
Assessing So�ware Defection Prediction Performance: Why
Using the Ma�hews Correlation Coe�icient Ma�ers

Jingxiu Yao
Beihang University, China

yjx1080@126.com

Martin Shepperd
Brunel University London, UK
martin.shepperd@brunel.ac.uk

ABSTRACT

Context: There is considerable diversity in the range and design of
computational experiments to assess classi�ers for software defect
prediction. This is particularly so, regarding the choice of classi�er
performance metrics. Unfortunately some widely used metrics are
known to be biased, in particular F1.
Objective: We want to understand the extent to which the wide-
spread use of the F1 renders empirical results in software defect
prediction unreliable.
Method: We searched for defect prediction studies that report both
F1 and the Matthews correlation coe�cient (MCC). This enabled us
to determine the proportion of results that are consistent between
both metrics and the proportion that change.
Results: Our systematic review identi�es 8 studies comprising 4017
pairwise results. Of these results, the direction of the comparison
changes in 23% of the cases when the unbiased MCC metric is em-
ployed.
Conclusion: We �nd compelling reasons why the choice of clas-
si�cation performance metric matters, speci�cally the biased and
misleading F1 metric should be deprecated.

CCS CONCEPTS

• Software and its engineering → Software veri�cation and

validation; Software defect analysis;

KEYWORDS

Software engineering experimentation, Software defect prediction,
Classi�cation metrics

ACM Reference Format:

Jingxiu Yao and Martin Shepperd. 2020. Assessing Software Defection Pre-
diction Performance: Why Using the Matthews Correlation Coe�cient
Matters. In Evaluation and Assessment in Software Engineering (EASE 2020),

April 15–17, 2020, Trondheim, Norway. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3383219.3383232

1 INTRODUCTION

A considerable body of empirical software engineering research is
dedicated to predicting which are the defect-prone components in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04.
https://doi.org/10.1145/3383219.3383232

software systems [3, 9, 12, 16, 24]. The motivation is quite straight-
forward. If we know which parts of the system are likely to be
problematic, we can allocate testing resources accordingly. More-
over, more recent studies also take into account varying component
test costs e.g., depending on size [18]. Another important line of
research is into the ability to use data from one software project to
make predictions for a di�erent project [38].

Given this interest in software defect prediction, it is no surprise
that there have been hundreds of studies that experimentally com-
pare competing prediction systems (e.g., logistic regression, neural
nets, support vector machines, etc.) over one or more software
defect data sets. The comparisons are made on the basis of classi�-
cation performance. However, there are many ways in which one
can measure performance and no single metric has been adopted,
although the F1 measure or its components: precision and recall
are very widely used [12, 16].1 Unfortunately in recent years, statis-
ticians have pointed out that this metric is problematic [11, 23]
and that there are better alternatives such as the Matthews correla-
tion coe�cient (MCC) [2]. The question then arises: does it matter;
should we regard this as marginal statistical trivia or conversely, we
should reject all defect prediction experiments based on unsound
performance metrics?

The problem of how to view results based on unsound metrics
becomes all the more pressing, given the signi�cant e�orts now
being deployed to aggregate experimental studies in software defect
prediction. It is well known that meta-analysis needs to �lter out
unreliable primary studies if the overall outcome is to be in itself
reliable [13]. Software defect prediction examples include thewidely
cited systematic reviews by Hall et al. [9] and Hosseini et al. [12].

The aim of this paper is to help assess how much con�dence can
we have in past software defect prediction research that relies on the
F1 performance metric to derive empirically-based conclusions?We
speci�cally focus on F1 given it is known to be biased, particularly
in the context of imbalanced data sets, i.e., when there is a low (or
very high) prevalence of the positive case, which for us are the
defect-prone software components. It is also in widespread use.

Our speci�c research questions are:

• RQ1: How much practical di�erence, i.e., conclusion insta-
bility [19] is there between the classi�cation performance
metrics F1 and MCC? Are they concordant?

• RQ2: How does imbalance (the proportion of positive cases)
impact di�erences between F1 and MCC?

• RQ3: How does the magnitude of di�erences in the classi�er
predictive performance impact di�erences between F1 and
MCC?

1Some early studies used accuracy but this has been widely deprecated for some while,
due to its inability to factor in the chance component arising from using the modal
class as a prediction [30].

© ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the Evaluation and Assessment in Software Engineering (EASE 2020), April 15–17,
2020 https://doi.acm.org/10.1145/3383219.3383232

https://doi.org/10.1145/3383219.3383232
https://doi.org/10.1145/3383219.3383232

EASE 2020, April 15–17, 2020, Trondheim, Norway Jingxiu Yao and Martin Shepperd

Table 1: The confusion matrix

Actual Defective Actual Defect-free

Predicted Positive TP FP

Predicted Negative FN TN

We believe these are important questions the defect prediction
community needs to ask itself given the high proportion of past
work that is based on F1. It also potentially allows us to identify
if we can predict past results that are likely to be more or less
unreliable. Of course, for the future it should spur researchers to
utilise alternative classi�cation performance metrics for their ex-
periments. Or at least minimally, undertake full reporting so that
meta-analysts and others can calculate metrics like MCC from the
confusion matrices.

The remainder of the paper is organised as follows. The next
section brie�y reviews the diversity of classi�cation performance
metrics, speci�cally it contrasts the problematic F1 metric with
MCC and looks at experimental practices in software defect predic-
tion. Section 3 describes the conduct and results of our systematic
review to locate all relevant studies that present results both as
F1 and MCC. This provides us with the data to establish how con-
cordant the two metrics are in practice. This is followed by our
analysis in Section 4 of how results from the two di�erent metrics
compare. Finally, in Section 5 we conclude with a discussion of the
implications of our analysis and its limitations.

