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Abstract

Background: As a result of changes in climatic conditions and greater resistance to insecticides, many regions

across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in

particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of

the population are needed to adequately plan targeted preventive intervention. We propose a methodology for

the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban

environment of Colombia.

Methods: Based on a set of socioeconomic and demographic indicators derived from census data and ancillary

geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of

current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The

results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is

proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community.

Results: The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially.

The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56)

across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both

approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of

the city. These are poor neighborhoods with high percentages of young (i.e., < 15 years) and illiterate residents, as

well as a high proportion of individuals being either unemployed or doing housework.

Conclusions: Both modeling approaches reveal similar outputs, indicating that in the absence of local expertise,

statistical approaches could be used, with caution. By decomposing identified vulnerability “hotspots” into their

underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and

(2) vulnerability factors that should be given priority in the context of targeted intervention strategies. The results

support decision makers to allocate resources in a manner that may reduce existing susceptibilities and strengthen

resilience, and thus help to reduce the burden of vector-borne diseases.
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Background
Severe outbreaks of vector-borne diseases (VBDs) and

their expansion pose a serious challenge to vulnerable

populations. Recent changes in climatic conditions,

greater resistance to insecticides and new public health

policies have changed the dynamics of VBDs, such as

dengue fever or malaria [1-3]. Projected changes in cli-

mate conditions [4] along with other factors, such as

population growth, urbanization, lack of sanitation, and

ineffective mosquito control are expected to result in a

geographical expansion of dengue fever in the coming

decades [5]. While malaria is still the most significant

communicable disease [2,6], dengue fever outbreaks

have recently resurfaced [7,8]. Dengue fever is a vector-

borne viral infection, transmitted among humans by the

female Aedes aegypti mosquito [9]. It is prevalent in

many tropical and sub-tropical regions across the globe

[10-15]. Urban and suburban environments in those re-

gions are particularly fragile due to rapid population

movement (e.g. massive influx of migrants, causing

unorganized urbanization) and the abundance of poten-

tial breeding sites.

In Colombia, South America, dengue fever reemerged

in the 1970s after being eradicated in the 1950s and

1960s [16]. Ever since the disease has become endemic,

presenting periodic outbreaks in 1991, 1994, 1998, 2001,

2006, and more recently in 2010. Most outbreaks have

been of serotype 1 (DENV-1) and 2 (DENV-2) [17],

however, in the last decade type 3 (DENV-3) and type 4

(DENV-4) have also been present [18]. Individuals

infected with a particular serotype develop immunity to

that type. When a serotype has not circulated for a while

the population at risk of contracting the disease in-

creases (in Colombia, this number currently equals 26

million individuals). These individuals are generally con-

fined below 1,800 meters elevation, corresponding to

nearly 80% of the total area of the country. Dengue fever

in the city of Santiago de Cali (referred to as Cali from

here on) has followed a similar temporal pattern to that

of Colombia in general [18]. Based on the City’s Health

Municipality, significant dengue outbreaks occurred in

1995 with 6,433 cases reported, in 2002 (n = 4,358), 2005

(n = 2,338) and 2010 (n = 9,600) [17-19]. In 2010, the

total number of cases was the highest in the last

25 years.

Three critical areas warranting efforts for reducing the

burden of dengue fever are (1) identifying factors re-

sponsible for its distribution, (2) conducting proactive

programs to reduce existing health vulnerabilities, and

(3) strengthening existing capacities for creating more

resilient societies on all levels (i.e., from global to local).

To be effective, these programs must be based on up-to

-date and reliable information on existing vulnerabilities

and capacities on site, which is the scope of our paper.

