no Q2 evolution.

Collinear twist-3 evolution

χ2
tot = 201.5 n. of points = 220

χ2
dof = 0.94 n. of free parameters = 5

∆χ2 = 11.3

HERMES 〈k2⊥〉 = 0.57GeV2 〈p2⊥〉 = 0.12GeV2

COMPASS 〈k2⊥〉 = 0.60GeV2 〈p2⊥〉 = 0.20GeV2

Nu = 0.39± 0.08 βu = 3.55± 1.26

Nd = −0.65± 0.27 βd = 4.77± 3.41

〈k2⊥〉S = 0.33± 0.14GeV2

Table 4. Best fit parameters and χ2 values for the collinear twist-3 evolution case. The parameter

errors correspond to 2σ C.L. Notice the reduced value of χ2
tot w.r.t. that of the reference fit in

table 2.

evolution is actually larger than the uncertainty band corresponding to the no-evolution

case. This gives a positive message about the precision of the data, in particular about the

new binning of COMPASS asymmetries: signals of collinear evolution could possibly be

observed in the experimental data. This does not happen for the d flavour which, as we have

already pointed out, is affected by a larger uncertainty. The right panel of figure 11 clearly

shows that the error band corresponding to ∆Nf
(1)

d/p↑
is of the same size (or even larger at

small x) of the variation induced by Q2 evolution. Notice that in this case the whole Q2

scaling occurs only through x, leaving the k⊥ part of the Sivers function unchanged.

Finally we turn to the discussion on TMD evolution effects. To extract the Sivers

function within a full TMD-scheme, one needs to exploit an “input function”, i.e. the value

of the Sivers function at the initial Q2 scale. Then, a TMD factorization scheme as that

discussed in ref. [10], and successively implemented in refs. [18, 44, 45], can be applied to

– 19 –



J
H
E
P
0
7
(
2
0
1
8
)
1
4
8

Figure 12. Scatter plots showing the correlation between the g1 and g2 free parameters of eq. (5.1).

The χ2
tot corresponding to this fit is colour-coded: yellow corresponds to its lowest values while red

and purple to the highest accepted values.

compute the Sivers function at any larger value of Q2. One should keep in mind that,

within this approach, TMD parton densities change their shape in k⊥ as Q2 varies: in

particular, their k⊥-distributions broaden and dilute as Q2 increases. While the TMDs

themselves (and their first moments) experience variations in their x-distributions too as

Q2 increases, in the azimuthal asymmetries these effects are expected to roughly cancel

in the ratio. One complication of this type of analysis is the limited knowledge of the

unpolarized functions at the kinematics of the available Sivers asymmetries. In fact, recent

studies have suggested that the errors of factorization, at these kinematics, may not be

under control [15, 16, 33, 46]. This may affect all of the measurements in SIDIS.

While waiting for further studies to clarify this situation, one may ask questions re-

garding the data and assess to what extent TMD-evolution effects are visible. To address

this, we consider a modification of our model, where we allow for the width of the Sivers

function, 〈k2⊥〉S , to become a function of Q2, according to

〈k2⊥〉S = g1 + g2 ln
Q2

Q2
0

, (5.1)

where g1 and g2 are two free parameters to be determined by a best fit, and Q0 = 1GeV.

The particular choice of eq. (5.1), is intended to mimic the main feature of the scale

dependence of TMDs, the broadening of the k⊥-distribution with variations of Q2. In the

full TMD definition, this is partly regulated by the non-perturbative, universal function

gK (see, for instance, eq. (44) in [10]). While a one to one correspondence between gK and

our parameter g2 cannot be made, it serves as a proxy to study the sensitivity of the data

to TMD effects.

The values of the χ2 and of the best fit parameters obtained within this model are

presented in table 5. Notice that there is no reduction in the value of χ2
tot w.r.t. that of

the reference fit in table 2, although one extra parameter is added to the fit.