2 RELATEDWORK

2.1 Classi�er performance metrics

There is awide range ofmetrics to assess the predictive performance
of a classi�er. We restrict our discussion to the two-class problem,
i.e., a software component is defect-prone (the positive class) or
defect-free (the negative class). This is because the vast majority of
defect prediction research has adopted this stance [9]. Moreover,
most performance metrics are based on the confusion matrix, which
is shown in Table 1. However, most metrics are, in theory, capable
of generalisation to k-class prediction problems [6]. The confusion
matrix contains the following counts:

• true positives (TP) - defective components correctly classi-
�ed as defective

• true negatives (TN) - defect-free components correctly clas-
si�ed as defect-free

• false positives (FP) - defective components incorrectly clas-
si�ed as defect-free

• false negatives (FN) - defect-free components incorrectly
classi�ed as defective

For our discussion regarding confusion matrices we use the
following terminology:

(1) Cardinality n which is the total number of cases (i.e., TP +
FP +TN + FN).

(2) Defect density d which is TP + FN /n i.e., the total number
of positive cases divided by all cases.

Table 2: Commonly used classi�cation performancemetrics

Metrics De�nition Range Better

TPR
T P

T P+FN
[0,1] High

FPR
F P

T N+F P
[0,1] Low

Precision
T P

T P+F P
[0,1] High

Accuracy T P+T N

T P+T N+F P+FN
[0,1] High

F1 2×T PR×Precision
T PR+Precision

[0,1] High

MCC
T P×T N−F P×FN√

(T P+F P)(T P+FN)(T N+F P)(T N+FN)
[-1,1] High

GM
√

TPR × (1 − FPR) [0,1] High

AUC Area Under Curve (AUC) ROC chart [0,1] High

(3) True positive rate (TPR), also referred to as sensitivity or
recall is TP/(TP + FN) which is the proportion of positive
cases that are correctly considered as positive (defect-prone)
as a proportion of all positive cases.

(4) False positive rate (FPR) is de�ned as FP/(FP +TN) which
is the proportion of negative cases that are mistakenly con-
sidered as positive as a proportion of all negative cases.

(5) Precision is de�ned asTP/(TP +FP)which is the proportion
of correctly identi�ed defect-prone moudles from all the
cases classi�ed as defective.

(6) Accuracy is de�ned as (TP + TN)/(TP + TN + FP + FN)
which means the proportion of cases correctly classi�ed to
all cases.

(7) F1 is the harmonic mean of TPR and Precision. It’s based
on F-measure which is de�ned as (β2 + 1) × Precision ×
TPR/(β2×Precision+TPR). Where β is used to regulate the
weight given to TPR. F1 is one of the situation of F-measure
when β is set to 1 which indicates the weight of TPR and
Precision is the same.

(8) MCC is de�ned based on TP, TN, FP and FN, which includes
all parts of the confusion matrix. Its range goes from -1 to
+1 and higher values represent better performance. A value
of +1 indicates a perfect prediction, -1 indicates a perverse
prediction, and 0 indicates random predictions i.e., no classi-
�cation value.

(9) The G-mean (GM) is calculated as the geometric mean of
TPR and 1 − FPR.

Table 2 summarises the performance metrics widely used in
the previous studies. Note that all metrics excepting AUC may
computed from a single confusion matrix. The AUC di�ers in that
it is based on a family of TPR and FPR values generated by changing
the positive case acceptance threshold in small increments. From
this a frontier can be constructed which is known as a Receiver
Operating Characteristic (ROC) curve [5]. AUC measures the area
under this frontier where any value greater than 0.5 represents
better than chance classi�cation for the two-class case. However,
this metric refers to a family of possible classi�ers rather than
any speci�c classi�er. Thus, unless the ROC curve of classi�er A
strictly dominates classi�er B we cannot make any remarks about

Assessing So�ware Defection Prediction Performance EASE 2020, April 15–17, 2020, Trondheim, Norway

our preference of A over B since, in practice, we can only deploy a
single classi�er. For this reason we will not explore AUC further
in this paper. In passing we also note that AUC has come under
considerable criticism (see for example [7, 10]).

2.2 A critique of F1 and comparison with MCC

In this section we address the question of why is F1 so problematic,
particularly in the light of the fact that it continues to be widely
deployed. We then argue (actually repeat the arguments of others)
that MCC (sometimes known as ϕ [36]) is a superior choice.

The F1 is a speci�c instantiation (β = 1) of the F-measure where:

Fβ = (1 + β2) · (precision · recall)
(β2 · precision) + recall

It originates from the �eld of information retrieval and was pro-
posed by van Rijsbergen [35] to measure the performance of infor-
mation retrieval algorithms. This problem domain is characterised
by very large, indeed frequently unknowable, counts for TN. Con-
sider, for example, retrieving web pages. Knowing the number of
irrelevant pages correctly not retrieved, i.e., true negatives, will be
both challenging and not very interesting. It would run into hun-
dreds of million, possibly more. Unfortunately, applying F1 in the
completely di�erent context of defect prediction is not equivalent.
A project manager or software engineer will be very interested in
knowing the number of correctly predicted defect-free (or negative)
components. These can have reduced, or in principle, zero (if the
user is very trusting!), testing resources. This calculation is major
part of the rationale for software defect prediction. Ignoring this
important prediction outcome, results in F1 being an unreliable
guide to defect classi�cation performance [23].