Vulnerability is a well-established concept within the

disaster risk reduction and the climate change adap-

tation communities [20-23]. As it helps to identify

intervention options for reducing susceptibilities and

strengthening resilience to VBDs independent of current

disease prevalence, the emerging concept of vulnerability

assessment holds promises in public health. To date,

some studies have been published on vulnerability to

VBDs in general [3,24-26], and dengue in particular

[27-31]. A handful of those have addressed vulnerability

to dengue fever in Latin America [27,28]. De Mattos

Almeida et al. [27] analyzed the link between different

risk categories and socioeconomic, demographic and

urban-infrastructure characteristics in an urban area of

Brazil, while Martinez et al. [28] used Geographic Infor-

mation Systems (GIS) for mapping vulnerability to den-

gue in the City of Havana, Cuba. However, these studies

lack a clear conceptual vulnerability framework, thus

making the comparability and reproducibility of their

results difficult. Most research integrating geospatial

analysis for monitoring the dynamics of dengue fever

has focused on developing disease surveillance systems

[32], assessing exposure [33], or measuring determinants

for dengue infection [34], while vulnerability is not inte-

grated. Strategies which solely focus on vector control,

reducing exposure or treatment of the disease may pro-

vide noticeable health benefits, but could be less effect-

ive at reducing the total health burden in the long term

than integrative approaches aimed at underlying causes

of vulnerability [31,35]. This is also supported by Jones

and Williams [36], who advocate for an integrated ap-

proach to infectious disease control.

The objective of this paper is to perform a spatial as-

sessment and evaluation of relative levels of socioeco-

nomic vulnerability between different neighborhoods in

Cali, Colombia independent of dengue fever prevalence.

In the wider context of dengue risk, the focus is on

modeling vulnerability (as a component of risk), i.e. the

predisposition of the population of Cali of being ad-

versely affected by the disease.

Based on a holistic vulnerability framework (i.e., a de-

ductive approach) we use both statistical and expert-

based approaches for the analysis and aggregation of

singular socioeconomic and demographic indicators, and

compare the outcomes using geo-statistical methods.

Materials and methods
Study area

Cali’s core urban area is located west of the Cauca River

with the Farallones Mountains acting as a natural barrier

to the further expansion of the city. Cali generally ex-

periences two rainy seasons from April to July and

September to December. Located in an elevation of ap-

proximately 1,000 meters above sea level, the city’s
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average temperature is 26°C with an annual average pre-

cipitation of 1,000 mm covering most of the metropolitan

area [37]. With an estimated population of 2.3 million,

Cali is currently the third largest city in Colombia. The

city is administratively organized in 22 communes,

which are divided into 340 neighborhoods (Figure 1).

Communes are neighborhood groupings based on

homogeneous demographic and socioeconomic charac-

teristics. Neighborhoods are stratified into six socioeco-

nomic classes based on the type of housing, urban

environment, and urban context, one being the lowest

and six the highest. Peripheral neighborhoods are char-

acterized by high-density, low-income population with

unplanned urbanization, including squatter settlements

along the river banks [38]. This has been exacerbated by

the influx of migrants displaced by the armed conflict

who can only afford to settle in areas where poor living

conditions are present. Casas et al. [39] discuss the in-

frastructure of such regions, and its impact on health

access. The poor infrastructure of these neighborhoods

may result in open-air waste water channels, while sev-

eral households make use of rainfall cisterns for drink-

ing water [14]. Thus, ample sources of stagnant water

(i.e., ideal mosquito-breeding habitats) are present

around the city. Currently, health authorities in the city

of Cali rely on a preventive dengue control strategy

where they spray bacterial larvicides to stagnant water

sources every two weeks.

Vulnerability: conceptual framework

Our study makes use of the risk and vulnerability frame-

work [40] which was developed in the European research

project MOVE (Methods for the Improvement of Vulner-

ability Assessment in Europe). While the MOVE frame-

work was elaborated in the context of natural hazard

research and adaptation to climate change, it is modified

in this paper to guide risk and vulnerability assessments in

the VBD domain. The framework provides a concep-

tualization of the complex and multi-dimensional nature

of vulnerability of a society and its population at different

spatial and temporal scales. The MOVE framework char-

acterizes vulnerability through three key factors, namely

(1) exposure – reflecting the extent to which a unit of as-

sessment falls within the geographical range of a hazard

event, (2) susceptibility (SUS) – which describes the pre-

disposition of elements at risk to suffer harm, and (3) lack

of resilience (LoR), which is determined by limitations in

terms of access to, and mobilization of the resources of a

community or social-ecological system in responding to a

particular hazard. As the MOVE framework intends to

Figure 1 Base map showing the location of Cali, Colombia.
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describe risk from a holistic perspective, different the-

