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Abstract

Determining whether a solution is of high quality (optimal or near optimal) is a fundamen-
tal question in optimization theory and algorithms. We develop a Monte Carlo sampling-based
procedure for assessing solution quality in stochastic programs. Quality is defined via the opti-
mality gap and our procedure’s output is a confidence interval on this gap. We present a result
that justifies a single-replication procedure that only requires solving one optimization prob-
lem. This is in contrast to an existing multiple-replications procedure. Even though the single
replication procedure is computationally significantly less demanding, the resulting confidence
interval might have low coverage probability for small sample sizes for some problems. We point
to variants of this procedure that require two replications instead of one, use ε-optimal solutions,
and perform better empirically.

We consider a stochastic optimization problem of the form

z∗ = min
x∈X

Ef(x, ξ̃), (SP)

where f is a real-valued function that determines the cost of operating with decision x under a
realization of the random vector ξ̃, whose distribution is assumed known. We make the following
assumptions:

(A1) f(·, ξ̃) is continuous on X, w.p.1,
(A2) E supx∈X f2(x, ξ̃) < ∞,

(A3) X �= ∅ and is compact.
(SP) is often computationally intractable and an intuitive approach is to resort to sampling and

approximate the problem with

z∗n = min
x∈X

1
n

n∑
i=1

f(x, ξ̃
i
). (SPn)

We assume ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
are independent and identically distributed (i.i.d.) as ξ̃. Let x ∗ denote

an optimal solution to (SP) with optimal cost z ∗. Similarly, let x∗
n and z∗n denote an optimal

solution and the optimal cost of (SPn). Given a candidate solution x̂ ∈ X, we define its quality
by its optimality gap, µx̂ = Ef(x̂, ξ̃) − z∗. There are two problems associated with computing
this quantity. First, z∗ is not known and a lower bound (since we are dealing with a minimization
problem) on z∗ needs to be computed. A second difficulty is that for a given x̂, it is not always
possible to compute Ef(x̂, ξ̃) exactly. So, we will estimate µx̂ by

Gn(x̂) =
1
n

n∑
i=1

f(x̂, ξ̃
i
) − min

x∈X

1
n

n∑
i=1

f(x, ξ̃
i
). (1)
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The second term on the right-hand side of (1) is a lower bound in expectation on z∗ and was
independently introduced by Mak et al. [4] and Norkin et. al. [5]. The former used it in a multiple-
replications procedure for assessing solution quality while the latter used it in a branch-and-bound
methodology for global stochastic optimization. Other algorithmic work that uses Monte Carlo
simulation-based bounds and multiple replications includes [1, 3].

Here, we show how a single observation of (1) can be used to make a valid statistical inference
on the quality of a candidate solution. This is in contrast to [4], where multiple replications
(e.g., 20 or 30) are used. For a feasible solution, x ∈ X, let f̄n(x) = 1

n

∑n
i=1 f(x, ξ̃

i
), σ2

x̂(x) =

var[f(x̂, ξ̃) − f(x, ξ̃)] and s2
n(x) = 1

n−1

∑n
i=1[(f(x̂, ξ̃

i
) −f(x, ξ̃

i
)) − (f̄n(x̂) − f̄n(x))]2. Note that

Gn(x̂) given in equation (1) can be written as f̄n(x̂)− z∗n, with the understanding that the same n

observations ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
are used in f̄n(x̂) and z∗n. Below we state the single replication procedure

(SRP).
SRP:
Input: Desired value of 0 < α < 1, sample size n and a candidate solution x̂ ∈ X.

Output: (1 − α)-level confidence interval on µx̂.

1. Sample i.i.d. observations ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
from the distribution of ξ̃.

2. Solve (SPn) to obtain x∗
n.

3. Calculate Gn(x̂) as given in (1) and

s2
n(x∗

n) =
1

n − 1

n∑
i=1

[
(f(x̂, ξ̃

i
) − f(x∗

n, ξ̃
i
)) − (f̄n(x̂) − f̄n(x∗

n))
]2

.

4. Output one-sided CI on µx̂, [
0, Gn(x̂) +

tn−1,αsn(x∗
n)√

n

]
. (2)

Next we give a proposition that establishes consistency of the estimators. Let X∗ denote the set
of optimal solutions to (SP) and let x∗

min ∈ arg minx∈X∗ var[f(x̂, ξ̃)− f(x, ξ̃)]. In other words, x∗
min

is a solution with minimum variance of f(x̂, ξ̃)−f(x, ξ̃), σ2
x̂(x∗

min), among all the optimal solutions.

Proposition 1 Assume (A1)-(A3), x̂ ∈ X, and that ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
are i.i.d. as ξ̃. Then,

(i) z∗n → z∗, w.p.1,
(ii) all limit points of {x∗

n} lie in X∗, w.p.1,
(iii) lim infn→∞ s2

n(x∗
n) ≥ σ2

x̂(x∗
min), w.p.1.

We note that (i) and (ii) follow immediately from Theorem A1 of [6, p.69]. A proof of (iii)
can be found in [2]. When (SP) has multiple optimum solutions, we cannot expect {x∗

n} to have
a unique limit point. However, by part (ii) of Proposition 1, all its limit points belong the set of
optimum solutions, X∗. Similarly, {s2

n(x∗
n)} may not have a unique limit. That is why “lim inf”

appears in part (iii) of Proposition 1 instead of a “lim.” We next present the main result regarding
the validity of the SRP.

Theorem 2 Assume (A1)-(A3), x̂ ∈ X, and that ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
are i.i.d. as ξ̃. Given 0 < α < 1,

for the SRP,

lim inf
n→∞

P

(
µx̂ ≤ Gn(x̂) +

tn−1,αsn(x∗
n)√

n

)
≥ 1 − α. (3)
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Again, see [2] for the proof. Theorem 2 justifies construction of the approximate (1−α)-level one-
sided confidence interval for µx̂ = Ef(x̂, ξ̃)− z∗, given in (2) without requiring Gn(x̂) = f̄n(x̂)− z∗n
to be asymptotically normal. The intuitive reason for this is that minimization of the sample mean
in z∗n, while making asymptotic analysis of this random variable more difficult, projects the normal
distribution so that the resulting confidence interval is conservative.

Even though our single replication procedure is computationally significantly less demanding,
solving a single minimization problem might also create some problems. For instance, in step 2
of the procedure, if the minimization problem used to calculate the gap estimate yields a solution
x∗

n that is equal to x̂, then both the gap estimate Gn(x̂) and the variance estimate sn(x∗
n) are 0

and consequently the CI on the optimality gap given in (2) has width 0. This can happen even
though the candidate solution x̂ is far from optimal, for small sample sizes. Of course, Proposition 1
eliminates this possibility as the sample size grows large, but this still indicates that care must be
exercised in employing the single-replication procedure. So, in [2] we introduce two-replication
procedures and discuss other techniques such as using ε-optimal solutions in order to “safeguard”
the procedure and achieve good empirical coverage results.
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