The de�nition of F1 (see Table 2 is only based on TP, FP and FN
since the metric is the harmonic mean of precision and recall. This
means the TNs are neglected. The problem is compounded by much
variation in the prevalence of defect-prone cases, but typically they
are very much in the minority, in other words the data sets are
imbalanced [33] unless some corrective procedure is undertaken
[32].

A second source of di�culty for F1 is that it is a composite of
two underlying measures: precision and recall. This means two
classi�ers with very di�erent properties might achieve the same
metric score. Users might have a strong preference for, say, high
recall because they do not wish to miss fault-prone components, or
alternatively for high precision in that they do not wish to squander
valuable testing resources on defect-free components. In theory
one could weight the F-measure to follow user preferences, but
it seems a near universal practice to have uniform weights hence
F1 sometimes termed the balanced F-score. However, even some
weighting procedure does not overcome the problem of it being
possible to construct a particular metric value in multiple ways.

A third problem is that the metric is di�cult to interpret other
than zero is the worst case and unity the best case. Speci�cally
the chance component of the metric is unknown, unlike a correla-
tion coe�cient or AUC. So, for example, it is hard to know what

F1 = 0.25 means. Is it better than chance? Is the classi�er actu-
ally predicting?2 In contrast, a correlation coe�cient equal to 0.25
means there is a small positive e�ect and that the classi�er is doing
better than chance.

We illustrate, these problems with an example.

(

TP = 5 FP = 5

FN = 5 TN = 5

) (

TP = 5 FP = 5

FN = 5 TN = 85

)

Given the above two di�erent confusion matrices, the lefthand ma-
trix has n = 20 and d = 10/20 = 0.5. The distribution of predicted
and actual classi�cation is that of chance and hence no useful classi-
�cation is taking place. This is re�ected in a correlation coe�cient
of MCC = 0.0 and F1 = 0.5. A software tester would reject such a
classi�er as being no better than guessing. Now contrast this ma-
trix with the one on the right. Here n = 100 and d = 10/100 = 0.1,
thus the data are highly imbalanced with the prevalence of positive
cases being low. Incidentally, this is a very typical situation for
software defect prediction. The di�erence between this new matrix
and the previous example, is that the classi�er is very e�ective at
identifying defect-free cases and this is re�ected in TN = 85 and
TNR = 85/(85+5) ≈ 0.94. This level of discrimination is likely to be
valued in a practical setting since correctly identifying 90%+ of the
software components that don’t need extra testing resources will be
useful. This is re�ected in a correlation coe�cient of MCC ≈ 0.44

however, F1 = 0.5 remains unchanged. This is because it ignores
the true negatives and so cannot distinguish between the two radi-
cally di�erent classi�cation situations as re�ected in our example
confusion matrices.

As a �nal remark, concerning this example, note the di�culty of
understanding the meaning of F1 = 0.5. What proportion is due to
chance odds? Canwe be sure that meaningful classi�cation is taking
place? Consider another confusionmatrix where the accuracy is less
than 0.5 (9/20). In this case, F1 ≈ 0.52 and correctly MCC ≈ −0.11
where the negative value connotes perverse performance!

(

TP = 6 FP = 7

FN = 4 TN = 3

)

It is for this reason that many researchers using F1 to assess
classi�cation performance restrict themselves to comparative anal-
ysis, i.e., is classi�er A preferable to classi�er B. Yet even this is
unsafe, because in the above three examples, the third one with a
predictive performance of less than chance would be rated as best
since (F1 = 0.52) ≻ (F1 = 0.5).

For a more in depth evaluation and critique of F1 as a perfor-
mance classi�cation metric see Sokolova et al. [30, 31], Warrens
[36], Hand [10], Rahman et al. [25, 26] and Luque et al. [15]. For an
authoritative review of a wide range of classi�cation metrics we
recommend Powers [23].

2In principle, we can compute the F1 value associated with random estimation
when the predictions follow the distribution of positive and negative cases such that
TP/(TP+FN) = FP/(TP+FN) ∧ TN/(TN+FP) = FN/(TN+FP). Unfortunately, we cannot
reason that any value of F1 greater than chance is an improvement since it ignores all
TNs so a classi�er that is calamitously bad at predicting defect-free components and is
worse than guessing could still achieve a ‘better’ F1 score.

EASE 2020, April 15–17, 2020, Trondheim, Norway Jingxiu Yao and Martin Shepperd

2.3 The usage of classi�cation performance
metrics in software defect prediction

There are a wide range of metrics, however, widely used by soft-
ware defect prediction researchers is the F1 metric [12, 16]. This
is unfortunate because, as we have explained in Section 2.2, it is
known to be biased.

More speci�cally, Malhotra et al. [16] found 17 out of 64 papers
(1991-2013) used F1 directly and a further 23 precision and 42 used
recall, which are the constituent components of F1 (see Table 2. The
more recent systematic review by Hosseini et al. [12] report that
out of 30 studies (2006-2016) 11 use F1 and 21 use precision and
recall.

Corroborating these results, from our systematic review (2014-
2019) we found 31 papers (where the content was available, in
English and the application domain was software defect prediction).
Not all these papers satis�ed other inclusion criteria (as discussed
in Section 3) to enable us to compare F1 with MCC, however we
could make some judgement about the widespread usage of F1. We
found that 29 out of 31 studies applied F1 to compare the predictive
performance of software defect classi�ers. Of course the nature of
our search was to look for such papers, but it does indicate that
many studies exist, even if we cannot make strong inferences about
the proportion they represent.