matic dimensions characterize vulnerability: social, eco-

nomic, environmental, physical, cultural and institutional

[40]. In this paper, we define vulnerability as the predis-

position of a system and its population of being adversely

affected by the disease. Population vulnerability is deter-

mined by their degree of susceptibility, as well as the indi-

vidual’s (lack of) resilience. In this conceptualization of

vulnerability, the susceptibility (SUS) domain character-

izes the predisposition of being negatively affected by an

outbreak, whereas lack of resilience (LoR) includes (lack-

ing) capacities to anticipate, cope or recover from the

(burden of the) disease. In contradiction to the MOVE

framework, we excluded the exposure component from

the vulnerability analysis, as all neighborhoods have been

affected by dengue outbreaks in recent years. We ac-

knowledge exposure as part of the overall risk equation,

where risk is defined by the location and magnitude of

dengue occurrence, and the characteristics of exposed

and vulnerable population groups. Since estimating den-

gue risk is not the focus of this paper, we assess socioeco-

nomic vulnerability based on societal (i.e., the propensity

for human well-being to be affected by disruption to indi-

vidual and collective social systems and their characte-

ristics) and economic (i.e., the propensity for loss of

economic value from disruption of productive capacity)

factors. By decomposing the complex, multi-dimensional

phenomenon of vulnerability into its different compo-

nents, the purpose of the framework is to serve as a guid-

ance tool for the development of a representative set of

indicators, suitable to represent socioeconomic vulner-

ability to dengue fever for the city of Cali, Colombia.

Constructing a composite index of socioeconomic

vulnerability

In order to provide updated information on the multi-

faceted nature of prevailing vulnerabilities to dengue fever

in Cali, Colombia, a composite vulnerability index was de-

veloped. The index builds on a set of underlying socio-

economic and demographic indicators. A multi-step and

iterative workflow (Figure 2) is adopted following OECD

[41] guidelines. Relevant stages include: (1) definition of

the conceptual framework, (2) identification of a represen-

tative set of indicators based on existing literature, (3) data

transformation, (4) analysis and imputation of missing

values, (5) normalization, (6) multivariate analysis and es-

tablishment of final indicator set, (7) weighting, (8) aggre-

gation and (9) visualization, as detailed in Malczewski [42].

According to [41], there are multiple options for com-

posite indicator construction. As indicated in Figure 2, we

aim to compare the results derived by expert-based and

statistical modeling approaches for the development of a

socioeconomic vulnerability index. The main difference

between both approaches is the way in which indicator

weights are derived: While for the purely statistical ap-

proach multivariate analysis is used to derive indicator

weights, the latter are assessed making use of traditional

budget allocation for the expert-based approach (Figure 2).

The following paragraphs provide an overview of the in-

dividual stages in constructing the composite vulner-

ability index.

Drawing on the conceptual vulnerability framework,

within stage 2, a preliminary set of 23 socioeconomic in-

dicators (Table 1) was identified based on a systematic

review of literature and available datasets. The choice

Figure 2 Study design and workflow.
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and selection of indicators and in particular socioeco-

nomic factors, as outlined by Bates et al. [24,25], is a

critical process in the overall method as it refers to evi-

dence provided in scientific studies.

From literature population density, age groups, educa-

tion levels, houses with different types of water access

and the density of commercial areas have been identi-

fied as primary indicators in vulnerability assessments

[27,28,31]. Despite dengue fever being regarded as a

childhood disease [31], Guha-Sapir and Schimmer [43]

observed that dengue hemorrhagic fever is also preva-

lent in older age groups. Variations of susceptibility

levels in different age groups have also been observed in

other studies [3,28,31,44]. Differences in race/ethnicity

also have a marked impact on human susceptibility to

dengue fever [43,45,46]. Sierra et al. [45], for example,

observed that black individuals have a reduced risk for

dengue fever compared to white/Caucasian individuals.

Within the lack of resilience (LoR) domain, different

levels of employment, and therefore access to financial

resources, were identified as important coping and re-

covery indicators by Martinez et al. [28]. We included

access to health facilities as an additional indicator,

since adequate access to healthcare increases resilience

(i.e., people’s capacity to cope and to recover) and may

reduce dengue mortality [31]. We integrated building

stratification – as a proxy for poverty levels and housing

conditions – in the LoR domain, as for example poor

housing quality was found to increase susceptibility to

the disease [31]. Poor housing conditions facilitate

movement of vectors between interior and exterior, but

are also associated with a lack of other infrastructure,

increasing the overall susceptibility to dengue [31].