Figure 12 shows the correlation between g1 and g2 resulting from our analysis; the χ2

is colour-coded: yellow corresponds to its lowest values while red and purple to the highest

accepted values. As it is clearly indicated by this plot, both the parameters g1 and g2
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Q2-dependent 〈k2

⊥
〉S fit

χ2
tot = 212.8 n. of points = 220

χ2
dof = 0.99 n. of free parameters = 6

∆χ2 = 12.9

HERMES 〈k2⊥〉 = 0.57GeV2 〈p2⊥〉 = 0.12GeV2

COMPASS 〈k2⊥〉 = 0.60GeV2 〈p2⊥〉 = 0.20GeV2

Nu = 0.40± 0.09 βu = 5.42± 1.70

Nd = −0.63± 0.26 βd = 6.45± 3.89

〈k2⊥〉S = g1 + g2 log
(

Q2/Q2
0

)

g1 = 0.28± 0.29GeV2 g2 = 0.01± 0.20GeV2

Table 5. Best fit parameters and χ2 values for the Q2-dependent 〈k2⊥〉S case, in which our reference

model is modified according to eq. (5.1). The parameter errors correspond to 2σ C.L. Notice that

there is no reduction in the value of χ2
tot w.r.t. that of the reference fit in table 2.

are affected by a rather large uncertainty. In particular, the central value of g1 remains

quite close to that extracted in the reference fit while its error increases significantly. The

central value of g2, instead, turns out to be extremely small, but again affected by a very

large uncertainty. Also in this case the two parameters are strongly correlated, and equally

good description of the data can be obtained by using rather large and positive values of g2
provided g1 is sufficiently small. Paradoxically, even negative values of g2 are acceptable if

g1 is allowed to grow large and positive, in such a way that the combination (g1+ g2 ln
Q2

Q2

0

)

remains overall positive.

Figure 13 shows the effect of TMD evolution on the k⊥-distributions of the Sivers

functions for u and d flavours, where blue lines represent the Sivers function at a fixed

value of x = 0.1, for three different scales of the data, and the light-blue shaded bands

correspond to the uncertainties for the reference fit (no evolution). As expected, the small

best fit value of g2 renders virtually no visible effect in the Sivers function.

Notice that, as in all of our analysis, the widths of the unpolarized TMDs are allowed

to be different for each experiment, in accordance with the best description achieved within

the approach of ref. [12]. While more refinements are possible within the same gaussian

model, for instance, to include Q2 dependence as that of eq. (5.1), this is unlikely to change

the main result of this section, due to the large uncertainties on our g2 parameter. We

remark that while the differences on the unpolarized widths may be attributed to TMD-

evolution, this remains as of today an open question. It is quite possible for other effects

to play a role (see for instance refs. [16, 47, 48]). Regardless of the poor knowledge on the

unpolarized TMDs at the kinematics of the Sivers asymmetries, the central point is that

additional Q2 dependence, introduced via g2, does not render a result significantly different

from that of the reference fit.

These results suggest that in a full TMD analysis, the current Sivers asymmetries

will probably not constrain strongly the function gK . On the other hand, due the large
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Figure 13. Extracted Sivers distributions for u = uv + ū (left panel) and d = dv + d̄ (right panel).

The central line of our reference fit (solid black), is compared the Sivers function, extracted with

the modified model according to eq. (5.1), at a fixed value of x = 0.1 (blue lines), for three values of

Q2: 1.2GeV2 (long-dashed), 3.5GeV2 (short-dashed) and 40GeV2 (dotted). For comparison, we

show the error bands corresponding to the reference fit with no Q2 evolution.

uncertainties on g2, good compatibility between the Sivers asymmetries and extracted

values of gK from other observables are likely to be achieved.

6 Conclusions

In this paper we have performed a novel extraction of the Sivers function from SIDIS

asymmetry measurements. We have exploited all available SIDIS data from HERMES [28],

JLab [30] and COMPASS-deuteron [29], including the new re-analysis of the 2010 run of

the COMPASS-proton experiment [9].

The increased statistics and precision of these new sets of data, together with a finer

binning in Q2 as well as in x, has allowed a critical re-analysis of the extraction procedure

and its uncertainties. To do so we have adopted a simple and transparent parametric form

of the Sivers function, as given in eq. (2.1). The aim of this new approach is to attempt an

extraction of the Sivers TMD based, as much as possible, on the sole information provided

by experimental data. In this framework, it has also been possible to perform a very

detailed and accurate study of the parameter space, to provide a reliable estimate of the

uncertainties which affect the extracted functions, shedding light on the subtle interplay

among experimental errors, theoretical uncertainties and model-dependent constraints.