So overall, it would probably seem that there is an increasing
tendency to use F1 in software defect studies. Furthermore this
then propagates through into meta-analyses which are often based
on this metric [12, 16] whilst other meta-analyses were obliged to
discard data when researchers only reported results in terms of F1
e.g., [29].

3 SYSTEMATIC REVIEW

In order to compare experimental results based on the F11 andMCC
metrics we needed to locate relevant, published research studies. To
do this we searched for published software defect prediction studies
using a lightweight, systematic review strategy. We deviated from
the full-blown method described by Kitchenham et al. [14] princi-
pally in that there is no formal protocol and we did not make any
quality assessment of the papers other than to require meaningful
peer review and cross-validation.

The search was undertaken in November 2019. We used the
google scholar database based on the following query:

"software defect" classifier data F1 MCC

which located 53 results. We then applied our inclusion criteria that
a paper must satisfy.

(1) be published since 2014
(2) be refereed i.e., we exclude the grey literature such as student

dissertations and unpublished reports
(3) have full content available
(4) be written in English
(5) relate to software defect prediction
(6) report both F1 and MCC classi�cation performance metrics

for the same comparisons of classi�ers
(7) make use of some form of cross-validation i.e., the results

are based on unseen data

(8) describe, new (i.e., not previously reported) results

The search results are summarised in Table 3 which yields a total
of eight papers3 for our analysis. These 8 papers contain a total
of 4017 pairwise comparisons between competing classi�ers. The
number of results per paper varied considerably from 14 to 1512
with the median being 282. In each case the comparisons are made
twice, once with the F1 metric and once with MCC. Using this
information we could next investigate the extent to which the two
metrics are concordant (agree) and the extent to which they are
discordant (lead to contradictory conclusions).

Table 3: Search inclusion criteria and paper counts

Criterion Count
Total 53
Refereed 37
English 51
Available 46
Software defect prediction 28
Reports F1 and MCC 10
Cross validation 11
Included 8

Table 4 provides an overview of the eight studies located by
our systematic review and used as a source of results where we
can compare the outcomes of using F1 with MCC. We can see that
aside from Rodrigues et al. [27], all the studies have been published
since 2017 and they are all journal literature. Although, we focus
on comparing MCC with F1, we note that AUC is also reported by
4 out of 8 studies.

4 RESULTS

4.1 Summary of the classi�cation accuracy
metrics

First, we summarise the accuracy metrics F1 and MCC. Recall that
F1 = [0, 1]whilst MCC = [−1, 1] though in both cases, higher values
imply superior classi�cation performance. From Table 5 it is clear
that both metrics vary considerably, from worse than random (or
perverse classi�cation) to near perfect. F1 in particular shows a
bimodal distribution (see the violin plots in Fig. 1).

Since the metrics are measured on di�erent scales we do not ex-
pect identical values, but would expect a monotonically increasing
relationship. Figure 2 shows the relationship between the two classi-
�cation accuracy metrics. The red line shows the linear relationship
between the two classi�cation performance metrics. Broadly, as one
might hope, the relationship is positive thus as F1 increases so does
MCC. However, there is a good deal of scatter and the Spearman
correlation is ρ ≈ 0.82,n = 8034. Some extreme outlier points are
clearly visible and two clusters are circled for further investigation.

The two clusters are all drawn from the same primary study
[22] and the same data set which is extremely imbalanced with,

3An additional paper [20] is refereed, in scope and provides the necessary data but
causes two types of di�culty. Firstly, almost all of the comparisons between treatments
result in ties, thus it would seem that the various treatments (algorithmic procedures
for classi�cation) are extremely similar. Secondly, there are a large number (16) dif-
ferent treatments across 52 data sets potentially leading to more than 6000 pairwise
comparisons.

Assessing So�ware Defection Prediction Performance EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 4: Summary of included software defect prediction studies

Paper Year Type Venue F1 MCC AUC Data.sets
Rodriguez et al. [27] 2014 C EASE Y Y Y NASA MDP
Mausa Sarro Grbac [17] 2017 J IST Y Y N PDE, Hadoop
Abaei et al. [1] 2018 J J. of KS Uni Y Y N NASA MDP
Tong Liu Wang [34] 2018 J IST Y Y Y NASA MDP
Gong Jiang Jiang [8] 2019 J SE&P Y Y Y NASA MDP, Eclipse, SoftLab etc
Nezhad Shokouhi Majid [21] 2019 J J of Supercomputing Y Y N NASA
Pan Lu Xu Gao [22] 2019 J App Sci Y Y N PSC
Zhao Shang Zhao et al. [37] 2019 J IEEE Access Y Y Y NASA MDP

NB C = conference; J = journal paper.

Table 5: Summary of the classi�cation accuracy metrics

Metric Min Median Mean Max
F1 0.00 0.41 0.47 0.97
MCC -0.13 0.29 0.34 0.97

Figure 1: Violin plots of F1 and MCC

Table 6: Odds ratio

F1 vs MCC upper third lower third total
change 186 455 641
not change 1153 884 2037
total 1339 1339 2678

remarkably, in excess of 95% of defective components from the
Log4j project. The reported values suggest near perfect F1 scores
and MCC values around or even below zero. In other words there is
no association between the predicted classes and the actual classes.
This is a little surprising and it is possible that the authors have
treated the minority case (defect-free) as the positive case. Never-
theless it highlights how misleading the F1 metric can be in the
face of highly imbalanced data.