During the selection process, standard criteria for indi-

cator selection such as validity, sensitivity, reproducibil-

ity and scale [20,47] were accounted for. The indicators

were associated with either the SUS or the LoR domain

of vulnerability (Table 1).

The study builds on 2005 census data (i.e., the last

census year) at the neighborhood level for the city of

Cali which was made available by the municipality. It in-

tegrates ancillary geospatial datasets such as city roads,

public transportation system network, and hospitals.

The roads and public transportation network were

obtained from various municipal agencies, while hospital

addresses were acquired from the municipality and

manually geocoded. This data was further processed

using a GIS to calculate the average travel time between

the centroid of each neighborhood and the closest hos-

pital using public transportation [48] as well as the hos-

pital density (in km2) in the city, by means of kernel

density estimation. Finally, as vulnerability is a human-

centered concept [49], all neighborhoods without per-

manent population (i.e., ‘residents’) were excluded from

further analysis. This includes public parks, industrial

areas, water treatment plants, military bases, cemeteries

and academic institutions.

Within stage 3, raw data was transformed to achieve a

better comparability of neighborhoods of different size

and population or household counts [50]. For example,

the absolute number of individuals who are not able to

read or write was transformed into a relative measure.

Following the same logic, areal density measures were

computed in a GIS to transform the number of hospitals

per neighborhood into a relative measure.

Descriptive statistics were used for each indicator

within stage 4 to evaluate the degree of missing data and

potential outliers. Following guidelines published by

Groenefeld and Meeden [51], four indicators with skew-

ness > 2 and kurtosis > 3.5 (i.e., hospital density; travel

time to closest hospital; percentage of households with-

out water; percentage of households without a phone)

Table 1 Preliminary list of susceptibility (SUS) and lack of resilience (LoR) indicatorsa

Domain Indicator name Domain Indicator name

SUS Population density (km2) LoR Households without a phone (%)

SUS Density of occupied households (km2) LoR People who cannot read or write (%)

SUS Residents from age 0 to 4 (%) LoR People with no education (%)

SUS Residents from age 5 to 14 (%) LoR People – secondary/higher education level (%)

SUS Residents from age 15 to 29 (%) LoR Travel time to nearest hospital (min.)

SUS Residents of age above 30 (%) LoR Distance to nearest hospital (m)

SUS Black population (%) LoR Mean hospital density (km2)

SUS White population (%) LoR Employed population (%)

SUS People with disabilities (%) LoR Unemployed population (%)

SUS Households without water access (%) LoR People doing housework (%)

SUS Households without sewer system (%) LoR Retired people (%)

SUS Building stratification (1–6)

aBased on the outcomes of the literature survey and data availability (SUS = susceptibility; LoR = lack of resilience).
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were highlighted as statistically ‘problematic’ with regard

to potential outliers, and two indicators (i.e., building

stratification; travel time to closest hospital) revealed a

minimum percentage of missing data (< 2%). Missing

values in the building stratification layer were imputed

by integrating local expert-knowledge, while mean travel

time to the closest hospital (in minutes) was imputed

with the mean travel time of adjacent neighborhoods.

All datasets were standardized (stage 5) using linear

min-max normalization (equation 1) and z-score stan-

dardization (equation 2), according to Malczewski [42].

v′i ¼
vi−vminð Þ

vmax−vminð Þ
� signþ 0:5 � 1−signð Þ ð1Þ

Where vi refers to the actual pixel value, vmin and vmax

values derive from the original value range and sign (or

polarity) indicates whether the indicator contributes

positively or negatively to vulnerability. This results in

normalized values (vi’) in the zero to one interval. Min-

max normalization was chosen, as z-score produces

negative indicator values and thus complicates the final

aggregation of the indicators. Z-score standardization

was selected as an additional technique as it produces

output datasets with a mean of zero and a variance of

one, which is useful for subsequent statistical analysis

(e.g. principal component analysis).

v″i ¼
vi−�vð Þ

σ
� sign ð2Þ

with �v corresponding to the mean and σ the standard de-

viation of the data. Vi” is the resulting standardized value.