With our particular choice of parametrization, see eq. (2.1), we started by assessing

how much the measured SIDIS asymmetries could tell us about the flavour content of the

Sivers function, and on its separation into valence and sea contributions. We found that the

existing data can resolve unambiguously the total u-flavour (valence + sea) contribution,

while leaving all other flavours largely undetermined (see table 1). We associate to the total

d-flavour the additional contribution needed to describe the data, but further investigations

possibly with more precise data are necessary. From the statistical point of view, we found

that a good configuration was given by a parametric form that considered the contribution

of total u and d flavours of the Sivers function, as in eqs. (3.2) and (3.3). Any attempt
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to separate valence from sea contributions, namely u from ū and d from d̄, resulted in a

decrease on the quality of the fit, due to a lack of information in the experimental data

presently available.

For this analysis we have performed two best fits: the first one was a very basic fit,

which we referred to as the “reference fit”, based on the most simple parametric form which

could reproduce the main features of the Sivers function; the second fit included two extra

free parameters, to make the parametrization more flexible in the small-x region, in such

a way that possible sea contributions to the u and d flavours could be accounted for, at

least partially. Although we could not separate sea from valence contributions within the

Sivers first moments, this approach allowed us to obtain a much more realistic estimate

of the uncertainties affecting the extracted functions at small values of x. Issues related

to the large-x regime, where uncertainties becomes extremely large due to the absence of

experimental data, were also discussed. Drawing well-founded conclusions on the low-x and

large-x kinematic regimes will only become possible when new experimental information

will become available from dedicated experiments which are presently being planned, like

the EIC [36], or have just started to run, like the newly upgraded JLab12 [37].

A considerable part of our work was devoted to the study of scale dependence effects.

We considered and compared 3 different scenarios: no-evolution, collinear twist-3 evolution

and TMD-evolution.

Collinear twist-3 evolution, which proceeds only through x while not affecting the k⊥
dependence of the Sivers function, was found to be quite fast. In fact, when spanning

the range of 〈Q2〉 values covered by the experimental data (1.2GeV2 < 〈Q2〉 < 40GeV2)

the extracted Sivers function shows variations that are larger than the error band for the

reference fit. This suggests that the data can help to determine some scale dependence on

the first moment of the Sivers function. These results justify a cautious optimism in the

possibility of observing this kind of scale dependence in the SIDIS asymmetry experimental

measurements.

Signals of TMD evolution, which instead affects mostly the k⊥ dependence of the Sivers

function (effects involving the x-dependence are expected to roughly cancel in the asym-

metry ratios) turned out to be more elusive. Our attempts to estimate them resulted in a

rather poor determination of the g2 parameter, which regulates the logarithmic variation

of the k⊥ width with Q2, and is intended to mimic the behaviour of the non-perturbative

function gK defined in the full TMD approach of [10]. Our best fit delivered a very small

value of g2, with a large uncertainty. This does not mean that TMD evolution is slow. In

fact, within the large uncertainty bands corresponding to this extraction, there is room for

quite a large variety of different Q2 behaviours. Unfortunately, the available experimental

information is presently too limited to determine g2 with a satisfactory precision. While

further constraints from a full TMD analysis may help to ease this uncertainty, it is unlikely

that, for instance, gK can be constrained via the Sivers asymmetries. However, compati-

bility with information on gK from some other data sets, such as SIDIS multiplicities, can

probably be easily accomplished, as evidenced by our large uncertainties in g2.

Finally, we comment on the role of the unpolarized TMDs in the extraction of the Sivers

function. As shown in figure 1, different assumptions about these functions can alter results
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significantly. Differently from previous analyses, our choice for the unpolarized functions

is based on an approach that better describes most of the available unpolarized SIDIS

data. This consideration actually releases the tension on the model of the Sivers function,

otherwise encountered when trying to simultaneously fit COMPASS and HERMES data.

Among other complications this issue may raise, we realized that this kind of tension can

reduce the statistical significance of the analysis, since it increases the minimal χ2 values.

This can, for instance, lead to inadvertently over-fit the data by adding more parameters

in order to reduce an artificially large χ2. This type of complications make it evident how

critical it is to obtain a better knowledge of the unpolarized functions, not only for this

but also for any other SIDIS asymmetries.

In conclusion, this type of analysis is an essential step which, after the first decade

of pioneering studies, may lead us toward a new phase of high precision TMD physics.

Our bottom-up approach to extract the Sivers function, while carefully keeping track of

error estimation and of the sensitivity of the data to different TMD effects, may assume

a relevant role as new measurements, with ever increasing statistics and precision, are

becoming available from dedicated experiments.
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