4.2 Summary of data set utilisation

In order to understand whether there is any relationship between
data set imbalance and the concordance of the two classi�cation
metrics we also recorded data set information for each result. In
total 112 distinct data sets were employed, predominantly from the
Promise archive or the NASA MDP data sets. Di�erent releases
are viewed as di�erent data sets. Note that some primary studies
explicitly used sub-samples of larger �les in which case we counted
these as separate unique data sets e.g., Zhao et al. [37]. Where
signi�cant, and fully speci�ed, data pre-processing is undertaken
we regard these as separate data sets. However, we accept the
possibility that minor or undocumented pre-processing leads to
slightly di�erent variants of a data set. In addition, the random
allocation of cases to folds for cross-validation is likely to result in
other subtle di�erences.

The data sets vary considerably from 36 to 17186 cases (or soft-
ware components). The median size is 400 and mean is 1141 cases,
indicating a small number of very large data sets. In terms of im-
balance, this ranges from 0.4% to 95.6% of positive (defect-prone
components). Given it is well known that class-imbalance causes
problems for classi�ers this is quite striking. We show the distribu-
tion as a violin plot in Fig. 3 where it can be seen that the median
imbalance level is about 13.5%. Note that a very high imbalance
is equally problematic to a low imbalance rate. Probably for this
reason, researchers applied imbalanced learning or corrective pro-
cedures (e.g., under or over-sampling) to 35 out of 112 data sets.

Having brie�y summarised the raw data from the eight primary
studies identi�ed by the systematic review we now turn to our
three research questions.

4.3 RQ1: Are F1 and MCC concordant?

In order to answer this question, we break down the (generally
many) results from each paper into a series of pairwise comparisons.
Formally speaking, F1 and MCC are concordant i�:

sgn(Y1F 1 − Y2F 1) = sgn(Y1MCC − Y2MCC)

where Y1 and Y2 are two classi�cation results derived from the
application of two treatments, which in our domain of enquiry
would be competing classi�ers applied to the same data set. NB the
sgn function is a mathematical function that extracts the sign of a
real number.

Therefore, if both F1 and MCC �nd that treatment Y2 is to be
preferred to Y1, indicated by a positive sign, then we would say

EASE 2020, April 15–17, 2020, Trondheim, Norway Jingxiu Yao and Martin Shepperd

Figure 2: Scatterplot of F1 and MCC

Figure 3: Distribution of class-imbalance for software defect

data sets

they are concordant and from practical point of view it doesn’t
matter which metric is employed. If they have di�ering signs we
would say they are discordant and the conclusions disagree. As

a simple example, consider the situation where if we analyse our
experimental results using F1 we �nd, say, Naive Bayes is to be
preferred to Logistic Regression. However if we conduct the same
experiment and analyse the results using MCC we �nd that on the
contrary, Logistic Regression out-performs Naive Bayes then we
say the results are discordant; we would make a di�erent decision
depending upon which performance metric is chosen.

Typically, papers report results in tables where the rows con-
stitute di�erent software systems represented by di�erent data
sets (these are the experimental units) and the columns represent
di�erent treatments for classifying the software such as logistic
regression, random forest and so forth. This is a natural way to
organise computational experiments that are based on a repeated
measures design [28] that is characterised by each treatment being
applied to every experimental unit.

Table 7: Example Defect Prediction Results

Data set T 1 T 2 T 3

D1 Y11 Y12 Y13

D2 Y21 Y22 Y23

NB D1 and D2 are data sets, T1, ..., T3 are di�erent treatments (for us these will be

di�erent defect classi�ers) and the Ys are the response variables (for us, these will be

the classi�cation performance measured by F1 and MCC.

Assessing So�ware Defection Prediction Performance EASE 2020, April 15–17, 2020, Trondheim, Norway

To give a simple example, suppose a paper contains three di�er-
ent treatments (T1, T2 and T3) applied to two di�erent software
projects or data sets (D1 and D2). This might lead to a table similar
to that given in Table 7. In this case, each Ydt will have two asso-
ciated classi�cation accuracy values, one as F1 and one as MCC.
From the Table 7 we can extract the pairwise treatments, i.e., as
detailed by Table 8.

Table 8: Example Defect Prediction Results

sgn(Y11 − Y12) sgn(Y11 − Y13) sgn(Y12 − Y13)
sgn(Y21 − Y22) sgn(Y21 − Y23) sgn(Y22 − Y23)

Papers either report the di�erent performance metrics side by
side as columns in the same table, or in successive tables, but ei-
ther way we can then compare the signs from the two metrics for
each pairwise comparison. By analysing all the reported results in
our 8 located papers we �nish up with, as previously stated, 4017
pairwise comparisons where each F1 result can be matched with
an associated MCC result. Then we compare whether the signs are
equal to determine whether the metrics are concordant or not.

Such tables and our decomposition into pairwise comparisons
form the basis of reasoning and forming conclusions regarding
an experiment’s results. We adopt this approach for three reasons.
First, it enables us to unify experimental results — presented by
di�erent papers in di�erent styles — into a single format for our
analysis. Second, the notion of concordancy allows us to abstract
away from the speci�cs of the individual purposes, hypotheses and
results of each experiment and the means of making inferences.
Third, it aligns with the idea of using preference relations informed
by experimental results to guide the decision-making of software
engineers.

In total we �nd that 23% (927/4017) of comparisons or conclu-
sions are discordant between the F1 metric and MCC. This is shown
graphically by Fig. 4. Given that the F1 metric is known to be biased,
this means that an experimenter could be misled (i.e., accepting the
wrong preference relation and thinking the �rst classi�cation is to
be preferred to the second, when in fact it is the other way around)
almost one in four times.