To detect and ultimately reduce existing multi-

collinearities in the data, the correlation coefficient (r), as

well as variance inflation factors (VIF), were calculated

within the SUS and LoR domain (stage 6). Based on

thresholds published by the OECD [41], the following in-

dicators (with r > 0.9 and/or VIF > 5) were excluded from

further analysis: population density, proportion of white

population, households without sewer system, people with

no education, distance to closest hospital and proportion

of population above 30 years.

For the statistical modeling approach, a principal com-

ponent analysis (PCA) was conducted within each of the

two domains to further test the robustness of the

selected indicators (z-scores), and to derive indicator

weights (as described below). Based on eigenvalues

greater than 1.0 (Kaiser criterion), and a scree plot which

shows a distinct break in the eigenvalues [41], the com-

ponents which explain the majority of the variance

among all neighborhoods were identified.

Weights were derived for the individual indicators

(stage 7). Two different approaches were pursued to de-

termine the weights to use (Figure 2). For the statistical

approach, weights were calculated based on PCA and

factor analysis [41]. For the expert-based approach,

expert opinions were used to derive weights. Using a

budget allocation approach, four local domain experts of

differing backgrounds (epidemiologists and public health

specialists from the Health Municipality of Cali) were

asked to distribute a total of 100 points across the indi-

vidual indicators within each of the two vulnerability do-

mains (i.e., SUS, LoR).

The normalized indicators (min-max) were aggre-

gated (stage 8) according to their respective domains

(SUS, LoR):

SUS=LoR ¼

Xn

i¼1
wiv

′

i

n
ð3Þ

where SUS/LoR refers to either of the two vulnerability

domains for a given neighborhood, n equals the number

of indicators, wi represents the weights for indicator i

(either based on statistical or expert-based weighting;

see Table 2) and vi
’ is the normalized value (min-max)

of indicator i.

The aggregation of the two domains (i.e., SUS and

LoR) into the final composite indicator of socioeconomic

vulnerability was then performed using the equation

below, while taking into account specific weights for the

two domains as detailed below.

VU ¼

Xn

j¼1
wjX j

m
ð4Þ

In the equation, VU refers to the vulnerability index

for a given neighborhood, m equals the number of do-

mains, wj represents the weights for domain j and Xj

is the normalized value (min-max) of domain j (i.e.,

SUS, LoR). For both the statistical and the expert-

based approach, a weight of 0.47 (eight SUS indicators

divided by 17 total indicators) was assigned to the

SUS domain, while the LoR domain was assigned a

weight of 0.53 (nine LoR indicators divided by 17 total

indicators). This was done to achieve a balanced struc-

ture between both domains within the composite vul-

nerability index.

To ease the interpretation of the modeling results, the

final expert-based and statistical vulnerability index

values were normalized within the zero to one range,

where zero reflects a very low and one a very high socio-

economic vulnerability to dengue fever.

Comparative assessment of modeling approaches

To assess differences in modeling outputs between the

statistical and the expert-based approach, the difference

(Δ) between both vulnerability indices was calculated

(equation 5) and visualized in a GIS. Therefore, the nor-

malized index values of the statistical approach (VUstat)
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were subtracted from the normalized values of the

expert-based approach (VUexp):

Δ ¼ VU exp−VU stat ð5Þ

To identify clusters of features with values similar in

magnitude, a cluster analysis was performed using

Anselin Local Moran’s I statistic [52] based on the differ-

ence (Δ) between both approaches.

Results
Vulnerability indicators

Following a multivariate statistical analysis (i.e., test for

multicollinearities and PCA), 15 indicators were retained

for statistical modeling. Two additional indicators (i.e.,

households without water access; secondary/higher edu-

cation), that were excluded from the statistical modeling

approach after multivariate analysis, were kept for the

final construction of the expert-based composite vulner-

ability index as they were identified as relevant by the

experts. Table 2 provides an overview of the final set of

indicators and lists some of their properties, such as

their sign, weights (including expert-based and statistical

weights) and data source. Looking at the spatial distribu-

tion of the singular raw indicators (Figure 3) provides an

initial idea how the city is characterized by the different

socioeconomic variables.

Socioeconomic vulnerability to dengue fever - comparing

modeling approaches

Figure 4a illustrates the spatial variation in socioeco-

nomic vulnerability to dengue fever based on statistical

modeling. In contrast, Figure 4b shows the same results,

for the expert-based modeling approach, where indica-

tors and weights were selected based on expert opinion.

In both maps, neighborhoods of high socioeconomic

vulnerability are displayed in red, while neighborhoods

with low values are displayed in green.

We conducted a Pearson correlation test among both

expert-based and statistical vulnerability scores, indicat-

ing a strong positive relationship (r = 0.98). A compari-

son of descriptive statistics, however, has shown that the

expert-based approach has a slightly higher mean (0.53)

and median (0.56), compared to the purely statistical re-

sults (mean = 0.48; median = 0.49).

Both approaches revealed clusters of high levels of so-

cioeconomic vulnerability in the eastern side of the city

(comprising communes 13, 14, 15, 16 and 21), as well as

the north-eastern side (commune 6), and western part of

the city (comprising communes 1, 18 and 20). These are

poor neighborhoods with high percentages of young

(i.e., < 15 years) and illiterate residents, as well as a high

proportion of individuals being unemployed or doing

housework. Some neighborhoods bordering commune 3

and 9 also revealed higher vulnerability compared to

other neighborhoods (Figure 4). These neighborhoods

Table 2 Final list of indicators, sign and weights (expert weights, statistical weights)

Domain Indicator name Signa Expert weights Statistical weights Data source

SUS_01 Density of occupied households (km2) + 0.11 0.07 Census 2005

SUS_02 Residents from age 0 to 4 (%) + 0.16 0.22 Census 2005

SUS_03 Residents from age 5 to 14 (%) + 0.14 0.23 Census 2005

SUS_04 Residents from age 15 to 29 (%) + 0.13 0.10 Census 2005

SUS_05 White population (%) + 0.10 0.12 Census 2005

SUS_06 People with disabilities (%) + 0.03 0.11 Census 2005

SUS_07 Building stratification (1–6) - 0.14 0.15 Census 2005

SUS_08 Households without water access (%) + 0.19 N/A Census 2005

Sum =1 Sum = 1

LoR_01 Households without a phone (%) + 0.03 0.17 Census 2005

LoR_02 People who cannot read or write (%) + 0.09 0.16 Census 2005

LoR_03 Secondary/higher education (%) - 0.13 N/A Census 2005

LoR_04 Travel time to nearest hospital (min.) + 0.12 0.08 Municipality

LoR_05 Mean hospital density (km2) - 0.15 0.09 Municipality

LoR_06 Employed population (%) - 0.11 0.12 Census 2005

LoR_07 Unemployed population (%) + 0.18 0.11 Census 2005

LoR_08 People doing housework (%) + 0.11 0.13 Census 2005

LoR_09 Retired people (%) + 0.07 0.13 Census 2005

Sum = 1 Sum = 1

aSign indicates if high indicator values increase (+) or decrease (−) vulnerability.
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are characterized by high population density and lack of

water infrastructure.

The difference between both modeling approaches is

displayed in Figure 5.

The model outputs of both approaches have a high cor-

relation, both globally, and spatially. There are, however,

also distinct spatial discrepancies between both approaches.

For example, within communes 2, 3, 19 or 21 the expert-

based approach has revealed lower levels of vulnerability,

while several communes in the eastern part (e.g. com-

munes 8, 10, 11, 12, 13, 16) and southern part (commune

21) have revealed slightly higher vulnerability levels. This

pattern can be partly explained by the fact that the expert-

based assessment integrated two additional indicators

Figure 3 Final selection of susceptibility (SUS) and lack of resilience (LoR) indicators.

Hagenlocher et al. International Journal of Health Geographics 2013, 12:36 Page 8 of 14

http://www.ij-healthgeographics.com/content/12/1/36



(i.e., households without water access; secondary/higher

education) which were removed for the statistical modeling.