Figure 4: Proportion of incorrect experimental results

4.4 RQ2: How does data set imbalance impact
di�erences between F1 and MCC?

Next we consider whether there is any pattern to this discordancy,
since we might hypothesise that highly imbalanced data sets could
cause more problems for F1 since it is a biased metric. We examine

the relationship between the post-processed imbalance rate since
this is what experimenters actually use. Fig. 5 shows relatively little
relationship. We also �nd little association between post-processed
imbalance and the probability of a result changing (Spearman’s
ρ = 0.24,n = 112). What is more, the direction of the relationship
is the opposite of what one might expect in that data sets with
closer to 50% defect-prone software components appear more likely
to have discordant results. Consequently we move onto our third
research question to see whether the size of the e�ect moderates
the impact of data set imbalance.

4.5 RQ3: How does the magnitude of di�erence
in the classi�er performance impact
discordancy?

The underlying hypothesis for this research question is that when
the di�erence between classi�er performance is relatively trivial
then discordancy between F1 and MCC metrics is more likely. Ide-
ally we would couch this question in terms of a standardised e�ect
size [4]. Unfortunately such measures cannot be easily constructed
given the absence of reported standard errors or other statistics of
dispersion. However, given the scale of the F1 performance metric
is de�ned as [0, 1], we do have some basis for comparison and will
examine the absolute di�erences, between pairs of F1 metrics.

Fig. 6 shows the distribution of ‘e�ects’ captured as the absolute
di�erence between the two treatments for each pairwise compari-
son. This suggests that the majority of comparisons between clas-
si�ers yield comparatively small di�erences as captured by the F1
metric with a median of 0.066.

If we split the absolute F1 di�erences by whether there is a
conclusion change (i.e., discordancy) or not, we observe typically
greater ‘e�ects’ (see Fig. 7) where there is no change. This might
be expected. The stronger the e�ect, as captured by the absolute
di�erence of the two F1 metric values, the less likely it will be
di�erent from the equivalent pair of MCC metrics.

We also investigate this phenomenon using a variant of the me-
dian split, where the pairwise comparisons are ranked by absolute
F1 di�erence and split into thirds. The middle third is discarded and
then we construct the odds ratio of there being a discordancy with
the MCC metric between the upper and lower third. We represent
the raw scores as Table 9 and compute the odds ratio of a pairwise
conclusion being discordant from the lower third compared with
the upper third as 4.36 with a con�dence interval (3.53, 5.39). This
suggests that the absolute di�erence in F1 scores for a pairwise
comparison of classi�ers is some indicator of the likelihood that
the unbiased MCC metric con�rms this �nding. In other words,
using F1 is more problematic when there are only small di�erences
between the classi�ers being compared.

Table 9: Comparison of discordant pairwise comparisons by

upper and lower thirds of absolute comparison size for F1

Concordant? Upper third Lower third Total
No 186 455 641
Yes 1153 884 2037
Total 1339 1339 2678

EASE 2020, April 15–17, 2020, Trondheim, Norway Jingxiu Yao and Martin Shepperd

Figure 5: Scatterplot of defect data set (post-processed) imbalance level and the proportion of discordant results

Figure 6: Absolute di�erence between treatments T1 and T2

measured by F1

5 DISCUSSION AND CONCLUSIONS

In this study we have sought to understand the impact of the wide-
spread use of the problematic, classi�cation performance metric F1.
To do this we have conducted a systematic search to �nd primary
experimental studies in the domain of software defect prediction.
Speci�cally, we sought experiments that have reported both F1

(a biased metric) and the Matthews correlation coe�cient (a pre-
ferred metric). We have then decomposed the results into a series
of pairwise comparisons, of Classi�er 1 versus Classi�er 2. Each
comparison can be thought of as a preference relation, for instance
that Classi�er 1 is to be preferred to Classi�er 2. We can then com-
pare each comparison using F1 with MCC. We found eight usable

Figure 7: Comparison of the absolute di�erence between

treatments T1 and T2 measured by F1 for concordant and

discordant results

primary studies that contained a total of 4017 pairwise comparisons
based on 112 data sets.4 Given that there are concerns about F1, we
would be reassured if the comparisons using MCC is concordant
with the F1 comparisons, i.e., the sign function is the same.

4Our data are made available at https://zenodo.org/deposit/3581263.

https://zenodo.org/deposit/3581263

Assessing So�ware Defection Prediction Performance EASE 2020, April 15–17, 2020, Trondheim, Norway

More generally, we can interpret the level of concordance as a
guide as to how reliable we can view research results emanating
from the experiments that use F1 as the response variable. It can
help us determine if the problems associated with F1 are essentially
academic, or whether they undermine our ability to trust such
�ndings.

Whilst we did not �nd the majority of F1 results discordant from
an MCC analysis, we still consider 23% to be very worrying. This
means almost a quarter of published results based on the �awed F1
are likely to be incorrect. By incorrect we mean that the direction
of the comparison is in error. Minimally we suggest this implies
that such experimental results need to be treated with caution.

Finally, we wish to stress, our analysis implies no criticism of any
of the eight primary studies we have used for our analysis. Each
study is refereed and has undertaken rigorous empirical analysis. It
is greatly to the credit of these researchers that they have reported
a wide range of metrics and without this, our analysis would not
have been possible.

So what lessons can we extract?

(1) We should stop using biased performance metrics and, in
terms of this study, speci�cally we should stop using the F1
metric inappropriately.

(2) Open science and full reporting is essential. Reporting the
confusion matrix enables other researchers to compute a
wide range of alternative metrics. Even if the original re-
searchers are disinclined to use metrics such as MCC, this
should not prevent other researchers re-analysing and, if
need be, re-interpreting published experiments.