To highlight clusters of neighborhoods with significant dif-

ferences, the outcomes of a local clustering method (Local

Moran’s I) have been added as an additional layer (see

Figure 5). HH (i.e., high; high) indicates that a neighbor-

hood where the expert-based approach exhibits higher vul-

nerability values than the purely statistical approach is

surrounded by other neighborhoods characterized by the

same pattern. In contrast, LL (i.e., low; low) indicates that a

neighborhood where the expert-based approach revealed

lower vulnerability values than the purely statistical ap-

proach is surrounded by neighborhoods that show a similar

pattern. HL (i.e., high; low) represents areas where the

expert-based approach revealed higher vulnerability values

that are surrounded by areas where the expert-based ap-

proach revealed lower vulnerability values than the statis-

tical approach. Figure 5 also indicates that there is no

significant local clustering in major parts of the city.

Exploratory tools for visualizing multi-dimensional

vulnerability

As part of any vulnerability study, an interaction with the

community and decision makers is highly recommended.

In addition to traditional maps, the outcomes of the ana-

lyses were incorporated within an online visualization tool.

Current web-based visualization tools offer tremendous

capabilities for publishing and disseminating geospatial in-

formation to a world-wide audience [53]. We used ArcGIS

Explorer Online as an advanced Web-GIS portal to help

organize, analyze, and illustratively visualize the results of

our study (Figure 6). Such Web-GIS portals provide a col-

laborative platform for users to explore vulnerabilities to-

wards infectious diseases in general and dengue fever in

particular. This dissemination platform is particularly at-

tractive to decision makers who must allocate prevention

resources: for example, when selecting a particular neigh-

borhood, a decision maker may retrieve valuable informa-

tion on the underlying vulnerability indicators, and their

relationship to the vulnerability for the entire neighbor-

hood. A nice attribute of this dissemination platform is

that it can integrate additional visual outputs such as pie-

charts, half-donuts, or bar charts.

Discussion
Reducing the burden of vector-borne diseases without

vaccines, such as dengue, requires integrated approaches

that take into account both vector or pathogen exposure

Figure 4 Socioeconomic vulnerability to dengue fever in Cali, Colombia. Figure 4a shows the results based on a statistical modeling

approach, while Figure 4b shows the results based on an expert-based modeling approach.
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as well as human susceptibility to the disease [31]. Our

study aimed at assessing prevailing socioeconomic vul-

nerabilities to dengue fever independent of the spatial

distribution of the hazard (i.e., the disease) based on

purely statistical and expert-based approaches taking

into account a large set of representative census data

and ancillary geospatial datasets; an approach which

has not been pursued so far. The assessment was based

on a holistic, integrative, yet decomposable, conceptual

vulnerability framework. It served as a guidance tool

for the establishment of a representative system of

indicators, and thus enabled the construction of a

composite vulnerability index based on appropriate

indicators.

We identified vulnerability hotspots (i.e., clusters of

neighborhoods with high levels of vulnerability to

dengue fever) across the 340 neighborhoods in Cali,

Colombia. By decomposing these hotspots into their

underlying socioeconomic vulnerability factors (Figure 6),

our approach not only provides information on the

neighborhoods where intervention options are most

warranted, but also indicates which factors need to be

Figure 5 Comparative analysis of statistical and expert-based modeling approaches. Map showing the difference between both

vulnerability indices (VUexp – VUstat). The outcomes of a cluster analysis (Local Moran’s I) are displayed as an additional layer.
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given priority to effectively reduce existing susceptibil-

ities and increase resilience to the disease.