(3) Where readers must depend upon experimental results based
on F1 due to incomplete reporting and lack of alternatives,
considerable caution should be deployed since the base rate
odds of a result being in error is almost one in four. Such a
choice is most risky when the e�ect sizes are small.

(4) We recommend that meta-analyses should avoid, wherever
possible, primary studies solely based on the use of F1. Mini-
mally, sensitivity analysis should be undertaken to compare
the analysis with and without such primary studies.

To return to the fundamental question, does it matter which
classi�cation performance metrics we use in our software defect
prediction experiments? Unfortunately the answer is: yes, very
much so. Clearly, there is more work to be done. In particular, it
would be interesting to examine the grey literature and also the use
of classi�ers in problem domains beyond software defect prediction.

5.1 Threats to validity

As always there are a number of threats to validity. In terms of
Internal validity this refers to whether our analysis captures the
actual constructs in question.

• Is the sgn function an appropriate way to capture a conclu-
sion change? It has the merit of being general and therefore
not tied to any particular experiment or type of analysis such
as null hypothesis signi�cance testing. It certainly captures
a change in direction of the e�ect. It does not, however, cap-
ture the magnitude of the e�ect. In the end our view is that

�nding so many changes in e�ect direction when compar-
ing F1 results with the more robust MCC is emblematic of
underlying problems.

• Imbalance is not precisely known. This is because sampling
cases into folds for cross-validation is a stochastic process.
Also exact details of any data pre-processing are not always
fully reported. These issues are likely to be more signi�cant
for the smaller data sets. Nevertheless, the defect densities
for each data set give a reasonable approximation of the
imbalance, and the lack of a relationship between imbalance
and concordance is su�ciently strong to not be materially
impacted by more exact imbalance measurement.

For external validity threats relating to generalisability, we see
the following issue.

Althoughwe searched systematically, our searchwas quite tightly
de�ned so we did exclude relevant experiments.5 We could have
used additional queries and used other bibliographic databases. We
could also have examined the grey literature. In mitigation, we be-
lieve we have some personal domain knowledge and we focused on
recent papers (primarily because use of the Matthews correlation
coe�cient is a relatively recent phenomenon) and are not aware of
any papers that have been missed. It has also been our intention to
focus on high quality papers. Informally, it has been our impression
that there has been a high degree of scholarship and all papers
passed our inclusion criterion of using cross-validation procedures.

Also, we only found eight experiments so is this a su�ciently
large sample? Of course a larger sample would be preferable but we
are constrained by what is available. In addition, the eight papers
contain over 4000 individual pairwise results which is a substantial
body of data to analyse. In the future this threat might also be
tackled by exploring other problem domains.

ACKNOWLEDGEMENTS

Jingxiu Yao wishes to acknowledge the support of the China Schol-
arship Council.

REFERENCES
[1] G. Abaei, A. Selamat, and J. Al Dallal. 2018. A fuzzy logic expert system to

predict module fault proneness using unlabeled data. Journal of King Saud
University-Computer and Information Sciences online (2018).

[2] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen. 2000. Assessing the
accuracy of prediction algorithms for classi�cation: an overview. Bioinformatics
16, 5 (2000), 412–424.

[3] C. Catal and B. Diri. 2009. A systematic review of software fault prediction
studies. Expert Systems with Applications 36, 4 (2009), 7346–7354.

[4] P. Ellis. 2010. The Essential Guide to E�ect Sizes: Statistical Power, Meta-Analysis,
and the Interpretation of Research Results. Cambridge University Press.

[5] T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27,
8 (2006), 861–874.

[6] C. Ferri, J. Hernández-Orallo, and R. Modroiu. 2009. An experimental comparison
of performance measures for classi�cation. Pattern Recognition Letters 30, 1 (2009),
27–38.

[7] P. Flach and M. Kull. 2015. Precision-recall-gain curves: PR analysis done right.
In Advances in Neural Information Processing Systems (NIPS 2015). 838–846.

[8] L. Gong, S. Jiang, and L. Jiang. 2019. An improved transfer adaptive boosting
approach for mixed-project defect prediction. Journal of Software: Evolution and
Process 31, 10 (2019), e2172.

5Following the suggestion one of the reviewers, we extended the search to consider
other synonyms for F1 such as F-measure. This yielded an additional eight papers
containing a further ∼ 4200 pairwise comparisons. Unfortunately the timescales do
not permit us to complete the analysis, however, once it is completed we will place
the new results on our open repository at https://zenodo.org/deposit/3581263.

https://zenodo.org/deposit/3581263

EASE 2020, April 15–17, 2020, Trondheim, Norway Jingxiu Yao and Martin Shepperd

[9] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. 2012. A Systematic
Literature Review on Fault Prediction Performance in Software Engineering.
IEEE Transactions on Software Engineering 38, 6 (2012), 1276–1304.

[10] D. Hand. 2009. Measuring classi�er performance: a coherent alternative to
the area under the ROC curve. Machine Learning 77 (2009), 103–123. https:
//doi.org/10.1007/s10994-009-5119-5

[11] J. Hernández-Orallo, P. Flach, and C. Ferri. 2012. A uni�ed view of performance
metrics: translating threshold choice into expected classi�cation loss. Journal of
Machine Learning Research 13, 10 (2012), 2813–2869.

[12] S. Hosseini, B. Turhan, and D Gunarathna. 2017. A systematic literature re-
view and meta-analysis on cross project defect prediction. IEEE Transactions on
Software Engineering 45, 2 (2017), 111–147.