The framework proposed in this paper also comes

along with specific challenges. First, the modeling ap-

proach is not spatially explicit as it builds on indicators

which were reported at the neighborhood level, thus

neglecting the ‘true’ spatial distribution of existing vul-

nerabilities within the study area. It also results in ‘arti-

ficial boundaries’ that may further lead to aggregation

problems as described by Openshaw [54]. Providing a

more ‘realistic’ picture of existing vulnerabilities calls

for spatially explicit modeling approaches, which enable

a delineation of homogeneous units of vulnerability

[55], independent of a-priori defined ‘artificial’ boundar-

ies. Secondly, additional indicators such as extent and

coverage of media campaigns or funding for dengue

control programs [31] were not available and thus not

integrated into the vulnerability analysis. Third, our ap-

proach is not temporally explicit: we considered the

census and geospatial datasets at a particular point in

time to construct a vulnerability index. Frequent up-

dates and continuous monitoring of prevailing vulner-

abilities are particularly needed in rapidly changing

urban environments. Finally, one key challenge which

warrants further research is the scientific validation of

the modeling results. As vulnerability cannot be mea-

sured in real world, its validation remains both a hot

topic as well as a scientific challenge [20,31,55]. How-

ever, when integrating the results of the vulnerability as-

sessment in a dengue risk framework, the availability of

incidence data (i.e., the manifestation of risk) could help

to validate the resulting risk maps. Despite constraints

associated with the validation of vulnerability assess-

ments [20,31,55], a kernel density estimator was used

to create a surface showing the density of dengue cases

(in km2) for 2010 (January-December). Both, the spatial

distribution of cases and the resulting dengue fever in-

tensity layer, were mapped and the latter was visualized

on top of the two vulnerability maps (Figure 7) to en-

able a visual comparison of vulnerable neighborhoods

and areas at risk of contracting the disease (reflected by

the dengue intensity surface).

Figure 7 shows that very high densities of dengue cases

(i.e., > 200 cases/km2) tend to concentrate in the western,

highly vulnerable fringes of the city, thus placing these

areas at high risk. High densities (i.e., 101–200 cases/km2)

Figure 6 Illustrative visualization of expert-based modeling results in ArcGIS explorer online. Illustrative visualization of the results of the

expert-based model (there was no particular reason why the expert-based model was selected; we could also display the results of the statistical

model). This allows not only sharing results with a wider public, but also enables an assessment of the share of the underlying vulnerability

indicators per neighborhood (see table and bar-charts in the figure).
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are prevalent in the central and eastern part of the city

(areas of medium socioeconomic vulnerability), while

lower densities (i.e., 1–100 cases/km2) are distributed all

over the city, also affecting areas of low socioeconomic

vulnerability (Figure 7).

To increase user confidence in the applicability of the

approach, future work will assess the sensitivity of the

approach as well as the validity of the results by further

investigating the spatial and statistical relationship be-

tween both the modeling results and the individual

vulnerability indicators and dengue fever prevalence in

the study area.

Findings from this research are particularly salient for

public health authorities. First, for the planning of pre-

ventive control strategies, for example educational cam-

paigns can be organized with participation from the

community, which are likely to increase awareness and

proper practices towards the virus. Focusing more re-

sources on particularly vulnerable areas of the city can

aid in changing people’s awareness and modify people’s

behavior and attitude towards dengue fever (e.g., use of

insecticide treated nets, etc.). It can also assist in

planning preventive spraying of bacterial larvicides to

permanent stagnant water sources. Second, it can facili-

tate timely response strategies during an outbreak by

pointing towards areas that are more vulnerable to be

controlled first, with the objective of minimizing the im-

pact of the virus.

Conclusions
Statistical and expert-based approaches were utilized for

the modeling of prevailing vulnerabilities to dengue in

the urban tropical environment of Cali, Colombia inde-

pendent of the current distribution of the disease. Using

neighborhoods as the spatial reporting unit, we inte-

grated various socioeconomic and demographic indi-

cators derived from census data and ancillary datasets

into a final composite vulnerability index. A conceptual

framework was used as a guidance tool for the develop-

ment of a representative set of vulnerability indicators,

thus enabling the reproducibility and comparability of

modeling results. The methods presented in this paper

make an important contribution as a decision support

tool for reducing existing vulnerabilities and strengthen-

ing or building up resilience to vector-borne diseases in

general, and dengue in particular. The results of our

analysis also provide relevant information for decision

makers in Cali, Colombia, as they not only help priori-

tizing intervention areas (i.e., vulnerability hotspots), but

also indicate which factors need to be addressed fore-

most in the context of targeted intervention measures.

Figure 7 Comparison of vulnerability at neighborhood level and dengue cases. Figure 7a shows the spatial distribution of dengue cases

(January-December, 2010). A density map (i.e., cases per km2) is shown in Figure 7b. The dengue density layer is displayed on top of the two

vulnerability maps (Figures 7c, 7d) to enable a visual comparison of vulnerability at the neighborhood level and the spatial distribution of

dengue cases.
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