[13] K. Khan, S. Daya, and A. Jadad. 1996. The importance of quality of primary
studies in producing unbiased systematic reviews. Archives of Internal Medicine
156, 6 (1996), 661–666.

[14] B. Kitchenham, D. Budgen, and P. Brereton. 2015. Evidence-Based Software
engineering and systematic reviews. CRC Press, Boca Raton, Fl, US.

[15] A. Luque, A. Carrasco, A. Martín, and A. de las Heras. 2019. The impact of class
imbalance in classi�cation performance metrics based on the binary confusion
matrix. Pattern Recognition 91 (2019), 216–231.

[16] R. Malhotra. 2015. A systematic review of machine learning techniques for
software fault prediction. Applied Soft Computing 27 (2015), 504–518. https:
//doi.org/10.1016/j.asoc.2014.11.023

[17] G Maušaa, F. Sarro, and T. Grbaca. 2017. Learning Techniques for Systems in
Evolution in Software Defect Prediction. Information and Software Technology
online (2017).

[18] T. Mende and R. Koschke. 2010. E�ort-aware defect prediction models. In 2010
14th IEEE European Conference on Software Maintenance and Reengineering. IEEE,
107–116.

[19] T. Menzies and M. Shepperd. 2012. Editorial: Special issue on repeatable results in
software engineering prediction. Empirical Software Engineering 17, 1–2 (2012),
1–17.

[20] S. Morasca and L. Lavazza. 2017. Risk-averse slope-based thresholds: De�nition
and empirical evaluation. Information and Software Technology 89 (2017), 37–63.

[21] M. NezhadShokouhi, M. Majidi, and A. Rasoolzadegan. 2019. Software defect
prediction using over-sampling and feature extraction based on Mahalanobis
distance. The Journal of Supercomputing online (2019), 1–34.

[22] C. Pan, M. Lu, B. Xu, and H. Gao. 2019. An Improved CNN Model for Within-
Project Software Defect Prediction. Applied Sciences 9, 10 (2019), 2138.

[23] D. Powers. 2011. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. Journal of Machine Learning Tech-
nologies 2, 1 (2011), 37–63.

[24] D. Radjenović, M. Heri|čko, R. Torkar, and A. Živkovi|č. 2013. Software Fault
Prediction Metrics: A Systematic Literature Review. Information and Software

Technology 55, 8 (2013), 1397–1418.
[25] F. Rahman, D. Posnett, and P. Devanbu. 2012. Recalling the imprecision of cross-

project defect prediction. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering.

[26] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu. 2013. Sample size vs. bias
in defect prediction. In Proceedings of the 9th Joint meeting on Foundations of
Software Engineering. ACM, 147–157.

[27] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. Riquelme. 2014. Prelim-
inary comparison of techniques for dealing with imbalance in software defect
prediction. In Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 43.

[28] W. Shadish, T. Cook, and D. Campbell. 2002. Experimental and quasi-experimental
designs for generalized causal inference. Houghton Mi�in, Boston.

[29] M. Shepperd, D. Bowes, and T. Hall. 2014. Researcher Bias: The Use of Machine
Learning in Software Defect Prediction. IEEE Transactions on Software Engineering
40, 6 (2014), 603–616.

[30] M. Sokolova, N. Japkowicz, and S. Szpakowicz. 2006. Beyond accuracy, F-score
and ROC: a family of discriminant measures for performance evaluation. In
Australasian Joint Conference on Arti�cial Intelligence. Springer, 1015–1021.

[31] M. Sokolova and G. Lapalme. 2009. A systematic analysis of performance mea-
sures for classi�cation tasks. Information Processing and Management, 45, 4 (2009),
427–437.

[32] Q. Song, Y. Guo, and M. Shepperd. 2019. A Comprehensive Investigation of the
Role of Imbalanced Learning for Software Defect Prediction. IEEE Transactions
on Software Engineering 45, 12 (2019), 1253–1269.

[33] Y. Sun, A. Wong, and M. Kamel. 2009. Classi�cation of imbalanced data: A review.
International Journal of Pattern Recognition and Arti�cial Intelligence 23, 04 (2009),
687–719.

[34] H. Tong, B. Liu, and S. Wang. 2018. Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning. Information and
Software Technology 96 (2018), 94–111.

[35] C. van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworths.
[36] M. Warrens. 2008. On Association Coe�cients For 2 × 2 Tables and Properties

That Do Not Depend on the Marginal Distributions. Psychometrika 73, 4 (2008),
777–789.

[37] L. Zhao, Z. Shang, L. Zhao, A. Qin, and Y. Tang. 2019. Siamese Dense Neural
Network for Software Defect Prediction With Small Data. IEEE Access 7 (2019),
7663–7677.

[38] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. 2009. Cross-
project defect prediction: a large scale experiment on data vs. domain vs. process.
In Proceedings of the the 7th ACM Joint Meeting of the European Software Engineer-
ing Conference and the Symposium on The foundations of Software Engineering.
ACM, 91–100.

https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1016/j.asoc.2014.11.023

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classifier performance metrics
	2.2 A critique of F1 and comparison with MCC
	2.3 The usage of classification performance metrics in software defect prediction

	3 Systematic Review
	4 Results
	4.1 Summary of the classification accuracy metrics
	4.2 Summary of data set utilisation
	4.3 RQ1: Are F1 and MCC concordant?
	4.4 RQ2: How does data set imbalance impact differences between F1 and MCC?
	4.5 RQ3: How does the magnitude of difference in the classifier performance impact discordancy?

	5 Discussion and Conclusions
	5.1 Threats to validity

	References

